i965: Tell backend register about double precision type
[mesa.git] / src / mesa / drivers / dri / i965 / brw_shader.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_context.h"
25 #include "brw_cfg.h"
26 #include "brw_eu.h"
27 #include "brw_fs.h"
28 #include "brw_nir.h"
29 #include "brw_vec4_tes.h"
30 #include "main/shaderobj.h"
31 #include "main/uniforms.h"
32
33 extern "C" struct gl_shader *
34 brw_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
35 {
36 struct brw_shader *shader;
37
38 shader = rzalloc(NULL, struct brw_shader);
39 if (shader) {
40 shader->base.Type = type;
41 shader->base.Stage = _mesa_shader_enum_to_shader_stage(type);
42 shader->base.Name = name;
43 _mesa_init_shader(ctx, &shader->base);
44 }
45
46 return &shader->base;
47 }
48
49 extern "C" void
50 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
51 unsigned surf_index)
52 {
53 assert(surf_index < BRW_MAX_SURFACES);
54
55 prog_data->binding_table.size_bytes =
56 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
57 }
58
59 enum brw_reg_type
60 brw_type_for_base_type(const struct glsl_type *type)
61 {
62 switch (type->base_type) {
63 case GLSL_TYPE_FLOAT:
64 return BRW_REGISTER_TYPE_F;
65 case GLSL_TYPE_INT:
66 case GLSL_TYPE_BOOL:
67 case GLSL_TYPE_SUBROUTINE:
68 return BRW_REGISTER_TYPE_D;
69 case GLSL_TYPE_UINT:
70 return BRW_REGISTER_TYPE_UD;
71 case GLSL_TYPE_ARRAY:
72 return brw_type_for_base_type(type->fields.array);
73 case GLSL_TYPE_STRUCT:
74 case GLSL_TYPE_SAMPLER:
75 case GLSL_TYPE_ATOMIC_UINT:
76 /* These should be overridden with the type of the member when
77 * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
78 * way to trip up if we don't.
79 */
80 return BRW_REGISTER_TYPE_UD;
81 case GLSL_TYPE_IMAGE:
82 return BRW_REGISTER_TYPE_UD;
83 case GLSL_TYPE_DOUBLE:
84 return BRW_REGISTER_TYPE_DF;
85 case GLSL_TYPE_VOID:
86 case GLSL_TYPE_ERROR:
87 case GLSL_TYPE_INTERFACE:
88 case GLSL_TYPE_FUNCTION:
89 unreachable("not reached");
90 }
91
92 return BRW_REGISTER_TYPE_F;
93 }
94
95 enum brw_conditional_mod
96 brw_conditional_for_comparison(unsigned int op)
97 {
98 switch (op) {
99 case ir_binop_less:
100 return BRW_CONDITIONAL_L;
101 case ir_binop_greater:
102 return BRW_CONDITIONAL_G;
103 case ir_binop_lequal:
104 return BRW_CONDITIONAL_LE;
105 case ir_binop_gequal:
106 return BRW_CONDITIONAL_GE;
107 case ir_binop_equal:
108 case ir_binop_all_equal: /* same as equal for scalars */
109 return BRW_CONDITIONAL_Z;
110 case ir_binop_nequal:
111 case ir_binop_any_nequal: /* same as nequal for scalars */
112 return BRW_CONDITIONAL_NZ;
113 default:
114 unreachable("not reached: bad operation for comparison");
115 }
116 }
117
118 uint32_t
119 brw_math_function(enum opcode op)
120 {
121 switch (op) {
122 case SHADER_OPCODE_RCP:
123 return BRW_MATH_FUNCTION_INV;
124 case SHADER_OPCODE_RSQ:
125 return BRW_MATH_FUNCTION_RSQ;
126 case SHADER_OPCODE_SQRT:
127 return BRW_MATH_FUNCTION_SQRT;
128 case SHADER_OPCODE_EXP2:
129 return BRW_MATH_FUNCTION_EXP;
130 case SHADER_OPCODE_LOG2:
131 return BRW_MATH_FUNCTION_LOG;
132 case SHADER_OPCODE_POW:
133 return BRW_MATH_FUNCTION_POW;
134 case SHADER_OPCODE_SIN:
135 return BRW_MATH_FUNCTION_SIN;
136 case SHADER_OPCODE_COS:
137 return BRW_MATH_FUNCTION_COS;
138 case SHADER_OPCODE_INT_QUOTIENT:
139 return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT;
140 case SHADER_OPCODE_INT_REMAINDER:
141 return BRW_MATH_FUNCTION_INT_DIV_REMAINDER;
142 default:
143 unreachable("not reached: unknown math function");
144 }
145 }
146
147 uint32_t
148 brw_texture_offset(int *offsets, unsigned num_components)
149 {
150 if (!offsets) return 0; /* nonconstant offset; caller will handle it. */
151
152 /* Combine all three offsets into a single unsigned dword:
153 *
154 * bits 11:8 - U Offset (X component)
155 * bits 7:4 - V Offset (Y component)
156 * bits 3:0 - R Offset (Z component)
157 */
158 unsigned offset_bits = 0;
159 for (unsigned i = 0; i < num_components; i++) {
160 const unsigned shift = 4 * (2 - i);
161 offset_bits |= (offsets[i] << shift) & (0xF << shift);
162 }
163 return offset_bits;
164 }
165
166 const char *
167 brw_instruction_name(const struct brw_device_info *devinfo, enum opcode op)
168 {
169 switch (op) {
170 case BRW_OPCODE_ILLEGAL ... BRW_OPCODE_NOP:
171 assert(brw_opcode_desc(devinfo, op)->name);
172 return brw_opcode_desc(devinfo, op)->name;
173 case FS_OPCODE_FB_WRITE:
174 return "fb_write";
175 case FS_OPCODE_FB_WRITE_LOGICAL:
176 return "fb_write_logical";
177 case FS_OPCODE_PACK_STENCIL_REF:
178 return "pack_stencil_ref";
179 case FS_OPCODE_BLORP_FB_WRITE:
180 return "blorp_fb_write";
181 case FS_OPCODE_REP_FB_WRITE:
182 return "rep_fb_write";
183
184 case SHADER_OPCODE_RCP:
185 return "rcp";
186 case SHADER_OPCODE_RSQ:
187 return "rsq";
188 case SHADER_OPCODE_SQRT:
189 return "sqrt";
190 case SHADER_OPCODE_EXP2:
191 return "exp2";
192 case SHADER_OPCODE_LOG2:
193 return "log2";
194 case SHADER_OPCODE_POW:
195 return "pow";
196 case SHADER_OPCODE_INT_QUOTIENT:
197 return "int_quot";
198 case SHADER_OPCODE_INT_REMAINDER:
199 return "int_rem";
200 case SHADER_OPCODE_SIN:
201 return "sin";
202 case SHADER_OPCODE_COS:
203 return "cos";
204
205 case SHADER_OPCODE_TEX:
206 return "tex";
207 case SHADER_OPCODE_TEX_LOGICAL:
208 return "tex_logical";
209 case SHADER_OPCODE_TXD:
210 return "txd";
211 case SHADER_OPCODE_TXD_LOGICAL:
212 return "txd_logical";
213 case SHADER_OPCODE_TXF:
214 return "txf";
215 case SHADER_OPCODE_TXF_LOGICAL:
216 return "txf_logical";
217 case SHADER_OPCODE_TXL:
218 return "txl";
219 case SHADER_OPCODE_TXL_LOGICAL:
220 return "txl_logical";
221 case SHADER_OPCODE_TXS:
222 return "txs";
223 case SHADER_OPCODE_TXS_LOGICAL:
224 return "txs_logical";
225 case FS_OPCODE_TXB:
226 return "txb";
227 case FS_OPCODE_TXB_LOGICAL:
228 return "txb_logical";
229 case SHADER_OPCODE_TXF_CMS:
230 return "txf_cms";
231 case SHADER_OPCODE_TXF_CMS_LOGICAL:
232 return "txf_cms_logical";
233 case SHADER_OPCODE_TXF_CMS_W:
234 return "txf_cms_w";
235 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
236 return "txf_cms_w_logical";
237 case SHADER_OPCODE_TXF_UMS:
238 return "txf_ums";
239 case SHADER_OPCODE_TXF_UMS_LOGICAL:
240 return "txf_ums_logical";
241 case SHADER_OPCODE_TXF_MCS:
242 return "txf_mcs";
243 case SHADER_OPCODE_TXF_MCS_LOGICAL:
244 return "txf_mcs_logical";
245 case SHADER_OPCODE_LOD:
246 return "lod";
247 case SHADER_OPCODE_LOD_LOGICAL:
248 return "lod_logical";
249 case SHADER_OPCODE_TG4:
250 return "tg4";
251 case SHADER_OPCODE_TG4_LOGICAL:
252 return "tg4_logical";
253 case SHADER_OPCODE_TG4_OFFSET:
254 return "tg4_offset";
255 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
256 return "tg4_offset_logical";
257 case SHADER_OPCODE_SAMPLEINFO:
258 return "sampleinfo";
259
260 case SHADER_OPCODE_SHADER_TIME_ADD:
261 return "shader_time_add";
262
263 case SHADER_OPCODE_UNTYPED_ATOMIC:
264 return "untyped_atomic";
265 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
266 return "untyped_atomic_logical";
267 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
268 return "untyped_surface_read";
269 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
270 return "untyped_surface_read_logical";
271 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
272 return "untyped_surface_write";
273 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
274 return "untyped_surface_write_logical";
275 case SHADER_OPCODE_TYPED_ATOMIC:
276 return "typed_atomic";
277 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
278 return "typed_atomic_logical";
279 case SHADER_OPCODE_TYPED_SURFACE_READ:
280 return "typed_surface_read";
281 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
282 return "typed_surface_read_logical";
283 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
284 return "typed_surface_write";
285 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
286 return "typed_surface_write_logical";
287 case SHADER_OPCODE_MEMORY_FENCE:
288 return "memory_fence";
289
290 case SHADER_OPCODE_LOAD_PAYLOAD:
291 return "load_payload";
292
293 case SHADER_OPCODE_GEN4_SCRATCH_READ:
294 return "gen4_scratch_read";
295 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
296 return "gen4_scratch_write";
297 case SHADER_OPCODE_GEN7_SCRATCH_READ:
298 return "gen7_scratch_read";
299 case SHADER_OPCODE_URB_WRITE_SIMD8:
300 return "gen8_urb_write_simd8";
301 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
302 return "gen8_urb_write_simd8_per_slot";
303 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
304 return "gen8_urb_write_simd8_masked";
305 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
306 return "gen8_urb_write_simd8_masked_per_slot";
307 case SHADER_OPCODE_URB_READ_SIMD8:
308 return "urb_read_simd8";
309 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
310 return "urb_read_simd8_per_slot";
311
312 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
313 return "find_live_channel";
314 case SHADER_OPCODE_BROADCAST:
315 return "broadcast";
316
317 case SHADER_OPCODE_EXTRACT_BYTE:
318 return "extract_byte";
319 case SHADER_OPCODE_EXTRACT_WORD:
320 return "extract_word";
321 case VEC4_OPCODE_MOV_BYTES:
322 return "mov_bytes";
323 case VEC4_OPCODE_PACK_BYTES:
324 return "pack_bytes";
325 case VEC4_OPCODE_UNPACK_UNIFORM:
326 return "unpack_uniform";
327
328 case FS_OPCODE_DDX_COARSE:
329 return "ddx_coarse";
330 case FS_OPCODE_DDX_FINE:
331 return "ddx_fine";
332 case FS_OPCODE_DDY_COARSE:
333 return "ddy_coarse";
334 case FS_OPCODE_DDY_FINE:
335 return "ddy_fine";
336
337 case FS_OPCODE_CINTERP:
338 return "cinterp";
339 case FS_OPCODE_LINTERP:
340 return "linterp";
341
342 case FS_OPCODE_PIXEL_X:
343 return "pixel_x";
344 case FS_OPCODE_PIXEL_Y:
345 return "pixel_y";
346
347 case FS_OPCODE_GET_BUFFER_SIZE:
348 return "fs_get_buffer_size";
349
350 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
351 return "uniform_pull_const";
352 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
353 return "uniform_pull_const_gen7";
354 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
355 return "varying_pull_const";
356 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
357 return "varying_pull_const_gen7";
358
359 case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
360 return "mov_dispatch_to_flags";
361 case FS_OPCODE_DISCARD_JUMP:
362 return "discard_jump";
363
364 case FS_OPCODE_SET_SAMPLE_ID:
365 return "set_sample_id";
366 case FS_OPCODE_SET_SIMD4X2_OFFSET:
367 return "set_simd4x2_offset";
368
369 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
370 return "pack_half_2x16_split";
371 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
372 return "unpack_half_2x16_split_x";
373 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
374 return "unpack_half_2x16_split_y";
375
376 case FS_OPCODE_PLACEHOLDER_HALT:
377 return "placeholder_halt";
378
379 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
380 return "interp_centroid";
381 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
382 return "interp_sample";
383 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
384 return "interp_shared_offset";
385 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
386 return "interp_per_slot_offset";
387
388 case VS_OPCODE_URB_WRITE:
389 return "vs_urb_write";
390 case VS_OPCODE_PULL_CONSTANT_LOAD:
391 return "pull_constant_load";
392 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
393 return "pull_constant_load_gen7";
394
395 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
396 return "set_simd4x2_header_gen9";
397
398 case VS_OPCODE_GET_BUFFER_SIZE:
399 return "vs_get_buffer_size";
400
401 case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
402 return "unpack_flags_simd4x2";
403
404 case GS_OPCODE_URB_WRITE:
405 return "gs_urb_write";
406 case GS_OPCODE_URB_WRITE_ALLOCATE:
407 return "gs_urb_write_allocate";
408 case GS_OPCODE_THREAD_END:
409 return "gs_thread_end";
410 case GS_OPCODE_SET_WRITE_OFFSET:
411 return "set_write_offset";
412 case GS_OPCODE_SET_VERTEX_COUNT:
413 return "set_vertex_count";
414 case GS_OPCODE_SET_DWORD_2:
415 return "set_dword_2";
416 case GS_OPCODE_PREPARE_CHANNEL_MASKS:
417 return "prepare_channel_masks";
418 case GS_OPCODE_SET_CHANNEL_MASKS:
419 return "set_channel_masks";
420 case GS_OPCODE_GET_INSTANCE_ID:
421 return "get_instance_id";
422 case GS_OPCODE_FF_SYNC:
423 return "ff_sync";
424 case GS_OPCODE_SET_PRIMITIVE_ID:
425 return "set_primitive_id";
426 case GS_OPCODE_SVB_WRITE:
427 return "gs_svb_write";
428 case GS_OPCODE_SVB_SET_DST_INDEX:
429 return "gs_svb_set_dst_index";
430 case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
431 return "gs_ff_sync_set_primitives";
432 case CS_OPCODE_CS_TERMINATE:
433 return "cs_terminate";
434 case SHADER_OPCODE_BARRIER:
435 return "barrier";
436 case SHADER_OPCODE_MULH:
437 return "mulh";
438 case SHADER_OPCODE_MOV_INDIRECT:
439 return "mov_indirect";
440
441 case VEC4_OPCODE_URB_READ:
442 return "urb_read";
443 case TCS_OPCODE_GET_INSTANCE_ID:
444 return "tcs_get_instance_id";
445 case TCS_OPCODE_URB_WRITE:
446 return "tcs_urb_write";
447 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
448 return "tcs_set_input_urb_offsets";
449 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
450 return "tcs_set_output_urb_offsets";
451 case TCS_OPCODE_GET_PRIMITIVE_ID:
452 return "tcs_get_primitive_id";
453 case TCS_OPCODE_CREATE_BARRIER_HEADER:
454 return "tcs_create_barrier_header";
455 case TCS_OPCODE_SRC0_010_IS_ZERO:
456 return "tcs_src0<0,1,0>_is_zero";
457 case TCS_OPCODE_RELEASE_INPUT:
458 return "tcs_release_input";
459 case TCS_OPCODE_THREAD_END:
460 return "tcs_thread_end";
461 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
462 return "tes_create_input_read_header";
463 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
464 return "tes_add_indirect_urb_offset";
465 case TES_OPCODE_GET_PRIMITIVE_ID:
466 return "tes_get_primitive_id";
467 }
468
469 unreachable("not reached");
470 }
471
472 bool
473 brw_saturate_immediate(enum brw_reg_type type, struct brw_reg *reg)
474 {
475 union {
476 unsigned ud;
477 int d;
478 float f;
479 } imm = { reg->ud }, sat_imm = { 0 };
480
481 switch (type) {
482 case BRW_REGISTER_TYPE_UD:
483 case BRW_REGISTER_TYPE_D:
484 case BRW_REGISTER_TYPE_UW:
485 case BRW_REGISTER_TYPE_W:
486 case BRW_REGISTER_TYPE_UQ:
487 case BRW_REGISTER_TYPE_Q:
488 /* Nothing to do. */
489 return false;
490 case BRW_REGISTER_TYPE_F:
491 sat_imm.f = CLAMP(imm.f, 0.0f, 1.0f);
492 break;
493 case BRW_REGISTER_TYPE_UB:
494 case BRW_REGISTER_TYPE_B:
495 unreachable("no UB/B immediates");
496 case BRW_REGISTER_TYPE_V:
497 case BRW_REGISTER_TYPE_UV:
498 case BRW_REGISTER_TYPE_VF:
499 unreachable("unimplemented: saturate vector immediate");
500 case BRW_REGISTER_TYPE_DF:
501 case BRW_REGISTER_TYPE_HF:
502 unreachable("unimplemented: saturate DF/HF immediate");
503 }
504
505 if (imm.ud != sat_imm.ud) {
506 reg->ud = sat_imm.ud;
507 return true;
508 }
509 return false;
510 }
511
512 bool
513 brw_negate_immediate(enum brw_reg_type type, struct brw_reg *reg)
514 {
515 switch (type) {
516 case BRW_REGISTER_TYPE_D:
517 case BRW_REGISTER_TYPE_UD:
518 reg->d = -reg->d;
519 return true;
520 case BRW_REGISTER_TYPE_W:
521 case BRW_REGISTER_TYPE_UW:
522 reg->d = -(int16_t)reg->ud;
523 return true;
524 case BRW_REGISTER_TYPE_F:
525 reg->f = -reg->f;
526 return true;
527 case BRW_REGISTER_TYPE_VF:
528 reg->ud ^= 0x80808080;
529 return true;
530 case BRW_REGISTER_TYPE_UB:
531 case BRW_REGISTER_TYPE_B:
532 unreachable("no UB/B immediates");
533 case BRW_REGISTER_TYPE_UV:
534 case BRW_REGISTER_TYPE_V:
535 assert(!"unimplemented: negate UV/V immediate");
536 case BRW_REGISTER_TYPE_UQ:
537 case BRW_REGISTER_TYPE_Q:
538 assert(!"unimplemented: negate UQ/Q immediate");
539 case BRW_REGISTER_TYPE_DF:
540 case BRW_REGISTER_TYPE_HF:
541 assert(!"unimplemented: negate DF/HF immediate");
542 }
543
544 return false;
545 }
546
547 bool
548 brw_abs_immediate(enum brw_reg_type type, struct brw_reg *reg)
549 {
550 switch (type) {
551 case BRW_REGISTER_TYPE_D:
552 reg->d = abs(reg->d);
553 return true;
554 case BRW_REGISTER_TYPE_W:
555 reg->d = abs((int16_t)reg->ud);
556 return true;
557 case BRW_REGISTER_TYPE_F:
558 reg->f = fabsf(reg->f);
559 return true;
560 case BRW_REGISTER_TYPE_VF:
561 reg->ud &= ~0x80808080;
562 return true;
563 case BRW_REGISTER_TYPE_UB:
564 case BRW_REGISTER_TYPE_B:
565 unreachable("no UB/B immediates");
566 case BRW_REGISTER_TYPE_UQ:
567 case BRW_REGISTER_TYPE_UD:
568 case BRW_REGISTER_TYPE_UW:
569 case BRW_REGISTER_TYPE_UV:
570 /* Presumably the absolute value modifier on an unsigned source is a
571 * nop, but it would be nice to confirm.
572 */
573 assert(!"unimplemented: abs unsigned immediate");
574 case BRW_REGISTER_TYPE_V:
575 assert(!"unimplemented: abs V immediate");
576 case BRW_REGISTER_TYPE_Q:
577 assert(!"unimplemented: abs Q immediate");
578 case BRW_REGISTER_TYPE_DF:
579 case BRW_REGISTER_TYPE_HF:
580 assert(!"unimplemented: abs DF/HF immediate");
581 }
582
583 return false;
584 }
585
586 unsigned
587 tesslevel_outer_components(GLenum tes_primitive_mode)
588 {
589 switch (tes_primitive_mode) {
590 case GL_QUADS:
591 return 4;
592 case GL_TRIANGLES:
593 return 3;
594 case GL_ISOLINES:
595 return 2;
596 default:
597 unreachable("Bogus tessellation domain");
598 }
599 return 0;
600 }
601
602 unsigned
603 tesslevel_inner_components(GLenum tes_primitive_mode)
604 {
605 switch (tes_primitive_mode) {
606 case GL_QUADS:
607 return 2;
608 case GL_TRIANGLES:
609 return 1;
610 case GL_ISOLINES:
611 return 0;
612 default:
613 unreachable("Bogus tessellation domain");
614 }
615 return 0;
616 }
617
618 /**
619 * Given a normal .xyzw writemask, convert it to a writemask for a vector
620 * that's stored backwards, i.e. .wzyx.
621 */
622 unsigned
623 writemask_for_backwards_vector(unsigned mask)
624 {
625 unsigned new_mask = 0;
626
627 for (int i = 0; i < 4; i++)
628 new_mask |= ((mask >> i) & 1) << (3 - i);
629
630 return new_mask;
631 }
632
633 backend_shader::backend_shader(const struct brw_compiler *compiler,
634 void *log_data,
635 void *mem_ctx,
636 const nir_shader *shader,
637 struct brw_stage_prog_data *stage_prog_data)
638 : compiler(compiler),
639 log_data(log_data),
640 devinfo(compiler->devinfo),
641 nir(shader),
642 stage_prog_data(stage_prog_data),
643 mem_ctx(mem_ctx),
644 cfg(NULL),
645 stage(shader->stage)
646 {
647 debug_enabled = INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage);
648 stage_name = _mesa_shader_stage_to_string(stage);
649 stage_abbrev = _mesa_shader_stage_to_abbrev(stage);
650 is_passthrough_shader =
651 nir->info.name && strcmp(nir->info.name, "passthrough") == 0;
652 }
653
654 bool
655 backend_reg::equals(const backend_reg &r) const
656 {
657 return memcmp((brw_reg *)this, (brw_reg *)&r, sizeof(brw_reg)) == 0 &&
658 reg_offset == r.reg_offset;
659 }
660
661 bool
662 backend_reg::is_zero() const
663 {
664 if (file != IMM)
665 return false;
666
667 return d == 0;
668 }
669
670 bool
671 backend_reg::is_one() const
672 {
673 if (file != IMM)
674 return false;
675
676 return type == BRW_REGISTER_TYPE_F
677 ? f == 1.0
678 : d == 1;
679 }
680
681 bool
682 backend_reg::is_negative_one() const
683 {
684 if (file != IMM)
685 return false;
686
687 switch (type) {
688 case BRW_REGISTER_TYPE_F:
689 return f == -1.0;
690 case BRW_REGISTER_TYPE_D:
691 return d == -1;
692 default:
693 return false;
694 }
695 }
696
697 bool
698 backend_reg::is_null() const
699 {
700 return file == ARF && nr == BRW_ARF_NULL;
701 }
702
703
704 bool
705 backend_reg::is_accumulator() const
706 {
707 return file == ARF && nr == BRW_ARF_ACCUMULATOR;
708 }
709
710 bool
711 backend_reg::in_range(const backend_reg &r, unsigned n) const
712 {
713 return (file == r.file &&
714 nr == r.nr &&
715 reg_offset >= r.reg_offset &&
716 reg_offset < r.reg_offset + n);
717 }
718
719 bool
720 backend_instruction::is_commutative() const
721 {
722 switch (opcode) {
723 case BRW_OPCODE_AND:
724 case BRW_OPCODE_OR:
725 case BRW_OPCODE_XOR:
726 case BRW_OPCODE_ADD:
727 case BRW_OPCODE_MUL:
728 case SHADER_OPCODE_MULH:
729 return true;
730 case BRW_OPCODE_SEL:
731 /* MIN and MAX are commutative. */
732 if (conditional_mod == BRW_CONDITIONAL_GE ||
733 conditional_mod == BRW_CONDITIONAL_L) {
734 return true;
735 }
736 /* fallthrough */
737 default:
738 return false;
739 }
740 }
741
742 bool
743 backend_instruction::is_3src(const struct brw_device_info *devinfo) const
744 {
745 return ::is_3src(devinfo, opcode);
746 }
747
748 bool
749 backend_instruction::is_tex() const
750 {
751 return (opcode == SHADER_OPCODE_TEX ||
752 opcode == FS_OPCODE_TXB ||
753 opcode == SHADER_OPCODE_TXD ||
754 opcode == SHADER_OPCODE_TXF ||
755 opcode == SHADER_OPCODE_TXF_CMS ||
756 opcode == SHADER_OPCODE_TXF_CMS_W ||
757 opcode == SHADER_OPCODE_TXF_UMS ||
758 opcode == SHADER_OPCODE_TXF_MCS ||
759 opcode == SHADER_OPCODE_TXL ||
760 opcode == SHADER_OPCODE_TXS ||
761 opcode == SHADER_OPCODE_LOD ||
762 opcode == SHADER_OPCODE_TG4 ||
763 opcode == SHADER_OPCODE_TG4_OFFSET ||
764 opcode == SHADER_OPCODE_SAMPLEINFO);
765 }
766
767 bool
768 backend_instruction::is_math() const
769 {
770 return (opcode == SHADER_OPCODE_RCP ||
771 opcode == SHADER_OPCODE_RSQ ||
772 opcode == SHADER_OPCODE_SQRT ||
773 opcode == SHADER_OPCODE_EXP2 ||
774 opcode == SHADER_OPCODE_LOG2 ||
775 opcode == SHADER_OPCODE_SIN ||
776 opcode == SHADER_OPCODE_COS ||
777 opcode == SHADER_OPCODE_INT_QUOTIENT ||
778 opcode == SHADER_OPCODE_INT_REMAINDER ||
779 opcode == SHADER_OPCODE_POW);
780 }
781
782 bool
783 backend_instruction::is_control_flow() const
784 {
785 switch (opcode) {
786 case BRW_OPCODE_DO:
787 case BRW_OPCODE_WHILE:
788 case BRW_OPCODE_IF:
789 case BRW_OPCODE_ELSE:
790 case BRW_OPCODE_ENDIF:
791 case BRW_OPCODE_BREAK:
792 case BRW_OPCODE_CONTINUE:
793 return true;
794 default:
795 return false;
796 }
797 }
798
799 bool
800 backend_instruction::can_do_source_mods() const
801 {
802 switch (opcode) {
803 case BRW_OPCODE_ADDC:
804 case BRW_OPCODE_BFE:
805 case BRW_OPCODE_BFI1:
806 case BRW_OPCODE_BFI2:
807 case BRW_OPCODE_BFREV:
808 case BRW_OPCODE_CBIT:
809 case BRW_OPCODE_FBH:
810 case BRW_OPCODE_FBL:
811 case BRW_OPCODE_SUBB:
812 return false;
813 default:
814 return true;
815 }
816 }
817
818 bool
819 backend_instruction::can_do_saturate() const
820 {
821 switch (opcode) {
822 case BRW_OPCODE_ADD:
823 case BRW_OPCODE_ASR:
824 case BRW_OPCODE_AVG:
825 case BRW_OPCODE_DP2:
826 case BRW_OPCODE_DP3:
827 case BRW_OPCODE_DP4:
828 case BRW_OPCODE_DPH:
829 case BRW_OPCODE_F16TO32:
830 case BRW_OPCODE_F32TO16:
831 case BRW_OPCODE_LINE:
832 case BRW_OPCODE_LRP:
833 case BRW_OPCODE_MAC:
834 case BRW_OPCODE_MAD:
835 case BRW_OPCODE_MATH:
836 case BRW_OPCODE_MOV:
837 case BRW_OPCODE_MUL:
838 case SHADER_OPCODE_MULH:
839 case BRW_OPCODE_PLN:
840 case BRW_OPCODE_RNDD:
841 case BRW_OPCODE_RNDE:
842 case BRW_OPCODE_RNDU:
843 case BRW_OPCODE_RNDZ:
844 case BRW_OPCODE_SEL:
845 case BRW_OPCODE_SHL:
846 case BRW_OPCODE_SHR:
847 case FS_OPCODE_LINTERP:
848 case SHADER_OPCODE_COS:
849 case SHADER_OPCODE_EXP2:
850 case SHADER_OPCODE_LOG2:
851 case SHADER_OPCODE_POW:
852 case SHADER_OPCODE_RCP:
853 case SHADER_OPCODE_RSQ:
854 case SHADER_OPCODE_SIN:
855 case SHADER_OPCODE_SQRT:
856 return true;
857 default:
858 return false;
859 }
860 }
861
862 bool
863 backend_instruction::can_do_cmod() const
864 {
865 switch (opcode) {
866 case BRW_OPCODE_ADD:
867 case BRW_OPCODE_ADDC:
868 case BRW_OPCODE_AND:
869 case BRW_OPCODE_ASR:
870 case BRW_OPCODE_AVG:
871 case BRW_OPCODE_CMP:
872 case BRW_OPCODE_CMPN:
873 case BRW_OPCODE_DP2:
874 case BRW_OPCODE_DP3:
875 case BRW_OPCODE_DP4:
876 case BRW_OPCODE_DPH:
877 case BRW_OPCODE_F16TO32:
878 case BRW_OPCODE_F32TO16:
879 case BRW_OPCODE_FRC:
880 case BRW_OPCODE_LINE:
881 case BRW_OPCODE_LRP:
882 case BRW_OPCODE_LZD:
883 case BRW_OPCODE_MAC:
884 case BRW_OPCODE_MACH:
885 case BRW_OPCODE_MAD:
886 case BRW_OPCODE_MOV:
887 case BRW_OPCODE_MUL:
888 case BRW_OPCODE_NOT:
889 case BRW_OPCODE_OR:
890 case BRW_OPCODE_PLN:
891 case BRW_OPCODE_RNDD:
892 case BRW_OPCODE_RNDE:
893 case BRW_OPCODE_RNDU:
894 case BRW_OPCODE_RNDZ:
895 case BRW_OPCODE_SAD2:
896 case BRW_OPCODE_SADA2:
897 case BRW_OPCODE_SHL:
898 case BRW_OPCODE_SHR:
899 case BRW_OPCODE_SUBB:
900 case BRW_OPCODE_XOR:
901 case FS_OPCODE_CINTERP:
902 case FS_OPCODE_LINTERP:
903 return true;
904 default:
905 return false;
906 }
907 }
908
909 bool
910 backend_instruction::reads_accumulator_implicitly() const
911 {
912 switch (opcode) {
913 case BRW_OPCODE_MAC:
914 case BRW_OPCODE_MACH:
915 case BRW_OPCODE_SADA2:
916 return true;
917 default:
918 return false;
919 }
920 }
921
922 bool
923 backend_instruction::writes_accumulator_implicitly(const struct brw_device_info *devinfo) const
924 {
925 return writes_accumulator ||
926 (devinfo->gen < 6 &&
927 ((opcode >= BRW_OPCODE_ADD && opcode < BRW_OPCODE_NOP) ||
928 (opcode >= FS_OPCODE_DDX_COARSE && opcode <= FS_OPCODE_LINTERP &&
929 opcode != FS_OPCODE_CINTERP)));
930 }
931
932 bool
933 backend_instruction::has_side_effects() const
934 {
935 switch (opcode) {
936 case SHADER_OPCODE_UNTYPED_ATOMIC:
937 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
938 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
939 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
940 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
941 case SHADER_OPCODE_TYPED_ATOMIC:
942 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
943 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
944 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
945 case SHADER_OPCODE_MEMORY_FENCE:
946 case SHADER_OPCODE_URB_WRITE_SIMD8:
947 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
948 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
949 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
950 case FS_OPCODE_FB_WRITE:
951 case SHADER_OPCODE_BARRIER:
952 case TCS_OPCODE_URB_WRITE:
953 case TCS_OPCODE_RELEASE_INPUT:
954 return true;
955 default:
956 return false;
957 }
958 }
959
960 bool
961 backend_instruction::is_volatile() const
962 {
963 switch (opcode) {
964 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
965 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
966 case SHADER_OPCODE_TYPED_SURFACE_READ:
967 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
968 case SHADER_OPCODE_URB_READ_SIMD8:
969 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
970 case VEC4_OPCODE_URB_READ:
971 return true;
972 default:
973 return false;
974 }
975 }
976
977 #ifndef NDEBUG
978 static bool
979 inst_is_in_block(const bblock_t *block, const backend_instruction *inst)
980 {
981 bool found = false;
982 foreach_inst_in_block (backend_instruction, i, block) {
983 if (inst == i) {
984 found = true;
985 }
986 }
987 return found;
988 }
989 #endif
990
991 static void
992 adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
993 {
994 for (bblock_t *block_iter = start_block->next();
995 block_iter;
996 block_iter = block_iter->next()) {
997 block_iter->start_ip += ip_adjustment;
998 block_iter->end_ip += ip_adjustment;
999 }
1000 }
1001
1002 void
1003 backend_instruction::insert_after(bblock_t *block, backend_instruction *inst)
1004 {
1005 assert(this != inst);
1006
1007 if (!this->is_head_sentinel())
1008 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1009
1010 block->end_ip++;
1011
1012 adjust_later_block_ips(block, 1);
1013
1014 exec_node::insert_after(inst);
1015 }
1016
1017 void
1018 backend_instruction::insert_before(bblock_t *block, backend_instruction *inst)
1019 {
1020 assert(this != inst);
1021
1022 if (!this->is_tail_sentinel())
1023 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1024
1025 block->end_ip++;
1026
1027 adjust_later_block_ips(block, 1);
1028
1029 exec_node::insert_before(inst);
1030 }
1031
1032 void
1033 backend_instruction::insert_before(bblock_t *block, exec_list *list)
1034 {
1035 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1036
1037 unsigned num_inst = list->length();
1038
1039 block->end_ip += num_inst;
1040
1041 adjust_later_block_ips(block, num_inst);
1042
1043 exec_node::insert_before(list);
1044 }
1045
1046 void
1047 backend_instruction::remove(bblock_t *block)
1048 {
1049 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1050
1051 adjust_later_block_ips(block, -1);
1052
1053 if (block->start_ip == block->end_ip) {
1054 block->cfg->remove_block(block);
1055 } else {
1056 block->end_ip--;
1057 }
1058
1059 exec_node::remove();
1060 }
1061
1062 void
1063 backend_shader::dump_instructions()
1064 {
1065 dump_instructions(NULL);
1066 }
1067
1068 void
1069 backend_shader::dump_instructions(const char *name)
1070 {
1071 FILE *file = stderr;
1072 if (name && geteuid() != 0) {
1073 file = fopen(name, "w");
1074 if (!file)
1075 file = stderr;
1076 }
1077
1078 if (cfg) {
1079 int ip = 0;
1080 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
1081 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1082 fprintf(file, "%4d: ", ip++);
1083 dump_instruction(inst, file);
1084 }
1085 } else {
1086 int ip = 0;
1087 foreach_in_list(backend_instruction, inst, &instructions) {
1088 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1089 fprintf(file, "%4d: ", ip++);
1090 dump_instruction(inst, file);
1091 }
1092 }
1093
1094 if (file != stderr) {
1095 fclose(file);
1096 }
1097 }
1098
1099 void
1100 backend_shader::calculate_cfg()
1101 {
1102 if (this->cfg)
1103 return;
1104 cfg = new(mem_ctx) cfg_t(&this->instructions);
1105 }
1106
1107 /**
1108 * Sets up the starting offsets for the groups of binding table entries
1109 * commong to all pipeline stages.
1110 *
1111 * Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
1112 * unused but also make sure that addition of small offsets to them will
1113 * trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
1114 */
1115 void
1116 brw_assign_common_binding_table_offsets(gl_shader_stage stage,
1117 const struct brw_device_info *devinfo,
1118 const struct gl_shader_program *shader_prog,
1119 const struct gl_program *prog,
1120 struct brw_stage_prog_data *stage_prog_data,
1121 uint32_t next_binding_table_offset)
1122 {
1123 const struct gl_shader *shader = NULL;
1124 int num_textures = _mesa_fls(prog->SamplersUsed);
1125
1126 if (shader_prog)
1127 shader = shader_prog->_LinkedShaders[stage];
1128
1129 stage_prog_data->binding_table.texture_start = next_binding_table_offset;
1130 next_binding_table_offset += num_textures;
1131
1132 if (shader) {
1133 assert(shader->NumUniformBlocks <= BRW_MAX_UBO);
1134 stage_prog_data->binding_table.ubo_start = next_binding_table_offset;
1135 next_binding_table_offset += shader->NumUniformBlocks;
1136
1137 assert(shader->NumShaderStorageBlocks <= BRW_MAX_SSBO);
1138 stage_prog_data->binding_table.ssbo_start = next_binding_table_offset;
1139 next_binding_table_offset += shader->NumShaderStorageBlocks;
1140 } else {
1141 stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0;
1142 stage_prog_data->binding_table.ssbo_start = 0xd0d0d0d0;
1143 }
1144
1145 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1146 stage_prog_data->binding_table.shader_time_start = next_binding_table_offset;
1147 next_binding_table_offset++;
1148 } else {
1149 stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
1150 }
1151
1152 if (prog->UsesGather) {
1153 if (devinfo->gen >= 8) {
1154 stage_prog_data->binding_table.gather_texture_start =
1155 stage_prog_data->binding_table.texture_start;
1156 } else {
1157 stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset;
1158 next_binding_table_offset += num_textures;
1159 }
1160 } else {
1161 stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
1162 }
1163
1164 if (shader && shader->NumAtomicBuffers) {
1165 stage_prog_data->binding_table.abo_start = next_binding_table_offset;
1166 next_binding_table_offset += shader->NumAtomicBuffers;
1167 } else {
1168 stage_prog_data->binding_table.abo_start = 0xd0d0d0d0;
1169 }
1170
1171 if (shader && shader->NumImages) {
1172 stage_prog_data->binding_table.image_start = next_binding_table_offset;
1173 next_binding_table_offset += shader->NumImages;
1174 } else {
1175 stage_prog_data->binding_table.image_start = 0xd0d0d0d0;
1176 }
1177
1178 /* This may or may not be used depending on how the compile goes. */
1179 stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset;
1180 next_binding_table_offset++;
1181
1182 assert(next_binding_table_offset <= BRW_MAX_SURFACES);
1183
1184 /* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */
1185 }
1186
1187 static void
1188 setup_vec4_uniform_value(const gl_constant_value **params,
1189 const gl_constant_value *values,
1190 unsigned n)
1191 {
1192 static const gl_constant_value zero = { 0 };
1193
1194 for (unsigned i = 0; i < n; ++i)
1195 params[i] = &values[i];
1196
1197 for (unsigned i = n; i < 4; ++i)
1198 params[i] = &zero;
1199 }
1200
1201 void
1202 brw_setup_image_uniform_values(gl_shader_stage stage,
1203 struct brw_stage_prog_data *stage_prog_data,
1204 unsigned param_start_index,
1205 const gl_uniform_storage *storage)
1206 {
1207 const gl_constant_value **param =
1208 &stage_prog_data->param[param_start_index];
1209
1210 for (unsigned i = 0; i < MAX2(storage->array_elements, 1); i++) {
1211 const unsigned image_idx = storage->opaque[stage].index + i;
1212 const brw_image_param *image_param =
1213 &stage_prog_data->image_param[image_idx];
1214
1215 /* Upload the brw_image_param structure. The order is expected to match
1216 * the BRW_IMAGE_PARAM_*_OFFSET defines.
1217 */
1218 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET,
1219 (const gl_constant_value *)&image_param->surface_idx, 1);
1220 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_OFFSET_OFFSET,
1221 (const gl_constant_value *)image_param->offset, 2);
1222 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SIZE_OFFSET,
1223 (const gl_constant_value *)image_param->size, 3);
1224 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_STRIDE_OFFSET,
1225 (const gl_constant_value *)image_param->stride, 4);
1226 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_TILING_OFFSET,
1227 (const gl_constant_value *)image_param->tiling, 3);
1228 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET,
1229 (const gl_constant_value *)image_param->swizzling, 2);
1230 param += BRW_IMAGE_PARAM_SIZE;
1231
1232 brw_mark_surface_used(
1233 stage_prog_data,
1234 stage_prog_data->binding_table.image_start + image_idx);
1235 }
1236 }
1237
1238 /**
1239 * Decide which set of clip planes should be used when clipping via
1240 * gl_Position or gl_ClipVertex.
1241 */
1242 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
1243 {
1244 if (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]) {
1245 /* There is currently a GLSL vertex shader, so clip according to GLSL
1246 * rules, which means compare gl_ClipVertex (or gl_Position, if
1247 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
1248 * that were stored in EyeUserPlane at the time the clip planes were
1249 * specified.
1250 */
1251 return ctx->Transform.EyeUserPlane;
1252 } else {
1253 /* Either we are using fixed function or an ARB vertex program. In
1254 * either case the clip planes are going to be compared against
1255 * gl_Position (which is in clip coordinates) so we have to clip using
1256 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
1257 * core.
1258 */
1259 return ctx->Transform._ClipUserPlane;
1260 }
1261 }
1262
1263 extern "C" const unsigned *
1264 brw_compile_tes(const struct brw_compiler *compiler,
1265 void *log_data,
1266 void *mem_ctx,
1267 const struct brw_tes_prog_key *key,
1268 struct brw_tes_prog_data *prog_data,
1269 const nir_shader *src_shader,
1270 struct gl_shader_program *shader_prog,
1271 int shader_time_index,
1272 unsigned *final_assembly_size,
1273 char **error_str)
1274 {
1275 const struct brw_device_info *devinfo = compiler->devinfo;
1276 struct gl_shader *shader =
1277 shader_prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
1278 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_EVAL];
1279
1280 nir_shader *nir = nir_shader_clone(mem_ctx, src_shader);
1281 nir->info.inputs_read = key->inputs_read;
1282 nir->info.patch_inputs_read = key->patch_inputs_read;
1283
1284 struct brw_vue_map input_vue_map;
1285 brw_compute_tess_vue_map(&input_vue_map,
1286 nir->info.inputs_read & ~VARYING_BIT_PRIMITIVE_ID,
1287 nir->info.patch_inputs_read);
1288
1289 nir = brw_nir_apply_sampler_key(nir, devinfo, &key->tex, is_scalar);
1290 brw_nir_lower_tes_inputs(nir, &input_vue_map);
1291 brw_nir_lower_vue_outputs(nir, is_scalar);
1292 nir = brw_postprocess_nir(nir, compiler->devinfo, is_scalar);
1293
1294 brw_compute_vue_map(devinfo, &prog_data->base.vue_map,
1295 nir->info.outputs_written,
1296 nir->info.separate_shader);
1297
1298 unsigned output_size_bytes = prog_data->base.vue_map.num_slots * 4 * 4;
1299
1300 assert(output_size_bytes >= 1);
1301 if (output_size_bytes > GEN7_MAX_DS_URB_ENTRY_SIZE_BYTES) {
1302 if (error_str)
1303 *error_str = ralloc_strdup(mem_ctx, "DS outputs exceed maximum size");
1304 return NULL;
1305 }
1306
1307 /* URB entry sizes are stored as a multiple of 64 bytes. */
1308 prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
1309
1310 bool need_patch_header = nir->info.system_values_read &
1311 (BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_OUTER) |
1312 BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_INNER));
1313
1314 /* The TES will pull most inputs using URB read messages.
1315 *
1316 * However, we push the patch header for TessLevel factors when required,
1317 * as it's a tiny amount of extra data.
1318 */
1319 prog_data->base.urb_read_length = need_patch_header ? 1 : 0;
1320
1321 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1322 fprintf(stderr, "TES Input ");
1323 brw_print_vue_map(stderr, &input_vue_map);
1324 fprintf(stderr, "TES Output ");
1325 brw_print_vue_map(stderr, &prog_data->base.vue_map);
1326 }
1327
1328 if (is_scalar) {
1329 fs_visitor v(compiler, log_data, mem_ctx, (void *) key,
1330 &prog_data->base.base, shader->Program, nir, 8,
1331 shader_time_index, &input_vue_map);
1332 if (!v.run_tes()) {
1333 if (error_str)
1334 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1335 return NULL;
1336 }
1337
1338 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
1339
1340 fs_generator g(compiler, log_data, mem_ctx, (void *) key,
1341 &prog_data->base.base, v.promoted_constants, false,
1342 MESA_SHADER_TESS_EVAL);
1343 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1344 g.enable_debug(ralloc_asprintf(mem_ctx,
1345 "%s tessellation evaluation shader %s",
1346 nir->info.label ? nir->info.label
1347 : "unnamed",
1348 nir->info.name));
1349 }
1350
1351 g.generate_code(v.cfg, 8);
1352
1353 return g.get_assembly(final_assembly_size);
1354 } else {
1355 brw::vec4_tes_visitor v(compiler, log_data, key, prog_data,
1356 nir, mem_ctx, shader_time_index);
1357 if (!v.run()) {
1358 if (error_str)
1359 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1360 return NULL;
1361 }
1362
1363 if (unlikely(INTEL_DEBUG & DEBUG_TES))
1364 v.dump_instructions();
1365
1366 return brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
1367 &prog_data->base, v.cfg,
1368 final_assembly_size);
1369 }
1370 }