Merge commit 'origin/mesa_7_7_branch'
[mesa.git] / src / mesa / drivers / dri / i965 / brw_urb.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33
34 #include "intel_batchbuffer.h"
35 #include "brw_context.h"
36 #include "brw_state.h"
37 #include "brw_defines.h"
38
39 #define VS 0
40 #define GS 1
41 #define CLP 2
42 #define SF 3
43 #define CS 4
44
45 /** @file brw_urb.c
46 *
47 * Manages the division of the URB space between the various fixed-function
48 * units.
49 *
50 * See the Thread Initiation Management section of the GEN4 B-Spec, and
51 * the individual *_STATE structures for restrictions on numbers of
52 * entries and threads.
53 */
54
55 /*
56 * Generally, a unit requires a min_nr_entries based on how many entries
57 * it produces before the downstream unit gets unblocked and can use and
58 * dereference some of its handles.
59 *
60 * The SF unit preallocates a PUE at the start of thread dispatch, and only
61 * uses that one. So it requires one entry per thread.
62 *
63 * For CLIP, the SF unit will hold the previous primitive while the
64 * next is getting assembled, meaning that linestrips require 3 CLIP VUEs
65 * (vertices) to ensure continued processing, trifans require 4, and tristrips
66 * require 5. There can be 1 or 2 threads, and each has the same requirement.
67 *
68 * GS has the same requirement as CLIP, but it never handles tristrips,
69 * so we can lower the minimum to 4 for the POLYGONs (trifans) it produces.
70 * We only run it single-threaded.
71 *
72 * For VS, the number of entries may be 8, 12, 16, or 32 (or 64 on G4X).
73 * Each thread processes 2 preallocated VUEs (vertices) at a time, and they
74 * get streamed down as soon as threads processing earlier vertices get
75 * theirs accepted.
76 *
77 * Each unit will take the number of URB entries we give it (based on the
78 * entry size calculated in brw_vs_emit.c for VUEs, brw_sf_emit.c for PUEs,
79 * and brw_curbe.c for the CURBEs) and decide its maximum number of
80 * threads it can support based on that. in brw_*_state.c.
81 *
82 * XXX: Are the min_entry_size numbers useful?
83 * XXX: Verify min_nr_entries, esp for VS.
84 * XXX: Verify SF min_entry_size.
85 */
86 static const struct {
87 GLuint min_nr_entries;
88 GLuint preferred_nr_entries;
89 GLuint min_entry_size;
90 GLuint max_entry_size;
91 } limits[CS+1] = {
92 { 16, 32, 1, 5 }, /* vs */
93 { 4, 8, 1, 5 }, /* gs */
94 { 5, 10, 1, 5 }, /* clp */
95 { 1, 8, 1, 12 }, /* sf */
96 { 1, 4, 1, 32 } /* cs */
97 };
98
99
100 static GLboolean check_urb_layout( struct brw_context *brw )
101 {
102 brw->urb.vs_start = 0;
103 brw->urb.gs_start = brw->urb.nr_vs_entries * brw->urb.vsize;
104 brw->urb.clip_start = brw->urb.gs_start + brw->urb.nr_gs_entries * brw->urb.vsize;
105 brw->urb.sf_start = brw->urb.clip_start + brw->urb.nr_clip_entries * brw->urb.vsize;
106 brw->urb.cs_start = brw->urb.sf_start + brw->urb.nr_sf_entries * brw->urb.sfsize;
107
108 return brw->urb.cs_start + brw->urb.nr_cs_entries * brw->urb.csize <= URB_SIZES(brw);
109 }
110
111 /* Most minimal update, forces re-emit of URB fence packet after GS
112 * unit turned on/off.
113 */
114 static void recalculate_urb_fence( struct brw_context *brw )
115 {
116 GLuint csize = brw->curbe.total_size;
117 GLuint vsize = brw->vs.prog_data->urb_entry_size;
118 GLuint sfsize = brw->sf.prog_data->urb_entry_size;
119
120 if (csize < limits[CS].min_entry_size)
121 csize = limits[CS].min_entry_size;
122
123 if (vsize < limits[VS].min_entry_size)
124 vsize = limits[VS].min_entry_size;
125
126 if (sfsize < limits[SF].min_entry_size)
127 sfsize = limits[SF].min_entry_size;
128
129 if (brw->urb.vsize < vsize ||
130 brw->urb.sfsize < sfsize ||
131 brw->urb.csize < csize ||
132 (brw->urb.constrained && (brw->urb.vsize > vsize ||
133 brw->urb.sfsize > sfsize ||
134 brw->urb.csize > csize))) {
135
136
137 brw->urb.csize = csize;
138 brw->urb.sfsize = sfsize;
139 brw->urb.vsize = vsize;
140
141 brw->urb.nr_vs_entries = limits[VS].preferred_nr_entries;
142 brw->urb.nr_gs_entries = limits[GS].preferred_nr_entries;
143 brw->urb.nr_clip_entries = limits[CLP].preferred_nr_entries;
144 brw->urb.nr_sf_entries = limits[SF].preferred_nr_entries;
145 brw->urb.nr_cs_entries = limits[CS].preferred_nr_entries;
146
147 brw->urb.constrained = 0;
148
149 if (BRW_IS_IGDNG(brw)) {
150 brw->urb.nr_vs_entries = 128;
151 brw->urb.nr_sf_entries = 48;
152 if (check_urb_layout(brw)) {
153 goto done;
154 } else {
155 brw->urb.constrained = 1;
156 brw->urb.nr_vs_entries = limits[VS].preferred_nr_entries;
157 brw->urb.nr_sf_entries = limits[SF].preferred_nr_entries;
158 }
159 } else if (BRW_IS_G4X(brw)) {
160 brw->urb.nr_vs_entries = 64;
161 if (check_urb_layout(brw)) {
162 goto done;
163 } else {
164 brw->urb.constrained = 1;
165 brw->urb.nr_vs_entries = limits[VS].preferred_nr_entries;
166 }
167 }
168
169 if (!check_urb_layout(brw)) {
170 brw->urb.nr_vs_entries = limits[VS].min_nr_entries;
171 brw->urb.nr_gs_entries = limits[GS].min_nr_entries;
172 brw->urb.nr_clip_entries = limits[CLP].min_nr_entries;
173 brw->urb.nr_sf_entries = limits[SF].min_nr_entries;
174 brw->urb.nr_cs_entries = limits[CS].min_nr_entries;
175
176 /* Mark us as operating with constrained nr_entries, so that next
177 * time we recalculate we'll resize the fences in the hope of
178 * escaping constrained mode and getting back to normal performance.
179 */
180 brw->urb.constrained = 1;
181
182 if (!check_urb_layout(brw)) {
183 /* This is impossible, given the maximal sizes of urb
184 * entries and the values for minimum nr of entries
185 * provided above.
186 */
187 _mesa_printf("couldn't calculate URB layout!\n");
188 exit(1);
189 }
190
191 if (INTEL_DEBUG & (DEBUG_URB|DEBUG_FALLBACKS))
192 _mesa_printf("URB CONSTRAINED\n");
193 }
194
195 done:
196 if (INTEL_DEBUG & DEBUG_URB)
197 _mesa_printf("URB fence: %d ..VS.. %d ..GS.. %d ..CLP.. %d ..SF.. %d ..CS.. %d\n",
198 brw->urb.vs_start,
199 brw->urb.gs_start,
200 brw->urb.clip_start,
201 brw->urb.sf_start,
202 brw->urb.cs_start,
203 URB_SIZES(brw));
204
205 brw->state.dirty.brw |= BRW_NEW_URB_FENCE;
206 }
207 }
208
209
210 const struct brw_tracked_state brw_recalculate_urb_fence = {
211 .dirty = {
212 .mesa = 0,
213 .brw = BRW_NEW_CURBE_OFFSETS,
214 .cache = (CACHE_NEW_VS_PROG |
215 CACHE_NEW_SF_PROG)
216 },
217 .prepare = recalculate_urb_fence
218 };
219
220
221
222
223
224 void brw_upload_urb_fence(struct brw_context *brw)
225 {
226 struct brw_urb_fence uf;
227 memset(&uf, 0, sizeof(uf));
228
229 uf.header.opcode = CMD_URB_FENCE;
230 uf.header.length = sizeof(uf)/4-2;
231 uf.header.vs_realloc = 1;
232 uf.header.gs_realloc = 1;
233 uf.header.clp_realloc = 1;
234 uf.header.sf_realloc = 1;
235 uf.header.vfe_realloc = 1;
236 uf.header.cs_realloc = 1;
237
238 /* The ordering below is correct, not the layout in the
239 * instruction.
240 *
241 * There are 256/384 urb reg pairs in total.
242 */
243 uf.bits0.vs_fence = brw->urb.gs_start;
244 uf.bits0.gs_fence = brw->urb.clip_start;
245 uf.bits0.clp_fence = brw->urb.sf_start;
246 uf.bits1.sf_fence = brw->urb.cs_start;
247 uf.bits1.cs_fence = URB_SIZES(brw);
248
249 BRW_BATCH_STRUCT(brw, &uf);
250 }