i965/fs: Handle SAMPLEINFO consistently like other texturing instructions.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_shader.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_context.h"
25 #include "brw_cfg.h"
26 #include "brw_eu.h"
27 #include "brw_fs.h"
28 #include "brw_nir.h"
29 #include "brw_vec4_tes.h"
30 #include "main/uniforms.h"
31
32 extern "C" void
33 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
34 unsigned surf_index)
35 {
36 assert(surf_index < BRW_MAX_SURFACES);
37
38 prog_data->binding_table.size_bytes =
39 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
40 }
41
42 enum brw_reg_type
43 brw_type_for_base_type(const struct glsl_type *type)
44 {
45 switch (type->base_type) {
46 case GLSL_TYPE_FLOAT:
47 return BRW_REGISTER_TYPE_F;
48 case GLSL_TYPE_INT:
49 case GLSL_TYPE_BOOL:
50 case GLSL_TYPE_SUBROUTINE:
51 return BRW_REGISTER_TYPE_D;
52 case GLSL_TYPE_UINT:
53 return BRW_REGISTER_TYPE_UD;
54 case GLSL_TYPE_ARRAY:
55 return brw_type_for_base_type(type->fields.array);
56 case GLSL_TYPE_STRUCT:
57 case GLSL_TYPE_SAMPLER:
58 case GLSL_TYPE_ATOMIC_UINT:
59 /* These should be overridden with the type of the member when
60 * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
61 * way to trip up if we don't.
62 */
63 return BRW_REGISTER_TYPE_UD;
64 case GLSL_TYPE_IMAGE:
65 return BRW_REGISTER_TYPE_UD;
66 case GLSL_TYPE_DOUBLE:
67 return BRW_REGISTER_TYPE_DF;
68 case GLSL_TYPE_VOID:
69 case GLSL_TYPE_ERROR:
70 case GLSL_TYPE_INTERFACE:
71 case GLSL_TYPE_FUNCTION:
72 unreachable("not reached");
73 }
74
75 return BRW_REGISTER_TYPE_F;
76 }
77
78 enum brw_conditional_mod
79 brw_conditional_for_comparison(unsigned int op)
80 {
81 switch (op) {
82 case ir_binop_less:
83 return BRW_CONDITIONAL_L;
84 case ir_binop_greater:
85 return BRW_CONDITIONAL_G;
86 case ir_binop_lequal:
87 return BRW_CONDITIONAL_LE;
88 case ir_binop_gequal:
89 return BRW_CONDITIONAL_GE;
90 case ir_binop_equal:
91 case ir_binop_all_equal: /* same as equal for scalars */
92 return BRW_CONDITIONAL_Z;
93 case ir_binop_nequal:
94 case ir_binop_any_nequal: /* same as nequal for scalars */
95 return BRW_CONDITIONAL_NZ;
96 default:
97 unreachable("not reached: bad operation for comparison");
98 }
99 }
100
101 uint32_t
102 brw_math_function(enum opcode op)
103 {
104 switch (op) {
105 case SHADER_OPCODE_RCP:
106 return BRW_MATH_FUNCTION_INV;
107 case SHADER_OPCODE_RSQ:
108 return BRW_MATH_FUNCTION_RSQ;
109 case SHADER_OPCODE_SQRT:
110 return BRW_MATH_FUNCTION_SQRT;
111 case SHADER_OPCODE_EXP2:
112 return BRW_MATH_FUNCTION_EXP;
113 case SHADER_OPCODE_LOG2:
114 return BRW_MATH_FUNCTION_LOG;
115 case SHADER_OPCODE_POW:
116 return BRW_MATH_FUNCTION_POW;
117 case SHADER_OPCODE_SIN:
118 return BRW_MATH_FUNCTION_SIN;
119 case SHADER_OPCODE_COS:
120 return BRW_MATH_FUNCTION_COS;
121 case SHADER_OPCODE_INT_QUOTIENT:
122 return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT;
123 case SHADER_OPCODE_INT_REMAINDER:
124 return BRW_MATH_FUNCTION_INT_DIV_REMAINDER;
125 default:
126 unreachable("not reached: unknown math function");
127 }
128 }
129
130 uint32_t
131 brw_texture_offset(int *offsets, unsigned num_components)
132 {
133 if (!offsets) return 0; /* nonconstant offset; caller will handle it. */
134
135 /* Combine all three offsets into a single unsigned dword:
136 *
137 * bits 11:8 - U Offset (X component)
138 * bits 7:4 - V Offset (Y component)
139 * bits 3:0 - R Offset (Z component)
140 */
141 unsigned offset_bits = 0;
142 for (unsigned i = 0; i < num_components; i++) {
143 const unsigned shift = 4 * (2 - i);
144 offset_bits |= (offsets[i] << shift) & (0xF << shift);
145 }
146 return offset_bits;
147 }
148
149 const char *
150 brw_instruction_name(const struct brw_device_info *devinfo, enum opcode op)
151 {
152 switch (op) {
153 case BRW_OPCODE_ILLEGAL ... BRW_OPCODE_NOP:
154 /* The DO instruction doesn't exist on Gen6+, but we use it to mark the
155 * start of a loop in the IR.
156 */
157 if (devinfo->gen >= 6 && op == BRW_OPCODE_DO)
158 return "do";
159
160 assert(brw_opcode_desc(devinfo, op)->name);
161 return brw_opcode_desc(devinfo, op)->name;
162 case FS_OPCODE_FB_WRITE:
163 return "fb_write";
164 case FS_OPCODE_FB_WRITE_LOGICAL:
165 return "fb_write_logical";
166 case FS_OPCODE_PACK_STENCIL_REF:
167 return "pack_stencil_ref";
168 case FS_OPCODE_REP_FB_WRITE:
169 return "rep_fb_write";
170
171 case SHADER_OPCODE_RCP:
172 return "rcp";
173 case SHADER_OPCODE_RSQ:
174 return "rsq";
175 case SHADER_OPCODE_SQRT:
176 return "sqrt";
177 case SHADER_OPCODE_EXP2:
178 return "exp2";
179 case SHADER_OPCODE_LOG2:
180 return "log2";
181 case SHADER_OPCODE_POW:
182 return "pow";
183 case SHADER_OPCODE_INT_QUOTIENT:
184 return "int_quot";
185 case SHADER_OPCODE_INT_REMAINDER:
186 return "int_rem";
187 case SHADER_OPCODE_SIN:
188 return "sin";
189 case SHADER_OPCODE_COS:
190 return "cos";
191
192 case SHADER_OPCODE_TEX:
193 return "tex";
194 case SHADER_OPCODE_TEX_LOGICAL:
195 return "tex_logical";
196 case SHADER_OPCODE_TXD:
197 return "txd";
198 case SHADER_OPCODE_TXD_LOGICAL:
199 return "txd_logical";
200 case SHADER_OPCODE_TXF:
201 return "txf";
202 case SHADER_OPCODE_TXF_LOGICAL:
203 return "txf_logical";
204 case SHADER_OPCODE_TXF_LZ:
205 return "txf_lz";
206 case SHADER_OPCODE_TXL:
207 return "txl";
208 case SHADER_OPCODE_TXL_LOGICAL:
209 return "txl_logical";
210 case SHADER_OPCODE_TXL_LZ:
211 return "txl_lz";
212 case SHADER_OPCODE_TXS:
213 return "txs";
214 case SHADER_OPCODE_TXS_LOGICAL:
215 return "txs_logical";
216 case FS_OPCODE_TXB:
217 return "txb";
218 case FS_OPCODE_TXB_LOGICAL:
219 return "txb_logical";
220 case SHADER_OPCODE_TXF_CMS:
221 return "txf_cms";
222 case SHADER_OPCODE_TXF_CMS_LOGICAL:
223 return "txf_cms_logical";
224 case SHADER_OPCODE_TXF_CMS_W:
225 return "txf_cms_w";
226 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
227 return "txf_cms_w_logical";
228 case SHADER_OPCODE_TXF_UMS:
229 return "txf_ums";
230 case SHADER_OPCODE_TXF_UMS_LOGICAL:
231 return "txf_ums_logical";
232 case SHADER_OPCODE_TXF_MCS:
233 return "txf_mcs";
234 case SHADER_OPCODE_TXF_MCS_LOGICAL:
235 return "txf_mcs_logical";
236 case SHADER_OPCODE_LOD:
237 return "lod";
238 case SHADER_OPCODE_LOD_LOGICAL:
239 return "lod_logical";
240 case SHADER_OPCODE_TG4:
241 return "tg4";
242 case SHADER_OPCODE_TG4_LOGICAL:
243 return "tg4_logical";
244 case SHADER_OPCODE_TG4_OFFSET:
245 return "tg4_offset";
246 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
247 return "tg4_offset_logical";
248 case SHADER_OPCODE_SAMPLEINFO:
249 return "sampleinfo";
250 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
251 return "sampleinfo_logical";
252
253 case SHADER_OPCODE_SHADER_TIME_ADD:
254 return "shader_time_add";
255
256 case SHADER_OPCODE_UNTYPED_ATOMIC:
257 return "untyped_atomic";
258 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
259 return "untyped_atomic_logical";
260 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
261 return "untyped_surface_read";
262 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
263 return "untyped_surface_read_logical";
264 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
265 return "untyped_surface_write";
266 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
267 return "untyped_surface_write_logical";
268 case SHADER_OPCODE_TYPED_ATOMIC:
269 return "typed_atomic";
270 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
271 return "typed_atomic_logical";
272 case SHADER_OPCODE_TYPED_SURFACE_READ:
273 return "typed_surface_read";
274 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
275 return "typed_surface_read_logical";
276 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
277 return "typed_surface_write";
278 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
279 return "typed_surface_write_logical";
280 case SHADER_OPCODE_MEMORY_FENCE:
281 return "memory_fence";
282
283 case SHADER_OPCODE_LOAD_PAYLOAD:
284 return "load_payload";
285 case FS_OPCODE_PACK:
286 return "pack";
287
288 case SHADER_OPCODE_GEN4_SCRATCH_READ:
289 return "gen4_scratch_read";
290 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
291 return "gen4_scratch_write";
292 case SHADER_OPCODE_GEN7_SCRATCH_READ:
293 return "gen7_scratch_read";
294 case SHADER_OPCODE_URB_WRITE_SIMD8:
295 return "gen8_urb_write_simd8";
296 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
297 return "gen8_urb_write_simd8_per_slot";
298 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
299 return "gen8_urb_write_simd8_masked";
300 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
301 return "gen8_urb_write_simd8_masked_per_slot";
302 case SHADER_OPCODE_URB_READ_SIMD8:
303 return "urb_read_simd8";
304 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
305 return "urb_read_simd8_per_slot";
306
307 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
308 return "find_live_channel";
309 case SHADER_OPCODE_BROADCAST:
310 return "broadcast";
311
312 case SHADER_OPCODE_EXTRACT_BYTE:
313 return "extract_byte";
314 case SHADER_OPCODE_EXTRACT_WORD:
315 return "extract_word";
316 case VEC4_OPCODE_MOV_BYTES:
317 return "mov_bytes";
318 case VEC4_OPCODE_PACK_BYTES:
319 return "pack_bytes";
320 case VEC4_OPCODE_UNPACK_UNIFORM:
321 return "unpack_uniform";
322
323 case FS_OPCODE_DDX_COARSE:
324 return "ddx_coarse";
325 case FS_OPCODE_DDX_FINE:
326 return "ddx_fine";
327 case FS_OPCODE_DDY_COARSE:
328 return "ddy_coarse";
329 case FS_OPCODE_DDY_FINE:
330 return "ddy_fine";
331
332 case FS_OPCODE_CINTERP:
333 return "cinterp";
334 case FS_OPCODE_LINTERP:
335 return "linterp";
336
337 case FS_OPCODE_PIXEL_X:
338 return "pixel_x";
339 case FS_OPCODE_PIXEL_Y:
340 return "pixel_y";
341
342 case FS_OPCODE_GET_BUFFER_SIZE:
343 return "fs_get_buffer_size";
344
345 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
346 return "uniform_pull_const";
347 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
348 return "uniform_pull_const_gen7";
349 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
350 return "varying_pull_const_gen4";
351 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
352 return "varying_pull_const_gen7";
353 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
354 return "varying_pull_const_logical";
355
356 case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
357 return "mov_dispatch_to_flags";
358 case FS_OPCODE_DISCARD_JUMP:
359 return "discard_jump";
360
361 case FS_OPCODE_SET_SAMPLE_ID:
362 return "set_sample_id";
363 case FS_OPCODE_SET_SIMD4X2_OFFSET:
364 return "set_simd4x2_offset";
365
366 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
367 return "pack_half_2x16_split";
368 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
369 return "unpack_half_2x16_split_x";
370 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
371 return "unpack_half_2x16_split_y";
372
373 case FS_OPCODE_PLACEHOLDER_HALT:
374 return "placeholder_halt";
375
376 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
377 return "interp_centroid";
378 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
379 return "interp_sample";
380 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
381 return "interp_shared_offset";
382 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
383 return "interp_per_slot_offset";
384
385 case VS_OPCODE_URB_WRITE:
386 return "vs_urb_write";
387 case VS_OPCODE_PULL_CONSTANT_LOAD:
388 return "pull_constant_load";
389 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
390 return "pull_constant_load_gen7";
391
392 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
393 return "set_simd4x2_header_gen9";
394
395 case VS_OPCODE_GET_BUFFER_SIZE:
396 return "vs_get_buffer_size";
397
398 case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
399 return "unpack_flags_simd4x2";
400
401 case GS_OPCODE_URB_WRITE:
402 return "gs_urb_write";
403 case GS_OPCODE_URB_WRITE_ALLOCATE:
404 return "gs_urb_write_allocate";
405 case GS_OPCODE_THREAD_END:
406 return "gs_thread_end";
407 case GS_OPCODE_SET_WRITE_OFFSET:
408 return "set_write_offset";
409 case GS_OPCODE_SET_VERTEX_COUNT:
410 return "set_vertex_count";
411 case GS_OPCODE_SET_DWORD_2:
412 return "set_dword_2";
413 case GS_OPCODE_PREPARE_CHANNEL_MASKS:
414 return "prepare_channel_masks";
415 case GS_OPCODE_SET_CHANNEL_MASKS:
416 return "set_channel_masks";
417 case GS_OPCODE_GET_INSTANCE_ID:
418 return "get_instance_id";
419 case GS_OPCODE_FF_SYNC:
420 return "ff_sync";
421 case GS_OPCODE_SET_PRIMITIVE_ID:
422 return "set_primitive_id";
423 case GS_OPCODE_SVB_WRITE:
424 return "gs_svb_write";
425 case GS_OPCODE_SVB_SET_DST_INDEX:
426 return "gs_svb_set_dst_index";
427 case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
428 return "gs_ff_sync_set_primitives";
429 case CS_OPCODE_CS_TERMINATE:
430 return "cs_terminate";
431 case SHADER_OPCODE_BARRIER:
432 return "barrier";
433 case SHADER_OPCODE_MULH:
434 return "mulh";
435 case SHADER_OPCODE_MOV_INDIRECT:
436 return "mov_indirect";
437
438 case VEC4_OPCODE_URB_READ:
439 return "urb_read";
440 case TCS_OPCODE_GET_INSTANCE_ID:
441 return "tcs_get_instance_id";
442 case TCS_OPCODE_URB_WRITE:
443 return "tcs_urb_write";
444 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
445 return "tcs_set_input_urb_offsets";
446 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
447 return "tcs_set_output_urb_offsets";
448 case TCS_OPCODE_GET_PRIMITIVE_ID:
449 return "tcs_get_primitive_id";
450 case TCS_OPCODE_CREATE_BARRIER_HEADER:
451 return "tcs_create_barrier_header";
452 case TCS_OPCODE_SRC0_010_IS_ZERO:
453 return "tcs_src0<0,1,0>_is_zero";
454 case TCS_OPCODE_RELEASE_INPUT:
455 return "tcs_release_input";
456 case TCS_OPCODE_THREAD_END:
457 return "tcs_thread_end";
458 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
459 return "tes_create_input_read_header";
460 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
461 return "tes_add_indirect_urb_offset";
462 case TES_OPCODE_GET_PRIMITIVE_ID:
463 return "tes_get_primitive_id";
464 }
465
466 unreachable("not reached");
467 }
468
469 bool
470 brw_saturate_immediate(enum brw_reg_type type, struct brw_reg *reg)
471 {
472 union {
473 unsigned ud;
474 int d;
475 float f;
476 double df;
477 } imm, sat_imm = { 0 };
478
479 const unsigned size = type_sz(type);
480
481 /* We want to either do a 32-bit or 64-bit data copy, the type is otherwise
482 * irrelevant, so just check the size of the type and copy from/to an
483 * appropriately sized field.
484 */
485 if (size < 8)
486 imm.ud = reg->ud;
487 else
488 imm.df = reg->df;
489
490 switch (type) {
491 case BRW_REGISTER_TYPE_UD:
492 case BRW_REGISTER_TYPE_D:
493 case BRW_REGISTER_TYPE_UW:
494 case BRW_REGISTER_TYPE_W:
495 case BRW_REGISTER_TYPE_UQ:
496 case BRW_REGISTER_TYPE_Q:
497 /* Nothing to do. */
498 return false;
499 case BRW_REGISTER_TYPE_F:
500 sat_imm.f = CLAMP(imm.f, 0.0f, 1.0f);
501 break;
502 case BRW_REGISTER_TYPE_DF:
503 sat_imm.df = CLAMP(imm.df, 0.0, 1.0);
504 break;
505 case BRW_REGISTER_TYPE_UB:
506 case BRW_REGISTER_TYPE_B:
507 unreachable("no UB/B immediates");
508 case BRW_REGISTER_TYPE_V:
509 case BRW_REGISTER_TYPE_UV:
510 case BRW_REGISTER_TYPE_VF:
511 unreachable("unimplemented: saturate vector immediate");
512 case BRW_REGISTER_TYPE_HF:
513 unreachable("unimplemented: saturate HF immediate");
514 }
515
516 if (size < 8) {
517 if (imm.ud != sat_imm.ud) {
518 reg->ud = sat_imm.ud;
519 return true;
520 }
521 } else {
522 if (imm.df != sat_imm.df) {
523 reg->df = sat_imm.df;
524 return true;
525 }
526 }
527 return false;
528 }
529
530 bool
531 brw_negate_immediate(enum brw_reg_type type, struct brw_reg *reg)
532 {
533 switch (type) {
534 case BRW_REGISTER_TYPE_D:
535 case BRW_REGISTER_TYPE_UD:
536 reg->d = -reg->d;
537 return true;
538 case BRW_REGISTER_TYPE_W:
539 case BRW_REGISTER_TYPE_UW:
540 reg->d = -(int16_t)reg->ud;
541 return true;
542 case BRW_REGISTER_TYPE_F:
543 reg->f = -reg->f;
544 return true;
545 case BRW_REGISTER_TYPE_VF:
546 reg->ud ^= 0x80808080;
547 return true;
548 case BRW_REGISTER_TYPE_DF:
549 reg->df = -reg->df;
550 return true;
551 case BRW_REGISTER_TYPE_UB:
552 case BRW_REGISTER_TYPE_B:
553 unreachable("no UB/B immediates");
554 case BRW_REGISTER_TYPE_UV:
555 case BRW_REGISTER_TYPE_V:
556 assert(!"unimplemented: negate UV/V immediate");
557 case BRW_REGISTER_TYPE_UQ:
558 case BRW_REGISTER_TYPE_Q:
559 assert(!"unimplemented: negate UQ/Q immediate");
560 case BRW_REGISTER_TYPE_HF:
561 assert(!"unimplemented: negate HF immediate");
562 }
563
564 return false;
565 }
566
567 bool
568 brw_abs_immediate(enum brw_reg_type type, struct brw_reg *reg)
569 {
570 switch (type) {
571 case BRW_REGISTER_TYPE_D:
572 reg->d = abs(reg->d);
573 return true;
574 case BRW_REGISTER_TYPE_W:
575 reg->d = abs((int16_t)reg->ud);
576 return true;
577 case BRW_REGISTER_TYPE_F:
578 reg->f = fabsf(reg->f);
579 return true;
580 case BRW_REGISTER_TYPE_DF:
581 reg->df = fabs(reg->df);
582 return true;
583 case BRW_REGISTER_TYPE_VF:
584 reg->ud &= ~0x80808080;
585 return true;
586 case BRW_REGISTER_TYPE_UB:
587 case BRW_REGISTER_TYPE_B:
588 unreachable("no UB/B immediates");
589 case BRW_REGISTER_TYPE_UQ:
590 case BRW_REGISTER_TYPE_UD:
591 case BRW_REGISTER_TYPE_UW:
592 case BRW_REGISTER_TYPE_UV:
593 /* Presumably the absolute value modifier on an unsigned source is a
594 * nop, but it would be nice to confirm.
595 */
596 assert(!"unimplemented: abs unsigned immediate");
597 case BRW_REGISTER_TYPE_V:
598 assert(!"unimplemented: abs V immediate");
599 case BRW_REGISTER_TYPE_Q:
600 assert(!"unimplemented: abs Q immediate");
601 case BRW_REGISTER_TYPE_HF:
602 assert(!"unimplemented: abs HF immediate");
603 }
604
605 return false;
606 }
607
608 unsigned
609 tesslevel_outer_components(GLenum tes_primitive_mode)
610 {
611 switch (tes_primitive_mode) {
612 case GL_QUADS:
613 return 4;
614 case GL_TRIANGLES:
615 return 3;
616 case GL_ISOLINES:
617 return 2;
618 default:
619 unreachable("Bogus tessellation domain");
620 }
621 return 0;
622 }
623
624 unsigned
625 tesslevel_inner_components(GLenum tes_primitive_mode)
626 {
627 switch (tes_primitive_mode) {
628 case GL_QUADS:
629 return 2;
630 case GL_TRIANGLES:
631 return 1;
632 case GL_ISOLINES:
633 return 0;
634 default:
635 unreachable("Bogus tessellation domain");
636 }
637 return 0;
638 }
639
640 /**
641 * Given a normal .xyzw writemask, convert it to a writemask for a vector
642 * that's stored backwards, i.e. .wzyx.
643 */
644 unsigned
645 writemask_for_backwards_vector(unsigned mask)
646 {
647 unsigned new_mask = 0;
648
649 for (int i = 0; i < 4; i++)
650 new_mask |= ((mask >> i) & 1) << (3 - i);
651
652 return new_mask;
653 }
654
655 backend_shader::backend_shader(const struct brw_compiler *compiler,
656 void *log_data,
657 void *mem_ctx,
658 const nir_shader *shader,
659 struct brw_stage_prog_data *stage_prog_data)
660 : compiler(compiler),
661 log_data(log_data),
662 devinfo(compiler->devinfo),
663 nir(shader),
664 stage_prog_data(stage_prog_data),
665 mem_ctx(mem_ctx),
666 cfg(NULL),
667 stage(shader->stage)
668 {
669 debug_enabled = INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage);
670 stage_name = _mesa_shader_stage_to_string(stage);
671 stage_abbrev = _mesa_shader_stage_to_abbrev(stage);
672 is_passthrough_shader =
673 nir->info.name && strcmp(nir->info.name, "passthrough") == 0;
674 }
675
676 bool
677 backend_reg::equals(const backend_reg &r) const
678 {
679 return brw_regs_equal(this, &r) && reg_offset == r.reg_offset;
680 }
681
682 bool
683 backend_reg::is_zero() const
684 {
685 if (file != IMM)
686 return false;
687
688 switch (type) {
689 case BRW_REGISTER_TYPE_F:
690 return f == 0;
691 case BRW_REGISTER_TYPE_DF:
692 return df == 0;
693 case BRW_REGISTER_TYPE_D:
694 case BRW_REGISTER_TYPE_UD:
695 return d == 0;
696 default:
697 return false;
698 }
699 }
700
701 bool
702 backend_reg::is_one() const
703 {
704 if (file != IMM)
705 return false;
706
707 switch (type) {
708 case BRW_REGISTER_TYPE_F:
709 return f == 1.0f;
710 case BRW_REGISTER_TYPE_DF:
711 return df == 1.0;
712 case BRW_REGISTER_TYPE_D:
713 case BRW_REGISTER_TYPE_UD:
714 return d == 1;
715 default:
716 return false;
717 }
718 }
719
720 bool
721 backend_reg::is_negative_one() const
722 {
723 if (file != IMM)
724 return false;
725
726 switch (type) {
727 case BRW_REGISTER_TYPE_F:
728 return f == -1.0;
729 case BRW_REGISTER_TYPE_DF:
730 return df == -1.0;
731 case BRW_REGISTER_TYPE_D:
732 return d == -1;
733 default:
734 return false;
735 }
736 }
737
738 bool
739 backend_reg::is_null() const
740 {
741 return file == ARF && nr == BRW_ARF_NULL;
742 }
743
744
745 bool
746 backend_reg::is_accumulator() const
747 {
748 return file == ARF && nr == BRW_ARF_ACCUMULATOR;
749 }
750
751 bool
752 backend_reg::in_range(const backend_reg &r, unsigned n) const
753 {
754 return (file == r.file &&
755 nr == r.nr &&
756 reg_offset >= r.reg_offset &&
757 reg_offset < r.reg_offset + n);
758 }
759
760 bool
761 backend_instruction::is_commutative() const
762 {
763 switch (opcode) {
764 case BRW_OPCODE_AND:
765 case BRW_OPCODE_OR:
766 case BRW_OPCODE_XOR:
767 case BRW_OPCODE_ADD:
768 case BRW_OPCODE_MUL:
769 case SHADER_OPCODE_MULH:
770 return true;
771 case BRW_OPCODE_SEL:
772 /* MIN and MAX are commutative. */
773 if (conditional_mod == BRW_CONDITIONAL_GE ||
774 conditional_mod == BRW_CONDITIONAL_L) {
775 return true;
776 }
777 /* fallthrough */
778 default:
779 return false;
780 }
781 }
782
783 bool
784 backend_instruction::is_3src(const struct brw_device_info *devinfo) const
785 {
786 return ::is_3src(devinfo, opcode);
787 }
788
789 bool
790 backend_instruction::is_tex() const
791 {
792 return (opcode == SHADER_OPCODE_TEX ||
793 opcode == FS_OPCODE_TXB ||
794 opcode == SHADER_OPCODE_TXD ||
795 opcode == SHADER_OPCODE_TXF ||
796 opcode == SHADER_OPCODE_TXF_LZ ||
797 opcode == SHADER_OPCODE_TXF_CMS ||
798 opcode == SHADER_OPCODE_TXF_CMS_W ||
799 opcode == SHADER_OPCODE_TXF_UMS ||
800 opcode == SHADER_OPCODE_TXF_MCS ||
801 opcode == SHADER_OPCODE_TXL ||
802 opcode == SHADER_OPCODE_TXL_LZ ||
803 opcode == SHADER_OPCODE_TXS ||
804 opcode == SHADER_OPCODE_LOD ||
805 opcode == SHADER_OPCODE_TG4 ||
806 opcode == SHADER_OPCODE_TG4_OFFSET ||
807 opcode == SHADER_OPCODE_SAMPLEINFO);
808 }
809
810 bool
811 backend_instruction::is_math() const
812 {
813 return (opcode == SHADER_OPCODE_RCP ||
814 opcode == SHADER_OPCODE_RSQ ||
815 opcode == SHADER_OPCODE_SQRT ||
816 opcode == SHADER_OPCODE_EXP2 ||
817 opcode == SHADER_OPCODE_LOG2 ||
818 opcode == SHADER_OPCODE_SIN ||
819 opcode == SHADER_OPCODE_COS ||
820 opcode == SHADER_OPCODE_INT_QUOTIENT ||
821 opcode == SHADER_OPCODE_INT_REMAINDER ||
822 opcode == SHADER_OPCODE_POW);
823 }
824
825 bool
826 backend_instruction::is_control_flow() const
827 {
828 switch (opcode) {
829 case BRW_OPCODE_DO:
830 case BRW_OPCODE_WHILE:
831 case BRW_OPCODE_IF:
832 case BRW_OPCODE_ELSE:
833 case BRW_OPCODE_ENDIF:
834 case BRW_OPCODE_BREAK:
835 case BRW_OPCODE_CONTINUE:
836 return true;
837 default:
838 return false;
839 }
840 }
841
842 bool
843 backend_instruction::can_do_source_mods() const
844 {
845 switch (opcode) {
846 case BRW_OPCODE_ADDC:
847 case BRW_OPCODE_BFE:
848 case BRW_OPCODE_BFI1:
849 case BRW_OPCODE_BFI2:
850 case BRW_OPCODE_BFREV:
851 case BRW_OPCODE_CBIT:
852 case BRW_OPCODE_FBH:
853 case BRW_OPCODE_FBL:
854 case BRW_OPCODE_SUBB:
855 return false;
856 default:
857 return true;
858 }
859 }
860
861 bool
862 backend_instruction::can_do_saturate() const
863 {
864 switch (opcode) {
865 case BRW_OPCODE_ADD:
866 case BRW_OPCODE_ASR:
867 case BRW_OPCODE_AVG:
868 case BRW_OPCODE_DP2:
869 case BRW_OPCODE_DP3:
870 case BRW_OPCODE_DP4:
871 case BRW_OPCODE_DPH:
872 case BRW_OPCODE_F16TO32:
873 case BRW_OPCODE_F32TO16:
874 case BRW_OPCODE_LINE:
875 case BRW_OPCODE_LRP:
876 case BRW_OPCODE_MAC:
877 case BRW_OPCODE_MAD:
878 case BRW_OPCODE_MATH:
879 case BRW_OPCODE_MOV:
880 case BRW_OPCODE_MUL:
881 case SHADER_OPCODE_MULH:
882 case BRW_OPCODE_PLN:
883 case BRW_OPCODE_RNDD:
884 case BRW_OPCODE_RNDE:
885 case BRW_OPCODE_RNDU:
886 case BRW_OPCODE_RNDZ:
887 case BRW_OPCODE_SEL:
888 case BRW_OPCODE_SHL:
889 case BRW_OPCODE_SHR:
890 case FS_OPCODE_LINTERP:
891 case SHADER_OPCODE_COS:
892 case SHADER_OPCODE_EXP2:
893 case SHADER_OPCODE_LOG2:
894 case SHADER_OPCODE_POW:
895 case SHADER_OPCODE_RCP:
896 case SHADER_OPCODE_RSQ:
897 case SHADER_OPCODE_SIN:
898 case SHADER_OPCODE_SQRT:
899 return true;
900 default:
901 return false;
902 }
903 }
904
905 bool
906 backend_instruction::can_do_cmod() const
907 {
908 switch (opcode) {
909 case BRW_OPCODE_ADD:
910 case BRW_OPCODE_ADDC:
911 case BRW_OPCODE_AND:
912 case BRW_OPCODE_ASR:
913 case BRW_OPCODE_AVG:
914 case BRW_OPCODE_CMP:
915 case BRW_OPCODE_CMPN:
916 case BRW_OPCODE_DP2:
917 case BRW_OPCODE_DP3:
918 case BRW_OPCODE_DP4:
919 case BRW_OPCODE_DPH:
920 case BRW_OPCODE_F16TO32:
921 case BRW_OPCODE_F32TO16:
922 case BRW_OPCODE_FRC:
923 case BRW_OPCODE_LINE:
924 case BRW_OPCODE_LRP:
925 case BRW_OPCODE_LZD:
926 case BRW_OPCODE_MAC:
927 case BRW_OPCODE_MACH:
928 case BRW_OPCODE_MAD:
929 case BRW_OPCODE_MOV:
930 case BRW_OPCODE_MUL:
931 case BRW_OPCODE_NOT:
932 case BRW_OPCODE_OR:
933 case BRW_OPCODE_PLN:
934 case BRW_OPCODE_RNDD:
935 case BRW_OPCODE_RNDE:
936 case BRW_OPCODE_RNDU:
937 case BRW_OPCODE_RNDZ:
938 case BRW_OPCODE_SAD2:
939 case BRW_OPCODE_SADA2:
940 case BRW_OPCODE_SHL:
941 case BRW_OPCODE_SHR:
942 case BRW_OPCODE_SUBB:
943 case BRW_OPCODE_XOR:
944 case FS_OPCODE_CINTERP:
945 case FS_OPCODE_LINTERP:
946 return true;
947 default:
948 return false;
949 }
950 }
951
952 bool
953 backend_instruction::reads_accumulator_implicitly() const
954 {
955 switch (opcode) {
956 case BRW_OPCODE_MAC:
957 case BRW_OPCODE_MACH:
958 case BRW_OPCODE_SADA2:
959 return true;
960 default:
961 return false;
962 }
963 }
964
965 bool
966 backend_instruction::writes_accumulator_implicitly(const struct brw_device_info *devinfo) const
967 {
968 return writes_accumulator ||
969 (devinfo->gen < 6 &&
970 ((opcode >= BRW_OPCODE_ADD && opcode < BRW_OPCODE_NOP) ||
971 (opcode >= FS_OPCODE_DDX_COARSE && opcode <= FS_OPCODE_LINTERP &&
972 opcode != FS_OPCODE_CINTERP)));
973 }
974
975 bool
976 backend_instruction::has_side_effects() const
977 {
978 switch (opcode) {
979 case SHADER_OPCODE_UNTYPED_ATOMIC:
980 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
981 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
982 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
983 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
984 case SHADER_OPCODE_TYPED_ATOMIC:
985 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
986 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
987 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
988 case SHADER_OPCODE_MEMORY_FENCE:
989 case SHADER_OPCODE_URB_WRITE_SIMD8:
990 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
991 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
992 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
993 case FS_OPCODE_FB_WRITE:
994 case SHADER_OPCODE_BARRIER:
995 case TCS_OPCODE_URB_WRITE:
996 case TCS_OPCODE_RELEASE_INPUT:
997 return true;
998 default:
999 return false;
1000 }
1001 }
1002
1003 bool
1004 backend_instruction::is_volatile() const
1005 {
1006 switch (opcode) {
1007 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
1008 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
1009 case SHADER_OPCODE_TYPED_SURFACE_READ:
1010 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
1011 case SHADER_OPCODE_URB_READ_SIMD8:
1012 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
1013 case VEC4_OPCODE_URB_READ:
1014 return true;
1015 default:
1016 return false;
1017 }
1018 }
1019
1020 #ifndef NDEBUG
1021 static bool
1022 inst_is_in_block(const bblock_t *block, const backend_instruction *inst)
1023 {
1024 bool found = false;
1025 foreach_inst_in_block (backend_instruction, i, block) {
1026 if (inst == i) {
1027 found = true;
1028 }
1029 }
1030 return found;
1031 }
1032 #endif
1033
1034 static void
1035 adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
1036 {
1037 for (bblock_t *block_iter = start_block->next();
1038 block_iter;
1039 block_iter = block_iter->next()) {
1040 block_iter->start_ip += ip_adjustment;
1041 block_iter->end_ip += ip_adjustment;
1042 }
1043 }
1044
1045 void
1046 backend_instruction::insert_after(bblock_t *block, backend_instruction *inst)
1047 {
1048 assert(this != inst);
1049
1050 if (!this->is_head_sentinel())
1051 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1052
1053 block->end_ip++;
1054
1055 adjust_later_block_ips(block, 1);
1056
1057 exec_node::insert_after(inst);
1058 }
1059
1060 void
1061 backend_instruction::insert_before(bblock_t *block, backend_instruction *inst)
1062 {
1063 assert(this != inst);
1064
1065 if (!this->is_tail_sentinel())
1066 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1067
1068 block->end_ip++;
1069
1070 adjust_later_block_ips(block, 1);
1071
1072 exec_node::insert_before(inst);
1073 }
1074
1075 void
1076 backend_instruction::insert_before(bblock_t *block, exec_list *list)
1077 {
1078 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1079
1080 unsigned num_inst = list->length();
1081
1082 block->end_ip += num_inst;
1083
1084 adjust_later_block_ips(block, num_inst);
1085
1086 exec_node::insert_before(list);
1087 }
1088
1089 void
1090 backend_instruction::remove(bblock_t *block)
1091 {
1092 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1093
1094 adjust_later_block_ips(block, -1);
1095
1096 if (block->start_ip == block->end_ip) {
1097 block->cfg->remove_block(block);
1098 } else {
1099 block->end_ip--;
1100 }
1101
1102 exec_node::remove();
1103 }
1104
1105 void
1106 backend_shader::dump_instructions()
1107 {
1108 dump_instructions(NULL);
1109 }
1110
1111 void
1112 backend_shader::dump_instructions(const char *name)
1113 {
1114 FILE *file = stderr;
1115 if (name && geteuid() != 0) {
1116 file = fopen(name, "w");
1117 if (!file)
1118 file = stderr;
1119 }
1120
1121 if (cfg) {
1122 int ip = 0;
1123 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
1124 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1125 fprintf(file, "%4d: ", ip++);
1126 dump_instruction(inst, file);
1127 }
1128 } else {
1129 int ip = 0;
1130 foreach_in_list(backend_instruction, inst, &instructions) {
1131 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1132 fprintf(file, "%4d: ", ip++);
1133 dump_instruction(inst, file);
1134 }
1135 }
1136
1137 if (file != stderr) {
1138 fclose(file);
1139 }
1140 }
1141
1142 void
1143 backend_shader::calculate_cfg()
1144 {
1145 if (this->cfg)
1146 return;
1147 cfg = new(mem_ctx) cfg_t(&this->instructions);
1148 }
1149
1150 /**
1151 * Sets up the starting offsets for the groups of binding table entries
1152 * commong to all pipeline stages.
1153 *
1154 * Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
1155 * unused but also make sure that addition of small offsets to them will
1156 * trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
1157 */
1158 void
1159 brw_assign_common_binding_table_offsets(gl_shader_stage stage,
1160 const struct brw_device_info *devinfo,
1161 const struct gl_shader_program *shader_prog,
1162 const struct gl_program *prog,
1163 struct brw_stage_prog_data *stage_prog_data,
1164 uint32_t next_binding_table_offset)
1165 {
1166 const struct gl_shader *shader = NULL;
1167 int num_textures = _mesa_fls(prog->SamplersUsed);
1168
1169 if (shader_prog)
1170 shader = shader_prog->_LinkedShaders[stage];
1171
1172 stage_prog_data->binding_table.texture_start = next_binding_table_offset;
1173 next_binding_table_offset += num_textures;
1174
1175 if (shader) {
1176 assert(shader->NumUniformBlocks <= BRW_MAX_UBO);
1177 stage_prog_data->binding_table.ubo_start = next_binding_table_offset;
1178 next_binding_table_offset += shader->NumUniformBlocks;
1179
1180 assert(shader->NumShaderStorageBlocks <= BRW_MAX_SSBO);
1181 stage_prog_data->binding_table.ssbo_start = next_binding_table_offset;
1182 next_binding_table_offset += shader->NumShaderStorageBlocks;
1183 } else {
1184 stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0;
1185 stage_prog_data->binding_table.ssbo_start = 0xd0d0d0d0;
1186 }
1187
1188 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1189 stage_prog_data->binding_table.shader_time_start = next_binding_table_offset;
1190 next_binding_table_offset++;
1191 } else {
1192 stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
1193 }
1194
1195 if (prog->UsesGather) {
1196 if (devinfo->gen >= 8) {
1197 stage_prog_data->binding_table.gather_texture_start =
1198 stage_prog_data->binding_table.texture_start;
1199 } else {
1200 stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset;
1201 next_binding_table_offset += num_textures;
1202 }
1203 } else {
1204 stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
1205 }
1206
1207 if (shader && shader->NumAtomicBuffers) {
1208 stage_prog_data->binding_table.abo_start = next_binding_table_offset;
1209 next_binding_table_offset += shader->NumAtomicBuffers;
1210 } else {
1211 stage_prog_data->binding_table.abo_start = 0xd0d0d0d0;
1212 }
1213
1214 if (shader && shader->NumImages) {
1215 stage_prog_data->binding_table.image_start = next_binding_table_offset;
1216 next_binding_table_offset += shader->NumImages;
1217 } else {
1218 stage_prog_data->binding_table.image_start = 0xd0d0d0d0;
1219 }
1220
1221 /* This may or may not be used depending on how the compile goes. */
1222 stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset;
1223 next_binding_table_offset++;
1224
1225 /* Plane 0 is just the regular texture section */
1226 stage_prog_data->binding_table.plane_start[0] = stage_prog_data->binding_table.texture_start;
1227
1228 stage_prog_data->binding_table.plane_start[1] = next_binding_table_offset;
1229 next_binding_table_offset += num_textures;
1230
1231 stage_prog_data->binding_table.plane_start[2] = next_binding_table_offset;
1232 next_binding_table_offset += num_textures;
1233
1234 assert(next_binding_table_offset <= BRW_MAX_SURFACES);
1235
1236 /* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */
1237 }
1238
1239 static void
1240 setup_vec4_uniform_value(const gl_constant_value **params,
1241 const gl_constant_value *values,
1242 unsigned n)
1243 {
1244 static const gl_constant_value zero = { 0 };
1245
1246 for (unsigned i = 0; i < n; ++i)
1247 params[i] = &values[i];
1248
1249 for (unsigned i = n; i < 4; ++i)
1250 params[i] = &zero;
1251 }
1252
1253 void
1254 brw_setup_image_uniform_values(gl_shader_stage stage,
1255 struct brw_stage_prog_data *stage_prog_data,
1256 unsigned param_start_index,
1257 const gl_uniform_storage *storage)
1258 {
1259 const gl_constant_value **param =
1260 &stage_prog_data->param[param_start_index];
1261
1262 for (unsigned i = 0; i < MAX2(storage->array_elements, 1); i++) {
1263 const unsigned image_idx = storage->opaque[stage].index + i;
1264 const brw_image_param *image_param =
1265 &stage_prog_data->image_param[image_idx];
1266
1267 /* Upload the brw_image_param structure. The order is expected to match
1268 * the BRW_IMAGE_PARAM_*_OFFSET defines.
1269 */
1270 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET,
1271 (const gl_constant_value *)&image_param->surface_idx, 1);
1272 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_OFFSET_OFFSET,
1273 (const gl_constant_value *)image_param->offset, 2);
1274 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SIZE_OFFSET,
1275 (const gl_constant_value *)image_param->size, 3);
1276 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_STRIDE_OFFSET,
1277 (const gl_constant_value *)image_param->stride, 4);
1278 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_TILING_OFFSET,
1279 (const gl_constant_value *)image_param->tiling, 3);
1280 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET,
1281 (const gl_constant_value *)image_param->swizzling, 2);
1282 param += BRW_IMAGE_PARAM_SIZE;
1283
1284 brw_mark_surface_used(
1285 stage_prog_data,
1286 stage_prog_data->binding_table.image_start + image_idx);
1287 }
1288 }
1289
1290 /**
1291 * Decide which set of clip planes should be used when clipping via
1292 * gl_Position or gl_ClipVertex.
1293 */
1294 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
1295 {
1296 if (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]) {
1297 /* There is currently a GLSL vertex shader, so clip according to GLSL
1298 * rules, which means compare gl_ClipVertex (or gl_Position, if
1299 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
1300 * that were stored in EyeUserPlane at the time the clip planes were
1301 * specified.
1302 */
1303 return ctx->Transform.EyeUserPlane;
1304 } else {
1305 /* Either we are using fixed function or an ARB vertex program. In
1306 * either case the clip planes are going to be compared against
1307 * gl_Position (which is in clip coordinates) so we have to clip using
1308 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
1309 * core.
1310 */
1311 return ctx->Transform._ClipUserPlane;
1312 }
1313 }
1314
1315 extern "C" const unsigned *
1316 brw_compile_tes(const struct brw_compiler *compiler,
1317 void *log_data,
1318 void *mem_ctx,
1319 const struct brw_tes_prog_key *key,
1320 struct brw_tes_prog_data *prog_data,
1321 const nir_shader *src_shader,
1322 struct gl_shader_program *shader_prog,
1323 int shader_time_index,
1324 unsigned *final_assembly_size,
1325 char **error_str)
1326 {
1327 const struct brw_device_info *devinfo = compiler->devinfo;
1328 struct gl_shader *shader =
1329 shader_prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
1330 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_EVAL];
1331
1332 nir_shader *nir = nir_shader_clone(mem_ctx, src_shader);
1333 nir->info.inputs_read = key->inputs_read;
1334 nir->info.patch_inputs_read = key->patch_inputs_read;
1335
1336 struct brw_vue_map input_vue_map;
1337 brw_compute_tess_vue_map(&input_vue_map,
1338 nir->info.inputs_read & ~VARYING_BIT_PRIMITIVE_ID,
1339 nir->info.patch_inputs_read);
1340
1341 nir = brw_nir_apply_sampler_key(nir, devinfo, &key->tex, is_scalar);
1342 brw_nir_lower_tes_inputs(nir, &input_vue_map);
1343 brw_nir_lower_vue_outputs(nir, is_scalar);
1344 nir = brw_postprocess_nir(nir, compiler->devinfo, is_scalar);
1345
1346 brw_compute_vue_map(devinfo, &prog_data->base.vue_map,
1347 nir->info.outputs_written,
1348 nir->info.separate_shader);
1349
1350 unsigned output_size_bytes = prog_data->base.vue_map.num_slots * 4 * 4;
1351
1352 assert(output_size_bytes >= 1);
1353 if (output_size_bytes > GEN7_MAX_DS_URB_ENTRY_SIZE_BYTES) {
1354 if (error_str)
1355 *error_str = ralloc_strdup(mem_ctx, "DS outputs exceed maximum size");
1356 return NULL;
1357 }
1358
1359 /* URB entry sizes are stored as a multiple of 64 bytes. */
1360 prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
1361
1362 bool need_patch_header = nir->info.system_values_read &
1363 (BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_OUTER) |
1364 BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_INNER));
1365
1366 /* The TES will pull most inputs using URB read messages.
1367 *
1368 * However, we push the patch header for TessLevel factors when required,
1369 * as it's a tiny amount of extra data.
1370 */
1371 prog_data->base.urb_read_length = need_patch_header ? 1 : 0;
1372
1373 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1374 fprintf(stderr, "TES Input ");
1375 brw_print_vue_map(stderr, &input_vue_map);
1376 fprintf(stderr, "TES Output ");
1377 brw_print_vue_map(stderr, &prog_data->base.vue_map);
1378 }
1379
1380 if (is_scalar) {
1381 fs_visitor v(compiler, log_data, mem_ctx, (void *) key,
1382 &prog_data->base.base, shader->Program, nir, 8,
1383 shader_time_index, &input_vue_map);
1384 if (!v.run_tes()) {
1385 if (error_str)
1386 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1387 return NULL;
1388 }
1389
1390 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
1391 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
1392
1393 fs_generator g(compiler, log_data, mem_ctx, (void *) key,
1394 &prog_data->base.base, v.promoted_constants, false,
1395 MESA_SHADER_TESS_EVAL);
1396 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1397 g.enable_debug(ralloc_asprintf(mem_ctx,
1398 "%s tessellation evaluation shader %s",
1399 nir->info.label ? nir->info.label
1400 : "unnamed",
1401 nir->info.name));
1402 }
1403
1404 g.generate_code(v.cfg, 8);
1405
1406 return g.get_assembly(final_assembly_size);
1407 } else {
1408 brw::vec4_tes_visitor v(compiler, log_data, key, prog_data,
1409 nir, mem_ctx, shader_time_index);
1410 if (!v.run()) {
1411 if (error_str)
1412 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1413 return NULL;
1414 }
1415
1416 if (unlikely(INTEL_DEBUG & DEBUG_TES))
1417 v.dump_instructions();
1418
1419 return brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
1420 &prog_data->base, v.cfg,
1421 final_assembly_size);
1422 }
1423 }