i965/vec4: Ignore swizzle of VGRF for use by var_range_end().
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_vs.h"
28 #include "brw_nir.h"
29 #include "brw_vec4_builder.h"
30 #include "brw_vec4_live_variables.h"
31 #include "brw_dead_control_flow.h"
32 #include "program/prog_parameter.h"
33
34 #define MAX_INSTRUCTION (1 << 30)
35
36 using namespace brw;
37
38 namespace brw {
39
40 void
41 src_reg::init()
42 {
43 memset(this, 0, sizeof(*this));
44
45 this->file = BAD_FILE;
46 }
47
48 src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
49 {
50 init();
51
52 this->file = file;
53 this->nr = nr;
54 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
55 this->swizzle = brw_swizzle_for_size(type->vector_elements);
56 else
57 this->swizzle = BRW_SWIZZLE_XYZW;
58 if (type)
59 this->type = brw_type_for_base_type(type);
60 }
61
62 /** Generic unset register constructor. */
63 src_reg::src_reg()
64 {
65 init();
66 }
67
68 src_reg::src_reg(struct ::brw_reg reg) :
69 backend_reg(reg)
70 {
71 this->reg_offset = 0;
72 this->reladdr = NULL;
73 }
74
75 src_reg::src_reg(const dst_reg &reg) :
76 backend_reg(reg)
77 {
78 this->reladdr = reg.reladdr;
79 this->swizzle = brw_swizzle_for_mask(reg.writemask);
80 }
81
82 void
83 dst_reg::init()
84 {
85 memset(this, 0, sizeof(*this));
86 this->file = BAD_FILE;
87 this->writemask = WRITEMASK_XYZW;
88 }
89
90 dst_reg::dst_reg()
91 {
92 init();
93 }
94
95 dst_reg::dst_reg(enum brw_reg_file file, int nr)
96 {
97 init();
98
99 this->file = file;
100 this->nr = nr;
101 }
102
103 dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
104 unsigned writemask)
105 {
106 init();
107
108 this->file = file;
109 this->nr = nr;
110 this->type = brw_type_for_base_type(type);
111 this->writemask = writemask;
112 }
113
114 dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
115 unsigned writemask)
116 {
117 init();
118
119 this->file = file;
120 this->nr = nr;
121 this->type = type;
122 this->writemask = writemask;
123 }
124
125 dst_reg::dst_reg(struct ::brw_reg reg) :
126 backend_reg(reg)
127 {
128 this->reg_offset = 0;
129 this->reladdr = NULL;
130 }
131
132 dst_reg::dst_reg(const src_reg &reg) :
133 backend_reg(reg)
134 {
135 this->writemask = brw_mask_for_swizzle(reg.swizzle);
136 this->reladdr = reg.reladdr;
137 }
138
139 bool
140 dst_reg::equals(const dst_reg &r) const
141 {
142 return (this->backend_reg::equals(r) &&
143 (reladdr == r.reladdr ||
144 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
145 }
146
147 bool
148 vec4_instruction::is_send_from_grf()
149 {
150 switch (opcode) {
151 case SHADER_OPCODE_SHADER_TIME_ADD:
152 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
153 case SHADER_OPCODE_UNTYPED_ATOMIC:
154 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
155 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
156 case SHADER_OPCODE_TYPED_ATOMIC:
157 case SHADER_OPCODE_TYPED_SURFACE_READ:
158 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
159 case VEC4_OPCODE_URB_READ:
160 case TCS_OPCODE_URB_WRITE:
161 case TCS_OPCODE_RELEASE_INPUT:
162 case SHADER_OPCODE_BARRIER:
163 return true;
164 default:
165 return false;
166 }
167 }
168
169 /**
170 * Returns true if this instruction's sources and destinations cannot
171 * safely be the same register.
172 *
173 * In most cases, a register can be written over safely by the same
174 * instruction that is its last use. For a single instruction, the
175 * sources are dereferenced before writing of the destination starts
176 * (naturally).
177 *
178 * However, there are a few cases where this can be problematic:
179 *
180 * - Virtual opcodes that translate to multiple instructions in the
181 * code generator: if src == dst and one instruction writes the
182 * destination before a later instruction reads the source, then
183 * src will have been clobbered.
184 *
185 * The register allocator uses this information to set up conflicts between
186 * GRF sources and the destination.
187 */
188 bool
189 vec4_instruction::has_source_and_destination_hazard() const
190 {
191 switch (opcode) {
192 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
193 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
194 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
195 return true;
196 default:
197 return false;
198 }
199 }
200
201 unsigned
202 vec4_instruction::regs_read(unsigned arg) const
203 {
204 if (src[arg].file == BAD_FILE)
205 return 0;
206
207 switch (opcode) {
208 case SHADER_OPCODE_SHADER_TIME_ADD:
209 case SHADER_OPCODE_UNTYPED_ATOMIC:
210 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
211 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
212 case SHADER_OPCODE_TYPED_ATOMIC:
213 case SHADER_OPCODE_TYPED_SURFACE_READ:
214 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
215 case TCS_OPCODE_URB_WRITE:
216 return arg == 0 ? mlen : 1;
217
218 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
219 return arg == 1 ? mlen : 1;
220
221 default:
222 return 1;
223 }
224 }
225
226 bool
227 vec4_instruction::can_do_source_mods(const struct brw_device_info *devinfo)
228 {
229 if (devinfo->gen == 6 && is_math())
230 return false;
231
232 if (is_send_from_grf())
233 return false;
234
235 if (!backend_instruction::can_do_source_mods())
236 return false;
237
238 return true;
239 }
240
241 bool
242 vec4_instruction::can_do_writemask(const struct brw_device_info *devinfo)
243 {
244 switch (opcode) {
245 case SHADER_OPCODE_GEN4_SCRATCH_READ:
246 case VS_OPCODE_PULL_CONSTANT_LOAD:
247 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
248 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
249 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
250 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
251 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
252 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
253 case VEC4_OPCODE_URB_READ:
254 case SHADER_OPCODE_MOV_INDIRECT:
255 return false;
256 default:
257 /* The MATH instruction on Gen6 only executes in align1 mode, which does
258 * not support writemasking.
259 */
260 if (devinfo->gen == 6 && is_math())
261 return false;
262
263 if (is_tex())
264 return false;
265
266 return true;
267 }
268 }
269
270 bool
271 vec4_instruction::can_change_types() const
272 {
273 return dst.type == src[0].type &&
274 !src[0].abs && !src[0].negate && !saturate &&
275 (opcode == BRW_OPCODE_MOV ||
276 (opcode == BRW_OPCODE_SEL &&
277 dst.type == src[1].type &&
278 predicate != BRW_PREDICATE_NONE &&
279 !src[1].abs && !src[1].negate));
280 }
281
282 /**
283 * Returns how many MRFs an opcode will write over.
284 *
285 * Note that this is not the 0 or 1 implied writes in an actual gen
286 * instruction -- the generate_* functions generate additional MOVs
287 * for setup.
288 */
289 int
290 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
291 {
292 if (inst->mlen == 0 || inst->is_send_from_grf())
293 return 0;
294
295 switch (inst->opcode) {
296 case SHADER_OPCODE_RCP:
297 case SHADER_OPCODE_RSQ:
298 case SHADER_OPCODE_SQRT:
299 case SHADER_OPCODE_EXP2:
300 case SHADER_OPCODE_LOG2:
301 case SHADER_OPCODE_SIN:
302 case SHADER_OPCODE_COS:
303 return 1;
304 case SHADER_OPCODE_INT_QUOTIENT:
305 case SHADER_OPCODE_INT_REMAINDER:
306 case SHADER_OPCODE_POW:
307 case TCS_OPCODE_THREAD_END:
308 return 2;
309 case VS_OPCODE_URB_WRITE:
310 return 1;
311 case VS_OPCODE_PULL_CONSTANT_LOAD:
312 return 2;
313 case SHADER_OPCODE_GEN4_SCRATCH_READ:
314 return 2;
315 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
316 return 3;
317 case GS_OPCODE_URB_WRITE:
318 case GS_OPCODE_URB_WRITE_ALLOCATE:
319 case GS_OPCODE_THREAD_END:
320 return 0;
321 case GS_OPCODE_FF_SYNC:
322 return 1;
323 case TCS_OPCODE_URB_WRITE:
324 return 0;
325 case SHADER_OPCODE_SHADER_TIME_ADD:
326 return 0;
327 case SHADER_OPCODE_TEX:
328 case SHADER_OPCODE_TXL:
329 case SHADER_OPCODE_TXD:
330 case SHADER_OPCODE_TXF:
331 case SHADER_OPCODE_TXF_CMS:
332 case SHADER_OPCODE_TXF_CMS_W:
333 case SHADER_OPCODE_TXF_MCS:
334 case SHADER_OPCODE_TXS:
335 case SHADER_OPCODE_TG4:
336 case SHADER_OPCODE_TG4_OFFSET:
337 case SHADER_OPCODE_SAMPLEINFO:
338 case VS_OPCODE_GET_BUFFER_SIZE:
339 return inst->header_size;
340 default:
341 unreachable("not reached");
342 }
343 }
344
345 bool
346 src_reg::equals(const src_reg &r) const
347 {
348 return (this->backend_reg::equals(r) &&
349 !reladdr && !r.reladdr);
350 }
351
352 bool
353 vec4_visitor::opt_vector_float()
354 {
355 bool progress = false;
356
357 foreach_block(block, cfg) {
358 int last_reg = -1, last_reg_offset = -1;
359 enum brw_reg_file last_reg_file = BAD_FILE;
360
361 uint8_t imm[4] = { 0 };
362 int inst_count = 0;
363 vec4_instruction *imm_inst[4];
364 unsigned writemask = 0;
365 enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
366
367 foreach_inst_in_block_safe(vec4_instruction, inst, block) {
368 int vf = -1;
369 enum brw_reg_type need_type;
370
371 /* Look for unconditional MOVs from an immediate with a partial
372 * writemask. Skip type-conversion MOVs other than integer 0,
373 * where the type doesn't matter. See if the immediate can be
374 * represented as a VF.
375 */
376 if (inst->opcode == BRW_OPCODE_MOV &&
377 inst->src[0].file == IMM &&
378 inst->predicate == BRW_PREDICATE_NONE &&
379 inst->dst.writemask != WRITEMASK_XYZW &&
380 (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
381
382 vf = brw_float_to_vf(inst->src[0].d);
383 need_type = BRW_REGISTER_TYPE_D;
384
385 if (vf == -1) {
386 vf = brw_float_to_vf(inst->src[0].f);
387 need_type = BRW_REGISTER_TYPE_F;
388 }
389 } else {
390 last_reg = -1;
391 }
392
393 /* If this wasn't a MOV, or the destination register doesn't match,
394 * or we have to switch destination types, then this breaks our
395 * sequence. Combine anything we've accumulated so far.
396 */
397 if (last_reg != inst->dst.nr ||
398 last_reg_offset != inst->dst.reg_offset ||
399 last_reg_file != inst->dst.file ||
400 (vf > 0 && dest_type != need_type)) {
401
402 if (inst_count > 1) {
403 unsigned vf;
404 memcpy(&vf, imm, sizeof(vf));
405 vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
406 mov->dst.type = dest_type;
407 mov->dst.writemask = writemask;
408 inst->insert_before(block, mov);
409
410 for (int i = 0; i < inst_count; i++) {
411 imm_inst[i]->remove(block);
412 }
413
414 progress = true;
415 }
416
417 inst_count = 0;
418 last_reg = -1;
419 writemask = 0;
420 dest_type = BRW_REGISTER_TYPE_F;
421
422 for (int i = 0; i < 4; i++) {
423 imm[i] = 0;
424 }
425 }
426
427 /* Record this instruction's value (if it was representable). */
428 if (vf != -1) {
429 if ((inst->dst.writemask & WRITEMASK_X) != 0)
430 imm[0] = vf;
431 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
432 imm[1] = vf;
433 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
434 imm[2] = vf;
435 if ((inst->dst.writemask & WRITEMASK_W) != 0)
436 imm[3] = vf;
437
438 writemask |= inst->dst.writemask;
439 imm_inst[inst_count++] = inst;
440
441 last_reg = inst->dst.nr;
442 last_reg_offset = inst->dst.reg_offset;
443 last_reg_file = inst->dst.file;
444 if (vf > 0)
445 dest_type = need_type;
446 }
447 }
448 }
449
450 if (progress)
451 invalidate_live_intervals();
452
453 return progress;
454 }
455
456 /* Replaces unused channels of a swizzle with channels that are used.
457 *
458 * For instance, this pass transforms
459 *
460 * mov vgrf4.yz, vgrf5.wxzy
461 *
462 * into
463 *
464 * mov vgrf4.yz, vgrf5.xxzx
465 *
466 * This eliminates false uses of some channels, letting dead code elimination
467 * remove the instructions that wrote them.
468 */
469 bool
470 vec4_visitor::opt_reduce_swizzle()
471 {
472 bool progress = false;
473
474 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
475 if (inst->dst.file == BAD_FILE ||
476 inst->dst.file == ARF ||
477 inst->dst.file == FIXED_GRF ||
478 inst->is_send_from_grf())
479 continue;
480
481 unsigned swizzle;
482
483 /* Determine which channels of the sources are read. */
484 switch (inst->opcode) {
485 case VEC4_OPCODE_PACK_BYTES:
486 case BRW_OPCODE_DP4:
487 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
488 * but all four of src1.
489 */
490 swizzle = brw_swizzle_for_size(4);
491 break;
492 case BRW_OPCODE_DP3:
493 swizzle = brw_swizzle_for_size(3);
494 break;
495 case BRW_OPCODE_DP2:
496 swizzle = brw_swizzle_for_size(2);
497 break;
498 default:
499 swizzle = brw_swizzle_for_mask(inst->dst.writemask);
500 break;
501 }
502
503 /* Update sources' swizzles. */
504 for (int i = 0; i < 3; i++) {
505 if (inst->src[i].file != VGRF &&
506 inst->src[i].file != ATTR &&
507 inst->src[i].file != UNIFORM)
508 continue;
509
510 const unsigned new_swizzle =
511 brw_compose_swizzle(swizzle, inst->src[i].swizzle);
512 if (inst->src[i].swizzle != new_swizzle) {
513 inst->src[i].swizzle = new_swizzle;
514 progress = true;
515 }
516 }
517 }
518
519 if (progress)
520 invalidate_live_intervals();
521
522 return progress;
523 }
524
525 void
526 vec4_visitor::split_uniform_registers()
527 {
528 /* Prior to this, uniforms have been in an array sized according to
529 * the number of vector uniforms present, sparsely filled (so an
530 * aggregate results in reg indices being skipped over). Now we're
531 * going to cut those aggregates up so each .nr index is one
532 * vector. The goal is to make elimination of unused uniform
533 * components easier later.
534 */
535 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
536 for (int i = 0 ; i < 3; i++) {
537 if (inst->src[i].file != UNIFORM)
538 continue;
539
540 assert(!inst->src[i].reladdr);
541
542 inst->src[i].nr += inst->src[i].reg_offset;
543 inst->src[i].reg_offset = 0;
544 }
545 }
546 }
547
548 void
549 vec4_visitor::pack_uniform_registers()
550 {
551 uint8_t chans_used[this->uniforms];
552 int new_loc[this->uniforms];
553 int new_chan[this->uniforms];
554
555 memset(chans_used, 0, sizeof(chans_used));
556 memset(new_loc, 0, sizeof(new_loc));
557 memset(new_chan, 0, sizeof(new_chan));
558
559 /* Find which uniform vectors are actually used by the program. We
560 * expect unused vector elements when we've moved array access out
561 * to pull constants, and from some GLSL code generators like wine.
562 */
563 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
564 unsigned readmask;
565 switch (inst->opcode) {
566 case VEC4_OPCODE_PACK_BYTES:
567 case BRW_OPCODE_DP4:
568 case BRW_OPCODE_DPH:
569 readmask = 0xf;
570 break;
571 case BRW_OPCODE_DP3:
572 readmask = 0x7;
573 break;
574 case BRW_OPCODE_DP2:
575 readmask = 0x3;
576 break;
577 default:
578 readmask = inst->dst.writemask;
579 break;
580 }
581
582 for (int i = 0 ; i < 3; i++) {
583 if (inst->src[i].file != UNIFORM)
584 continue;
585
586 int reg = inst->src[i].nr;
587 for (int c = 0; c < 4; c++) {
588 if (!(readmask & (1 << c)))
589 continue;
590
591 chans_used[reg] = MAX2(chans_used[reg],
592 BRW_GET_SWZ(inst->src[i].swizzle, c) + 1);
593 }
594 }
595
596 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
597 inst->src[0].file == UNIFORM) {
598 assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
599 assert(inst->src[0].subnr == 0);
600
601 unsigned bytes_read = inst->src[2].ud;
602 assert(bytes_read % 4 == 0);
603 unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16);
604
605 /* We just mark every register touched by a MOV_INDIRECT as being
606 * fully used. This ensures that it doesn't broken up piecewise by
607 * the next part of our packing algorithm.
608 */
609 int reg = inst->src[0].nr;
610 for (unsigned i = 0; i < vec4s_read; i++)
611 chans_used[reg + i] = 4;
612 }
613 }
614
615 int new_uniform_count = 0;
616
617 /* Now, figure out a packing of the live uniform vectors into our
618 * push constants.
619 */
620 for (int src = 0; src < uniforms; src++) {
621 int size = chans_used[src];
622
623 if (size == 0)
624 continue;
625
626 int dst;
627 /* Find the lowest place we can slot this uniform in. */
628 for (dst = 0; dst < src; dst++) {
629 if (chans_used[dst] + size <= 4)
630 break;
631 }
632
633 if (src == dst) {
634 new_loc[src] = dst;
635 new_chan[src] = 0;
636 } else {
637 new_loc[src] = dst;
638 new_chan[src] = chans_used[dst];
639
640 /* Move the references to the data */
641 for (int j = 0; j < size; j++) {
642 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
643 stage_prog_data->param[src * 4 + j];
644 }
645
646 chans_used[dst] += size;
647 chans_used[src] = 0;
648 }
649
650 new_uniform_count = MAX2(new_uniform_count, dst + 1);
651 }
652
653 this->uniforms = new_uniform_count;
654
655 /* Now, update the instructions for our repacked uniforms. */
656 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
657 for (int i = 0 ; i < 3; i++) {
658 int src = inst->src[i].nr;
659
660 if (inst->src[i].file != UNIFORM)
661 continue;
662
663 inst->src[i].nr = new_loc[src];
664 inst->src[i].swizzle += BRW_SWIZZLE4(new_chan[src], new_chan[src],
665 new_chan[src], new_chan[src]);
666 }
667 }
668 }
669
670 /**
671 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
672 *
673 * While GLSL IR also performs this optimization, we end up with it in
674 * our instruction stream for a couple of reasons. One is that we
675 * sometimes generate silly instructions, for example in array access
676 * where we'll generate "ADD offset, index, base" even if base is 0.
677 * The other is that GLSL IR's constant propagation doesn't track the
678 * components of aggregates, so some VS patterns (initialize matrix to
679 * 0, accumulate in vertex blending factors) end up breaking down to
680 * instructions involving 0.
681 */
682 bool
683 vec4_visitor::opt_algebraic()
684 {
685 bool progress = false;
686
687 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
688 switch (inst->opcode) {
689 case BRW_OPCODE_MOV:
690 if (inst->src[0].file != IMM)
691 break;
692
693 if (inst->saturate) {
694 if (inst->dst.type != inst->src[0].type)
695 assert(!"unimplemented: saturate mixed types");
696
697 if (brw_saturate_immediate(inst->dst.type,
698 &inst->src[0].as_brw_reg())) {
699 inst->saturate = false;
700 progress = true;
701 }
702 }
703 break;
704
705 case VEC4_OPCODE_UNPACK_UNIFORM:
706 if (inst->src[0].file != UNIFORM) {
707 inst->opcode = BRW_OPCODE_MOV;
708 progress = true;
709 }
710 break;
711
712 case BRW_OPCODE_ADD:
713 if (inst->src[1].is_zero()) {
714 inst->opcode = BRW_OPCODE_MOV;
715 inst->src[1] = src_reg();
716 progress = true;
717 }
718 break;
719
720 case BRW_OPCODE_MUL:
721 if (inst->src[1].is_zero()) {
722 inst->opcode = BRW_OPCODE_MOV;
723 switch (inst->src[0].type) {
724 case BRW_REGISTER_TYPE_F:
725 inst->src[0] = brw_imm_f(0.0f);
726 break;
727 case BRW_REGISTER_TYPE_D:
728 inst->src[0] = brw_imm_d(0);
729 break;
730 case BRW_REGISTER_TYPE_UD:
731 inst->src[0] = brw_imm_ud(0u);
732 break;
733 default:
734 unreachable("not reached");
735 }
736 inst->src[1] = src_reg();
737 progress = true;
738 } else if (inst->src[1].is_one()) {
739 inst->opcode = BRW_OPCODE_MOV;
740 inst->src[1] = src_reg();
741 progress = true;
742 } else if (inst->src[1].is_negative_one()) {
743 inst->opcode = BRW_OPCODE_MOV;
744 inst->src[0].negate = !inst->src[0].negate;
745 inst->src[1] = src_reg();
746 progress = true;
747 }
748 break;
749 case BRW_OPCODE_CMP:
750 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
751 inst->src[0].abs &&
752 inst->src[0].negate &&
753 inst->src[1].is_zero()) {
754 inst->src[0].abs = false;
755 inst->src[0].negate = false;
756 inst->conditional_mod = BRW_CONDITIONAL_Z;
757 progress = true;
758 break;
759 }
760 break;
761 case SHADER_OPCODE_BROADCAST:
762 if (is_uniform(inst->src[0]) ||
763 inst->src[1].is_zero()) {
764 inst->opcode = BRW_OPCODE_MOV;
765 inst->src[1] = src_reg();
766 inst->force_writemask_all = true;
767 progress = true;
768 }
769 break;
770
771 default:
772 break;
773 }
774 }
775
776 if (progress)
777 invalidate_live_intervals();
778
779 return progress;
780 }
781
782 /**
783 * Only a limited number of hardware registers may be used for push
784 * constants, so this turns access to the overflowed constants into
785 * pull constants.
786 */
787 void
788 vec4_visitor::move_push_constants_to_pull_constants()
789 {
790 int pull_constant_loc[this->uniforms];
791
792 /* Only allow 32 registers (256 uniform components) as push constants,
793 * which is the limit on gen6.
794 *
795 * If changing this value, note the limitation about total_regs in
796 * brw_curbe.c.
797 */
798 int max_uniform_components = 32 * 8;
799 if (this->uniforms * 4 <= max_uniform_components)
800 return;
801
802 /* Make some sort of choice as to which uniforms get sent to pull
803 * constants. We could potentially do something clever here like
804 * look for the most infrequently used uniform vec4s, but leave
805 * that for later.
806 */
807 for (int i = 0; i < this->uniforms * 4; i += 4) {
808 pull_constant_loc[i / 4] = -1;
809
810 if (i >= max_uniform_components) {
811 const gl_constant_value **values = &stage_prog_data->param[i];
812
813 /* Try to find an existing copy of this uniform in the pull
814 * constants if it was part of an array access already.
815 */
816 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
817 int matches;
818
819 for (matches = 0; matches < 4; matches++) {
820 if (stage_prog_data->pull_param[j + matches] != values[matches])
821 break;
822 }
823
824 if (matches == 4) {
825 pull_constant_loc[i / 4] = j / 4;
826 break;
827 }
828 }
829
830 if (pull_constant_loc[i / 4] == -1) {
831 assert(stage_prog_data->nr_pull_params % 4 == 0);
832 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
833
834 for (int j = 0; j < 4; j++) {
835 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
836 values[j];
837 }
838 }
839 }
840 }
841
842 /* Now actually rewrite usage of the things we've moved to pull
843 * constants.
844 */
845 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
846 for (int i = 0 ; i < 3; i++) {
847 if (inst->src[i].file != UNIFORM ||
848 pull_constant_loc[inst->src[i].nr] == -1)
849 continue;
850
851 int uniform = inst->src[i].nr;
852
853 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
854
855 emit_pull_constant_load(block, inst, temp, inst->src[i],
856 pull_constant_loc[uniform], src_reg());
857
858 inst->src[i].file = temp.file;
859 inst->src[i].nr = temp.nr;
860 inst->src[i].reg_offset = temp.reg_offset;
861 inst->src[i].reladdr = NULL;
862 }
863 }
864
865 /* Repack push constants to remove the now-unused ones. */
866 pack_uniform_registers();
867 }
868
869 /* Conditions for which we want to avoid setting the dependency control bits */
870 bool
871 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
872 {
873 #define IS_DWORD(reg) \
874 (reg.type == BRW_REGISTER_TYPE_UD || \
875 reg.type == BRW_REGISTER_TYPE_D)
876
877 /* "When source or destination datatype is 64b or operation is integer DWord
878 * multiply, DepCtrl must not be used."
879 * May apply to future SoCs as well.
880 */
881 if (devinfo->is_cherryview) {
882 if (inst->opcode == BRW_OPCODE_MUL &&
883 IS_DWORD(inst->src[0]) &&
884 IS_DWORD(inst->src[1]))
885 return true;
886 }
887 #undef IS_DWORD
888
889 if (devinfo->gen >= 8) {
890 if (inst->opcode == BRW_OPCODE_F32TO16)
891 return true;
892 }
893
894 /*
895 * mlen:
896 * In the presence of send messages, totally interrupt dependency
897 * control. They're long enough that the chance of dependency
898 * control around them just doesn't matter.
899 *
900 * predicate:
901 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
902 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
903 * completes the scoreboard clear must have a non-zero execution mask. This
904 * means, if any kind of predication can change the execution mask or channel
905 * enable of the last instruction, the optimization must be avoided. This is
906 * to avoid instructions being shot down the pipeline when no writes are
907 * required.
908 *
909 * math:
910 * Dependency control does not work well over math instructions.
911 * NB: Discovered empirically
912 */
913 return (inst->mlen || inst->predicate || inst->is_math());
914 }
915
916 /**
917 * Sets the dependency control fields on instructions after register
918 * allocation and before the generator is run.
919 *
920 * When you have a sequence of instructions like:
921 *
922 * DP4 temp.x vertex uniform[0]
923 * DP4 temp.y vertex uniform[0]
924 * DP4 temp.z vertex uniform[0]
925 * DP4 temp.w vertex uniform[0]
926 *
927 * The hardware doesn't know that it can actually run the later instructions
928 * while the previous ones are in flight, producing stalls. However, we have
929 * manual fields we can set in the instructions that let it do so.
930 */
931 void
932 vec4_visitor::opt_set_dependency_control()
933 {
934 vec4_instruction *last_grf_write[BRW_MAX_GRF];
935 uint8_t grf_channels_written[BRW_MAX_GRF];
936 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
937 uint8_t mrf_channels_written[BRW_MAX_GRF];
938
939 assert(prog_data->total_grf ||
940 !"Must be called after register allocation");
941
942 foreach_block (block, cfg) {
943 memset(last_grf_write, 0, sizeof(last_grf_write));
944 memset(last_mrf_write, 0, sizeof(last_mrf_write));
945
946 foreach_inst_in_block (vec4_instruction, inst, block) {
947 /* If we read from a register that we were doing dependency control
948 * on, don't do dependency control across the read.
949 */
950 for (int i = 0; i < 3; i++) {
951 int reg = inst->src[i].nr + inst->src[i].reg_offset;
952 if (inst->src[i].file == VGRF) {
953 last_grf_write[reg] = NULL;
954 } else if (inst->src[i].file == FIXED_GRF) {
955 memset(last_grf_write, 0, sizeof(last_grf_write));
956 break;
957 }
958 assert(inst->src[i].file != MRF);
959 }
960
961 if (is_dep_ctrl_unsafe(inst)) {
962 memset(last_grf_write, 0, sizeof(last_grf_write));
963 memset(last_mrf_write, 0, sizeof(last_mrf_write));
964 continue;
965 }
966
967 /* Now, see if we can do dependency control for this instruction
968 * against a previous one writing to its destination.
969 */
970 int reg = inst->dst.nr + inst->dst.reg_offset;
971 if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
972 if (last_grf_write[reg] &&
973 !(inst->dst.writemask & grf_channels_written[reg])) {
974 last_grf_write[reg]->no_dd_clear = true;
975 inst->no_dd_check = true;
976 } else {
977 grf_channels_written[reg] = 0;
978 }
979
980 last_grf_write[reg] = inst;
981 grf_channels_written[reg] |= inst->dst.writemask;
982 } else if (inst->dst.file == MRF) {
983 if (last_mrf_write[reg] &&
984 !(inst->dst.writemask & mrf_channels_written[reg])) {
985 last_mrf_write[reg]->no_dd_clear = true;
986 inst->no_dd_check = true;
987 } else {
988 mrf_channels_written[reg] = 0;
989 }
990
991 last_mrf_write[reg] = inst;
992 mrf_channels_written[reg] |= inst->dst.writemask;
993 }
994 }
995 }
996 }
997
998 bool
999 vec4_instruction::can_reswizzle(const struct brw_device_info *devinfo,
1000 int dst_writemask,
1001 int swizzle,
1002 int swizzle_mask)
1003 {
1004 /* Gen6 MATH instructions can not execute in align16 mode, so swizzles
1005 * are not allowed.
1006 */
1007 if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
1008 return false;
1009
1010 if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
1011 return false;
1012
1013 /* If this instruction sets anything not referenced by swizzle, then we'd
1014 * totally break it when we reswizzle.
1015 */
1016 if (dst.writemask & ~swizzle_mask)
1017 return false;
1018
1019 if (mlen > 0)
1020 return false;
1021
1022 for (int i = 0; i < 3; i++) {
1023 if (src[i].is_accumulator())
1024 return false;
1025 }
1026
1027 return true;
1028 }
1029
1030 /**
1031 * For any channels in the swizzle's source that were populated by this
1032 * instruction, rewrite the instruction to put the appropriate result directly
1033 * in those channels.
1034 *
1035 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
1036 */
1037 void
1038 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
1039 {
1040 /* Destination write mask doesn't correspond to source swizzle for the dot
1041 * product and pack_bytes instructions.
1042 */
1043 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
1044 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
1045 opcode != VEC4_OPCODE_PACK_BYTES) {
1046 for (int i = 0; i < 3; i++) {
1047 if (src[i].file == BAD_FILE || src[i].file == IMM)
1048 continue;
1049
1050 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
1051 }
1052 }
1053
1054 /* Apply the specified swizzle and writemask to the original mask of
1055 * written components.
1056 */
1057 dst.writemask = dst_writemask &
1058 brw_apply_swizzle_to_mask(swizzle, dst.writemask);
1059 }
1060
1061 /*
1062 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1063 * just written and then MOVed into another reg and making the original write
1064 * of the GRF write directly to the final destination instead.
1065 */
1066 bool
1067 vec4_visitor::opt_register_coalesce()
1068 {
1069 bool progress = false;
1070 int next_ip = 0;
1071
1072 calculate_live_intervals();
1073
1074 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1075 int ip = next_ip;
1076 next_ip++;
1077
1078 if (inst->opcode != BRW_OPCODE_MOV ||
1079 (inst->dst.file != VGRF && inst->dst.file != MRF) ||
1080 inst->predicate ||
1081 inst->src[0].file != VGRF ||
1082 inst->dst.type != inst->src[0].type ||
1083 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1084 continue;
1085
1086 /* Remove no-op MOVs */
1087 if (inst->dst.file == inst->src[0].file &&
1088 inst->dst.nr == inst->src[0].nr &&
1089 inst->dst.reg_offset == inst->src[0].reg_offset) {
1090 bool is_nop_mov = true;
1091
1092 for (unsigned c = 0; c < 4; c++) {
1093 if ((inst->dst.writemask & (1 << c)) == 0)
1094 continue;
1095
1096 if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
1097 is_nop_mov = false;
1098 break;
1099 }
1100 }
1101
1102 if (is_nop_mov) {
1103 inst->remove(block);
1104 progress = true;
1105 continue;
1106 }
1107 }
1108
1109 bool to_mrf = (inst->dst.file == MRF);
1110
1111 /* Can't coalesce this GRF if someone else was going to
1112 * read it later.
1113 */
1114 if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 4) > ip)
1115 continue;
1116
1117 /* We need to check interference with the final destination between this
1118 * instruction and the earliest instruction involved in writing the GRF
1119 * we're eliminating. To do that, keep track of which of our source
1120 * channels we've seen initialized.
1121 */
1122 const unsigned chans_needed =
1123 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1124 inst->dst.writemask);
1125 unsigned chans_remaining = chans_needed;
1126
1127 /* Now walk up the instruction stream trying to see if we can rewrite
1128 * everything writing to the temporary to write into the destination
1129 * instead.
1130 */
1131 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1132 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1133 inst) {
1134 _scan_inst = scan_inst;
1135
1136 if (inst->src[0].in_range(scan_inst->dst, scan_inst->regs_written)) {
1137 /* Found something writing to the reg we want to coalesce away. */
1138 if (to_mrf) {
1139 /* SEND instructions can't have MRF as a destination. */
1140 if (scan_inst->mlen)
1141 break;
1142
1143 if (devinfo->gen == 6) {
1144 /* gen6 math instructions must have the destination be
1145 * VGRF, so no compute-to-MRF for them.
1146 */
1147 if (scan_inst->is_math()) {
1148 break;
1149 }
1150 }
1151 }
1152
1153 /* This doesn't handle saturation on the instruction we
1154 * want to coalesce away if the register types do not match.
1155 * But if scan_inst is a non type-converting 'mov', we can fix
1156 * the types later.
1157 */
1158 if (inst->saturate &&
1159 inst->dst.type != scan_inst->dst.type &&
1160 !(scan_inst->opcode == BRW_OPCODE_MOV &&
1161 scan_inst->dst.type == scan_inst->src[0].type))
1162 break;
1163
1164 /* If we can't handle the swizzle, bail. */
1165 if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
1166 inst->src[0].swizzle,
1167 chans_needed)) {
1168 break;
1169 }
1170
1171 /* This doesn't handle coalescing of multiple registers. */
1172 if (scan_inst->regs_written > 1)
1173 break;
1174
1175 /* Mark which channels we found unconditional writes for. */
1176 if (!scan_inst->predicate)
1177 chans_remaining &= ~scan_inst->dst.writemask;
1178
1179 if (chans_remaining == 0)
1180 break;
1181 }
1182
1183 /* You can't read from an MRF, so if someone else reads our MRF's
1184 * source GRF that we wanted to rewrite, that stops us. If it's a
1185 * GRF we're trying to coalesce to, we don't actually handle
1186 * rewriting sources so bail in that case as well.
1187 */
1188 bool interfered = false;
1189 for (int i = 0; i < 3; i++) {
1190 if (inst->src[0].in_range(scan_inst->src[i],
1191 scan_inst->regs_read(i)))
1192 interfered = true;
1193 }
1194 if (interfered)
1195 break;
1196
1197 /* If somebody else writes the same channels of our destination here,
1198 * we can't coalesce before that.
1199 */
1200 if (inst->dst.in_range(scan_inst->dst, scan_inst->regs_written) &&
1201 (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1202 break;
1203 }
1204
1205 /* Check for reads of the register we're trying to coalesce into. We
1206 * can't go rewriting instructions above that to put some other value
1207 * in the register instead.
1208 */
1209 if (to_mrf && scan_inst->mlen > 0) {
1210 if (inst->dst.nr >= scan_inst->base_mrf &&
1211 inst->dst.nr < scan_inst->base_mrf + scan_inst->mlen) {
1212 break;
1213 }
1214 } else {
1215 for (int i = 0; i < 3; i++) {
1216 if (inst->dst.in_range(scan_inst->src[i],
1217 scan_inst->regs_read(i)))
1218 interfered = true;
1219 }
1220 if (interfered)
1221 break;
1222 }
1223 }
1224
1225 if (chans_remaining == 0) {
1226 /* If we've made it here, we have an MOV we want to coalesce out, and
1227 * a scan_inst pointing to the earliest instruction involved in
1228 * computing the value. Now go rewrite the instruction stream
1229 * between the two.
1230 */
1231 vec4_instruction *scan_inst = _scan_inst;
1232 while (scan_inst != inst) {
1233 if (scan_inst->dst.file == VGRF &&
1234 scan_inst->dst.nr == inst->src[0].nr &&
1235 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1236 scan_inst->reswizzle(inst->dst.writemask,
1237 inst->src[0].swizzle);
1238 scan_inst->dst.file = inst->dst.file;
1239 scan_inst->dst.nr = inst->dst.nr;
1240 scan_inst->dst.reg_offset = inst->dst.reg_offset;
1241 if (inst->saturate &&
1242 inst->dst.type != scan_inst->dst.type) {
1243 /* If we have reached this point, scan_inst is a non
1244 * type-converting 'mov' and we can modify its register types
1245 * to match the ones in inst. Otherwise, we could have an
1246 * incorrect saturation result.
1247 */
1248 scan_inst->dst.type = inst->dst.type;
1249 scan_inst->src[0].type = inst->src[0].type;
1250 }
1251 scan_inst->saturate |= inst->saturate;
1252 }
1253 scan_inst = (vec4_instruction *)scan_inst->next;
1254 }
1255 inst->remove(block);
1256 progress = true;
1257 }
1258 }
1259
1260 if (progress)
1261 invalidate_live_intervals();
1262
1263 return progress;
1264 }
1265
1266 /**
1267 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1268 * flow. We could probably do better here with some form of divergence
1269 * analysis.
1270 */
1271 bool
1272 vec4_visitor::eliminate_find_live_channel()
1273 {
1274 bool progress = false;
1275 unsigned depth = 0;
1276
1277 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1278 switch (inst->opcode) {
1279 case BRW_OPCODE_IF:
1280 case BRW_OPCODE_DO:
1281 depth++;
1282 break;
1283
1284 case BRW_OPCODE_ENDIF:
1285 case BRW_OPCODE_WHILE:
1286 depth--;
1287 break;
1288
1289 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1290 if (depth == 0) {
1291 inst->opcode = BRW_OPCODE_MOV;
1292 inst->src[0] = brw_imm_d(0);
1293 inst->force_writemask_all = true;
1294 progress = true;
1295 }
1296 break;
1297
1298 default:
1299 break;
1300 }
1301 }
1302
1303 return progress;
1304 }
1305
1306 /**
1307 * Splits virtual GRFs requesting more than one contiguous physical register.
1308 *
1309 * We initially create large virtual GRFs for temporary structures, arrays,
1310 * and matrices, so that the dereference visitor functions can add reg_offsets
1311 * to work their way down to the actual member being accessed. But when it
1312 * comes to optimization, we'd like to treat each register as individual
1313 * storage if possible.
1314 *
1315 * So far, the only thing that might prevent splitting is a send message from
1316 * a GRF on IVB.
1317 */
1318 void
1319 vec4_visitor::split_virtual_grfs()
1320 {
1321 int num_vars = this->alloc.count;
1322 int new_virtual_grf[num_vars];
1323 bool split_grf[num_vars];
1324
1325 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1326
1327 /* Try to split anything > 0 sized. */
1328 for (int i = 0; i < num_vars; i++) {
1329 split_grf[i] = this->alloc.sizes[i] != 1;
1330 }
1331
1332 /* Check that the instructions are compatible with the registers we're trying
1333 * to split.
1334 */
1335 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1336 if (inst->dst.file == VGRF && inst->regs_written > 1)
1337 split_grf[inst->dst.nr] = false;
1338
1339 for (int i = 0; i < 3; i++) {
1340 if (inst->src[i].file == VGRF && inst->regs_read(i) > 1)
1341 split_grf[inst->src[i].nr] = false;
1342 }
1343 }
1344
1345 /* Allocate new space for split regs. Note that the virtual
1346 * numbers will be contiguous.
1347 */
1348 for (int i = 0; i < num_vars; i++) {
1349 if (!split_grf[i])
1350 continue;
1351
1352 new_virtual_grf[i] = alloc.allocate(1);
1353 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1354 unsigned reg = alloc.allocate(1);
1355 assert(reg == new_virtual_grf[i] + j - 1);
1356 (void) reg;
1357 }
1358 this->alloc.sizes[i] = 1;
1359 }
1360
1361 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1362 if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
1363 inst->dst.reg_offset != 0) {
1364 inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
1365 inst->dst.reg_offset - 1);
1366 inst->dst.reg_offset = 0;
1367 }
1368 for (int i = 0; i < 3; i++) {
1369 if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
1370 inst->src[i].reg_offset != 0) {
1371 inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
1372 inst->src[i].reg_offset - 1);
1373 inst->src[i].reg_offset = 0;
1374 }
1375 }
1376 }
1377 invalidate_live_intervals();
1378 }
1379
1380 void
1381 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1382 {
1383 dump_instruction(be_inst, stderr);
1384 }
1385
1386 void
1387 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1388 {
1389 vec4_instruction *inst = (vec4_instruction *)be_inst;
1390
1391 if (inst->predicate) {
1392 fprintf(file, "(%cf0.%d%s) ",
1393 inst->predicate_inverse ? '-' : '+',
1394 inst->flag_subreg,
1395 pred_ctrl_align16[inst->predicate]);
1396 }
1397
1398 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
1399 if (inst->saturate)
1400 fprintf(file, ".sat");
1401 if (inst->conditional_mod) {
1402 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1403 if (!inst->predicate &&
1404 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1405 inst->opcode != BRW_OPCODE_IF &&
1406 inst->opcode != BRW_OPCODE_WHILE))) {
1407 fprintf(file, ".f0.%d", inst->flag_subreg);
1408 }
1409 }
1410 fprintf(file, " ");
1411
1412 switch (inst->dst.file) {
1413 case VGRF:
1414 fprintf(file, "vgrf%d.%d", inst->dst.nr, inst->dst.reg_offset);
1415 break;
1416 case FIXED_GRF:
1417 fprintf(file, "g%d", inst->dst.nr);
1418 break;
1419 case MRF:
1420 fprintf(file, "m%d", inst->dst.nr);
1421 break;
1422 case ARF:
1423 switch (inst->dst.nr) {
1424 case BRW_ARF_NULL:
1425 fprintf(file, "null");
1426 break;
1427 case BRW_ARF_ADDRESS:
1428 fprintf(file, "a0.%d", inst->dst.subnr);
1429 break;
1430 case BRW_ARF_ACCUMULATOR:
1431 fprintf(file, "acc%d", inst->dst.subnr);
1432 break;
1433 case BRW_ARF_FLAG:
1434 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1435 break;
1436 default:
1437 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1438 break;
1439 }
1440 if (inst->dst.subnr)
1441 fprintf(file, "+%d", inst->dst.subnr);
1442 break;
1443 case BAD_FILE:
1444 fprintf(file, "(null)");
1445 break;
1446 case IMM:
1447 case ATTR:
1448 case UNIFORM:
1449 unreachable("not reached");
1450 }
1451 if (inst->dst.writemask != WRITEMASK_XYZW) {
1452 fprintf(file, ".");
1453 if (inst->dst.writemask & 1)
1454 fprintf(file, "x");
1455 if (inst->dst.writemask & 2)
1456 fprintf(file, "y");
1457 if (inst->dst.writemask & 4)
1458 fprintf(file, "z");
1459 if (inst->dst.writemask & 8)
1460 fprintf(file, "w");
1461 }
1462 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
1463
1464 if (inst->src[0].file != BAD_FILE)
1465 fprintf(file, ", ");
1466
1467 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1468 if (inst->src[i].negate)
1469 fprintf(file, "-");
1470 if (inst->src[i].abs)
1471 fprintf(file, "|");
1472 switch (inst->src[i].file) {
1473 case VGRF:
1474 fprintf(file, "vgrf%d", inst->src[i].nr);
1475 break;
1476 case FIXED_GRF:
1477 fprintf(file, "g%d", inst->src[i].nr);
1478 break;
1479 case ATTR:
1480 fprintf(file, "attr%d", inst->src[i].nr);
1481 break;
1482 case UNIFORM:
1483 fprintf(file, "u%d", inst->src[i].nr);
1484 break;
1485 case IMM:
1486 switch (inst->src[i].type) {
1487 case BRW_REGISTER_TYPE_F:
1488 fprintf(file, "%fF", inst->src[i].f);
1489 break;
1490 case BRW_REGISTER_TYPE_D:
1491 fprintf(file, "%dD", inst->src[i].d);
1492 break;
1493 case BRW_REGISTER_TYPE_UD:
1494 fprintf(file, "%uU", inst->src[i].ud);
1495 break;
1496 case BRW_REGISTER_TYPE_VF:
1497 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1498 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
1499 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
1500 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
1501 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
1502 break;
1503 default:
1504 fprintf(file, "???");
1505 break;
1506 }
1507 break;
1508 case ARF:
1509 switch (inst->src[i].nr) {
1510 case BRW_ARF_NULL:
1511 fprintf(file, "null");
1512 break;
1513 case BRW_ARF_ADDRESS:
1514 fprintf(file, "a0.%d", inst->src[i].subnr);
1515 break;
1516 case BRW_ARF_ACCUMULATOR:
1517 fprintf(file, "acc%d", inst->src[i].subnr);
1518 break;
1519 case BRW_ARF_FLAG:
1520 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1521 break;
1522 default:
1523 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1524 break;
1525 }
1526 if (inst->src[i].subnr)
1527 fprintf(file, "+%d", inst->src[i].subnr);
1528 break;
1529 case BAD_FILE:
1530 fprintf(file, "(null)");
1531 break;
1532 case MRF:
1533 unreachable("not reached");
1534 }
1535
1536 /* Don't print .0; and only VGRFs have reg_offsets and sizes */
1537 if (inst->src[i].reg_offset != 0 &&
1538 inst->src[i].file == VGRF &&
1539 alloc.sizes[inst->src[i].nr] != 1)
1540 fprintf(file, ".%d", inst->src[i].reg_offset);
1541
1542 if (inst->src[i].file != IMM) {
1543 static const char *chans[4] = {"x", "y", "z", "w"};
1544 fprintf(file, ".");
1545 for (int c = 0; c < 4; c++) {
1546 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1547 }
1548 }
1549
1550 if (inst->src[i].abs)
1551 fprintf(file, "|");
1552
1553 if (inst->src[i].file != IMM) {
1554 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1555 }
1556
1557 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1558 fprintf(file, ", ");
1559 }
1560
1561 if (inst->force_writemask_all)
1562 fprintf(file, " NoMask");
1563
1564 fprintf(file, "\n");
1565 }
1566
1567
1568 static inline struct brw_reg
1569 attribute_to_hw_reg(int attr, bool interleaved)
1570 {
1571 if (interleaved)
1572 return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1573 else
1574 return brw_vec8_grf(attr, 0);
1575 }
1576
1577
1578 /**
1579 * Replace each register of type ATTR in this->instructions with a reference
1580 * to a fixed HW register.
1581 *
1582 * If interleaved is true, then each attribute takes up half a register, with
1583 * register N containing attribute 2*N in its first half and attribute 2*N+1
1584 * in its second half (this corresponds to the payload setup used by geometry
1585 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
1586 * false, then each attribute takes up a whole register, with register N
1587 * containing attribute N (this corresponds to the payload setup used by
1588 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1589 */
1590 void
1591 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1592 bool interleaved)
1593 {
1594 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1595 for (int i = 0; i < 3; i++) {
1596 if (inst->src[i].file != ATTR)
1597 continue;
1598
1599 int grf = attribute_map[inst->src[i].nr + inst->src[i].reg_offset];
1600
1601 /* All attributes used in the shader need to have been assigned a
1602 * hardware register by the caller
1603 */
1604 assert(grf != 0);
1605
1606 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1607 reg.swizzle = inst->src[i].swizzle;
1608 reg.type = inst->src[i].type;
1609 if (inst->src[i].abs)
1610 reg = brw_abs(reg);
1611 if (inst->src[i].negate)
1612 reg = negate(reg);
1613
1614 inst->src[i] = reg;
1615 }
1616 }
1617 }
1618
1619 int
1620 vec4_vs_visitor::setup_attributes(int payload_reg)
1621 {
1622 int nr_attributes;
1623 int attribute_map[VERT_ATTRIB_MAX + 2];
1624 memset(attribute_map, 0, sizeof(attribute_map));
1625
1626 nr_attributes = 0;
1627 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1628 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1629 attribute_map[i] = payload_reg + nr_attributes;
1630 nr_attributes++;
1631 }
1632 }
1633
1634 /* VertexID is stored by the VF as the last vertex element, but we
1635 * don't represent it with a flag in inputs_read, so we call it
1636 * VERT_ATTRIB_MAX.
1637 */
1638 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid ||
1639 vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) {
1640 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1641 nr_attributes++;
1642 }
1643
1644 if (vs_prog_data->uses_drawid) {
1645 attribute_map[VERT_ATTRIB_MAX + 1] = payload_reg + nr_attributes;
1646 nr_attributes++;
1647 }
1648
1649 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1650
1651 return payload_reg + vs_prog_data->nr_attributes;
1652 }
1653
1654 int
1655 vec4_visitor::setup_uniforms(int reg)
1656 {
1657 prog_data->base.dispatch_grf_start_reg = reg;
1658
1659 /* The pre-gen6 VS requires that some push constants get loaded no
1660 * matter what, or the GPU would hang.
1661 */
1662 if (devinfo->gen < 6 && this->uniforms == 0) {
1663 stage_prog_data->param =
1664 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1665 for (unsigned int i = 0; i < 4; i++) {
1666 unsigned int slot = this->uniforms * 4 + i;
1667 static gl_constant_value zero = { 0.0 };
1668 stage_prog_data->param[slot] = &zero;
1669 }
1670
1671 this->uniforms++;
1672 reg++;
1673 } else {
1674 reg += ALIGN(uniforms, 2) / 2;
1675 }
1676
1677 stage_prog_data->nr_params = this->uniforms * 4;
1678
1679 prog_data->base.curb_read_length =
1680 reg - prog_data->base.dispatch_grf_start_reg;
1681
1682 return reg;
1683 }
1684
1685 void
1686 vec4_vs_visitor::setup_payload(void)
1687 {
1688 int reg = 0;
1689
1690 /* The payload always contains important data in g0, which contains
1691 * the URB handles that are passed on to the URB write at the end
1692 * of the thread. So, we always start push constants at g1.
1693 */
1694 reg++;
1695
1696 reg = setup_uniforms(reg);
1697
1698 reg = setup_attributes(reg);
1699
1700 this->first_non_payload_grf = reg;
1701 }
1702
1703 bool
1704 vec4_visitor::lower_minmax()
1705 {
1706 assert(devinfo->gen < 6);
1707
1708 bool progress = false;
1709
1710 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1711 const vec4_builder ibld(this, block, inst);
1712
1713 if (inst->opcode == BRW_OPCODE_SEL &&
1714 inst->predicate == BRW_PREDICATE_NONE) {
1715 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
1716 * the original SEL.L/GE instruction
1717 */
1718 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
1719 inst->conditional_mod);
1720 inst->predicate = BRW_PREDICATE_NORMAL;
1721 inst->conditional_mod = BRW_CONDITIONAL_NONE;
1722
1723 progress = true;
1724 }
1725 }
1726
1727 if (progress)
1728 invalidate_live_intervals();
1729
1730 return progress;
1731 }
1732
1733 src_reg
1734 vec4_visitor::get_timestamp()
1735 {
1736 assert(devinfo->gen >= 7);
1737
1738 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1739 BRW_ARF_TIMESTAMP,
1740 0,
1741 0,
1742 0,
1743 BRW_REGISTER_TYPE_UD,
1744 BRW_VERTICAL_STRIDE_0,
1745 BRW_WIDTH_4,
1746 BRW_HORIZONTAL_STRIDE_4,
1747 BRW_SWIZZLE_XYZW,
1748 WRITEMASK_XYZW));
1749
1750 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1751
1752 vec4_instruction *mov = emit(MOV(dst, ts));
1753 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1754 * even if it's not enabled in the dispatch.
1755 */
1756 mov->force_writemask_all = true;
1757
1758 return src_reg(dst);
1759 }
1760
1761 void
1762 vec4_visitor::emit_shader_time_begin()
1763 {
1764 current_annotation = "shader time start";
1765 shader_start_time = get_timestamp();
1766 }
1767
1768 void
1769 vec4_visitor::emit_shader_time_end()
1770 {
1771 current_annotation = "shader time end";
1772 src_reg shader_end_time = get_timestamp();
1773
1774
1775 /* Check that there weren't any timestamp reset events (assuming these
1776 * were the only two timestamp reads that happened).
1777 */
1778 src_reg reset_end = shader_end_time;
1779 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1780 vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
1781 test->conditional_mod = BRW_CONDITIONAL_Z;
1782
1783 emit(IF(BRW_PREDICATE_NORMAL));
1784
1785 /* Take the current timestamp and get the delta. */
1786 shader_start_time.negate = true;
1787 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1788 emit(ADD(diff, shader_start_time, shader_end_time));
1789
1790 /* If there were no instructions between the two timestamp gets, the diff
1791 * is 2 cycles. Remove that overhead, so I can forget about that when
1792 * trying to determine the time taken for single instructions.
1793 */
1794 emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
1795
1796 emit_shader_time_write(0, src_reg(diff));
1797 emit_shader_time_write(1, brw_imm_ud(1u));
1798 emit(BRW_OPCODE_ELSE);
1799 emit_shader_time_write(2, brw_imm_ud(1u));
1800 emit(BRW_OPCODE_ENDIF);
1801 }
1802
1803 void
1804 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
1805 {
1806 dst_reg dst =
1807 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1808
1809 dst_reg offset = dst;
1810 dst_reg time = dst;
1811 time.reg_offset++;
1812
1813 offset.type = BRW_REGISTER_TYPE_UD;
1814 int index = shader_time_index * 3 + shader_time_subindex;
1815 emit(MOV(offset, brw_imm_d(index * SHADER_TIME_STRIDE)));
1816
1817 time.type = BRW_REGISTER_TYPE_UD;
1818 emit(MOV(time, value));
1819
1820 vec4_instruction *inst =
1821 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1822 inst->mlen = 2;
1823 }
1824
1825 void
1826 vec4_visitor::convert_to_hw_regs()
1827 {
1828 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1829 for (int i = 0; i < 3; i++) {
1830 struct src_reg &src = inst->src[i];
1831 struct brw_reg reg;
1832 switch (src.file) {
1833 case VGRF:
1834 reg = brw_vec8_grf(src.nr + src.reg_offset, 0);
1835 reg.type = src.type;
1836 reg.swizzle = src.swizzle;
1837 reg.abs = src.abs;
1838 reg.negate = src.negate;
1839 break;
1840
1841 case UNIFORM:
1842 reg = stride(brw_vec4_grf(prog_data->base.dispatch_grf_start_reg +
1843 (src.nr + src.reg_offset) / 2,
1844 ((src.nr + src.reg_offset) % 2) * 4),
1845 0, 4, 1);
1846 reg.type = src.type;
1847 reg.swizzle = src.swizzle;
1848 reg.abs = src.abs;
1849 reg.negate = src.negate;
1850
1851 /* This should have been moved to pull constants. */
1852 assert(!src.reladdr);
1853 break;
1854
1855 case ARF:
1856 case FIXED_GRF:
1857 case IMM:
1858 continue;
1859
1860 case BAD_FILE:
1861 /* Probably unused. */
1862 reg = brw_null_reg();
1863 break;
1864
1865 case MRF:
1866 case ATTR:
1867 unreachable("not reached");
1868 }
1869
1870 src = reg;
1871 }
1872
1873 if (inst->is_3src(devinfo)) {
1874 /* 3-src instructions with scalar sources support arbitrary subnr,
1875 * but don't actually use swizzles. Convert swizzle into subnr.
1876 */
1877 for (int i = 0; i < 3; i++) {
1878 if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0) {
1879 assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
1880 inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
1881 }
1882 }
1883 }
1884
1885 dst_reg &dst = inst->dst;
1886 struct brw_reg reg;
1887
1888 switch (inst->dst.file) {
1889 case VGRF:
1890 reg = brw_vec8_grf(dst.nr + dst.reg_offset, 0);
1891 reg.type = dst.type;
1892 reg.writemask = dst.writemask;
1893 break;
1894
1895 case MRF:
1896 assert(((dst.nr + dst.reg_offset) & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
1897 reg = brw_message_reg(dst.nr + dst.reg_offset);
1898 reg.type = dst.type;
1899 reg.writemask = dst.writemask;
1900 break;
1901
1902 case ARF:
1903 case FIXED_GRF:
1904 reg = dst.as_brw_reg();
1905 break;
1906
1907 case BAD_FILE:
1908 reg = brw_null_reg();
1909 break;
1910
1911 case IMM:
1912 case ATTR:
1913 case UNIFORM:
1914 unreachable("not reached");
1915 }
1916
1917 dst = reg;
1918 }
1919 }
1920
1921 bool
1922 vec4_visitor::run()
1923 {
1924 if (shader_time_index >= 0)
1925 emit_shader_time_begin();
1926
1927 emit_prolog();
1928
1929 emit_nir_code();
1930 if (failed)
1931 return false;
1932 base_ir = NULL;
1933
1934 emit_thread_end();
1935
1936 calculate_cfg();
1937
1938 /* Before any optimization, push array accesses out to scratch
1939 * space where we need them to be. This pass may allocate new
1940 * virtual GRFs, so we want to do it early. It also makes sure
1941 * that we have reladdr computations available for CSE, since we'll
1942 * often do repeated subexpressions for those.
1943 */
1944 move_grf_array_access_to_scratch();
1945 move_uniform_array_access_to_pull_constants();
1946
1947 pack_uniform_registers();
1948 move_push_constants_to_pull_constants();
1949 split_virtual_grfs();
1950
1951 #define OPT(pass, args...) ({ \
1952 pass_num++; \
1953 bool this_progress = pass(args); \
1954 \
1955 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
1956 char filename[64]; \
1957 snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \
1958 stage_abbrev, nir->info.name, iteration, pass_num); \
1959 \
1960 backend_shader::dump_instructions(filename); \
1961 } \
1962 \
1963 progress = progress || this_progress; \
1964 this_progress; \
1965 })
1966
1967
1968 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
1969 char filename[64];
1970 snprintf(filename, 64, "%s-%s-00-00-start",
1971 stage_abbrev, nir->info.name);
1972
1973 backend_shader::dump_instructions(filename);
1974 }
1975
1976 bool progress;
1977 int iteration = 0;
1978 int pass_num = 0;
1979 do {
1980 progress = false;
1981 pass_num = 0;
1982 iteration++;
1983
1984 OPT(opt_predicated_break, this);
1985 OPT(opt_reduce_swizzle);
1986 OPT(dead_code_eliminate);
1987 OPT(dead_control_flow_eliminate, this);
1988 OPT(opt_copy_propagation);
1989 OPT(opt_cmod_propagation);
1990 OPT(opt_cse);
1991 OPT(opt_algebraic);
1992 OPT(opt_register_coalesce);
1993 OPT(eliminate_find_live_channel);
1994 } while (progress);
1995
1996 pass_num = 0;
1997
1998 if (OPT(opt_vector_float)) {
1999 OPT(opt_cse);
2000 OPT(opt_copy_propagation, false);
2001 OPT(opt_copy_propagation, true);
2002 OPT(dead_code_eliminate);
2003 }
2004
2005 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
2006 OPT(opt_cmod_propagation);
2007 OPT(opt_cse);
2008 OPT(opt_copy_propagation);
2009 OPT(dead_code_eliminate);
2010 }
2011
2012 if (failed)
2013 return false;
2014
2015 setup_payload();
2016
2017 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) {
2018 /* Debug of register spilling: Go spill everything. */
2019 const int grf_count = alloc.count;
2020 float spill_costs[alloc.count];
2021 bool no_spill[alloc.count];
2022 evaluate_spill_costs(spill_costs, no_spill);
2023 for (int i = 0; i < grf_count; i++) {
2024 if (no_spill[i])
2025 continue;
2026 spill_reg(i);
2027 }
2028 }
2029
2030 bool allocated_without_spills = reg_allocate();
2031
2032 if (!allocated_without_spills) {
2033 compiler->shader_perf_log(log_data,
2034 "%s shader triggered register spilling. "
2035 "Try reducing the number of live vec4 values "
2036 "to improve performance.\n",
2037 stage_name);
2038
2039 while (!reg_allocate()) {
2040 if (failed)
2041 return false;
2042 }
2043 }
2044
2045 opt_schedule_instructions();
2046
2047 opt_set_dependency_control();
2048
2049 convert_to_hw_regs();
2050
2051 if (last_scratch > 0) {
2052 prog_data->base.total_scratch =
2053 brw_get_scratch_size(last_scratch * REG_SIZE);
2054 }
2055
2056 return !failed;
2057 }
2058
2059 } /* namespace brw */
2060
2061 extern "C" {
2062
2063 /**
2064 * Compile a vertex shader.
2065 *
2066 * Returns the final assembly and the program's size.
2067 */
2068 const unsigned *
2069 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
2070 void *mem_ctx,
2071 const struct brw_vs_prog_key *key,
2072 struct brw_vs_prog_data *prog_data,
2073 const nir_shader *src_shader,
2074 gl_clip_plane *clip_planes,
2075 bool use_legacy_snorm_formula,
2076 int shader_time_index,
2077 unsigned *final_assembly_size,
2078 char **error_str)
2079 {
2080 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
2081 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
2082 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
2083 is_scalar);
2084 brw_nir_lower_vs_inputs(shader, compiler->devinfo, is_scalar,
2085 use_legacy_snorm_formula, key->gl_attrib_wa_flags);
2086 brw_nir_lower_vue_outputs(shader, is_scalar);
2087 shader = brw_postprocess_nir(shader, compiler->devinfo, is_scalar);
2088
2089 const unsigned *assembly = NULL;
2090
2091 unsigned nr_attributes = _mesa_bitcount_64(prog_data->inputs_read);
2092
2093 /* gl_VertexID and gl_InstanceID are system values, but arrive via an
2094 * incoming vertex attribute. So, add an extra slot.
2095 */
2096 if (shader->info.system_values_read &
2097 (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
2098 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
2099 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
2100 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) {
2101 nr_attributes++;
2102 }
2103
2104 /* gl_DrawID has its very own vec4 */
2105 if (shader->info.system_values_read & BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID)) {
2106 nr_attributes++;
2107 }
2108
2109 unsigned nr_attribute_slots =
2110 nr_attributes +
2111 _mesa_bitcount_64(shader->info.double_inputs_read);
2112
2113 /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
2114 * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in
2115 * vec4 mode, the hardware appears to wedge unless we read something.
2116 */
2117 if (is_scalar)
2118 prog_data->base.urb_read_length =
2119 DIV_ROUND_UP(nr_attribute_slots, 2);
2120 else
2121 prog_data->base.urb_read_length =
2122 DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
2123
2124 prog_data->nr_attributes = nr_attributes;
2125 prog_data->nr_attribute_slots = nr_attribute_slots;
2126
2127 /* Since vertex shaders reuse the same VUE entry for inputs and outputs
2128 * (overwriting the original contents), we need to make sure the size is
2129 * the larger of the two.
2130 */
2131 const unsigned vue_entries =
2132 MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
2133
2134 if (compiler->devinfo->gen == 6)
2135 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
2136 else
2137 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
2138
2139 if (is_scalar) {
2140 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
2141
2142 fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base,
2143 NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */
2144 shader, 8, shader_time_index);
2145 if (!v.run_vs(clip_planes)) {
2146 if (error_str)
2147 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2148
2149 return NULL;
2150 }
2151
2152 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
2153
2154 fs_generator g(compiler, log_data, mem_ctx, (void *) key,
2155 &prog_data->base.base, v.promoted_constants,
2156 v.runtime_check_aads_emit, MESA_SHADER_VERTEX);
2157 if (INTEL_DEBUG & DEBUG_VS) {
2158 const char *debug_name =
2159 ralloc_asprintf(mem_ctx, "%s vertex shader %s",
2160 shader->info.label ? shader->info.label : "unnamed",
2161 shader->info.name);
2162
2163 g.enable_debug(debug_name);
2164 }
2165 g.generate_code(v.cfg, 8);
2166 assembly = g.get_assembly(final_assembly_size);
2167 }
2168
2169 if (!assembly) {
2170 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
2171
2172 vec4_vs_visitor v(compiler, log_data, key, prog_data,
2173 shader, clip_planes, mem_ctx,
2174 shader_time_index, use_legacy_snorm_formula);
2175 if (!v.run()) {
2176 if (error_str)
2177 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2178
2179 return NULL;
2180 }
2181
2182 assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
2183 shader, &prog_data->base, v.cfg,
2184 final_assembly_size);
2185 }
2186
2187 return assembly;
2188 }
2189
2190 } /* extern "C" */