i965: defined BRW_MAX_MRF
[mesa.git] / src / mesa / drivers / dri / i965 / brw_urb.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33
34 #include "intel_batchbuffer.h"
35 #include "brw_context.h"
36 #include "brw_state.h"
37 #include "brw_defines.h"
38
39 #define VS 0
40 #define GS 1
41 #define CLP 2
42 #define SF 3
43 #define CS 4
44
45 /** @file brw_urb.c
46 *
47 * Manages the division of the URB space between the various fixed-function
48 * units.
49 *
50 * See the Thread Initiation Management section of the GEN4 B-Spec, and
51 * the individual *_STATE structures for restrictions on numbers of
52 * entries and threads.
53 */
54
55 /*
56 * Generally, a unit requires a min_nr_entries based on how many entries
57 * it produces before the downstream unit gets unblocked and can use and
58 * dereference some of its handles.
59 *
60 * The SF unit preallocates a PUE at the start of thread dispatch, and only
61 * uses that one. So it requires one entry per thread.
62 *
63 * For CLIP, the SF unit will hold the previous primitive while the
64 * next is getting assembled, meaning that linestrips require 3 CLIP VUEs
65 * (vertices) to ensure continued processing, trifans require 4, and tristrips
66 * require 5. There can be 1 or 2 threads, and each has the same requirement.
67 *
68 * GS has the same requirement as CLIP, but it never handles tristrips,
69 * so we can lower the minimum to 4 for the POLYGONs (trifans) it produces.
70 * We only run it single-threaded.
71 *
72 * For VS, the number of entries may be 8, 12, 16, or 32 (or 64 on G4X).
73 * Each thread processes 2 preallocated VUEs (vertices) at a time, and they
74 * get streamed down as soon as threads processing earlier vertices get
75 * theirs accepted.
76 *
77 * Each unit will take the number of URB entries we give it (based on the
78 * entry size calculated in brw_vs_emit.c for VUEs, brw_sf_emit.c for PUEs,
79 * and brw_curbe.c for the CURBEs) and decide its maximum number of
80 * threads it can support based on that. in brw_*_state.c.
81 *
82 * XXX: Are the min_entry_size numbers useful?
83 * XXX: Verify min_nr_entries, esp for VS.
84 * XXX: Verify SF min_entry_size.
85 */
86 static const struct {
87 GLuint min_nr_entries;
88 GLuint preferred_nr_entries;
89 GLuint min_entry_size;
90 GLuint max_entry_size;
91 } limits[CS+1] = {
92 { 16, 32, 1, 5 }, /* vs */
93 { 4, 8, 1, 5 }, /* gs */
94 { 5, 10, 1, 5 }, /* clp */
95 { 1, 8, 1, 12 }, /* sf */
96 { 1, 4, 1, 32 } /* cs */
97 };
98
99
100 static GLboolean check_urb_layout( struct brw_context *brw )
101 {
102 brw->urb.vs_start = 0;
103 brw->urb.gs_start = brw->urb.nr_vs_entries * brw->urb.vsize;
104 brw->urb.clip_start = brw->urb.gs_start + brw->urb.nr_gs_entries * brw->urb.vsize;
105 brw->urb.sf_start = brw->urb.clip_start + brw->urb.nr_clip_entries * brw->urb.vsize;
106 brw->urb.cs_start = brw->urb.sf_start + brw->urb.nr_sf_entries * brw->urb.sfsize;
107
108 return brw->urb.cs_start + brw->urb.nr_cs_entries * brw->urb.csize <= URB_SIZES(brw);
109 }
110
111 /* Most minimal update, forces re-emit of URB fence packet after GS
112 * unit turned on/off.
113 */
114 static void recalculate_urb_fence( struct brw_context *brw )
115 {
116 GLuint csize = brw->curbe.total_size;
117 GLuint vsize = brw->vs.prog_data->urb_entry_size;
118 GLuint sfsize = brw->sf.prog_data->urb_entry_size;
119
120 if (csize < limits[CS].min_entry_size)
121 csize = limits[CS].min_entry_size;
122
123 if (vsize < limits[VS].min_entry_size)
124 vsize = limits[VS].min_entry_size;
125
126 if (sfsize < limits[SF].min_entry_size)
127 sfsize = limits[SF].min_entry_size;
128
129 if (brw->urb.vsize < vsize ||
130 brw->urb.sfsize < sfsize ||
131 brw->urb.csize < csize ||
132 (brw->urb.constrained && (brw->urb.vsize > vsize ||
133 brw->urb.sfsize > sfsize ||
134 brw->urb.csize > csize))) {
135
136
137 brw->urb.csize = csize;
138 brw->urb.sfsize = sfsize;
139 brw->urb.vsize = vsize;
140
141 brw->urb.nr_vs_entries = limits[VS].preferred_nr_entries;
142 brw->urb.nr_gs_entries = limits[GS].preferred_nr_entries;
143 brw->urb.nr_clip_entries = limits[CLP].preferred_nr_entries;
144 brw->urb.nr_sf_entries = limits[SF].preferred_nr_entries;
145 brw->urb.nr_cs_entries = limits[CS].preferred_nr_entries;
146
147 if (!check_urb_layout(brw)) {
148 brw->urb.nr_vs_entries = limits[VS].min_nr_entries;
149 brw->urb.nr_gs_entries = limits[GS].min_nr_entries;
150 brw->urb.nr_clip_entries = limits[CLP].min_nr_entries;
151 brw->urb.nr_sf_entries = limits[SF].min_nr_entries;
152 brw->urb.nr_cs_entries = limits[CS].min_nr_entries;
153
154 /* Mark us as operating with constrained nr_entries, so that next
155 * time we recalculate we'll resize the fences in the hope of
156 * escaping constrained mode and getting back to normal performance.
157 */
158 brw->urb.constrained = 1;
159
160 if (!check_urb_layout(brw)) {
161 /* This is impossible, given the maximal sizes of urb
162 * entries and the values for minimum nr of entries
163 * provided above.
164 */
165 _mesa_printf("couldn't calculate URB layout!\n");
166 exit(1);
167 }
168
169 if (INTEL_DEBUG & (DEBUG_URB|DEBUG_FALLBACKS))
170 _mesa_printf("URB CONSTRAINED\n");
171 }
172 else
173 brw->urb.constrained = 0;
174
175 if (INTEL_DEBUG & DEBUG_URB)
176 _mesa_printf("URB fence: %d ..VS.. %d ..GS.. %d ..CLP.. %d ..SF.. %d ..CS.. %d\n",
177 brw->urb.vs_start,
178 brw->urb.gs_start,
179 brw->urb.clip_start,
180 brw->urb.sf_start,
181 brw->urb.cs_start,
182 URB_SIZES(brw));
183
184 brw->state.dirty.brw |= BRW_NEW_URB_FENCE;
185 }
186 }
187
188
189 const struct brw_tracked_state brw_recalculate_urb_fence = {
190 .dirty = {
191 .mesa = 0,
192 .brw = BRW_NEW_CURBE_OFFSETS,
193 .cache = (CACHE_NEW_VS_PROG |
194 CACHE_NEW_SF_PROG)
195 },
196 .prepare = recalculate_urb_fence
197 };
198
199
200
201
202
203 void brw_upload_urb_fence(struct brw_context *brw)
204 {
205 struct brw_urb_fence uf;
206 memset(&uf, 0, sizeof(uf));
207
208 uf.header.opcode = CMD_URB_FENCE;
209 uf.header.length = sizeof(uf)/4-2;
210 uf.header.vs_realloc = 1;
211 uf.header.gs_realloc = 1;
212 uf.header.clp_realloc = 1;
213 uf.header.sf_realloc = 1;
214 uf.header.vfe_realloc = 1;
215 uf.header.cs_realloc = 1;
216
217 /* The ordering below is correct, not the layout in the
218 * instruction.
219 *
220 * There are 256/384 urb reg pairs in total.
221 */
222 uf.bits0.vs_fence = brw->urb.gs_start;
223 uf.bits0.gs_fence = brw->urb.clip_start;
224 uf.bits0.clp_fence = brw->urb.sf_start;
225 uf.bits1.sf_fence = brw->urb.cs_start;
226 uf.bits1.cs_fence = URB_SIZES(brw);
227
228 BRW_BATCH_STRUCT(brw, &uf);
229 }