i965/vec4: Move perf_debug about register spilling into the visitor.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_vs.h"
28 #include "brw_nir.h"
29 #include "brw_vec4_live_variables.h"
30 #include "brw_dead_control_flow.h"
31
32 extern "C" {
33 #include "main/macros.h"
34 #include "main/shaderobj.h"
35 #include "program/prog_print.h"
36 #include "program/prog_parameter.h"
37 }
38 #include "main/context.h"
39
40 #define MAX_INSTRUCTION (1 << 30)
41
42 using namespace brw;
43
44 namespace brw {
45
46 void
47 src_reg::init()
48 {
49 memset(this, 0, sizeof(*this));
50
51 this->file = BAD_FILE;
52 }
53
54 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
55 {
56 init();
57
58 this->file = file;
59 this->reg = reg;
60 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
61 this->swizzle = brw_swizzle_for_size(type->vector_elements);
62 else
63 this->swizzle = BRW_SWIZZLE_XYZW;
64 }
65
66 /** Generic unset register constructor. */
67 src_reg::src_reg()
68 {
69 init();
70 }
71
72 src_reg::src_reg(float f)
73 {
74 init();
75
76 this->file = IMM;
77 this->type = BRW_REGISTER_TYPE_F;
78 this->fixed_hw_reg.dw1.f = f;
79 }
80
81 src_reg::src_reg(uint32_t u)
82 {
83 init();
84
85 this->file = IMM;
86 this->type = BRW_REGISTER_TYPE_UD;
87 this->fixed_hw_reg.dw1.ud = u;
88 }
89
90 src_reg::src_reg(int32_t i)
91 {
92 init();
93
94 this->file = IMM;
95 this->type = BRW_REGISTER_TYPE_D;
96 this->fixed_hw_reg.dw1.d = i;
97 }
98
99 src_reg::src_reg(uint8_t vf[4])
100 {
101 init();
102
103 this->file = IMM;
104 this->type = BRW_REGISTER_TYPE_VF;
105 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
106 }
107
108 src_reg::src_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
109 {
110 init();
111
112 this->file = IMM;
113 this->type = BRW_REGISTER_TYPE_VF;
114 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
115 (vf1 << 8) |
116 (vf2 << 16) |
117 (vf3 << 24);
118 }
119
120 src_reg::src_reg(struct brw_reg reg)
121 {
122 init();
123
124 this->file = HW_REG;
125 this->fixed_hw_reg = reg;
126 this->type = reg.type;
127 }
128
129 src_reg::src_reg(const dst_reg &reg)
130 {
131 init();
132
133 this->file = reg.file;
134 this->reg = reg.reg;
135 this->reg_offset = reg.reg_offset;
136 this->type = reg.type;
137 this->reladdr = reg.reladdr;
138 this->fixed_hw_reg = reg.fixed_hw_reg;
139 this->swizzle = brw_swizzle_for_mask(reg.writemask);
140 }
141
142 void
143 dst_reg::init()
144 {
145 memset(this, 0, sizeof(*this));
146 this->file = BAD_FILE;
147 this->writemask = WRITEMASK_XYZW;
148 }
149
150 dst_reg::dst_reg()
151 {
152 init();
153 }
154
155 dst_reg::dst_reg(register_file file, int reg)
156 {
157 init();
158
159 this->file = file;
160 this->reg = reg;
161 }
162
163 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
164 unsigned writemask)
165 {
166 init();
167
168 this->file = file;
169 this->reg = reg;
170 this->type = brw_type_for_base_type(type);
171 this->writemask = writemask;
172 }
173
174 dst_reg::dst_reg(struct brw_reg reg)
175 {
176 init();
177
178 this->file = HW_REG;
179 this->fixed_hw_reg = reg;
180 this->type = reg.type;
181 }
182
183 dst_reg::dst_reg(const src_reg &reg)
184 {
185 init();
186
187 this->file = reg.file;
188 this->reg = reg.reg;
189 this->reg_offset = reg.reg_offset;
190 this->type = reg.type;
191 this->writemask = brw_mask_for_swizzle(reg.swizzle);
192 this->reladdr = reg.reladdr;
193 this->fixed_hw_reg = reg.fixed_hw_reg;
194 }
195
196 bool
197 dst_reg::equals(const dst_reg &r) const
198 {
199 return (file == r.file &&
200 reg == r.reg &&
201 reg_offset == r.reg_offset &&
202 type == r.type &&
203 negate == r.negate &&
204 abs == r.abs &&
205 writemask == r.writemask &&
206 (reladdr == r.reladdr ||
207 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))) &&
208 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
209 sizeof(fixed_hw_reg)) == 0);
210 }
211
212 bool
213 vec4_instruction::is_send_from_grf()
214 {
215 switch (opcode) {
216 case SHADER_OPCODE_SHADER_TIME_ADD:
217 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
218 case SHADER_OPCODE_UNTYPED_ATOMIC:
219 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
220 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
221 case SHADER_OPCODE_TYPED_ATOMIC:
222 case SHADER_OPCODE_TYPED_SURFACE_READ:
223 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
224 return true;
225 default:
226 return false;
227 }
228 }
229
230 unsigned
231 vec4_instruction::regs_read(unsigned arg) const
232 {
233 if (src[arg].file == BAD_FILE)
234 return 0;
235
236 switch (opcode) {
237 case SHADER_OPCODE_SHADER_TIME_ADD:
238 case SHADER_OPCODE_UNTYPED_ATOMIC:
239 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
240 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
241 case SHADER_OPCODE_TYPED_ATOMIC:
242 case SHADER_OPCODE_TYPED_SURFACE_READ:
243 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
244 return arg == 0 ? mlen : 1;
245
246 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
247 return arg == 1 ? mlen : 1;
248
249 default:
250 return 1;
251 }
252 }
253
254 bool
255 vec4_instruction::can_do_source_mods(const struct brw_device_info *devinfo)
256 {
257 if (devinfo->gen == 6 && is_math())
258 return false;
259
260 if (is_send_from_grf())
261 return false;
262
263 if (!backend_instruction::can_do_source_mods())
264 return false;
265
266 return true;
267 }
268
269 /**
270 * Returns how many MRFs an opcode will write over.
271 *
272 * Note that this is not the 0 or 1 implied writes in an actual gen
273 * instruction -- the generate_* functions generate additional MOVs
274 * for setup.
275 */
276 int
277 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
278 {
279 if (inst->mlen == 0 || inst->is_send_from_grf())
280 return 0;
281
282 switch (inst->opcode) {
283 case SHADER_OPCODE_RCP:
284 case SHADER_OPCODE_RSQ:
285 case SHADER_OPCODE_SQRT:
286 case SHADER_OPCODE_EXP2:
287 case SHADER_OPCODE_LOG2:
288 case SHADER_OPCODE_SIN:
289 case SHADER_OPCODE_COS:
290 return 1;
291 case SHADER_OPCODE_INT_QUOTIENT:
292 case SHADER_OPCODE_INT_REMAINDER:
293 case SHADER_OPCODE_POW:
294 return 2;
295 case VS_OPCODE_URB_WRITE:
296 return 1;
297 case VS_OPCODE_PULL_CONSTANT_LOAD:
298 return 2;
299 case SHADER_OPCODE_GEN4_SCRATCH_READ:
300 return 2;
301 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
302 return 3;
303 case GS_OPCODE_URB_WRITE:
304 case GS_OPCODE_URB_WRITE_ALLOCATE:
305 case GS_OPCODE_THREAD_END:
306 return 0;
307 case GS_OPCODE_FF_SYNC:
308 return 1;
309 case SHADER_OPCODE_SHADER_TIME_ADD:
310 return 0;
311 case SHADER_OPCODE_TEX:
312 case SHADER_OPCODE_TXL:
313 case SHADER_OPCODE_TXD:
314 case SHADER_OPCODE_TXF:
315 case SHADER_OPCODE_TXF_CMS:
316 case SHADER_OPCODE_TXF_MCS:
317 case SHADER_OPCODE_TXS:
318 case SHADER_OPCODE_TG4:
319 case SHADER_OPCODE_TG4_OFFSET:
320 return inst->header_size;
321 default:
322 unreachable("not reached");
323 }
324 }
325
326 bool
327 src_reg::equals(const src_reg &r) const
328 {
329 return (file == r.file &&
330 reg == r.reg &&
331 reg_offset == r.reg_offset &&
332 type == r.type &&
333 negate == r.negate &&
334 abs == r.abs &&
335 swizzle == r.swizzle &&
336 !reladdr && !r.reladdr &&
337 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
338 sizeof(fixed_hw_reg)) == 0);
339 }
340
341 bool
342 vec4_visitor::opt_vector_float()
343 {
344 bool progress = false;
345
346 int last_reg = -1, last_reg_offset = -1;
347 enum register_file last_reg_file = BAD_FILE;
348
349 int remaining_channels = 0;
350 uint8_t imm[4];
351 int inst_count = 0;
352 vec4_instruction *imm_inst[4];
353
354 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
355 if (last_reg != inst->dst.reg ||
356 last_reg_offset != inst->dst.reg_offset ||
357 last_reg_file != inst->dst.file) {
358 last_reg = inst->dst.reg;
359 last_reg_offset = inst->dst.reg_offset;
360 last_reg_file = inst->dst.file;
361 remaining_channels = WRITEMASK_XYZW;
362
363 inst_count = 0;
364 }
365
366 if (inst->opcode != BRW_OPCODE_MOV ||
367 inst->dst.writemask == WRITEMASK_XYZW ||
368 inst->src[0].file != IMM)
369 continue;
370
371 int vf = brw_float_to_vf(inst->src[0].fixed_hw_reg.dw1.f);
372 if (vf == -1)
373 continue;
374
375 if ((inst->dst.writemask & WRITEMASK_X) != 0)
376 imm[0] = vf;
377 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
378 imm[1] = vf;
379 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
380 imm[2] = vf;
381 if ((inst->dst.writemask & WRITEMASK_W) != 0)
382 imm[3] = vf;
383
384 imm_inst[inst_count++] = inst;
385
386 remaining_channels &= ~inst->dst.writemask;
387 if (remaining_channels == 0) {
388 vec4_instruction *mov = MOV(inst->dst, imm);
389 mov->dst.type = BRW_REGISTER_TYPE_F;
390 mov->dst.writemask = WRITEMASK_XYZW;
391 inst->insert_after(block, mov);
392 last_reg = -1;
393
394 for (int i = 0; i < inst_count; i++) {
395 imm_inst[i]->remove(block);
396 }
397 progress = true;
398 }
399 }
400
401 if (progress)
402 invalidate_live_intervals();
403
404 return progress;
405 }
406
407 /* Replaces unused channels of a swizzle with channels that are used.
408 *
409 * For instance, this pass transforms
410 *
411 * mov vgrf4.yz, vgrf5.wxzy
412 *
413 * into
414 *
415 * mov vgrf4.yz, vgrf5.xxzx
416 *
417 * This eliminates false uses of some channels, letting dead code elimination
418 * remove the instructions that wrote them.
419 */
420 bool
421 vec4_visitor::opt_reduce_swizzle()
422 {
423 bool progress = false;
424
425 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
426 if (inst->dst.file == BAD_FILE || inst->dst.file == HW_REG ||
427 inst->is_send_from_grf())
428 continue;
429
430 unsigned swizzle;
431
432 /* Determine which channels of the sources are read. */
433 switch (inst->opcode) {
434 case VEC4_OPCODE_PACK_BYTES:
435 case BRW_OPCODE_DP4:
436 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
437 * but all four of src1.
438 */
439 swizzle = brw_swizzle_for_size(4);
440 break;
441 case BRW_OPCODE_DP3:
442 swizzle = brw_swizzle_for_size(3);
443 break;
444 case BRW_OPCODE_DP2:
445 swizzle = brw_swizzle_for_size(2);
446 break;
447 default:
448 swizzle = brw_swizzle_for_mask(inst->dst.writemask);
449 break;
450 }
451
452 /* Update sources' swizzles. */
453 for (int i = 0; i < 3; i++) {
454 if (inst->src[i].file != GRF &&
455 inst->src[i].file != ATTR &&
456 inst->src[i].file != UNIFORM)
457 continue;
458
459 const unsigned new_swizzle =
460 brw_compose_swizzle(swizzle, inst->src[i].swizzle);
461 if (inst->src[i].swizzle != new_swizzle) {
462 inst->src[i].swizzle = new_swizzle;
463 progress = true;
464 }
465 }
466 }
467
468 if (progress)
469 invalidate_live_intervals();
470
471 return progress;
472 }
473
474 void
475 vec4_visitor::split_uniform_registers()
476 {
477 /* Prior to this, uniforms have been in an array sized according to
478 * the number of vector uniforms present, sparsely filled (so an
479 * aggregate results in reg indices being skipped over). Now we're
480 * going to cut those aggregates up so each .reg index is one
481 * vector. The goal is to make elimination of unused uniform
482 * components easier later.
483 */
484 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
485 for (int i = 0 ; i < 3; i++) {
486 if (inst->src[i].file != UNIFORM)
487 continue;
488
489 assert(!inst->src[i].reladdr);
490
491 inst->src[i].reg += inst->src[i].reg_offset;
492 inst->src[i].reg_offset = 0;
493 }
494 }
495
496 /* Update that everything is now vector-sized. */
497 for (int i = 0; i < this->uniforms; i++) {
498 this->uniform_size[i] = 1;
499 }
500 }
501
502 void
503 vec4_visitor::pack_uniform_registers()
504 {
505 bool uniform_used[this->uniforms];
506 int new_loc[this->uniforms];
507 int new_chan[this->uniforms];
508
509 memset(uniform_used, 0, sizeof(uniform_used));
510 memset(new_loc, 0, sizeof(new_loc));
511 memset(new_chan, 0, sizeof(new_chan));
512
513 /* Find which uniform vectors are actually used by the program. We
514 * expect unused vector elements when we've moved array access out
515 * to pull constants, and from some GLSL code generators like wine.
516 */
517 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
518 for (int i = 0 ; i < 3; i++) {
519 if (inst->src[i].file != UNIFORM)
520 continue;
521
522 uniform_used[inst->src[i].reg] = true;
523 }
524 }
525
526 int new_uniform_count = 0;
527
528 /* Now, figure out a packing of the live uniform vectors into our
529 * push constants.
530 */
531 for (int src = 0; src < uniforms; src++) {
532 assert(src < uniform_array_size);
533 int size = this->uniform_vector_size[src];
534
535 if (!uniform_used[src]) {
536 this->uniform_vector_size[src] = 0;
537 continue;
538 }
539
540 int dst;
541 /* Find the lowest place we can slot this uniform in. */
542 for (dst = 0; dst < src; dst++) {
543 if (this->uniform_vector_size[dst] + size <= 4)
544 break;
545 }
546
547 if (src == dst) {
548 new_loc[src] = dst;
549 new_chan[src] = 0;
550 } else {
551 new_loc[src] = dst;
552 new_chan[src] = this->uniform_vector_size[dst];
553
554 /* Move the references to the data */
555 for (int j = 0; j < size; j++) {
556 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
557 stage_prog_data->param[src * 4 + j];
558 }
559
560 this->uniform_vector_size[dst] += size;
561 this->uniform_vector_size[src] = 0;
562 }
563
564 new_uniform_count = MAX2(new_uniform_count, dst + 1);
565 }
566
567 this->uniforms = new_uniform_count;
568
569 /* Now, update the instructions for our repacked uniforms. */
570 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
571 for (int i = 0 ; i < 3; i++) {
572 int src = inst->src[i].reg;
573
574 if (inst->src[i].file != UNIFORM)
575 continue;
576
577 inst->src[i].reg = new_loc[src];
578 inst->src[i].swizzle += BRW_SWIZZLE4(new_chan[src], new_chan[src],
579 new_chan[src], new_chan[src]);
580 }
581 }
582 }
583
584 /**
585 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
586 *
587 * While GLSL IR also performs this optimization, we end up with it in
588 * our instruction stream for a couple of reasons. One is that we
589 * sometimes generate silly instructions, for example in array access
590 * where we'll generate "ADD offset, index, base" even if base is 0.
591 * The other is that GLSL IR's constant propagation doesn't track the
592 * components of aggregates, so some VS patterns (initialize matrix to
593 * 0, accumulate in vertex blending factors) end up breaking down to
594 * instructions involving 0.
595 */
596 bool
597 vec4_visitor::opt_algebraic()
598 {
599 bool progress = false;
600
601 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
602 switch (inst->opcode) {
603 case BRW_OPCODE_MOV:
604 if (inst->src[0].file != IMM)
605 break;
606
607 if (inst->saturate) {
608 if (inst->dst.type != inst->src[0].type)
609 assert(!"unimplemented: saturate mixed types");
610
611 if (brw_saturate_immediate(inst->dst.type,
612 &inst->src[0].fixed_hw_reg)) {
613 inst->saturate = false;
614 progress = true;
615 }
616 }
617 break;
618
619 case VEC4_OPCODE_UNPACK_UNIFORM:
620 if (inst->src[0].file != UNIFORM) {
621 inst->opcode = BRW_OPCODE_MOV;
622 progress = true;
623 }
624 break;
625
626 case BRW_OPCODE_ADD:
627 if (inst->src[1].is_zero()) {
628 inst->opcode = BRW_OPCODE_MOV;
629 inst->src[1] = src_reg();
630 progress = true;
631 }
632 break;
633
634 case BRW_OPCODE_MUL:
635 if (inst->src[1].is_zero()) {
636 inst->opcode = BRW_OPCODE_MOV;
637 switch (inst->src[0].type) {
638 case BRW_REGISTER_TYPE_F:
639 inst->src[0] = src_reg(0.0f);
640 break;
641 case BRW_REGISTER_TYPE_D:
642 inst->src[0] = src_reg(0);
643 break;
644 case BRW_REGISTER_TYPE_UD:
645 inst->src[0] = src_reg(0u);
646 break;
647 default:
648 unreachable("not reached");
649 }
650 inst->src[1] = src_reg();
651 progress = true;
652 } else if (inst->src[1].is_one()) {
653 inst->opcode = BRW_OPCODE_MOV;
654 inst->src[1] = src_reg();
655 progress = true;
656 } else if (inst->src[1].is_negative_one()) {
657 inst->opcode = BRW_OPCODE_MOV;
658 inst->src[0].negate = !inst->src[0].negate;
659 inst->src[1] = src_reg();
660 progress = true;
661 }
662 break;
663 case BRW_OPCODE_CMP:
664 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
665 inst->src[0].abs &&
666 inst->src[0].negate &&
667 inst->src[1].is_zero()) {
668 inst->src[0].abs = false;
669 inst->src[0].negate = false;
670 inst->conditional_mod = BRW_CONDITIONAL_Z;
671 progress = true;
672 break;
673 }
674 break;
675 case SHADER_OPCODE_RCP: {
676 vec4_instruction *prev = (vec4_instruction *)inst->prev;
677 if (prev->opcode == SHADER_OPCODE_SQRT) {
678 if (inst->src[0].equals(src_reg(prev->dst))) {
679 inst->opcode = SHADER_OPCODE_RSQ;
680 inst->src[0] = prev->src[0];
681 progress = true;
682 }
683 }
684 break;
685 }
686 case SHADER_OPCODE_BROADCAST:
687 if (is_uniform(inst->src[0]) ||
688 inst->src[1].is_zero()) {
689 inst->opcode = BRW_OPCODE_MOV;
690 inst->src[1] = src_reg();
691 inst->force_writemask_all = true;
692 progress = true;
693 }
694 break;
695
696 default:
697 break;
698 }
699 }
700
701 if (progress)
702 invalidate_live_intervals();
703
704 return progress;
705 }
706
707 /**
708 * Only a limited number of hardware registers may be used for push
709 * constants, so this turns access to the overflowed constants into
710 * pull constants.
711 */
712 void
713 vec4_visitor::move_push_constants_to_pull_constants()
714 {
715 int pull_constant_loc[this->uniforms];
716
717 /* Only allow 32 registers (256 uniform components) as push constants,
718 * which is the limit on gen6.
719 *
720 * If changing this value, note the limitation about total_regs in
721 * brw_curbe.c.
722 */
723 int max_uniform_components = 32 * 8;
724 if (this->uniforms * 4 <= max_uniform_components)
725 return;
726
727 /* Make some sort of choice as to which uniforms get sent to pull
728 * constants. We could potentially do something clever here like
729 * look for the most infrequently used uniform vec4s, but leave
730 * that for later.
731 */
732 for (int i = 0; i < this->uniforms * 4; i += 4) {
733 pull_constant_loc[i / 4] = -1;
734
735 if (i >= max_uniform_components) {
736 const gl_constant_value **values = &stage_prog_data->param[i];
737
738 /* Try to find an existing copy of this uniform in the pull
739 * constants if it was part of an array access already.
740 */
741 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
742 int matches;
743
744 for (matches = 0; matches < 4; matches++) {
745 if (stage_prog_data->pull_param[j + matches] != values[matches])
746 break;
747 }
748
749 if (matches == 4) {
750 pull_constant_loc[i / 4] = j / 4;
751 break;
752 }
753 }
754
755 if (pull_constant_loc[i / 4] == -1) {
756 assert(stage_prog_data->nr_pull_params % 4 == 0);
757 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
758
759 for (int j = 0; j < 4; j++) {
760 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
761 values[j];
762 }
763 }
764 }
765 }
766
767 /* Now actually rewrite usage of the things we've moved to pull
768 * constants.
769 */
770 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
771 for (int i = 0 ; i < 3; i++) {
772 if (inst->src[i].file != UNIFORM ||
773 pull_constant_loc[inst->src[i].reg] == -1)
774 continue;
775
776 int uniform = inst->src[i].reg;
777
778 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
779
780 emit_pull_constant_load(block, inst, temp, inst->src[i],
781 pull_constant_loc[uniform]);
782
783 inst->src[i].file = temp.file;
784 inst->src[i].reg = temp.reg;
785 inst->src[i].reg_offset = temp.reg_offset;
786 inst->src[i].reladdr = NULL;
787 }
788 }
789
790 /* Repack push constants to remove the now-unused ones. */
791 pack_uniform_registers();
792 }
793
794 /* Conditions for which we want to avoid setting the dependency control bits */
795 bool
796 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
797 {
798 #define IS_DWORD(reg) \
799 (reg.type == BRW_REGISTER_TYPE_UD || \
800 reg.type == BRW_REGISTER_TYPE_D)
801
802 /* "When source or destination datatype is 64b or operation is integer DWord
803 * multiply, DepCtrl must not be used."
804 * May apply to future SoCs as well.
805 */
806 if (devinfo->is_cherryview) {
807 if (inst->opcode == BRW_OPCODE_MUL &&
808 IS_DWORD(inst->src[0]) &&
809 IS_DWORD(inst->src[1]))
810 return true;
811 }
812 #undef IS_DWORD
813
814 if (devinfo->gen >= 8) {
815 if (inst->opcode == BRW_OPCODE_F32TO16)
816 return true;
817 }
818
819 /*
820 * mlen:
821 * In the presence of send messages, totally interrupt dependency
822 * control. They're long enough that the chance of dependency
823 * control around them just doesn't matter.
824 *
825 * predicate:
826 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
827 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
828 * completes the scoreboard clear must have a non-zero execution mask. This
829 * means, if any kind of predication can change the execution mask or channel
830 * enable of the last instruction, the optimization must be avoided. This is
831 * to avoid instructions being shot down the pipeline when no writes are
832 * required.
833 *
834 * math:
835 * Dependency control does not work well over math instructions.
836 * NB: Discovered empirically
837 */
838 return (inst->mlen || inst->predicate || inst->is_math());
839 }
840
841 /**
842 * Sets the dependency control fields on instructions after register
843 * allocation and before the generator is run.
844 *
845 * When you have a sequence of instructions like:
846 *
847 * DP4 temp.x vertex uniform[0]
848 * DP4 temp.y vertex uniform[0]
849 * DP4 temp.z vertex uniform[0]
850 * DP4 temp.w vertex uniform[0]
851 *
852 * The hardware doesn't know that it can actually run the later instructions
853 * while the previous ones are in flight, producing stalls. However, we have
854 * manual fields we can set in the instructions that let it do so.
855 */
856 void
857 vec4_visitor::opt_set_dependency_control()
858 {
859 vec4_instruction *last_grf_write[BRW_MAX_GRF];
860 uint8_t grf_channels_written[BRW_MAX_GRF];
861 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
862 uint8_t mrf_channels_written[BRW_MAX_GRF];
863
864 assert(prog_data->total_grf ||
865 !"Must be called after register allocation");
866
867 foreach_block (block, cfg) {
868 memset(last_grf_write, 0, sizeof(last_grf_write));
869 memset(last_mrf_write, 0, sizeof(last_mrf_write));
870
871 foreach_inst_in_block (vec4_instruction, inst, block) {
872 /* If we read from a register that we were doing dependency control
873 * on, don't do dependency control across the read.
874 */
875 for (int i = 0; i < 3; i++) {
876 int reg = inst->src[i].reg + inst->src[i].reg_offset;
877 if (inst->src[i].file == GRF) {
878 last_grf_write[reg] = NULL;
879 } else if (inst->src[i].file == HW_REG) {
880 memset(last_grf_write, 0, sizeof(last_grf_write));
881 break;
882 }
883 assert(inst->src[i].file != MRF);
884 }
885
886 if (is_dep_ctrl_unsafe(inst)) {
887 memset(last_grf_write, 0, sizeof(last_grf_write));
888 memset(last_mrf_write, 0, sizeof(last_mrf_write));
889 continue;
890 }
891
892 /* Now, see if we can do dependency control for this instruction
893 * against a previous one writing to its destination.
894 */
895 int reg = inst->dst.reg + inst->dst.reg_offset;
896 if (inst->dst.file == GRF) {
897 if (last_grf_write[reg] &&
898 !(inst->dst.writemask & grf_channels_written[reg])) {
899 last_grf_write[reg]->no_dd_clear = true;
900 inst->no_dd_check = true;
901 } else {
902 grf_channels_written[reg] = 0;
903 }
904
905 last_grf_write[reg] = inst;
906 grf_channels_written[reg] |= inst->dst.writemask;
907 } else if (inst->dst.file == MRF) {
908 if (last_mrf_write[reg] &&
909 !(inst->dst.writemask & mrf_channels_written[reg])) {
910 last_mrf_write[reg]->no_dd_clear = true;
911 inst->no_dd_check = true;
912 } else {
913 mrf_channels_written[reg] = 0;
914 }
915
916 last_mrf_write[reg] = inst;
917 mrf_channels_written[reg] |= inst->dst.writemask;
918 } else if (inst->dst.reg == HW_REG) {
919 if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
920 memset(last_grf_write, 0, sizeof(last_grf_write));
921 if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
922 memset(last_mrf_write, 0, sizeof(last_mrf_write));
923 }
924 }
925 }
926 }
927
928 bool
929 vec4_instruction::can_reswizzle(int dst_writemask,
930 int swizzle,
931 int swizzle_mask)
932 {
933 /* If this instruction sets anything not referenced by swizzle, then we'd
934 * totally break it when we reswizzle.
935 */
936 if (dst.writemask & ~swizzle_mask)
937 return false;
938
939 if (mlen > 0)
940 return false;
941
942 return true;
943 }
944
945 /**
946 * For any channels in the swizzle's source that were populated by this
947 * instruction, rewrite the instruction to put the appropriate result directly
948 * in those channels.
949 *
950 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
951 */
952 void
953 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
954 {
955 /* Destination write mask doesn't correspond to source swizzle for the dot
956 * product and pack_bytes instructions.
957 */
958 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
959 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
960 opcode != VEC4_OPCODE_PACK_BYTES) {
961 for (int i = 0; i < 3; i++) {
962 if (src[i].file == BAD_FILE || src[i].file == IMM)
963 continue;
964
965 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
966 }
967 }
968
969 /* Apply the specified swizzle and writemask to the original mask of
970 * written components.
971 */
972 dst.writemask = dst_writemask &
973 brw_apply_swizzle_to_mask(swizzle, dst.writemask);
974 }
975
976 /*
977 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
978 * just written and then MOVed into another reg and making the original write
979 * of the GRF write directly to the final destination instead.
980 */
981 bool
982 vec4_visitor::opt_register_coalesce()
983 {
984 bool progress = false;
985 int next_ip = 0;
986
987 calculate_live_intervals();
988
989 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
990 int ip = next_ip;
991 next_ip++;
992
993 if (inst->opcode != BRW_OPCODE_MOV ||
994 (inst->dst.file != GRF && inst->dst.file != MRF) ||
995 inst->predicate ||
996 inst->src[0].file != GRF ||
997 inst->dst.type != inst->src[0].type ||
998 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
999 continue;
1000
1001 bool to_mrf = (inst->dst.file == MRF);
1002
1003 /* Can't coalesce this GRF if someone else was going to
1004 * read it later.
1005 */
1006 if (var_range_end(var_from_reg(alloc, inst->src[0]), 4) > ip)
1007 continue;
1008
1009 /* We need to check interference with the final destination between this
1010 * instruction and the earliest instruction involved in writing the GRF
1011 * we're eliminating. To do that, keep track of which of our source
1012 * channels we've seen initialized.
1013 */
1014 const unsigned chans_needed =
1015 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1016 inst->dst.writemask);
1017 unsigned chans_remaining = chans_needed;
1018
1019 /* Now walk up the instruction stream trying to see if we can rewrite
1020 * everything writing to the temporary to write into the destination
1021 * instead.
1022 */
1023 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1024 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1025 inst, block) {
1026 _scan_inst = scan_inst;
1027
1028 if (inst->src[0].in_range(scan_inst->dst, scan_inst->regs_written)) {
1029 /* Found something writing to the reg we want to coalesce away. */
1030 if (to_mrf) {
1031 /* SEND instructions can't have MRF as a destination. */
1032 if (scan_inst->mlen)
1033 break;
1034
1035 if (devinfo->gen == 6) {
1036 /* gen6 math instructions must have the destination be
1037 * GRF, so no compute-to-MRF for them.
1038 */
1039 if (scan_inst->is_math()) {
1040 break;
1041 }
1042 }
1043 }
1044
1045 /* If we can't handle the swizzle, bail. */
1046 if (!scan_inst->can_reswizzle(inst->dst.writemask,
1047 inst->src[0].swizzle,
1048 chans_needed)) {
1049 break;
1050 }
1051
1052 /* This doesn't handle coalescing of multiple registers. */
1053 if (scan_inst->regs_written > 1)
1054 break;
1055
1056 /* Mark which channels we found unconditional writes for. */
1057 if (!scan_inst->predicate)
1058 chans_remaining &= ~scan_inst->dst.writemask;
1059
1060 if (chans_remaining == 0)
1061 break;
1062 }
1063
1064 /* You can't read from an MRF, so if someone else reads our MRF's
1065 * source GRF that we wanted to rewrite, that stops us. If it's a
1066 * GRF we're trying to coalesce to, we don't actually handle
1067 * rewriting sources so bail in that case as well.
1068 */
1069 bool interfered = false;
1070 for (int i = 0; i < 3; i++) {
1071 if (inst->src[0].in_range(scan_inst->src[i],
1072 scan_inst->regs_read(i)))
1073 interfered = true;
1074 }
1075 if (interfered)
1076 break;
1077
1078 /* If somebody else writes our destination here, we can't coalesce
1079 * before that.
1080 */
1081 if (inst->dst.in_range(scan_inst->dst, scan_inst->regs_written))
1082 break;
1083
1084 /* Check for reads of the register we're trying to coalesce into. We
1085 * can't go rewriting instructions above that to put some other value
1086 * in the register instead.
1087 */
1088 if (to_mrf && scan_inst->mlen > 0) {
1089 if (inst->dst.reg >= scan_inst->base_mrf &&
1090 inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
1091 break;
1092 }
1093 } else {
1094 for (int i = 0; i < 3; i++) {
1095 if (inst->dst.in_range(scan_inst->src[i],
1096 scan_inst->regs_read(i)))
1097 interfered = true;
1098 }
1099 if (interfered)
1100 break;
1101 }
1102 }
1103
1104 if (chans_remaining == 0) {
1105 /* If we've made it here, we have an MOV we want to coalesce out, and
1106 * a scan_inst pointing to the earliest instruction involved in
1107 * computing the value. Now go rewrite the instruction stream
1108 * between the two.
1109 */
1110 vec4_instruction *scan_inst = _scan_inst;
1111 while (scan_inst != inst) {
1112 if (scan_inst->dst.file == GRF &&
1113 scan_inst->dst.reg == inst->src[0].reg &&
1114 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1115 scan_inst->reswizzle(inst->dst.writemask,
1116 inst->src[0].swizzle);
1117 scan_inst->dst.file = inst->dst.file;
1118 scan_inst->dst.reg = inst->dst.reg;
1119 scan_inst->dst.reg_offset = inst->dst.reg_offset;
1120 scan_inst->saturate |= inst->saturate;
1121 }
1122 scan_inst = (vec4_instruction *)scan_inst->next;
1123 }
1124 inst->remove(block);
1125 progress = true;
1126 }
1127 }
1128
1129 if (progress)
1130 invalidate_live_intervals();
1131
1132 return progress;
1133 }
1134
1135 /**
1136 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1137 * flow. We could probably do better here with some form of divergence
1138 * analysis.
1139 */
1140 bool
1141 vec4_visitor::eliminate_find_live_channel()
1142 {
1143 bool progress = false;
1144 unsigned depth = 0;
1145
1146 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1147 switch (inst->opcode) {
1148 case BRW_OPCODE_IF:
1149 case BRW_OPCODE_DO:
1150 depth++;
1151 break;
1152
1153 case BRW_OPCODE_ENDIF:
1154 case BRW_OPCODE_WHILE:
1155 depth--;
1156 break;
1157
1158 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1159 if (depth == 0) {
1160 inst->opcode = BRW_OPCODE_MOV;
1161 inst->src[0] = src_reg(0);
1162 inst->force_writemask_all = true;
1163 progress = true;
1164 }
1165 break;
1166
1167 default:
1168 break;
1169 }
1170 }
1171
1172 return progress;
1173 }
1174
1175 /**
1176 * Splits virtual GRFs requesting more than one contiguous physical register.
1177 *
1178 * We initially create large virtual GRFs for temporary structures, arrays,
1179 * and matrices, so that the dereference visitor functions can add reg_offsets
1180 * to work their way down to the actual member being accessed. But when it
1181 * comes to optimization, we'd like to treat each register as individual
1182 * storage if possible.
1183 *
1184 * So far, the only thing that might prevent splitting is a send message from
1185 * a GRF on IVB.
1186 */
1187 void
1188 vec4_visitor::split_virtual_grfs()
1189 {
1190 int num_vars = this->alloc.count;
1191 int new_virtual_grf[num_vars];
1192 bool split_grf[num_vars];
1193
1194 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1195
1196 /* Try to split anything > 0 sized. */
1197 for (int i = 0; i < num_vars; i++) {
1198 split_grf[i] = this->alloc.sizes[i] != 1;
1199 }
1200
1201 /* Check that the instructions are compatible with the registers we're trying
1202 * to split.
1203 */
1204 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1205 if (inst->dst.file == GRF && inst->regs_written > 1)
1206 split_grf[inst->dst.reg] = false;
1207
1208 for (int i = 0; i < 3; i++) {
1209 if (inst->src[i].file == GRF && inst->regs_read(i) > 1)
1210 split_grf[inst->src[i].reg] = false;
1211 }
1212 }
1213
1214 /* Allocate new space for split regs. Note that the virtual
1215 * numbers will be contiguous.
1216 */
1217 for (int i = 0; i < num_vars; i++) {
1218 if (!split_grf[i])
1219 continue;
1220
1221 new_virtual_grf[i] = alloc.allocate(1);
1222 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1223 unsigned reg = alloc.allocate(1);
1224 assert(reg == new_virtual_grf[i] + j - 1);
1225 (void) reg;
1226 }
1227 this->alloc.sizes[i] = 1;
1228 }
1229
1230 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1231 if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
1232 inst->dst.reg_offset != 0) {
1233 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1234 inst->dst.reg_offset - 1);
1235 inst->dst.reg_offset = 0;
1236 }
1237 for (int i = 0; i < 3; i++) {
1238 if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
1239 inst->src[i].reg_offset != 0) {
1240 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1241 inst->src[i].reg_offset - 1);
1242 inst->src[i].reg_offset = 0;
1243 }
1244 }
1245 }
1246 invalidate_live_intervals();
1247 }
1248
1249 void
1250 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1251 {
1252 dump_instruction(be_inst, stderr);
1253 }
1254
1255 void
1256 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1257 {
1258 vec4_instruction *inst = (vec4_instruction *)be_inst;
1259
1260 if (inst->predicate) {
1261 fprintf(file, "(%cf0.%d) ",
1262 inst->predicate_inverse ? '-' : '+',
1263 inst->flag_subreg);
1264 }
1265
1266 fprintf(file, "%s", brw_instruction_name(inst->opcode));
1267 if (inst->saturate)
1268 fprintf(file, ".sat");
1269 if (inst->conditional_mod) {
1270 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1271 if (!inst->predicate &&
1272 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1273 inst->opcode != BRW_OPCODE_IF &&
1274 inst->opcode != BRW_OPCODE_WHILE))) {
1275 fprintf(file, ".f0.%d", inst->flag_subreg);
1276 }
1277 }
1278 fprintf(file, " ");
1279
1280 switch (inst->dst.file) {
1281 case GRF:
1282 fprintf(file, "vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
1283 break;
1284 case MRF:
1285 fprintf(file, "m%d", inst->dst.reg);
1286 break;
1287 case HW_REG:
1288 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1289 switch (inst->dst.fixed_hw_reg.nr) {
1290 case BRW_ARF_NULL:
1291 fprintf(file, "null");
1292 break;
1293 case BRW_ARF_ADDRESS:
1294 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
1295 break;
1296 case BRW_ARF_ACCUMULATOR:
1297 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
1298 break;
1299 case BRW_ARF_FLAG:
1300 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1301 inst->dst.fixed_hw_reg.subnr);
1302 break;
1303 default:
1304 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1305 inst->dst.fixed_hw_reg.subnr);
1306 break;
1307 }
1308 } else {
1309 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
1310 }
1311 if (inst->dst.fixed_hw_reg.subnr)
1312 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
1313 break;
1314 case BAD_FILE:
1315 fprintf(file, "(null)");
1316 break;
1317 default:
1318 fprintf(file, "???");
1319 break;
1320 }
1321 if (inst->dst.writemask != WRITEMASK_XYZW) {
1322 fprintf(file, ".");
1323 if (inst->dst.writemask & 1)
1324 fprintf(file, "x");
1325 if (inst->dst.writemask & 2)
1326 fprintf(file, "y");
1327 if (inst->dst.writemask & 4)
1328 fprintf(file, "z");
1329 if (inst->dst.writemask & 8)
1330 fprintf(file, "w");
1331 }
1332 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
1333
1334 if (inst->src[0].file != BAD_FILE)
1335 fprintf(file, ", ");
1336
1337 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1338 if (inst->src[i].negate)
1339 fprintf(file, "-");
1340 if (inst->src[i].abs)
1341 fprintf(file, "|");
1342 switch (inst->src[i].file) {
1343 case GRF:
1344 fprintf(file, "vgrf%d", inst->src[i].reg);
1345 break;
1346 case ATTR:
1347 fprintf(file, "attr%d", inst->src[i].reg);
1348 break;
1349 case UNIFORM:
1350 fprintf(file, "u%d", inst->src[i].reg);
1351 break;
1352 case IMM:
1353 switch (inst->src[i].type) {
1354 case BRW_REGISTER_TYPE_F:
1355 fprintf(file, "%fF", inst->src[i].fixed_hw_reg.dw1.f);
1356 break;
1357 case BRW_REGISTER_TYPE_D:
1358 fprintf(file, "%dD", inst->src[i].fixed_hw_reg.dw1.d);
1359 break;
1360 case BRW_REGISTER_TYPE_UD:
1361 fprintf(file, "%uU", inst->src[i].fixed_hw_reg.dw1.ud);
1362 break;
1363 case BRW_REGISTER_TYPE_VF:
1364 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1365 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
1366 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
1367 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
1368 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
1369 break;
1370 default:
1371 fprintf(file, "???");
1372 break;
1373 }
1374 break;
1375 case HW_REG:
1376 if (inst->src[i].fixed_hw_reg.negate)
1377 fprintf(file, "-");
1378 if (inst->src[i].fixed_hw_reg.abs)
1379 fprintf(file, "|");
1380 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1381 switch (inst->src[i].fixed_hw_reg.nr) {
1382 case BRW_ARF_NULL:
1383 fprintf(file, "null");
1384 break;
1385 case BRW_ARF_ADDRESS:
1386 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
1387 break;
1388 case BRW_ARF_ACCUMULATOR:
1389 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
1390 break;
1391 case BRW_ARF_FLAG:
1392 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1393 inst->src[i].fixed_hw_reg.subnr);
1394 break;
1395 default:
1396 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1397 inst->src[i].fixed_hw_reg.subnr);
1398 break;
1399 }
1400 } else {
1401 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
1402 }
1403 if (inst->src[i].fixed_hw_reg.subnr)
1404 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
1405 if (inst->src[i].fixed_hw_reg.abs)
1406 fprintf(file, "|");
1407 break;
1408 case BAD_FILE:
1409 fprintf(file, "(null)");
1410 break;
1411 default:
1412 fprintf(file, "???");
1413 break;
1414 }
1415
1416 /* Don't print .0; and only VGRFs have reg_offsets and sizes */
1417 if (inst->src[i].reg_offset != 0 &&
1418 inst->src[i].file == GRF &&
1419 alloc.sizes[inst->src[i].reg] != 1)
1420 fprintf(file, ".%d", inst->src[i].reg_offset);
1421
1422 if (inst->src[i].file != IMM) {
1423 static const char *chans[4] = {"x", "y", "z", "w"};
1424 fprintf(file, ".");
1425 for (int c = 0; c < 4; c++) {
1426 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1427 }
1428 }
1429
1430 if (inst->src[i].abs)
1431 fprintf(file, "|");
1432
1433 if (inst->src[i].file != IMM) {
1434 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1435 }
1436
1437 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1438 fprintf(file, ", ");
1439 }
1440
1441 fprintf(file, "\n");
1442 }
1443
1444
1445 static inline struct brw_reg
1446 attribute_to_hw_reg(int attr, bool interleaved)
1447 {
1448 if (interleaved)
1449 return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1450 else
1451 return brw_vec8_grf(attr, 0);
1452 }
1453
1454
1455 /**
1456 * Replace each register of type ATTR in this->instructions with a reference
1457 * to a fixed HW register.
1458 *
1459 * If interleaved is true, then each attribute takes up half a register, with
1460 * register N containing attribute 2*N in its first half and attribute 2*N+1
1461 * in its second half (this corresponds to the payload setup used by geometry
1462 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
1463 * false, then each attribute takes up a whole register, with register N
1464 * containing attribute N (this corresponds to the payload setup used by
1465 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1466 */
1467 void
1468 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1469 bool interleaved)
1470 {
1471 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1472 /* We have to support ATTR as a destination for GL_FIXED fixup. */
1473 if (inst->dst.file == ATTR) {
1474 int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
1475
1476 /* All attributes used in the shader need to have been assigned a
1477 * hardware register by the caller
1478 */
1479 assert(grf != 0);
1480
1481 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1482 reg.type = inst->dst.type;
1483 reg.dw1.bits.writemask = inst->dst.writemask;
1484
1485 inst->dst.file = HW_REG;
1486 inst->dst.fixed_hw_reg = reg;
1487 }
1488
1489 for (int i = 0; i < 3; i++) {
1490 if (inst->src[i].file != ATTR)
1491 continue;
1492
1493 int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
1494
1495 /* All attributes used in the shader need to have been assigned a
1496 * hardware register by the caller
1497 */
1498 assert(grf != 0);
1499
1500 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1501 reg.dw1.bits.swizzle = inst->src[i].swizzle;
1502 reg.type = inst->src[i].type;
1503 if (inst->src[i].abs)
1504 reg = brw_abs(reg);
1505 if (inst->src[i].negate)
1506 reg = negate(reg);
1507
1508 inst->src[i].file = HW_REG;
1509 inst->src[i].fixed_hw_reg = reg;
1510 }
1511 }
1512 }
1513
1514 int
1515 vec4_vs_visitor::setup_attributes(int payload_reg)
1516 {
1517 int nr_attributes;
1518 int attribute_map[VERT_ATTRIB_MAX + 1];
1519 memset(attribute_map, 0, sizeof(attribute_map));
1520
1521 nr_attributes = 0;
1522 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1523 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1524 attribute_map[i] = payload_reg + nr_attributes;
1525 nr_attributes++;
1526 }
1527 }
1528
1529 /* VertexID is stored by the VF as the last vertex element, but we
1530 * don't represent it with a flag in inputs_read, so we call it
1531 * VERT_ATTRIB_MAX.
1532 */
1533 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
1534 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1535 nr_attributes++;
1536 }
1537
1538 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1539
1540 /* The BSpec says we always have to read at least one thing from
1541 * the VF, and it appears that the hardware wedges otherwise.
1542 */
1543 if (nr_attributes == 0)
1544 nr_attributes = 1;
1545
1546 prog_data->urb_read_length = (nr_attributes + 1) / 2;
1547
1548 unsigned vue_entries =
1549 MAX2(nr_attributes, prog_data->vue_map.num_slots);
1550
1551 if (devinfo->gen == 6)
1552 prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
1553 else
1554 prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
1555
1556 return payload_reg + nr_attributes;
1557 }
1558
1559 int
1560 vec4_visitor::setup_uniforms(int reg)
1561 {
1562 prog_data->base.dispatch_grf_start_reg = reg;
1563
1564 /* The pre-gen6 VS requires that some push constants get loaded no
1565 * matter what, or the GPU would hang.
1566 */
1567 if (devinfo->gen < 6 && this->uniforms == 0) {
1568 assert(this->uniforms < this->uniform_array_size);
1569 this->uniform_vector_size[this->uniforms] = 1;
1570
1571 stage_prog_data->param =
1572 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1573 for (unsigned int i = 0; i < 4; i++) {
1574 unsigned int slot = this->uniforms * 4 + i;
1575 static gl_constant_value zero = { 0.0 };
1576 stage_prog_data->param[slot] = &zero;
1577 }
1578
1579 this->uniforms++;
1580 reg++;
1581 } else {
1582 reg += ALIGN(uniforms, 2) / 2;
1583 }
1584
1585 stage_prog_data->nr_params = this->uniforms * 4;
1586
1587 prog_data->base.curb_read_length =
1588 reg - prog_data->base.dispatch_grf_start_reg;
1589
1590 return reg;
1591 }
1592
1593 void
1594 vec4_vs_visitor::setup_payload(void)
1595 {
1596 int reg = 0;
1597
1598 /* The payload always contains important data in g0, which contains
1599 * the URB handles that are passed on to the URB write at the end
1600 * of the thread. So, we always start push constants at g1.
1601 */
1602 reg++;
1603
1604 reg = setup_uniforms(reg);
1605
1606 reg = setup_attributes(reg);
1607
1608 this->first_non_payload_grf = reg;
1609 }
1610
1611 void
1612 vec4_visitor::assign_binding_table_offsets()
1613 {
1614 assign_common_binding_table_offsets(0);
1615 }
1616
1617 src_reg
1618 vec4_visitor::get_timestamp()
1619 {
1620 assert(devinfo->gen >= 7);
1621
1622 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1623 BRW_ARF_TIMESTAMP,
1624 0,
1625 0,
1626 0,
1627 BRW_REGISTER_TYPE_UD,
1628 BRW_VERTICAL_STRIDE_0,
1629 BRW_WIDTH_4,
1630 BRW_HORIZONTAL_STRIDE_4,
1631 BRW_SWIZZLE_XYZW,
1632 WRITEMASK_XYZW));
1633
1634 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1635
1636 vec4_instruction *mov = emit(MOV(dst, ts));
1637 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1638 * even if it's not enabled in the dispatch.
1639 */
1640 mov->force_writemask_all = true;
1641
1642 return src_reg(dst);
1643 }
1644
1645 void
1646 vec4_visitor::emit_shader_time_begin()
1647 {
1648 current_annotation = "shader time start";
1649 shader_start_time = get_timestamp();
1650 }
1651
1652 void
1653 vec4_visitor::emit_shader_time_end()
1654 {
1655 current_annotation = "shader time end";
1656 src_reg shader_end_time = get_timestamp();
1657
1658
1659 /* Check that there weren't any timestamp reset events (assuming these
1660 * were the only two timestamp reads that happened).
1661 */
1662 src_reg reset_end = shader_end_time;
1663 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1664 vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
1665 test->conditional_mod = BRW_CONDITIONAL_Z;
1666
1667 emit(IF(BRW_PREDICATE_NORMAL));
1668
1669 /* Take the current timestamp and get the delta. */
1670 shader_start_time.negate = true;
1671 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1672 emit(ADD(diff, shader_start_time, shader_end_time));
1673
1674 /* If there were no instructions between the two timestamp gets, the diff
1675 * is 2 cycles. Remove that overhead, so I can forget about that when
1676 * trying to determine the time taken for single instructions.
1677 */
1678 emit(ADD(diff, src_reg(diff), src_reg(-2u)));
1679
1680 emit_shader_time_write(0, src_reg(diff));
1681 emit_shader_time_write(1, src_reg(1u));
1682 emit(BRW_OPCODE_ELSE);
1683 emit_shader_time_write(2, src_reg(1u));
1684 emit(BRW_OPCODE_ENDIF);
1685 }
1686
1687 void
1688 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
1689 {
1690 dst_reg dst =
1691 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1692
1693 dst_reg offset = dst;
1694 dst_reg time = dst;
1695 time.reg_offset++;
1696
1697 offset.type = BRW_REGISTER_TYPE_UD;
1698 int index = shader_time_index * 3 + shader_time_subindex;
1699 emit(MOV(offset, src_reg(index * SHADER_TIME_STRIDE)));
1700
1701 time.type = BRW_REGISTER_TYPE_UD;
1702 emit(MOV(time, src_reg(value)));
1703
1704 vec4_instruction *inst =
1705 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1706 inst->mlen = 2;
1707 }
1708
1709 bool
1710 vec4_visitor::run(gl_clip_plane *clip_planes)
1711 {
1712 sanity_param_count = prog->Parameters->NumParameters;
1713
1714 if (shader_time_index >= 0)
1715 emit_shader_time_begin();
1716
1717 assign_binding_table_offsets();
1718
1719 emit_prolog();
1720
1721 /* Generate VS IR for main(). (the visitor only descends into
1722 * functions called "main").
1723 */
1724 if (shader) {
1725 visit_instructions(shader->base.ir);
1726 } else {
1727 emit_program_code();
1728 }
1729 base_ir = NULL;
1730
1731 if (key->userclip_active && !prog->UsesClipDistanceOut)
1732 setup_uniform_clipplane_values(clip_planes);
1733
1734 emit_thread_end();
1735
1736 calculate_cfg();
1737
1738 /* Before any optimization, push array accesses out to scratch
1739 * space where we need them to be. This pass may allocate new
1740 * virtual GRFs, so we want to do it early. It also makes sure
1741 * that we have reladdr computations available for CSE, since we'll
1742 * often do repeated subexpressions for those.
1743 */
1744 if (shader) {
1745 move_grf_array_access_to_scratch();
1746 move_uniform_array_access_to_pull_constants();
1747 } else {
1748 /* The ARB_vertex_program frontend emits pull constant loads directly
1749 * rather than using reladdr, so we don't need to walk through all the
1750 * instructions looking for things to move. There isn't anything.
1751 *
1752 * We do still need to split things to vec4 size.
1753 */
1754 split_uniform_registers();
1755 }
1756 pack_uniform_registers();
1757 move_push_constants_to_pull_constants();
1758 split_virtual_grfs();
1759
1760 #define OPT(pass, args...) ({ \
1761 pass_num++; \
1762 bool this_progress = pass(args); \
1763 \
1764 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
1765 char filename[64]; \
1766 snprintf(filename, 64, "%s-%04d-%02d-%02d-" #pass, \
1767 stage_abbrev, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
1768 \
1769 backend_shader::dump_instructions(filename); \
1770 } \
1771 \
1772 progress = progress || this_progress; \
1773 this_progress; \
1774 })
1775
1776
1777 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
1778 char filename[64];
1779 snprintf(filename, 64, "%s-%04d-00-start",
1780 stage_abbrev, shader_prog ? shader_prog->Name : 0);
1781
1782 backend_shader::dump_instructions(filename);
1783 }
1784
1785 bool progress;
1786 int iteration = 0;
1787 int pass_num = 0;
1788 do {
1789 progress = false;
1790 pass_num = 0;
1791 iteration++;
1792
1793 OPT(opt_reduce_swizzle);
1794 OPT(dead_code_eliminate);
1795 OPT(dead_control_flow_eliminate, this);
1796 OPT(opt_copy_propagation);
1797 OPT(opt_cse);
1798 OPT(opt_algebraic);
1799 OPT(opt_register_coalesce);
1800 OPT(eliminate_find_live_channel);
1801 } while (progress);
1802
1803 pass_num = 0;
1804
1805 if (OPT(opt_vector_float)) {
1806 OPT(opt_cse);
1807 OPT(opt_copy_propagation, false);
1808 OPT(opt_copy_propagation, true);
1809 OPT(dead_code_eliminate);
1810 }
1811
1812 if (failed)
1813 return false;
1814
1815 setup_payload();
1816
1817 if (false) {
1818 /* Debug of register spilling: Go spill everything. */
1819 const int grf_count = alloc.count;
1820 float spill_costs[alloc.count];
1821 bool no_spill[alloc.count];
1822 evaluate_spill_costs(spill_costs, no_spill);
1823 for (int i = 0; i < grf_count; i++) {
1824 if (no_spill[i])
1825 continue;
1826 spill_reg(i);
1827 }
1828 }
1829
1830 bool allocated_without_spills = reg_allocate();
1831
1832 if (!allocated_without_spills) {
1833 compiler->shader_perf_log(log_data,
1834 "%s shader triggered register spilling. "
1835 "Try reducing the number of live vec4 values "
1836 "to improve performance.\n",
1837 stage_name);
1838
1839 while (!reg_allocate()) {
1840 if (failed)
1841 return false;
1842 }
1843 }
1844
1845 opt_schedule_instructions();
1846
1847 opt_set_dependency_control();
1848
1849 /* If any state parameters were appended, then ParameterValues could have
1850 * been realloced, in which case the driver uniform storage set up by
1851 * _mesa_associate_uniform_storage() would point to freed memory. Make
1852 * sure that didn't happen.
1853 */
1854 assert(sanity_param_count == prog->Parameters->NumParameters);
1855
1856 return !failed;
1857 }
1858
1859 } /* namespace brw */
1860
1861 extern "C" {
1862
1863 /**
1864 * Compile a vertex shader.
1865 *
1866 * Returns the final assembly and the program's size.
1867 */
1868 const unsigned *
1869 brw_vs_emit(struct brw_context *brw,
1870 struct gl_shader_program *prog,
1871 struct brw_vs_compile *c,
1872 struct brw_vs_prog_data *prog_data,
1873 void *mem_ctx,
1874 unsigned *final_assembly_size)
1875 {
1876 bool start_busy = false;
1877 double start_time = 0;
1878 const unsigned *assembly = NULL;
1879
1880 if (unlikely(brw->perf_debug)) {
1881 start_busy = (brw->batch.last_bo &&
1882 drm_intel_bo_busy(brw->batch.last_bo));
1883 start_time = get_time();
1884 }
1885
1886 struct brw_shader *shader = NULL;
1887 if (prog)
1888 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
1889
1890 int st_index = -1;
1891 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1892 st_index = brw_get_shader_time_index(brw, prog, &c->vp->program.Base,
1893 ST_VS);
1894
1895 if (unlikely(INTEL_DEBUG & DEBUG_VS))
1896 brw_dump_ir("vertex", prog, &shader->base, &c->vp->program.Base);
1897
1898 if (brw->intelScreen->compiler->scalar_vs) {
1899 if (!c->vp->program.Base.nir) {
1900 /* Normally we generate NIR in LinkShader() or
1901 * ProgramStringNotify(), but Mesa's fixed-function vertex program
1902 * handling doesn't notify the driver at all. Just do it here, at
1903 * the last minute, even though it's lame.
1904 */
1905 assert(c->vp->program.Base.Id == 0 && prog == NULL);
1906 c->vp->program.Base.nir =
1907 brw_create_nir(brw, NULL, &c->vp->program.Base, MESA_SHADER_VERTEX);
1908 }
1909
1910 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
1911
1912 fs_visitor v(brw->intelScreen->compiler, brw,
1913 mem_ctx, MESA_SHADER_VERTEX, &c->key,
1914 &prog_data->base.base, prog, &c->vp->program.Base,
1915 8, st_index);
1916 if (!v.run_vs(brw_select_clip_planes(&brw->ctx))) {
1917 if (prog) {
1918 prog->LinkStatus = false;
1919 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1920 }
1921
1922 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1923 v.fail_msg);
1924
1925 return NULL;
1926 }
1927
1928 fs_generator g(brw->intelScreen->compiler, brw,
1929 mem_ctx, (void *) &c->key, &prog_data->base.base,
1930 &c->vp->program.Base, v.promoted_constants,
1931 v.runtime_check_aads_emit, "VS");
1932 if (INTEL_DEBUG & DEBUG_VS) {
1933 char *name;
1934 if (prog) {
1935 name = ralloc_asprintf(mem_ctx, "%s vertex shader %d",
1936 prog->Label ? prog->Label : "unnamed",
1937 prog->Name);
1938 } else {
1939 name = ralloc_asprintf(mem_ctx, "vertex program %d",
1940 c->vp->program.Base.Id);
1941 }
1942 g.enable_debug(name);
1943 }
1944 g.generate_code(v.cfg, 8);
1945 assembly = g.get_assembly(final_assembly_size);
1946
1947 c->base.last_scratch = v.last_scratch;
1948 }
1949
1950 if (!assembly) {
1951 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
1952
1953 vec4_vs_visitor v(brw->intelScreen->compiler, brw,
1954 c, prog_data, prog, mem_ctx, st_index,
1955 !_mesa_is_gles3(&brw->ctx));
1956 if (!v.run(brw_select_clip_planes(&brw->ctx))) {
1957 if (prog) {
1958 prog->LinkStatus = false;
1959 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1960 }
1961
1962 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1963 v.fail_msg);
1964
1965 return NULL;
1966 }
1967
1968 vec4_generator g(brw->intelScreen->compiler, brw,
1969 prog, &c->vp->program.Base, &prog_data->base,
1970 mem_ctx, INTEL_DEBUG & DEBUG_VS, "vertex", "VS");
1971 assembly = g.generate_assembly(v.cfg, final_assembly_size);
1972 }
1973
1974 if (unlikely(brw->perf_debug) && shader) {
1975 if (shader->compiled_once) {
1976 brw_vs_debug_recompile(brw, prog, &c->key);
1977 }
1978 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
1979 perf_debug("VS compile took %.03f ms and stalled the GPU\n",
1980 (get_time() - start_time) * 1000);
1981 }
1982 shader->compiled_once = true;
1983 }
1984
1985 return assembly;
1986 }
1987
1988
1989 void
1990 brw_vue_setup_prog_key_for_precompile(struct gl_context *ctx,
1991 struct brw_vue_prog_key *key,
1992 GLuint id, struct gl_program *prog)
1993 {
1994 struct brw_context *brw = brw_context(ctx);
1995 key->program_string_id = id;
1996
1997 brw_setup_tex_for_precompile(brw, &key->tex, prog);
1998 }
1999
2000 } /* extern "C" */