i965/vec4: Rename DF to/from F generator opcodes
[mesa.git] / src / mesa / drivers / dri / i965 / brw_shader.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_context.h"
25 #include "brw_cfg.h"
26 #include "brw_eu.h"
27 #include "brw_fs.h"
28 #include "brw_nir.h"
29 #include "brw_vec4_tes.h"
30 #include "main/uniforms.h"
31
32 extern "C" void
33 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
34 unsigned surf_index)
35 {
36 assert(surf_index < BRW_MAX_SURFACES);
37
38 prog_data->binding_table.size_bytes =
39 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
40 }
41
42 enum brw_reg_type
43 brw_type_for_base_type(const struct glsl_type *type)
44 {
45 switch (type->base_type) {
46 case GLSL_TYPE_FLOAT:
47 return BRW_REGISTER_TYPE_F;
48 case GLSL_TYPE_INT:
49 case GLSL_TYPE_BOOL:
50 case GLSL_TYPE_SUBROUTINE:
51 return BRW_REGISTER_TYPE_D;
52 case GLSL_TYPE_UINT:
53 return BRW_REGISTER_TYPE_UD;
54 case GLSL_TYPE_ARRAY:
55 return brw_type_for_base_type(type->fields.array);
56 case GLSL_TYPE_STRUCT:
57 case GLSL_TYPE_SAMPLER:
58 case GLSL_TYPE_ATOMIC_UINT:
59 /* These should be overridden with the type of the member when
60 * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
61 * way to trip up if we don't.
62 */
63 return BRW_REGISTER_TYPE_UD;
64 case GLSL_TYPE_IMAGE:
65 return BRW_REGISTER_TYPE_UD;
66 case GLSL_TYPE_DOUBLE:
67 return BRW_REGISTER_TYPE_DF;
68 case GLSL_TYPE_VOID:
69 case GLSL_TYPE_ERROR:
70 case GLSL_TYPE_INTERFACE:
71 case GLSL_TYPE_FUNCTION:
72 unreachable("not reached");
73 }
74
75 return BRW_REGISTER_TYPE_F;
76 }
77
78 enum brw_conditional_mod
79 brw_conditional_for_comparison(unsigned int op)
80 {
81 switch (op) {
82 case ir_binop_less:
83 return BRW_CONDITIONAL_L;
84 case ir_binop_greater:
85 return BRW_CONDITIONAL_G;
86 case ir_binop_lequal:
87 return BRW_CONDITIONAL_LE;
88 case ir_binop_gequal:
89 return BRW_CONDITIONAL_GE;
90 case ir_binop_equal:
91 case ir_binop_all_equal: /* same as equal for scalars */
92 return BRW_CONDITIONAL_Z;
93 case ir_binop_nequal:
94 case ir_binop_any_nequal: /* same as nequal for scalars */
95 return BRW_CONDITIONAL_NZ;
96 default:
97 unreachable("not reached: bad operation for comparison");
98 }
99 }
100
101 uint32_t
102 brw_math_function(enum opcode op)
103 {
104 switch (op) {
105 case SHADER_OPCODE_RCP:
106 return BRW_MATH_FUNCTION_INV;
107 case SHADER_OPCODE_RSQ:
108 return BRW_MATH_FUNCTION_RSQ;
109 case SHADER_OPCODE_SQRT:
110 return BRW_MATH_FUNCTION_SQRT;
111 case SHADER_OPCODE_EXP2:
112 return BRW_MATH_FUNCTION_EXP;
113 case SHADER_OPCODE_LOG2:
114 return BRW_MATH_FUNCTION_LOG;
115 case SHADER_OPCODE_POW:
116 return BRW_MATH_FUNCTION_POW;
117 case SHADER_OPCODE_SIN:
118 return BRW_MATH_FUNCTION_SIN;
119 case SHADER_OPCODE_COS:
120 return BRW_MATH_FUNCTION_COS;
121 case SHADER_OPCODE_INT_QUOTIENT:
122 return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT;
123 case SHADER_OPCODE_INT_REMAINDER:
124 return BRW_MATH_FUNCTION_INT_DIV_REMAINDER;
125 default:
126 unreachable("not reached: unknown math function");
127 }
128 }
129
130 bool
131 brw_texture_offset(int *offsets, unsigned num_components, uint32_t *offset_bits)
132 {
133 if (!offsets) return false; /* nonconstant offset; caller will handle it. */
134
135 /* offset out of bounds; caller will handle it. */
136 for (unsigned i = 0; i < num_components; i++)
137 if (offsets[i] > 7 || offsets[i] < -8)
138 return false;
139
140 /* Combine all three offsets into a single unsigned dword:
141 *
142 * bits 11:8 - U Offset (X component)
143 * bits 7:4 - V Offset (Y component)
144 * bits 3:0 - R Offset (Z component)
145 */
146 *offset_bits = 0;
147 for (unsigned i = 0; i < num_components; i++) {
148 const unsigned shift = 4 * (2 - i);
149 *offset_bits |= (offsets[i] << shift) & (0xF << shift);
150 }
151 return true;
152 }
153
154 const char *
155 brw_instruction_name(const struct gen_device_info *devinfo, enum opcode op)
156 {
157 switch (op) {
158 case BRW_OPCODE_ILLEGAL ... BRW_OPCODE_NOP:
159 /* The DO instruction doesn't exist on Gen6+, but we use it to mark the
160 * start of a loop in the IR.
161 */
162 if (devinfo->gen >= 6 && op == BRW_OPCODE_DO)
163 return "do";
164
165 assert(brw_opcode_desc(devinfo, op)->name);
166 return brw_opcode_desc(devinfo, op)->name;
167 case FS_OPCODE_FB_WRITE:
168 return "fb_write";
169 case FS_OPCODE_FB_WRITE_LOGICAL:
170 return "fb_write_logical";
171 case FS_OPCODE_REP_FB_WRITE:
172 return "rep_fb_write";
173 case FS_OPCODE_FB_READ:
174 return "fb_read";
175 case FS_OPCODE_FB_READ_LOGICAL:
176 return "fb_read_logical";
177
178 case SHADER_OPCODE_RCP:
179 return "rcp";
180 case SHADER_OPCODE_RSQ:
181 return "rsq";
182 case SHADER_OPCODE_SQRT:
183 return "sqrt";
184 case SHADER_OPCODE_EXP2:
185 return "exp2";
186 case SHADER_OPCODE_LOG2:
187 return "log2";
188 case SHADER_OPCODE_POW:
189 return "pow";
190 case SHADER_OPCODE_INT_QUOTIENT:
191 return "int_quot";
192 case SHADER_OPCODE_INT_REMAINDER:
193 return "int_rem";
194 case SHADER_OPCODE_SIN:
195 return "sin";
196 case SHADER_OPCODE_COS:
197 return "cos";
198
199 case SHADER_OPCODE_TEX:
200 return "tex";
201 case SHADER_OPCODE_TEX_LOGICAL:
202 return "tex_logical";
203 case SHADER_OPCODE_TXD:
204 return "txd";
205 case SHADER_OPCODE_TXD_LOGICAL:
206 return "txd_logical";
207 case SHADER_OPCODE_TXF:
208 return "txf";
209 case SHADER_OPCODE_TXF_LOGICAL:
210 return "txf_logical";
211 case SHADER_OPCODE_TXF_LZ:
212 return "txf_lz";
213 case SHADER_OPCODE_TXL:
214 return "txl";
215 case SHADER_OPCODE_TXL_LOGICAL:
216 return "txl_logical";
217 case SHADER_OPCODE_TXL_LZ:
218 return "txl_lz";
219 case SHADER_OPCODE_TXS:
220 return "txs";
221 case SHADER_OPCODE_TXS_LOGICAL:
222 return "txs_logical";
223 case FS_OPCODE_TXB:
224 return "txb";
225 case FS_OPCODE_TXB_LOGICAL:
226 return "txb_logical";
227 case SHADER_OPCODE_TXF_CMS:
228 return "txf_cms";
229 case SHADER_OPCODE_TXF_CMS_LOGICAL:
230 return "txf_cms_logical";
231 case SHADER_OPCODE_TXF_CMS_W:
232 return "txf_cms_w";
233 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
234 return "txf_cms_w_logical";
235 case SHADER_OPCODE_TXF_UMS:
236 return "txf_ums";
237 case SHADER_OPCODE_TXF_UMS_LOGICAL:
238 return "txf_ums_logical";
239 case SHADER_OPCODE_TXF_MCS:
240 return "txf_mcs";
241 case SHADER_OPCODE_TXF_MCS_LOGICAL:
242 return "txf_mcs_logical";
243 case SHADER_OPCODE_LOD:
244 return "lod";
245 case SHADER_OPCODE_LOD_LOGICAL:
246 return "lod_logical";
247 case SHADER_OPCODE_TG4:
248 return "tg4";
249 case SHADER_OPCODE_TG4_LOGICAL:
250 return "tg4_logical";
251 case SHADER_OPCODE_TG4_OFFSET:
252 return "tg4_offset";
253 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
254 return "tg4_offset_logical";
255 case SHADER_OPCODE_SAMPLEINFO:
256 return "sampleinfo";
257 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
258 return "sampleinfo_logical";
259
260 case SHADER_OPCODE_SHADER_TIME_ADD:
261 return "shader_time_add";
262
263 case SHADER_OPCODE_UNTYPED_ATOMIC:
264 return "untyped_atomic";
265 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
266 return "untyped_atomic_logical";
267 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
268 return "untyped_surface_read";
269 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
270 return "untyped_surface_read_logical";
271 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
272 return "untyped_surface_write";
273 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
274 return "untyped_surface_write_logical";
275 case SHADER_OPCODE_TYPED_ATOMIC:
276 return "typed_atomic";
277 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
278 return "typed_atomic_logical";
279 case SHADER_OPCODE_TYPED_SURFACE_READ:
280 return "typed_surface_read";
281 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
282 return "typed_surface_read_logical";
283 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
284 return "typed_surface_write";
285 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
286 return "typed_surface_write_logical";
287 case SHADER_OPCODE_MEMORY_FENCE:
288 return "memory_fence";
289
290 case SHADER_OPCODE_LOAD_PAYLOAD:
291 return "load_payload";
292 case FS_OPCODE_PACK:
293 return "pack";
294
295 case SHADER_OPCODE_GEN4_SCRATCH_READ:
296 return "gen4_scratch_read";
297 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
298 return "gen4_scratch_write";
299 case SHADER_OPCODE_GEN7_SCRATCH_READ:
300 return "gen7_scratch_read";
301 case SHADER_OPCODE_URB_WRITE_SIMD8:
302 return "gen8_urb_write_simd8";
303 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
304 return "gen8_urb_write_simd8_per_slot";
305 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
306 return "gen8_urb_write_simd8_masked";
307 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
308 return "gen8_urb_write_simd8_masked_per_slot";
309 case SHADER_OPCODE_URB_READ_SIMD8:
310 return "urb_read_simd8";
311 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
312 return "urb_read_simd8_per_slot";
313
314 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
315 return "find_live_channel";
316 case SHADER_OPCODE_BROADCAST:
317 return "broadcast";
318
319 case VEC4_OPCODE_MOV_BYTES:
320 return "mov_bytes";
321 case VEC4_OPCODE_PACK_BYTES:
322 return "pack_bytes";
323 case VEC4_OPCODE_UNPACK_UNIFORM:
324 return "unpack_uniform";
325 case VEC4_OPCODE_FROM_DOUBLE:
326 return "double_to_single";
327 case VEC4_OPCODE_TO_DOUBLE:
328 return "single_to_double";
329 case VEC4_OPCODE_PICK_LOW_32BIT:
330 return "pick_low_32bit";
331 case VEC4_OPCODE_PICK_HIGH_32BIT:
332 return "pick_high_32bit";
333 case VEC4_OPCODE_SET_LOW_32BIT:
334 return "set_low_32bit";
335 case VEC4_OPCODE_SET_HIGH_32BIT:
336 return "set_high_32bit";
337
338 case FS_OPCODE_DDX_COARSE:
339 return "ddx_coarse";
340 case FS_OPCODE_DDX_FINE:
341 return "ddx_fine";
342 case FS_OPCODE_DDY_COARSE:
343 return "ddy_coarse";
344 case FS_OPCODE_DDY_FINE:
345 return "ddy_fine";
346
347 case FS_OPCODE_CINTERP:
348 return "cinterp";
349 case FS_OPCODE_LINTERP:
350 return "linterp";
351
352 case FS_OPCODE_PIXEL_X:
353 return "pixel_x";
354 case FS_OPCODE_PIXEL_Y:
355 return "pixel_y";
356
357 case FS_OPCODE_GET_BUFFER_SIZE:
358 return "fs_get_buffer_size";
359
360 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
361 return "uniform_pull_const";
362 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
363 return "uniform_pull_const_gen7";
364 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
365 return "varying_pull_const_gen4";
366 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
367 return "varying_pull_const_gen7";
368 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
369 return "varying_pull_const_logical";
370
371 case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
372 return "mov_dispatch_to_flags";
373 case FS_OPCODE_DISCARD_JUMP:
374 return "discard_jump";
375
376 case FS_OPCODE_SET_SAMPLE_ID:
377 return "set_sample_id";
378
379 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
380 return "pack_half_2x16_split";
381 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
382 return "unpack_half_2x16_split_x";
383 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
384 return "unpack_half_2x16_split_y";
385
386 case FS_OPCODE_PLACEHOLDER_HALT:
387 return "placeholder_halt";
388
389 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
390 return "interp_sample";
391 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
392 return "interp_shared_offset";
393 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
394 return "interp_per_slot_offset";
395
396 case VS_OPCODE_URB_WRITE:
397 return "vs_urb_write";
398 case VS_OPCODE_PULL_CONSTANT_LOAD:
399 return "pull_constant_load";
400 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
401 return "pull_constant_load_gen7";
402
403 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
404 return "set_simd4x2_header_gen9";
405
406 case VS_OPCODE_GET_BUFFER_SIZE:
407 return "vs_get_buffer_size";
408
409 case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
410 return "unpack_flags_simd4x2";
411
412 case GS_OPCODE_URB_WRITE:
413 return "gs_urb_write";
414 case GS_OPCODE_URB_WRITE_ALLOCATE:
415 return "gs_urb_write_allocate";
416 case GS_OPCODE_THREAD_END:
417 return "gs_thread_end";
418 case GS_OPCODE_SET_WRITE_OFFSET:
419 return "set_write_offset";
420 case GS_OPCODE_SET_VERTEX_COUNT:
421 return "set_vertex_count";
422 case GS_OPCODE_SET_DWORD_2:
423 return "set_dword_2";
424 case GS_OPCODE_PREPARE_CHANNEL_MASKS:
425 return "prepare_channel_masks";
426 case GS_OPCODE_SET_CHANNEL_MASKS:
427 return "set_channel_masks";
428 case GS_OPCODE_GET_INSTANCE_ID:
429 return "get_instance_id";
430 case GS_OPCODE_FF_SYNC:
431 return "ff_sync";
432 case GS_OPCODE_SET_PRIMITIVE_ID:
433 return "set_primitive_id";
434 case GS_OPCODE_SVB_WRITE:
435 return "gs_svb_write";
436 case GS_OPCODE_SVB_SET_DST_INDEX:
437 return "gs_svb_set_dst_index";
438 case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
439 return "gs_ff_sync_set_primitives";
440 case CS_OPCODE_CS_TERMINATE:
441 return "cs_terminate";
442 case SHADER_OPCODE_BARRIER:
443 return "barrier";
444 case SHADER_OPCODE_MULH:
445 return "mulh";
446 case SHADER_OPCODE_MOV_INDIRECT:
447 return "mov_indirect";
448
449 case VEC4_OPCODE_URB_READ:
450 return "urb_read";
451 case TCS_OPCODE_GET_INSTANCE_ID:
452 return "tcs_get_instance_id";
453 case TCS_OPCODE_URB_WRITE:
454 return "tcs_urb_write";
455 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
456 return "tcs_set_input_urb_offsets";
457 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
458 return "tcs_set_output_urb_offsets";
459 case TCS_OPCODE_GET_PRIMITIVE_ID:
460 return "tcs_get_primitive_id";
461 case TCS_OPCODE_CREATE_BARRIER_HEADER:
462 return "tcs_create_barrier_header";
463 case TCS_OPCODE_SRC0_010_IS_ZERO:
464 return "tcs_src0<0,1,0>_is_zero";
465 case TCS_OPCODE_RELEASE_INPUT:
466 return "tcs_release_input";
467 case TCS_OPCODE_THREAD_END:
468 return "tcs_thread_end";
469 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
470 return "tes_create_input_read_header";
471 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
472 return "tes_add_indirect_urb_offset";
473 case TES_OPCODE_GET_PRIMITIVE_ID:
474 return "tes_get_primitive_id";
475 }
476
477 unreachable("not reached");
478 }
479
480 bool
481 brw_saturate_immediate(enum brw_reg_type type, struct brw_reg *reg)
482 {
483 union {
484 unsigned ud;
485 int d;
486 float f;
487 double df;
488 } imm, sat_imm = { 0 };
489
490 const unsigned size = type_sz(type);
491
492 /* We want to either do a 32-bit or 64-bit data copy, the type is otherwise
493 * irrelevant, so just check the size of the type and copy from/to an
494 * appropriately sized field.
495 */
496 if (size < 8)
497 imm.ud = reg->ud;
498 else
499 imm.df = reg->df;
500
501 switch (type) {
502 case BRW_REGISTER_TYPE_UD:
503 case BRW_REGISTER_TYPE_D:
504 case BRW_REGISTER_TYPE_UW:
505 case BRW_REGISTER_TYPE_W:
506 case BRW_REGISTER_TYPE_UQ:
507 case BRW_REGISTER_TYPE_Q:
508 /* Nothing to do. */
509 return false;
510 case BRW_REGISTER_TYPE_F:
511 sat_imm.f = CLAMP(imm.f, 0.0f, 1.0f);
512 break;
513 case BRW_REGISTER_TYPE_DF:
514 sat_imm.df = CLAMP(imm.df, 0.0, 1.0);
515 break;
516 case BRW_REGISTER_TYPE_UB:
517 case BRW_REGISTER_TYPE_B:
518 unreachable("no UB/B immediates");
519 case BRW_REGISTER_TYPE_V:
520 case BRW_REGISTER_TYPE_UV:
521 case BRW_REGISTER_TYPE_VF:
522 unreachable("unimplemented: saturate vector immediate");
523 case BRW_REGISTER_TYPE_HF:
524 unreachable("unimplemented: saturate HF immediate");
525 }
526
527 if (size < 8) {
528 if (imm.ud != sat_imm.ud) {
529 reg->ud = sat_imm.ud;
530 return true;
531 }
532 } else {
533 if (imm.df != sat_imm.df) {
534 reg->df = sat_imm.df;
535 return true;
536 }
537 }
538 return false;
539 }
540
541 bool
542 brw_negate_immediate(enum brw_reg_type type, struct brw_reg *reg)
543 {
544 switch (type) {
545 case BRW_REGISTER_TYPE_D:
546 case BRW_REGISTER_TYPE_UD:
547 reg->d = -reg->d;
548 return true;
549 case BRW_REGISTER_TYPE_W:
550 case BRW_REGISTER_TYPE_UW:
551 reg->d = -(int16_t)reg->ud;
552 return true;
553 case BRW_REGISTER_TYPE_F:
554 reg->f = -reg->f;
555 return true;
556 case BRW_REGISTER_TYPE_VF:
557 reg->ud ^= 0x80808080;
558 return true;
559 case BRW_REGISTER_TYPE_DF:
560 reg->df = -reg->df;
561 return true;
562 case BRW_REGISTER_TYPE_UB:
563 case BRW_REGISTER_TYPE_B:
564 unreachable("no UB/B immediates");
565 case BRW_REGISTER_TYPE_UV:
566 case BRW_REGISTER_TYPE_V:
567 assert(!"unimplemented: negate UV/V immediate");
568 case BRW_REGISTER_TYPE_UQ:
569 case BRW_REGISTER_TYPE_Q:
570 assert(!"unimplemented: negate UQ/Q immediate");
571 case BRW_REGISTER_TYPE_HF:
572 assert(!"unimplemented: negate HF immediate");
573 }
574
575 return false;
576 }
577
578 bool
579 brw_abs_immediate(enum brw_reg_type type, struct brw_reg *reg)
580 {
581 switch (type) {
582 case BRW_REGISTER_TYPE_D:
583 reg->d = abs(reg->d);
584 return true;
585 case BRW_REGISTER_TYPE_W:
586 reg->d = abs((int16_t)reg->ud);
587 return true;
588 case BRW_REGISTER_TYPE_F:
589 reg->f = fabsf(reg->f);
590 return true;
591 case BRW_REGISTER_TYPE_DF:
592 reg->df = fabs(reg->df);
593 return true;
594 case BRW_REGISTER_TYPE_VF:
595 reg->ud &= ~0x80808080;
596 return true;
597 case BRW_REGISTER_TYPE_UB:
598 case BRW_REGISTER_TYPE_B:
599 unreachable("no UB/B immediates");
600 case BRW_REGISTER_TYPE_UQ:
601 case BRW_REGISTER_TYPE_UD:
602 case BRW_REGISTER_TYPE_UW:
603 case BRW_REGISTER_TYPE_UV:
604 /* Presumably the absolute value modifier on an unsigned source is a
605 * nop, but it would be nice to confirm.
606 */
607 assert(!"unimplemented: abs unsigned immediate");
608 case BRW_REGISTER_TYPE_V:
609 assert(!"unimplemented: abs V immediate");
610 case BRW_REGISTER_TYPE_Q:
611 assert(!"unimplemented: abs Q immediate");
612 case BRW_REGISTER_TYPE_HF:
613 assert(!"unimplemented: abs HF immediate");
614 }
615
616 return false;
617 }
618
619 /**
620 * Get the appropriate atomic op for an image atomic intrinsic.
621 */
622 unsigned
623 get_atomic_counter_op(nir_intrinsic_op op)
624 {
625 switch (op) {
626 case nir_intrinsic_atomic_counter_inc:
627 return BRW_AOP_INC;
628 case nir_intrinsic_atomic_counter_dec:
629 return BRW_AOP_PREDEC;
630 case nir_intrinsic_atomic_counter_add:
631 return BRW_AOP_ADD;
632 case nir_intrinsic_atomic_counter_min:
633 return BRW_AOP_UMIN;
634 case nir_intrinsic_atomic_counter_max:
635 return BRW_AOP_UMAX;
636 case nir_intrinsic_atomic_counter_and:
637 return BRW_AOP_AND;
638 case nir_intrinsic_atomic_counter_or:
639 return BRW_AOP_OR;
640 case nir_intrinsic_atomic_counter_xor:
641 return BRW_AOP_XOR;
642 case nir_intrinsic_atomic_counter_exchange:
643 return BRW_AOP_MOV;
644 case nir_intrinsic_atomic_counter_comp_swap:
645 return BRW_AOP_CMPWR;
646 default:
647 unreachable("Not reachable.");
648 }
649 }
650
651 unsigned
652 tesslevel_outer_components(GLenum tes_primitive_mode)
653 {
654 switch (tes_primitive_mode) {
655 case GL_QUADS:
656 return 4;
657 case GL_TRIANGLES:
658 return 3;
659 case GL_ISOLINES:
660 return 2;
661 default:
662 unreachable("Bogus tessellation domain");
663 }
664 return 0;
665 }
666
667 unsigned
668 tesslevel_inner_components(GLenum tes_primitive_mode)
669 {
670 switch (tes_primitive_mode) {
671 case GL_QUADS:
672 return 2;
673 case GL_TRIANGLES:
674 return 1;
675 case GL_ISOLINES:
676 return 0;
677 default:
678 unreachable("Bogus tessellation domain");
679 }
680 return 0;
681 }
682
683 /**
684 * Given a normal .xyzw writemask, convert it to a writemask for a vector
685 * that's stored backwards, i.e. .wzyx.
686 */
687 unsigned
688 writemask_for_backwards_vector(unsigned mask)
689 {
690 unsigned new_mask = 0;
691
692 for (int i = 0; i < 4; i++)
693 new_mask |= ((mask >> i) & 1) << (3 - i);
694
695 return new_mask;
696 }
697
698 backend_shader::backend_shader(const struct brw_compiler *compiler,
699 void *log_data,
700 void *mem_ctx,
701 const nir_shader *shader,
702 struct brw_stage_prog_data *stage_prog_data)
703 : compiler(compiler),
704 log_data(log_data),
705 devinfo(compiler->devinfo),
706 nir(shader),
707 stage_prog_data(stage_prog_data),
708 mem_ctx(mem_ctx),
709 cfg(NULL),
710 stage(shader->stage)
711 {
712 debug_enabled = INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage);
713 stage_name = _mesa_shader_stage_to_string(stage);
714 stage_abbrev = _mesa_shader_stage_to_abbrev(stage);
715 is_passthrough_shader =
716 nir->info->name && strcmp(nir->info->name, "passthrough") == 0;
717 }
718
719 bool
720 backend_reg::equals(const backend_reg &r) const
721 {
722 return brw_regs_equal(this, &r) && offset == r.offset;
723 }
724
725 bool
726 backend_reg::is_zero() const
727 {
728 if (file != IMM)
729 return false;
730
731 switch (type) {
732 case BRW_REGISTER_TYPE_F:
733 return f == 0;
734 case BRW_REGISTER_TYPE_DF:
735 return df == 0;
736 case BRW_REGISTER_TYPE_D:
737 case BRW_REGISTER_TYPE_UD:
738 return d == 0;
739 default:
740 return false;
741 }
742 }
743
744 bool
745 backend_reg::is_one() const
746 {
747 if (file != IMM)
748 return false;
749
750 switch (type) {
751 case BRW_REGISTER_TYPE_F:
752 return f == 1.0f;
753 case BRW_REGISTER_TYPE_DF:
754 return df == 1.0;
755 case BRW_REGISTER_TYPE_D:
756 case BRW_REGISTER_TYPE_UD:
757 return d == 1;
758 default:
759 return false;
760 }
761 }
762
763 bool
764 backend_reg::is_negative_one() const
765 {
766 if (file != IMM)
767 return false;
768
769 switch (type) {
770 case BRW_REGISTER_TYPE_F:
771 return f == -1.0;
772 case BRW_REGISTER_TYPE_DF:
773 return df == -1.0;
774 case BRW_REGISTER_TYPE_D:
775 return d == -1;
776 default:
777 return false;
778 }
779 }
780
781 bool
782 backend_reg::is_null() const
783 {
784 return file == ARF && nr == BRW_ARF_NULL;
785 }
786
787
788 bool
789 backend_reg::is_accumulator() const
790 {
791 return file == ARF && nr == BRW_ARF_ACCUMULATOR;
792 }
793
794 bool
795 backend_instruction::is_commutative() const
796 {
797 switch (opcode) {
798 case BRW_OPCODE_AND:
799 case BRW_OPCODE_OR:
800 case BRW_OPCODE_XOR:
801 case BRW_OPCODE_ADD:
802 case BRW_OPCODE_MUL:
803 case SHADER_OPCODE_MULH:
804 return true;
805 case BRW_OPCODE_SEL:
806 /* MIN and MAX are commutative. */
807 if (conditional_mod == BRW_CONDITIONAL_GE ||
808 conditional_mod == BRW_CONDITIONAL_L) {
809 return true;
810 }
811 /* fallthrough */
812 default:
813 return false;
814 }
815 }
816
817 bool
818 backend_instruction::is_3src(const struct gen_device_info *devinfo) const
819 {
820 return ::is_3src(devinfo, opcode);
821 }
822
823 bool
824 backend_instruction::is_tex() const
825 {
826 return (opcode == SHADER_OPCODE_TEX ||
827 opcode == FS_OPCODE_TXB ||
828 opcode == SHADER_OPCODE_TXD ||
829 opcode == SHADER_OPCODE_TXF ||
830 opcode == SHADER_OPCODE_TXF_LZ ||
831 opcode == SHADER_OPCODE_TXF_CMS ||
832 opcode == SHADER_OPCODE_TXF_CMS_W ||
833 opcode == SHADER_OPCODE_TXF_UMS ||
834 opcode == SHADER_OPCODE_TXF_MCS ||
835 opcode == SHADER_OPCODE_TXL ||
836 opcode == SHADER_OPCODE_TXL_LZ ||
837 opcode == SHADER_OPCODE_TXS ||
838 opcode == SHADER_OPCODE_LOD ||
839 opcode == SHADER_OPCODE_TG4 ||
840 opcode == SHADER_OPCODE_TG4_OFFSET ||
841 opcode == SHADER_OPCODE_SAMPLEINFO);
842 }
843
844 bool
845 backend_instruction::is_math() const
846 {
847 return (opcode == SHADER_OPCODE_RCP ||
848 opcode == SHADER_OPCODE_RSQ ||
849 opcode == SHADER_OPCODE_SQRT ||
850 opcode == SHADER_OPCODE_EXP2 ||
851 opcode == SHADER_OPCODE_LOG2 ||
852 opcode == SHADER_OPCODE_SIN ||
853 opcode == SHADER_OPCODE_COS ||
854 opcode == SHADER_OPCODE_INT_QUOTIENT ||
855 opcode == SHADER_OPCODE_INT_REMAINDER ||
856 opcode == SHADER_OPCODE_POW);
857 }
858
859 bool
860 backend_instruction::is_control_flow() const
861 {
862 switch (opcode) {
863 case BRW_OPCODE_DO:
864 case BRW_OPCODE_WHILE:
865 case BRW_OPCODE_IF:
866 case BRW_OPCODE_ELSE:
867 case BRW_OPCODE_ENDIF:
868 case BRW_OPCODE_BREAK:
869 case BRW_OPCODE_CONTINUE:
870 return true;
871 default:
872 return false;
873 }
874 }
875
876 bool
877 backend_instruction::can_do_source_mods() const
878 {
879 switch (opcode) {
880 case BRW_OPCODE_ADDC:
881 case BRW_OPCODE_BFE:
882 case BRW_OPCODE_BFI1:
883 case BRW_OPCODE_BFI2:
884 case BRW_OPCODE_BFREV:
885 case BRW_OPCODE_CBIT:
886 case BRW_OPCODE_FBH:
887 case BRW_OPCODE_FBL:
888 case BRW_OPCODE_SUBB:
889 return false;
890 default:
891 return true;
892 }
893 }
894
895 bool
896 backend_instruction::can_do_saturate() const
897 {
898 switch (opcode) {
899 case BRW_OPCODE_ADD:
900 case BRW_OPCODE_ASR:
901 case BRW_OPCODE_AVG:
902 case BRW_OPCODE_DP2:
903 case BRW_OPCODE_DP3:
904 case BRW_OPCODE_DP4:
905 case BRW_OPCODE_DPH:
906 case BRW_OPCODE_F16TO32:
907 case BRW_OPCODE_F32TO16:
908 case BRW_OPCODE_LINE:
909 case BRW_OPCODE_LRP:
910 case BRW_OPCODE_MAC:
911 case BRW_OPCODE_MAD:
912 case BRW_OPCODE_MATH:
913 case BRW_OPCODE_MOV:
914 case BRW_OPCODE_MUL:
915 case SHADER_OPCODE_MULH:
916 case BRW_OPCODE_PLN:
917 case BRW_OPCODE_RNDD:
918 case BRW_OPCODE_RNDE:
919 case BRW_OPCODE_RNDU:
920 case BRW_OPCODE_RNDZ:
921 case BRW_OPCODE_SEL:
922 case BRW_OPCODE_SHL:
923 case BRW_OPCODE_SHR:
924 case FS_OPCODE_LINTERP:
925 case SHADER_OPCODE_COS:
926 case SHADER_OPCODE_EXP2:
927 case SHADER_OPCODE_LOG2:
928 case SHADER_OPCODE_POW:
929 case SHADER_OPCODE_RCP:
930 case SHADER_OPCODE_RSQ:
931 case SHADER_OPCODE_SIN:
932 case SHADER_OPCODE_SQRT:
933 return true;
934 default:
935 return false;
936 }
937 }
938
939 bool
940 backend_instruction::can_do_cmod() const
941 {
942 switch (opcode) {
943 case BRW_OPCODE_ADD:
944 case BRW_OPCODE_ADDC:
945 case BRW_OPCODE_AND:
946 case BRW_OPCODE_ASR:
947 case BRW_OPCODE_AVG:
948 case BRW_OPCODE_CMP:
949 case BRW_OPCODE_CMPN:
950 case BRW_OPCODE_DP2:
951 case BRW_OPCODE_DP3:
952 case BRW_OPCODE_DP4:
953 case BRW_OPCODE_DPH:
954 case BRW_OPCODE_F16TO32:
955 case BRW_OPCODE_F32TO16:
956 case BRW_OPCODE_FRC:
957 case BRW_OPCODE_LINE:
958 case BRW_OPCODE_LRP:
959 case BRW_OPCODE_LZD:
960 case BRW_OPCODE_MAC:
961 case BRW_OPCODE_MACH:
962 case BRW_OPCODE_MAD:
963 case BRW_OPCODE_MOV:
964 case BRW_OPCODE_MUL:
965 case BRW_OPCODE_NOT:
966 case BRW_OPCODE_OR:
967 case BRW_OPCODE_PLN:
968 case BRW_OPCODE_RNDD:
969 case BRW_OPCODE_RNDE:
970 case BRW_OPCODE_RNDU:
971 case BRW_OPCODE_RNDZ:
972 case BRW_OPCODE_SAD2:
973 case BRW_OPCODE_SADA2:
974 case BRW_OPCODE_SHL:
975 case BRW_OPCODE_SHR:
976 case BRW_OPCODE_SUBB:
977 case BRW_OPCODE_XOR:
978 case FS_OPCODE_CINTERP:
979 case FS_OPCODE_LINTERP:
980 return true;
981 default:
982 return false;
983 }
984 }
985
986 bool
987 backend_instruction::reads_accumulator_implicitly() const
988 {
989 switch (opcode) {
990 case BRW_OPCODE_MAC:
991 case BRW_OPCODE_MACH:
992 case BRW_OPCODE_SADA2:
993 return true;
994 default:
995 return false;
996 }
997 }
998
999 bool
1000 backend_instruction::writes_accumulator_implicitly(const struct gen_device_info *devinfo) const
1001 {
1002 return writes_accumulator ||
1003 (devinfo->gen < 6 &&
1004 ((opcode >= BRW_OPCODE_ADD && opcode < BRW_OPCODE_NOP) ||
1005 (opcode >= FS_OPCODE_DDX_COARSE && opcode <= FS_OPCODE_LINTERP &&
1006 opcode != FS_OPCODE_CINTERP)));
1007 }
1008
1009 bool
1010 backend_instruction::has_side_effects() const
1011 {
1012 switch (opcode) {
1013 case SHADER_OPCODE_UNTYPED_ATOMIC:
1014 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
1015 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1016 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
1017 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
1018 case SHADER_OPCODE_TYPED_ATOMIC:
1019 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
1020 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
1021 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
1022 case SHADER_OPCODE_MEMORY_FENCE:
1023 case SHADER_OPCODE_URB_WRITE_SIMD8:
1024 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
1025 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
1026 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
1027 case FS_OPCODE_FB_WRITE:
1028 case FS_OPCODE_FB_WRITE_LOGICAL:
1029 case SHADER_OPCODE_BARRIER:
1030 case TCS_OPCODE_URB_WRITE:
1031 case TCS_OPCODE_RELEASE_INPUT:
1032 return true;
1033 default:
1034 return false;
1035 }
1036 }
1037
1038 bool
1039 backend_instruction::is_volatile() const
1040 {
1041 switch (opcode) {
1042 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
1043 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
1044 case SHADER_OPCODE_TYPED_SURFACE_READ:
1045 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
1046 case SHADER_OPCODE_URB_READ_SIMD8:
1047 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
1048 case VEC4_OPCODE_URB_READ:
1049 return true;
1050 default:
1051 return false;
1052 }
1053 }
1054
1055 #ifndef NDEBUG
1056 static bool
1057 inst_is_in_block(const bblock_t *block, const backend_instruction *inst)
1058 {
1059 bool found = false;
1060 foreach_inst_in_block (backend_instruction, i, block) {
1061 if (inst == i) {
1062 found = true;
1063 }
1064 }
1065 return found;
1066 }
1067 #endif
1068
1069 static void
1070 adjust_later_block_ips(bblock_t *start_block, int ip_adjustment)
1071 {
1072 for (bblock_t *block_iter = start_block->next();
1073 block_iter;
1074 block_iter = block_iter->next()) {
1075 block_iter->start_ip += ip_adjustment;
1076 block_iter->end_ip += ip_adjustment;
1077 }
1078 }
1079
1080 void
1081 backend_instruction::insert_after(bblock_t *block, backend_instruction *inst)
1082 {
1083 assert(this != inst);
1084
1085 if (!this->is_head_sentinel())
1086 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1087
1088 block->end_ip++;
1089
1090 adjust_later_block_ips(block, 1);
1091
1092 exec_node::insert_after(inst);
1093 }
1094
1095 void
1096 backend_instruction::insert_before(bblock_t *block, backend_instruction *inst)
1097 {
1098 assert(this != inst);
1099
1100 if (!this->is_tail_sentinel())
1101 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1102
1103 block->end_ip++;
1104
1105 adjust_later_block_ips(block, 1);
1106
1107 exec_node::insert_before(inst);
1108 }
1109
1110 void
1111 backend_instruction::insert_before(bblock_t *block, exec_list *list)
1112 {
1113 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1114
1115 unsigned num_inst = list->length();
1116
1117 block->end_ip += num_inst;
1118
1119 adjust_later_block_ips(block, num_inst);
1120
1121 exec_node::insert_before(list);
1122 }
1123
1124 void
1125 backend_instruction::remove(bblock_t *block)
1126 {
1127 assert(inst_is_in_block(block, this) || !"Instruction not in block");
1128
1129 adjust_later_block_ips(block, -1);
1130
1131 if (block->start_ip == block->end_ip) {
1132 block->cfg->remove_block(block);
1133 } else {
1134 block->end_ip--;
1135 }
1136
1137 exec_node::remove();
1138 }
1139
1140 void
1141 backend_shader::dump_instructions()
1142 {
1143 dump_instructions(NULL);
1144 }
1145
1146 void
1147 backend_shader::dump_instructions(const char *name)
1148 {
1149 FILE *file = stderr;
1150 if (name && geteuid() != 0) {
1151 file = fopen(name, "w");
1152 if (!file)
1153 file = stderr;
1154 }
1155
1156 if (cfg) {
1157 int ip = 0;
1158 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
1159 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1160 fprintf(file, "%4d: ", ip++);
1161 dump_instruction(inst, file);
1162 }
1163 } else {
1164 int ip = 0;
1165 foreach_in_list(backend_instruction, inst, &instructions) {
1166 if (!unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER))
1167 fprintf(file, "%4d: ", ip++);
1168 dump_instruction(inst, file);
1169 }
1170 }
1171
1172 if (file != stderr) {
1173 fclose(file);
1174 }
1175 }
1176
1177 void
1178 backend_shader::calculate_cfg()
1179 {
1180 if (this->cfg)
1181 return;
1182 cfg = new(mem_ctx) cfg_t(&this->instructions);
1183 }
1184
1185 /**
1186 * Sets up the starting offsets for the groups of binding table entries
1187 * commong to all pipeline stages.
1188 *
1189 * Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
1190 * unused but also make sure that addition of small offsets to them will
1191 * trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
1192 */
1193 uint32_t
1194 brw_assign_common_binding_table_offsets(gl_shader_stage stage,
1195 const struct gen_device_info *devinfo,
1196 const struct gl_shader_program *shader_prog,
1197 const struct gl_program *prog,
1198 struct brw_stage_prog_data *stage_prog_data,
1199 uint32_t next_binding_table_offset)
1200 {
1201 const struct gl_linked_shader *shader = NULL;
1202 int num_textures = util_last_bit(prog->SamplersUsed);
1203
1204 if (shader_prog)
1205 shader = shader_prog->_LinkedShaders[stage];
1206
1207 stage_prog_data->binding_table.texture_start = next_binding_table_offset;
1208 next_binding_table_offset += num_textures;
1209
1210 if (shader) {
1211 assert(shader->NumUniformBlocks <= BRW_MAX_UBO);
1212 stage_prog_data->binding_table.ubo_start = next_binding_table_offset;
1213 next_binding_table_offset += shader->NumUniformBlocks;
1214
1215 assert(shader->NumShaderStorageBlocks <= BRW_MAX_SSBO);
1216 stage_prog_data->binding_table.ssbo_start = next_binding_table_offset;
1217 next_binding_table_offset += shader->NumShaderStorageBlocks;
1218 } else {
1219 stage_prog_data->binding_table.ubo_start = 0xd0d0d0d0;
1220 stage_prog_data->binding_table.ssbo_start = 0xd0d0d0d0;
1221 }
1222
1223 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1224 stage_prog_data->binding_table.shader_time_start = next_binding_table_offset;
1225 next_binding_table_offset++;
1226 } else {
1227 stage_prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
1228 }
1229
1230 if (prog->nir->info->uses_texture_gather) {
1231 if (devinfo->gen >= 8) {
1232 stage_prog_data->binding_table.gather_texture_start =
1233 stage_prog_data->binding_table.texture_start;
1234 } else {
1235 stage_prog_data->binding_table.gather_texture_start = next_binding_table_offset;
1236 next_binding_table_offset += num_textures;
1237 }
1238 } else {
1239 stage_prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
1240 }
1241
1242 if (prog->info.num_abos) {
1243 stage_prog_data->binding_table.abo_start = next_binding_table_offset;
1244 next_binding_table_offset += prog->info.num_abos;
1245 } else {
1246 stage_prog_data->binding_table.abo_start = 0xd0d0d0d0;
1247 }
1248
1249 if (prog->info.num_images) {
1250 stage_prog_data->binding_table.image_start = next_binding_table_offset;
1251 next_binding_table_offset += prog->info.num_images;
1252 } else {
1253 stage_prog_data->binding_table.image_start = 0xd0d0d0d0;
1254 }
1255
1256 /* This may or may not be used depending on how the compile goes. */
1257 stage_prog_data->binding_table.pull_constants_start = next_binding_table_offset;
1258 next_binding_table_offset++;
1259
1260 /* Plane 0 is just the regular texture section */
1261 stage_prog_data->binding_table.plane_start[0] = stage_prog_data->binding_table.texture_start;
1262
1263 stage_prog_data->binding_table.plane_start[1] = next_binding_table_offset;
1264 next_binding_table_offset += num_textures;
1265
1266 stage_prog_data->binding_table.plane_start[2] = next_binding_table_offset;
1267 next_binding_table_offset += num_textures;
1268
1269 /* prog_data->base.binding_table.size will be set by brw_mark_surface_used. */
1270
1271 assert(next_binding_table_offset <= BRW_MAX_SURFACES);
1272 return next_binding_table_offset;
1273 }
1274
1275 static void
1276 setup_vec4_uniform_value(const gl_constant_value **params,
1277 const gl_constant_value *values,
1278 unsigned n)
1279 {
1280 static const gl_constant_value zero = { 0 };
1281
1282 for (unsigned i = 0; i < n; ++i)
1283 params[i] = &values[i];
1284
1285 for (unsigned i = n; i < 4; ++i)
1286 params[i] = &zero;
1287 }
1288
1289 void
1290 brw_setup_image_uniform_values(gl_shader_stage stage,
1291 struct brw_stage_prog_data *stage_prog_data,
1292 unsigned param_start_index,
1293 const gl_uniform_storage *storage)
1294 {
1295 const gl_constant_value **param =
1296 &stage_prog_data->param[param_start_index];
1297
1298 for (unsigned i = 0; i < MAX2(storage->array_elements, 1); i++) {
1299 const unsigned image_idx = storage->opaque[stage].index + i;
1300 const brw_image_param *image_param =
1301 &stage_prog_data->image_param[image_idx];
1302
1303 /* Upload the brw_image_param structure. The order is expected to match
1304 * the BRW_IMAGE_PARAM_*_OFFSET defines.
1305 */
1306 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET,
1307 (const gl_constant_value *)&image_param->surface_idx, 1);
1308 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_OFFSET_OFFSET,
1309 (const gl_constant_value *)image_param->offset, 2);
1310 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SIZE_OFFSET,
1311 (const gl_constant_value *)image_param->size, 3);
1312 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_STRIDE_OFFSET,
1313 (const gl_constant_value *)image_param->stride, 4);
1314 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_TILING_OFFSET,
1315 (const gl_constant_value *)image_param->tiling, 3);
1316 setup_vec4_uniform_value(param + BRW_IMAGE_PARAM_SWIZZLING_OFFSET,
1317 (const gl_constant_value *)image_param->swizzling, 2);
1318 param += BRW_IMAGE_PARAM_SIZE;
1319
1320 brw_mark_surface_used(
1321 stage_prog_data,
1322 stage_prog_data->binding_table.image_start + image_idx);
1323 }
1324 }
1325
1326 /**
1327 * Decide which set of clip planes should be used when clipping via
1328 * gl_Position or gl_ClipVertex.
1329 */
1330 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
1331 {
1332 if (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]) {
1333 /* There is currently a GLSL vertex shader, so clip according to GLSL
1334 * rules, which means compare gl_ClipVertex (or gl_Position, if
1335 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
1336 * that were stored in EyeUserPlane at the time the clip planes were
1337 * specified.
1338 */
1339 return ctx->Transform.EyeUserPlane;
1340 } else {
1341 /* Either we are using fixed function or an ARB vertex program. In
1342 * either case the clip planes are going to be compared against
1343 * gl_Position (which is in clip coordinates) so we have to clip using
1344 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
1345 * core.
1346 */
1347 return ctx->Transform._ClipUserPlane;
1348 }
1349 }
1350
1351 extern "C" const unsigned *
1352 brw_compile_tes(const struct brw_compiler *compiler,
1353 void *log_data,
1354 void *mem_ctx,
1355 const struct brw_tes_prog_key *key,
1356 struct brw_tes_prog_data *prog_data,
1357 const nir_shader *src_shader,
1358 struct gl_shader_program *shader_prog,
1359 int shader_time_index,
1360 unsigned *final_assembly_size,
1361 char **error_str)
1362 {
1363 const struct gen_device_info *devinfo = compiler->devinfo;
1364 struct gl_linked_shader *shader =
1365 shader_prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
1366 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_EVAL];
1367
1368 nir_shader *nir = nir_shader_clone(mem_ctx, src_shader);
1369 nir->info->inputs_read = key->inputs_read;
1370 nir->info->patch_inputs_read = key->patch_inputs_read;
1371
1372 struct brw_vue_map input_vue_map;
1373 brw_compute_tess_vue_map(&input_vue_map, nir->info->inputs_read,
1374 nir->info->patch_inputs_read);
1375
1376 nir = brw_nir_apply_sampler_key(nir, compiler, &key->tex, is_scalar);
1377 brw_nir_lower_tes_inputs(nir, &input_vue_map);
1378 brw_nir_lower_vue_outputs(nir, is_scalar);
1379 nir = brw_postprocess_nir(nir, compiler, is_scalar);
1380
1381 brw_compute_vue_map(devinfo, &prog_data->base.vue_map,
1382 nir->info->outputs_written,
1383 nir->info->separate_shader);
1384
1385 unsigned output_size_bytes = prog_data->base.vue_map.num_slots * 4 * 4;
1386
1387 assert(output_size_bytes >= 1);
1388 if (output_size_bytes > GEN7_MAX_DS_URB_ENTRY_SIZE_BYTES) {
1389 if (error_str)
1390 *error_str = ralloc_strdup(mem_ctx, "DS outputs exceed maximum size");
1391 return NULL;
1392 }
1393
1394 prog_data->base.clip_distance_mask =
1395 ((1 << nir->info->clip_distance_array_size) - 1);
1396 prog_data->base.cull_distance_mask =
1397 ((1 << nir->info->cull_distance_array_size) - 1) <<
1398 nir->info->clip_distance_array_size;
1399
1400 /* URB entry sizes are stored as a multiple of 64 bytes. */
1401 prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
1402
1403 bool need_patch_header = nir->info->system_values_read &
1404 (BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_OUTER) |
1405 BITFIELD64_BIT(SYSTEM_VALUE_TESS_LEVEL_INNER));
1406
1407 /* The TES will pull most inputs using URB read messages.
1408 *
1409 * However, we push the patch header for TessLevel factors when required,
1410 * as it's a tiny amount of extra data.
1411 */
1412 prog_data->base.urb_read_length = need_patch_header ? 1 : 0;
1413
1414 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1415 fprintf(stderr, "TES Input ");
1416 brw_print_vue_map(stderr, &input_vue_map);
1417 fprintf(stderr, "TES Output ");
1418 brw_print_vue_map(stderr, &prog_data->base.vue_map);
1419 }
1420
1421 if (is_scalar) {
1422 fs_visitor v(compiler, log_data, mem_ctx, (void *) key,
1423 &prog_data->base.base, shader->Program, nir, 8,
1424 shader_time_index, &input_vue_map);
1425 if (!v.run_tes()) {
1426 if (error_str)
1427 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1428 return NULL;
1429 }
1430
1431 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
1432 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
1433
1434 fs_generator g(compiler, log_data, mem_ctx, (void *) key,
1435 &prog_data->base.base, v.promoted_constants, false,
1436 MESA_SHADER_TESS_EVAL);
1437 if (unlikely(INTEL_DEBUG & DEBUG_TES)) {
1438 g.enable_debug(ralloc_asprintf(mem_ctx,
1439 "%s tessellation evaluation shader %s",
1440 nir->info->label ? nir->info->label
1441 : "unnamed",
1442 nir->info->name));
1443 }
1444
1445 g.generate_code(v.cfg, 8);
1446
1447 return g.get_assembly(final_assembly_size);
1448 } else {
1449 brw::vec4_tes_visitor v(compiler, log_data, key, prog_data,
1450 nir, mem_ctx, shader_time_index);
1451 if (!v.run()) {
1452 if (error_str)
1453 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
1454 return NULL;
1455 }
1456
1457 if (unlikely(INTEL_DEBUG & DEBUG_TES))
1458 v.dump_instructions();
1459
1460 return brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
1461 &prog_data->base, v.cfg,
1462 final_assembly_size);
1463 }
1464 }