i965/skl: Break down SIMD16 3-source instructions when required.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_vs.h"
28 #include "brw_dead_control_flow.h"
29
30 extern "C" {
31 #include "main/macros.h"
32 #include "main/shaderobj.h"
33 #include "program/prog_print.h"
34 #include "program/prog_parameter.h"
35 }
36
37 #define MAX_INSTRUCTION (1 << 30)
38
39 using namespace brw;
40
41 namespace brw {
42
43 /**
44 * Common helper for constructing swizzles. When only a subset of
45 * channels of a vec4 are used, we don't want to reference the other
46 * channels, as that will tell optimization passes that those other
47 * channels are used.
48 */
49 unsigned
50 swizzle_for_size(int size)
51 {
52 static const unsigned size_swizzles[4] = {
53 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
54 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
55 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
56 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
57 };
58
59 assert((size >= 1) && (size <= 4));
60 return size_swizzles[size - 1];
61 }
62
63 void
64 src_reg::init()
65 {
66 memset(this, 0, sizeof(*this));
67
68 this->file = BAD_FILE;
69 }
70
71 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
72 {
73 init();
74
75 this->file = file;
76 this->reg = reg;
77 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
78 this->swizzle = swizzle_for_size(type->vector_elements);
79 else
80 this->swizzle = BRW_SWIZZLE_XYZW;
81 }
82
83 /** Generic unset register constructor. */
84 src_reg::src_reg()
85 {
86 init();
87 }
88
89 src_reg::src_reg(float f)
90 {
91 init();
92
93 this->file = IMM;
94 this->type = BRW_REGISTER_TYPE_F;
95 this->fixed_hw_reg.dw1.f = f;
96 }
97
98 src_reg::src_reg(uint32_t u)
99 {
100 init();
101
102 this->file = IMM;
103 this->type = BRW_REGISTER_TYPE_UD;
104 this->fixed_hw_reg.dw1.ud = u;
105 }
106
107 src_reg::src_reg(int32_t i)
108 {
109 init();
110
111 this->file = IMM;
112 this->type = BRW_REGISTER_TYPE_D;
113 this->fixed_hw_reg.dw1.d = i;
114 }
115
116 src_reg::src_reg(uint8_t vf[4])
117 {
118 init();
119
120 this->file = IMM;
121 this->type = BRW_REGISTER_TYPE_VF;
122 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
123 }
124
125 src_reg::src_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
126 {
127 init();
128
129 this->file = IMM;
130 this->type = BRW_REGISTER_TYPE_VF;
131 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
132 (vf1 << 8) |
133 (vf2 << 16) |
134 (vf3 << 24);
135 }
136
137 src_reg::src_reg(struct brw_reg reg)
138 {
139 init();
140
141 this->file = HW_REG;
142 this->fixed_hw_reg = reg;
143 this->type = reg.type;
144 }
145
146 src_reg::src_reg(dst_reg reg)
147 {
148 init();
149
150 this->file = reg.file;
151 this->reg = reg.reg;
152 this->reg_offset = reg.reg_offset;
153 this->type = reg.type;
154 this->reladdr = reg.reladdr;
155 this->fixed_hw_reg = reg.fixed_hw_reg;
156
157 int swizzles[4];
158 int next_chan = 0;
159 int last = 0;
160
161 for (int i = 0; i < 4; i++) {
162 if (!(reg.writemask & (1 << i)))
163 continue;
164
165 swizzles[next_chan++] = last = i;
166 }
167
168 for (; next_chan < 4; next_chan++) {
169 swizzles[next_chan] = last;
170 }
171
172 this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
173 swizzles[2], swizzles[3]);
174 }
175
176 void
177 dst_reg::init()
178 {
179 memset(this, 0, sizeof(*this));
180 this->file = BAD_FILE;
181 this->writemask = WRITEMASK_XYZW;
182 }
183
184 dst_reg::dst_reg()
185 {
186 init();
187 }
188
189 dst_reg::dst_reg(register_file file, int reg)
190 {
191 init();
192
193 this->file = file;
194 this->reg = reg;
195 }
196
197 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
198 int writemask)
199 {
200 init();
201
202 this->file = file;
203 this->reg = reg;
204 this->type = brw_type_for_base_type(type);
205 this->writemask = writemask;
206 }
207
208 dst_reg::dst_reg(struct brw_reg reg)
209 {
210 init();
211
212 this->file = HW_REG;
213 this->fixed_hw_reg = reg;
214 this->type = reg.type;
215 }
216
217 dst_reg::dst_reg(src_reg reg)
218 {
219 init();
220
221 this->file = reg.file;
222 this->reg = reg.reg;
223 this->reg_offset = reg.reg_offset;
224 this->type = reg.type;
225 /* How should we do writemasking when converting from a src_reg? It seems
226 * pretty obvious that for src.xxxx the caller wants to write to src.x, but
227 * what about for src.wx? Just special-case src.xxxx for now.
228 */
229 if (reg.swizzle == BRW_SWIZZLE_XXXX)
230 this->writemask = WRITEMASK_X;
231 else
232 this->writemask = WRITEMASK_XYZW;
233 this->reladdr = reg.reladdr;
234 this->fixed_hw_reg = reg.fixed_hw_reg;
235 }
236
237 bool
238 dst_reg::equals(const dst_reg &r) const
239 {
240 return (file == r.file &&
241 reg == r.reg &&
242 reg_offset == r.reg_offset &&
243 type == r.type &&
244 negate == r.negate &&
245 abs == r.abs &&
246 writemask == r.writemask &&
247 (reladdr == r.reladdr ||
248 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))) &&
249 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
250 sizeof(fixed_hw_reg)) == 0);
251 }
252
253 bool
254 vec4_instruction::is_send_from_grf()
255 {
256 switch (opcode) {
257 case SHADER_OPCODE_SHADER_TIME_ADD:
258 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
259 return true;
260 default:
261 return false;
262 }
263 }
264
265 unsigned
266 vec4_instruction::regs_read(unsigned arg) const
267 {
268 if (src[arg].file == BAD_FILE)
269 return 0;
270
271 switch (opcode) {
272 case SHADER_OPCODE_SHADER_TIME_ADD:
273 return arg == 0 ? mlen : 1;
274
275 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
276 return arg == 1 ? mlen : 1;
277
278 default:
279 return 1;
280 }
281 }
282
283 bool
284 vec4_instruction::can_do_source_mods(struct brw_context *brw)
285 {
286 if (brw->gen == 6 && is_math())
287 return false;
288
289 if (is_send_from_grf())
290 return false;
291
292 if (!backend_instruction::can_do_source_mods())
293 return false;
294
295 return true;
296 }
297
298 /**
299 * Returns how many MRFs an opcode will write over.
300 *
301 * Note that this is not the 0 or 1 implied writes in an actual gen
302 * instruction -- the generate_* functions generate additional MOVs
303 * for setup.
304 */
305 int
306 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
307 {
308 if (inst->mlen == 0 || inst->is_send_from_grf())
309 return 0;
310
311 switch (inst->opcode) {
312 case SHADER_OPCODE_RCP:
313 case SHADER_OPCODE_RSQ:
314 case SHADER_OPCODE_SQRT:
315 case SHADER_OPCODE_EXP2:
316 case SHADER_OPCODE_LOG2:
317 case SHADER_OPCODE_SIN:
318 case SHADER_OPCODE_COS:
319 return 1;
320 case SHADER_OPCODE_INT_QUOTIENT:
321 case SHADER_OPCODE_INT_REMAINDER:
322 case SHADER_OPCODE_POW:
323 return 2;
324 case VS_OPCODE_URB_WRITE:
325 return 1;
326 case VS_OPCODE_PULL_CONSTANT_LOAD:
327 return 2;
328 case SHADER_OPCODE_GEN4_SCRATCH_READ:
329 return 2;
330 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
331 return 3;
332 case GS_OPCODE_URB_WRITE:
333 case GS_OPCODE_URB_WRITE_ALLOCATE:
334 case GS_OPCODE_THREAD_END:
335 return 0;
336 case GS_OPCODE_FF_SYNC:
337 return 1;
338 case SHADER_OPCODE_SHADER_TIME_ADD:
339 return 0;
340 case SHADER_OPCODE_TEX:
341 case SHADER_OPCODE_TXL:
342 case SHADER_OPCODE_TXD:
343 case SHADER_OPCODE_TXF:
344 case SHADER_OPCODE_TXF_CMS:
345 case SHADER_OPCODE_TXF_MCS:
346 case SHADER_OPCODE_TXS:
347 case SHADER_OPCODE_TG4:
348 case SHADER_OPCODE_TG4_OFFSET:
349 return inst->header_present ? 1 : 0;
350 case SHADER_OPCODE_UNTYPED_ATOMIC:
351 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
352 return 0;
353 default:
354 unreachable("not reached");
355 }
356 }
357
358 bool
359 src_reg::equals(const src_reg &r) const
360 {
361 return (file == r.file &&
362 reg == r.reg &&
363 reg_offset == r.reg_offset &&
364 type == r.type &&
365 negate == r.negate &&
366 abs == r.abs &&
367 swizzle == r.swizzle &&
368 !reladdr && !r.reladdr &&
369 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
370 sizeof(fixed_hw_reg)) == 0);
371 }
372
373 bool
374 vec4_visitor::opt_vector_float()
375 {
376 bool progress = false;
377
378 int last_reg = -1, last_reg_offset = -1;
379 enum register_file last_reg_file = BAD_FILE;
380
381 int remaining_channels = 0;
382 uint8_t imm[4];
383 int inst_count = 0;
384 vec4_instruction *imm_inst[4];
385
386 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
387 if (last_reg != inst->dst.reg ||
388 last_reg_offset != inst->dst.reg_offset ||
389 last_reg_file != inst->dst.file) {
390 last_reg = inst->dst.reg;
391 last_reg_offset = inst->dst.reg_offset;
392 last_reg_file = inst->dst.file;
393 remaining_channels = WRITEMASK_XYZW;
394
395 inst_count = 0;
396 }
397
398 if (inst->opcode != BRW_OPCODE_MOV ||
399 inst->dst.writemask == WRITEMASK_XYZW ||
400 inst->src[0].file != IMM)
401 continue;
402
403 int vf = brw_float_to_vf(inst->src[0].fixed_hw_reg.dw1.f);
404 if (vf == -1)
405 continue;
406
407 if ((inst->dst.writemask & WRITEMASK_X) != 0)
408 imm[0] = vf;
409 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
410 imm[1] = vf;
411 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
412 imm[2] = vf;
413 if ((inst->dst.writemask & WRITEMASK_W) != 0)
414 imm[3] = vf;
415
416 imm_inst[inst_count++] = inst;
417
418 remaining_channels &= ~inst->dst.writemask;
419 if (remaining_channels == 0) {
420 vec4_instruction *mov = MOV(inst->dst, imm);
421 mov->dst.type = BRW_REGISTER_TYPE_F;
422 mov->dst.writemask = WRITEMASK_XYZW;
423 inst->insert_after(block, mov);
424 last_reg = -1;
425
426 for (int i = 0; i < inst_count; i++) {
427 imm_inst[i]->remove(block);
428 }
429 progress = true;
430 }
431 }
432
433 if (progress)
434 invalidate_live_intervals();
435
436 return progress;
437 }
438
439 /* Replaces unused channels of a swizzle with channels that are used.
440 *
441 * For instance, this pass transforms
442 *
443 * mov vgrf4.yz, vgrf5.wxzy
444 *
445 * into
446 *
447 * mov vgrf4.yz, vgrf5.xxzx
448 *
449 * This eliminates false uses of some channels, letting dead code elimination
450 * remove the instructions that wrote them.
451 */
452 bool
453 vec4_visitor::opt_reduce_swizzle()
454 {
455 bool progress = false;
456
457 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
458 if (inst->dst.file == BAD_FILE || inst->dst.file == HW_REG ||
459 inst->is_send_from_grf())
460 continue;
461
462 int swizzle[4];
463
464 /* Determine which channels of the sources are read. */
465 switch (inst->opcode) {
466 case VEC4_OPCODE_PACK_BYTES:
467 swizzle[0] = 0;
468 swizzle[1] = 1;
469 swizzle[2] = 2;
470 swizzle[3] = 3;
471 break;
472 case BRW_OPCODE_DP4:
473 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
474 * but all four of src1.
475 */
476 swizzle[0] = 0;
477 swizzle[1] = 1;
478 swizzle[2] = 2;
479 swizzle[3] = 3;
480 break;
481 case BRW_OPCODE_DP3:
482 swizzle[0] = 0;
483 swizzle[1] = 1;
484 swizzle[2] = 2;
485 swizzle[3] = -1;
486 break;
487 case BRW_OPCODE_DP2:
488 swizzle[0] = 0;
489 swizzle[1] = 1;
490 swizzle[2] = -1;
491 swizzle[3] = -1;
492 break;
493 default:
494 swizzle[0] = inst->dst.writemask & WRITEMASK_X ? 0 : -1;
495 swizzle[1] = inst->dst.writemask & WRITEMASK_Y ? 1 : -1;
496 swizzle[2] = inst->dst.writemask & WRITEMASK_Z ? 2 : -1;
497 swizzle[3] = inst->dst.writemask & WRITEMASK_W ? 3 : -1;
498 break;
499 }
500
501 /* Resolve unread channels (-1) by assigning them the swizzle of the
502 * first channel that is used.
503 */
504 int first_used_channel = 0;
505 for (int i = 0; i < 4; i++) {
506 if (swizzle[i] != -1) {
507 first_used_channel = swizzle[i];
508 break;
509 }
510 }
511 for (int i = 0; i < 4; i++) {
512 if (swizzle[i] == -1) {
513 swizzle[i] = first_used_channel;
514 }
515 }
516
517 /* Update sources' swizzles. */
518 for (int i = 0; i < 3; i++) {
519 if (inst->src[i].file != GRF &&
520 inst->src[i].file != ATTR &&
521 inst->src[i].file != UNIFORM)
522 continue;
523
524 int swiz[4];
525 for (int j = 0; j < 4; j++) {
526 swiz[j] = BRW_GET_SWZ(inst->src[i].swizzle, swizzle[j]);
527 }
528
529 unsigned new_swizzle = BRW_SWIZZLE4(swiz[0], swiz[1], swiz[2], swiz[3]);
530 if (inst->src[i].swizzle != new_swizzle) {
531 inst->src[i].swizzle = new_swizzle;
532 progress = true;
533 }
534 }
535 }
536
537 if (progress)
538 invalidate_live_intervals();
539
540 return progress;
541 }
542
543 void
544 vec4_visitor::split_uniform_registers()
545 {
546 /* Prior to this, uniforms have been in an array sized according to
547 * the number of vector uniforms present, sparsely filled (so an
548 * aggregate results in reg indices being skipped over). Now we're
549 * going to cut those aggregates up so each .reg index is one
550 * vector. The goal is to make elimination of unused uniform
551 * components easier later.
552 */
553 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
554 for (int i = 0 ; i < 3; i++) {
555 if (inst->src[i].file != UNIFORM)
556 continue;
557
558 assert(!inst->src[i].reladdr);
559
560 inst->src[i].reg += inst->src[i].reg_offset;
561 inst->src[i].reg_offset = 0;
562 }
563 }
564
565 /* Update that everything is now vector-sized. */
566 for (int i = 0; i < this->uniforms; i++) {
567 this->uniform_size[i] = 1;
568 }
569 }
570
571 void
572 vec4_visitor::pack_uniform_registers()
573 {
574 bool uniform_used[this->uniforms];
575 int new_loc[this->uniforms];
576 int new_chan[this->uniforms];
577
578 memset(uniform_used, 0, sizeof(uniform_used));
579 memset(new_loc, 0, sizeof(new_loc));
580 memset(new_chan, 0, sizeof(new_chan));
581
582 /* Find which uniform vectors are actually used by the program. We
583 * expect unused vector elements when we've moved array access out
584 * to pull constants, and from some GLSL code generators like wine.
585 */
586 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
587 for (int i = 0 ; i < 3; i++) {
588 if (inst->src[i].file != UNIFORM)
589 continue;
590
591 uniform_used[inst->src[i].reg] = true;
592 }
593 }
594
595 int new_uniform_count = 0;
596
597 /* Now, figure out a packing of the live uniform vectors into our
598 * push constants.
599 */
600 for (int src = 0; src < uniforms; src++) {
601 assert(src < uniform_array_size);
602 int size = this->uniform_vector_size[src];
603
604 if (!uniform_used[src]) {
605 this->uniform_vector_size[src] = 0;
606 continue;
607 }
608
609 int dst;
610 /* Find the lowest place we can slot this uniform in. */
611 for (dst = 0; dst < src; dst++) {
612 if (this->uniform_vector_size[dst] + size <= 4)
613 break;
614 }
615
616 if (src == dst) {
617 new_loc[src] = dst;
618 new_chan[src] = 0;
619 } else {
620 new_loc[src] = dst;
621 new_chan[src] = this->uniform_vector_size[dst];
622
623 /* Move the references to the data */
624 for (int j = 0; j < size; j++) {
625 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
626 stage_prog_data->param[src * 4 + j];
627 }
628
629 this->uniform_vector_size[dst] += size;
630 this->uniform_vector_size[src] = 0;
631 }
632
633 new_uniform_count = MAX2(new_uniform_count, dst + 1);
634 }
635
636 this->uniforms = new_uniform_count;
637
638 /* Now, update the instructions for our repacked uniforms. */
639 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
640 for (int i = 0 ; i < 3; i++) {
641 int src = inst->src[i].reg;
642
643 if (inst->src[i].file != UNIFORM)
644 continue;
645
646 inst->src[i].reg = new_loc[src];
647
648 int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
649 int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
650 int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
651 int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
652 inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
653 }
654 }
655 }
656
657 /**
658 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
659 *
660 * While GLSL IR also performs this optimization, we end up with it in
661 * our instruction stream for a couple of reasons. One is that we
662 * sometimes generate silly instructions, for example in array access
663 * where we'll generate "ADD offset, index, base" even if base is 0.
664 * The other is that GLSL IR's constant propagation doesn't track the
665 * components of aggregates, so some VS patterns (initialize matrix to
666 * 0, accumulate in vertex blending factors) end up breaking down to
667 * instructions involving 0.
668 */
669 bool
670 vec4_visitor::opt_algebraic()
671 {
672 bool progress = false;
673
674 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
675 switch (inst->opcode) {
676 case BRW_OPCODE_MOV:
677 if (inst->src[0].file != IMM)
678 break;
679
680 if (inst->saturate) {
681 if (inst->dst.type != inst->src[0].type)
682 assert(!"unimplemented: saturate mixed types");
683
684 if (brw_saturate_immediate(inst->dst.type,
685 &inst->src[0].fixed_hw_reg)) {
686 inst->saturate = false;
687 progress = true;
688 }
689 }
690 break;
691
692 case VEC4_OPCODE_UNPACK_UNIFORM:
693 if (inst->src[0].file != UNIFORM) {
694 inst->opcode = BRW_OPCODE_MOV;
695 progress = true;
696 }
697 break;
698
699 case BRW_OPCODE_ADD:
700 if (inst->src[1].is_zero()) {
701 inst->opcode = BRW_OPCODE_MOV;
702 inst->src[1] = src_reg();
703 progress = true;
704 }
705 break;
706
707 case BRW_OPCODE_MUL:
708 if (inst->src[1].is_zero()) {
709 inst->opcode = BRW_OPCODE_MOV;
710 switch (inst->src[0].type) {
711 case BRW_REGISTER_TYPE_F:
712 inst->src[0] = src_reg(0.0f);
713 break;
714 case BRW_REGISTER_TYPE_D:
715 inst->src[0] = src_reg(0);
716 break;
717 case BRW_REGISTER_TYPE_UD:
718 inst->src[0] = src_reg(0u);
719 break;
720 default:
721 unreachable("not reached");
722 }
723 inst->src[1] = src_reg();
724 progress = true;
725 } else if (inst->src[1].is_one()) {
726 inst->opcode = BRW_OPCODE_MOV;
727 inst->src[1] = src_reg();
728 progress = true;
729 } else if (inst->src[1].is_negative_one()) {
730 inst->opcode = BRW_OPCODE_MOV;
731 inst->src[0].negate = !inst->src[0].negate;
732 inst->src[1] = src_reg();
733 progress = true;
734 }
735 break;
736 case BRW_OPCODE_CMP:
737 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
738 inst->src[0].abs &&
739 inst->src[0].negate &&
740 inst->src[1].is_zero()) {
741 inst->src[0].abs = false;
742 inst->src[0].negate = false;
743 inst->conditional_mod = BRW_CONDITIONAL_Z;
744 progress = true;
745 break;
746 }
747 break;
748 case SHADER_OPCODE_RCP: {
749 vec4_instruction *prev = (vec4_instruction *)inst->prev;
750 if (prev->opcode == SHADER_OPCODE_SQRT) {
751 if (inst->src[0].equals(src_reg(prev->dst))) {
752 inst->opcode = SHADER_OPCODE_RSQ;
753 inst->src[0] = prev->src[0];
754 progress = true;
755 }
756 }
757 break;
758 }
759 default:
760 break;
761 }
762 }
763
764 if (progress)
765 invalidate_live_intervals();
766
767 return progress;
768 }
769
770 /**
771 * Only a limited number of hardware registers may be used for push
772 * constants, so this turns access to the overflowed constants into
773 * pull constants.
774 */
775 void
776 vec4_visitor::move_push_constants_to_pull_constants()
777 {
778 int pull_constant_loc[this->uniforms];
779
780 /* Only allow 32 registers (256 uniform components) as push constants,
781 * which is the limit on gen6.
782 *
783 * If changing this value, note the limitation about total_regs in
784 * brw_curbe.c.
785 */
786 int max_uniform_components = 32 * 8;
787 if (this->uniforms * 4 <= max_uniform_components)
788 return;
789
790 /* Make some sort of choice as to which uniforms get sent to pull
791 * constants. We could potentially do something clever here like
792 * look for the most infrequently used uniform vec4s, but leave
793 * that for later.
794 */
795 for (int i = 0; i < this->uniforms * 4; i += 4) {
796 pull_constant_loc[i / 4] = -1;
797
798 if (i >= max_uniform_components) {
799 const gl_constant_value **values = &stage_prog_data->param[i];
800
801 /* Try to find an existing copy of this uniform in the pull
802 * constants if it was part of an array access already.
803 */
804 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
805 int matches;
806
807 for (matches = 0; matches < 4; matches++) {
808 if (stage_prog_data->pull_param[j + matches] != values[matches])
809 break;
810 }
811
812 if (matches == 4) {
813 pull_constant_loc[i / 4] = j / 4;
814 break;
815 }
816 }
817
818 if (pull_constant_loc[i / 4] == -1) {
819 assert(stage_prog_data->nr_pull_params % 4 == 0);
820 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
821
822 for (int j = 0; j < 4; j++) {
823 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
824 values[j];
825 }
826 }
827 }
828 }
829
830 /* Now actually rewrite usage of the things we've moved to pull
831 * constants.
832 */
833 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
834 for (int i = 0 ; i < 3; i++) {
835 if (inst->src[i].file != UNIFORM ||
836 pull_constant_loc[inst->src[i].reg] == -1)
837 continue;
838
839 int uniform = inst->src[i].reg;
840
841 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
842
843 emit_pull_constant_load(block, inst, temp, inst->src[i],
844 pull_constant_loc[uniform]);
845
846 inst->src[i].file = temp.file;
847 inst->src[i].reg = temp.reg;
848 inst->src[i].reg_offset = temp.reg_offset;
849 inst->src[i].reladdr = NULL;
850 }
851 }
852
853 /* Repack push constants to remove the now-unused ones. */
854 pack_uniform_registers();
855 }
856
857 /* Conditions for which we want to avoid setting the dependency control bits */
858 bool
859 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
860 {
861 #define IS_DWORD(reg) \
862 (reg.type == BRW_REGISTER_TYPE_UD || \
863 reg.type == BRW_REGISTER_TYPE_D)
864
865 /* "When source or destination datatype is 64b or operation is integer DWord
866 * multiply, DepCtrl must not be used."
867 * May apply to future SoCs as well.
868 */
869 if (brw->is_cherryview) {
870 if (inst->opcode == BRW_OPCODE_MUL &&
871 IS_DWORD(inst->src[0]) &&
872 IS_DWORD(inst->src[1]))
873 return true;
874 }
875 #undef IS_DWORD
876
877 if (brw->gen >= 8) {
878 if (inst->opcode == BRW_OPCODE_F32TO16)
879 return true;
880 }
881
882 /*
883 * mlen:
884 * In the presence of send messages, totally interrupt dependency
885 * control. They're long enough that the chance of dependency
886 * control around them just doesn't matter.
887 *
888 * predicate:
889 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
890 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
891 * completes the scoreboard clear must have a non-zero execution mask. This
892 * means, if any kind of predication can change the execution mask or channel
893 * enable of the last instruction, the optimization must be avoided. This is
894 * to avoid instructions being shot down the pipeline when no writes are
895 * required.
896 *
897 * math:
898 * Dependency control does not work well over math instructions.
899 * NB: Discovered empirically
900 */
901 return (inst->mlen || inst->predicate || inst->is_math());
902 }
903
904 /**
905 * Sets the dependency control fields on instructions after register
906 * allocation and before the generator is run.
907 *
908 * When you have a sequence of instructions like:
909 *
910 * DP4 temp.x vertex uniform[0]
911 * DP4 temp.y vertex uniform[0]
912 * DP4 temp.z vertex uniform[0]
913 * DP4 temp.w vertex uniform[0]
914 *
915 * The hardware doesn't know that it can actually run the later instructions
916 * while the previous ones are in flight, producing stalls. However, we have
917 * manual fields we can set in the instructions that let it do so.
918 */
919 void
920 vec4_visitor::opt_set_dependency_control()
921 {
922 vec4_instruction *last_grf_write[BRW_MAX_GRF];
923 uint8_t grf_channels_written[BRW_MAX_GRF];
924 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
925 uint8_t mrf_channels_written[BRW_MAX_GRF];
926
927 assert(prog_data->total_grf ||
928 !"Must be called after register allocation");
929
930 foreach_block (block, cfg) {
931 memset(last_grf_write, 0, sizeof(last_grf_write));
932 memset(last_mrf_write, 0, sizeof(last_mrf_write));
933
934 foreach_inst_in_block (vec4_instruction, inst, block) {
935 /* If we read from a register that we were doing dependency control
936 * on, don't do dependency control across the read.
937 */
938 for (int i = 0; i < 3; i++) {
939 int reg = inst->src[i].reg + inst->src[i].reg_offset;
940 if (inst->src[i].file == GRF) {
941 last_grf_write[reg] = NULL;
942 } else if (inst->src[i].file == HW_REG) {
943 memset(last_grf_write, 0, sizeof(last_grf_write));
944 break;
945 }
946 assert(inst->src[i].file != MRF);
947 }
948
949 if (is_dep_ctrl_unsafe(inst)) {
950 memset(last_grf_write, 0, sizeof(last_grf_write));
951 memset(last_mrf_write, 0, sizeof(last_mrf_write));
952 continue;
953 }
954
955 /* Now, see if we can do dependency control for this instruction
956 * against a previous one writing to its destination.
957 */
958 int reg = inst->dst.reg + inst->dst.reg_offset;
959 if (inst->dst.file == GRF) {
960 if (last_grf_write[reg] &&
961 !(inst->dst.writemask & grf_channels_written[reg])) {
962 last_grf_write[reg]->no_dd_clear = true;
963 inst->no_dd_check = true;
964 } else {
965 grf_channels_written[reg] = 0;
966 }
967
968 last_grf_write[reg] = inst;
969 grf_channels_written[reg] |= inst->dst.writemask;
970 } else if (inst->dst.file == MRF) {
971 if (last_mrf_write[reg] &&
972 !(inst->dst.writemask & mrf_channels_written[reg])) {
973 last_mrf_write[reg]->no_dd_clear = true;
974 inst->no_dd_check = true;
975 } else {
976 mrf_channels_written[reg] = 0;
977 }
978
979 last_mrf_write[reg] = inst;
980 mrf_channels_written[reg] |= inst->dst.writemask;
981 } else if (inst->dst.reg == HW_REG) {
982 if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
983 memset(last_grf_write, 0, sizeof(last_grf_write));
984 if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
985 memset(last_mrf_write, 0, sizeof(last_mrf_write));
986 }
987 }
988 }
989 }
990
991 bool
992 vec4_instruction::can_reswizzle(int dst_writemask,
993 int swizzle,
994 int swizzle_mask)
995 {
996 /* If this instruction sets anything not referenced by swizzle, then we'd
997 * totally break it when we reswizzle.
998 */
999 if (dst.writemask & ~swizzle_mask)
1000 return false;
1001
1002 if (mlen > 0)
1003 return false;
1004
1005 return true;
1006 }
1007
1008 /**
1009 * For any channels in the swizzle's source that were populated by this
1010 * instruction, rewrite the instruction to put the appropriate result directly
1011 * in those channels.
1012 *
1013 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
1014 */
1015 void
1016 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
1017 {
1018 int new_writemask = 0;
1019 int new_swizzle[4] = { 0 };
1020
1021 /* Dot product instructions write a single result into all channels. */
1022 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
1023 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2) {
1024 for (int i = 0; i < 3; i++) {
1025 if (src[i].file == BAD_FILE || src[i].file == IMM)
1026 continue;
1027
1028 /* Destination write mask doesn't correspond to source swizzle for the
1029 * pack_bytes instruction.
1030 */
1031 if (opcode == VEC4_OPCODE_PACK_BYTES)
1032 continue;
1033
1034 for (int c = 0; c < 4; c++) {
1035 new_swizzle[c] = BRW_GET_SWZ(src[i].swizzle, BRW_GET_SWZ(swizzle, c));
1036 }
1037
1038 src[i].swizzle = BRW_SWIZZLE4(new_swizzle[0], new_swizzle[1],
1039 new_swizzle[2], new_swizzle[3]);
1040 }
1041 }
1042
1043 for (int c = 0; c < 4; c++) {
1044 int bit = 1 << BRW_GET_SWZ(swizzle, c);
1045 /* Skip components of the swizzle not used by the dst. */
1046 if (!(dst_writemask & (1 << c)))
1047 continue;
1048 /* If we were populating this component, then populate the
1049 * corresponding channel of the new dst.
1050 */
1051 if (dst.writemask & bit)
1052 new_writemask |= (1 << c);
1053 }
1054 dst.writemask = new_writemask;
1055 }
1056
1057 /*
1058 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1059 * just written and then MOVed into another reg and making the original write
1060 * of the GRF write directly to the final destination instead.
1061 */
1062 bool
1063 vec4_visitor::opt_register_coalesce()
1064 {
1065 bool progress = false;
1066 int next_ip = 0;
1067
1068 calculate_live_intervals();
1069
1070 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1071 int ip = next_ip;
1072 next_ip++;
1073
1074 if (inst->opcode != BRW_OPCODE_MOV ||
1075 (inst->dst.file != GRF && inst->dst.file != MRF) ||
1076 inst->predicate ||
1077 inst->src[0].file != GRF ||
1078 inst->dst.type != inst->src[0].type ||
1079 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1080 continue;
1081
1082 bool to_mrf = (inst->dst.file == MRF);
1083
1084 /* Can't coalesce this GRF if someone else was going to
1085 * read it later.
1086 */
1087 if (this->virtual_grf_end[inst->src[0].reg * 4 + 0] > ip ||
1088 this->virtual_grf_end[inst->src[0].reg * 4 + 1] > ip ||
1089 this->virtual_grf_end[inst->src[0].reg * 4 + 2] > ip ||
1090 this->virtual_grf_end[inst->src[0].reg * 4 + 3] > ip)
1091 continue;
1092
1093 /* We need to check interference with the final destination between this
1094 * instruction and the earliest instruction involved in writing the GRF
1095 * we're eliminating. To do that, keep track of which of our source
1096 * channels we've seen initialized.
1097 */
1098 bool chans_needed[4] = {false, false, false, false};
1099 int chans_remaining = 0;
1100 int swizzle_mask = 0;
1101 for (int i = 0; i < 4; i++) {
1102 int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
1103
1104 if (!(inst->dst.writemask & (1 << i)))
1105 continue;
1106
1107 swizzle_mask |= (1 << chan);
1108
1109 if (!chans_needed[chan]) {
1110 chans_needed[chan] = true;
1111 chans_remaining++;
1112 }
1113 }
1114
1115 /* Now walk up the instruction stream trying to see if we can rewrite
1116 * everything writing to the temporary to write into the destination
1117 * instead.
1118 */
1119 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1120 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1121 inst, block) {
1122 _scan_inst = scan_inst;
1123
1124 if (scan_inst->dst.file == GRF &&
1125 scan_inst->dst.reg == inst->src[0].reg &&
1126 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1127 /* Found something writing to the reg we want to coalesce away. */
1128 if (to_mrf) {
1129 /* SEND instructions can't have MRF as a destination. */
1130 if (scan_inst->mlen)
1131 break;
1132
1133 if (brw->gen == 6) {
1134 /* gen6 math instructions must have the destination be
1135 * GRF, so no compute-to-MRF for them.
1136 */
1137 if (scan_inst->is_math()) {
1138 break;
1139 }
1140 }
1141 }
1142
1143 /* If we can't handle the swizzle, bail. */
1144 if (!scan_inst->can_reswizzle(inst->dst.writemask,
1145 inst->src[0].swizzle,
1146 swizzle_mask)) {
1147 break;
1148 }
1149
1150 /* Mark which channels we found unconditional writes for. */
1151 if (!scan_inst->predicate) {
1152 for (int i = 0; i < 4; i++) {
1153 if (scan_inst->dst.writemask & (1 << i) &&
1154 chans_needed[i]) {
1155 chans_needed[i] = false;
1156 chans_remaining--;
1157 }
1158 }
1159 }
1160
1161 if (chans_remaining == 0)
1162 break;
1163 }
1164
1165 /* You can't read from an MRF, so if someone else reads our MRF's
1166 * source GRF that we wanted to rewrite, that stops us. If it's a
1167 * GRF we're trying to coalesce to, we don't actually handle
1168 * rewriting sources so bail in that case as well.
1169 */
1170 bool interfered = false;
1171 for (int i = 0; i < 3; i++) {
1172 if (scan_inst->src[i].file == GRF &&
1173 scan_inst->src[i].reg == inst->src[0].reg &&
1174 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1175 interfered = true;
1176 }
1177 }
1178 if (interfered)
1179 break;
1180
1181 /* If somebody else writes our destination here, we can't coalesce
1182 * before that.
1183 */
1184 if (scan_inst->dst.file == inst->dst.file &&
1185 scan_inst->dst.reg == inst->dst.reg) {
1186 break;
1187 }
1188
1189 /* Check for reads of the register we're trying to coalesce into. We
1190 * can't go rewriting instructions above that to put some other value
1191 * in the register instead.
1192 */
1193 if (to_mrf && scan_inst->mlen > 0) {
1194 if (inst->dst.reg >= scan_inst->base_mrf &&
1195 inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
1196 break;
1197 }
1198 } else {
1199 for (int i = 0; i < 3; i++) {
1200 if (scan_inst->src[i].file == inst->dst.file &&
1201 scan_inst->src[i].reg == inst->dst.reg &&
1202 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1203 interfered = true;
1204 }
1205 }
1206 if (interfered)
1207 break;
1208 }
1209 }
1210
1211 if (chans_remaining == 0) {
1212 /* If we've made it here, we have an MOV we want to coalesce out, and
1213 * a scan_inst pointing to the earliest instruction involved in
1214 * computing the value. Now go rewrite the instruction stream
1215 * between the two.
1216 */
1217 vec4_instruction *scan_inst = _scan_inst;
1218 while (scan_inst != inst) {
1219 if (scan_inst->dst.file == GRF &&
1220 scan_inst->dst.reg == inst->src[0].reg &&
1221 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1222 scan_inst->reswizzle(inst->dst.writemask,
1223 inst->src[0].swizzle);
1224 scan_inst->dst.file = inst->dst.file;
1225 scan_inst->dst.reg = inst->dst.reg;
1226 scan_inst->dst.reg_offset = inst->dst.reg_offset;
1227 scan_inst->saturate |= inst->saturate;
1228 }
1229 scan_inst = (vec4_instruction *)scan_inst->next;
1230 }
1231 inst->remove(block);
1232 progress = true;
1233 }
1234 }
1235
1236 if (progress)
1237 invalidate_live_intervals();
1238
1239 return progress;
1240 }
1241
1242 /**
1243 * Splits virtual GRFs requesting more than one contiguous physical register.
1244 *
1245 * We initially create large virtual GRFs for temporary structures, arrays,
1246 * and matrices, so that the dereference visitor functions can add reg_offsets
1247 * to work their way down to the actual member being accessed. But when it
1248 * comes to optimization, we'd like to treat each register as individual
1249 * storage if possible.
1250 *
1251 * So far, the only thing that might prevent splitting is a send message from
1252 * a GRF on IVB.
1253 */
1254 void
1255 vec4_visitor::split_virtual_grfs()
1256 {
1257 int num_vars = this->alloc.count;
1258 int new_virtual_grf[num_vars];
1259 bool split_grf[num_vars];
1260
1261 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1262
1263 /* Try to split anything > 0 sized. */
1264 for (int i = 0; i < num_vars; i++) {
1265 split_grf[i] = this->alloc.sizes[i] != 1;
1266 }
1267
1268 /* Check that the instructions are compatible with the registers we're trying
1269 * to split.
1270 */
1271 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1272 /* If there's a SEND message loading from a GRF on gen7+, it needs to be
1273 * contiguous.
1274 */
1275 if (inst->is_send_from_grf()) {
1276 for (int i = 0; i < 3; i++) {
1277 if (inst->src[i].file == GRF) {
1278 split_grf[inst->src[i].reg] = false;
1279 }
1280 }
1281 }
1282 }
1283
1284 /* Allocate new space for split regs. Note that the virtual
1285 * numbers will be contiguous.
1286 */
1287 for (int i = 0; i < num_vars; i++) {
1288 if (!split_grf[i])
1289 continue;
1290
1291 new_virtual_grf[i] = alloc.allocate(1);
1292 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1293 unsigned reg = alloc.allocate(1);
1294 assert(reg == new_virtual_grf[i] + j - 1);
1295 (void) reg;
1296 }
1297 this->alloc.sizes[i] = 1;
1298 }
1299
1300 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1301 if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
1302 inst->dst.reg_offset != 0) {
1303 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1304 inst->dst.reg_offset - 1);
1305 inst->dst.reg_offset = 0;
1306 }
1307 for (int i = 0; i < 3; i++) {
1308 if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
1309 inst->src[i].reg_offset != 0) {
1310 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1311 inst->src[i].reg_offset - 1);
1312 inst->src[i].reg_offset = 0;
1313 }
1314 }
1315 }
1316 invalidate_live_intervals();
1317 }
1318
1319 void
1320 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1321 {
1322 dump_instruction(be_inst, stderr);
1323 }
1324
1325 void
1326 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1327 {
1328 vec4_instruction *inst = (vec4_instruction *)be_inst;
1329
1330 if (inst->predicate) {
1331 fprintf(file, "(%cf0.%d) ",
1332 inst->predicate_inverse ? '-' : '+',
1333 inst->flag_subreg);
1334 }
1335
1336 fprintf(file, "%s", brw_instruction_name(inst->opcode));
1337 if (inst->saturate)
1338 fprintf(file, ".sat");
1339 if (inst->conditional_mod) {
1340 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1341 if (!inst->predicate &&
1342 (brw->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1343 inst->opcode != BRW_OPCODE_IF &&
1344 inst->opcode != BRW_OPCODE_WHILE))) {
1345 fprintf(file, ".f0.%d", inst->flag_subreg);
1346 }
1347 }
1348 fprintf(file, " ");
1349
1350 switch (inst->dst.file) {
1351 case GRF:
1352 fprintf(file, "vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
1353 break;
1354 case MRF:
1355 fprintf(file, "m%d", inst->dst.reg);
1356 break;
1357 case HW_REG:
1358 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1359 switch (inst->dst.fixed_hw_reg.nr) {
1360 case BRW_ARF_NULL:
1361 fprintf(file, "null");
1362 break;
1363 case BRW_ARF_ADDRESS:
1364 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
1365 break;
1366 case BRW_ARF_ACCUMULATOR:
1367 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
1368 break;
1369 case BRW_ARF_FLAG:
1370 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1371 inst->dst.fixed_hw_reg.subnr);
1372 break;
1373 default:
1374 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1375 inst->dst.fixed_hw_reg.subnr);
1376 break;
1377 }
1378 } else {
1379 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
1380 }
1381 if (inst->dst.fixed_hw_reg.subnr)
1382 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
1383 break;
1384 case BAD_FILE:
1385 fprintf(file, "(null)");
1386 break;
1387 default:
1388 fprintf(file, "???");
1389 break;
1390 }
1391 if (inst->dst.writemask != WRITEMASK_XYZW) {
1392 fprintf(file, ".");
1393 if (inst->dst.writemask & 1)
1394 fprintf(file, "x");
1395 if (inst->dst.writemask & 2)
1396 fprintf(file, "y");
1397 if (inst->dst.writemask & 4)
1398 fprintf(file, "z");
1399 if (inst->dst.writemask & 8)
1400 fprintf(file, "w");
1401 }
1402 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
1403
1404 if (inst->src[0].file != BAD_FILE)
1405 fprintf(file, ", ");
1406
1407 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1408 if (inst->src[i].negate)
1409 fprintf(file, "-");
1410 if (inst->src[i].abs)
1411 fprintf(file, "|");
1412 switch (inst->src[i].file) {
1413 case GRF:
1414 fprintf(file, "vgrf%d", inst->src[i].reg);
1415 break;
1416 case ATTR:
1417 fprintf(file, "attr%d", inst->src[i].reg);
1418 break;
1419 case UNIFORM:
1420 fprintf(file, "u%d", inst->src[i].reg);
1421 break;
1422 case IMM:
1423 switch (inst->src[i].type) {
1424 case BRW_REGISTER_TYPE_F:
1425 fprintf(file, "%fF", inst->src[i].fixed_hw_reg.dw1.f);
1426 break;
1427 case BRW_REGISTER_TYPE_D:
1428 fprintf(file, "%dD", inst->src[i].fixed_hw_reg.dw1.d);
1429 break;
1430 case BRW_REGISTER_TYPE_UD:
1431 fprintf(file, "%uU", inst->src[i].fixed_hw_reg.dw1.ud);
1432 break;
1433 case BRW_REGISTER_TYPE_VF:
1434 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1435 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
1436 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
1437 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
1438 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
1439 break;
1440 default:
1441 fprintf(file, "???");
1442 break;
1443 }
1444 break;
1445 case HW_REG:
1446 if (inst->src[i].fixed_hw_reg.negate)
1447 fprintf(file, "-");
1448 if (inst->src[i].fixed_hw_reg.abs)
1449 fprintf(file, "|");
1450 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1451 switch (inst->src[i].fixed_hw_reg.nr) {
1452 case BRW_ARF_NULL:
1453 fprintf(file, "null");
1454 break;
1455 case BRW_ARF_ADDRESS:
1456 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
1457 break;
1458 case BRW_ARF_ACCUMULATOR:
1459 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
1460 break;
1461 case BRW_ARF_FLAG:
1462 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1463 inst->src[i].fixed_hw_reg.subnr);
1464 break;
1465 default:
1466 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1467 inst->src[i].fixed_hw_reg.subnr);
1468 break;
1469 }
1470 } else {
1471 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
1472 }
1473 if (inst->src[i].fixed_hw_reg.subnr)
1474 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
1475 if (inst->src[i].fixed_hw_reg.abs)
1476 fprintf(file, "|");
1477 break;
1478 case BAD_FILE:
1479 fprintf(file, "(null)");
1480 break;
1481 default:
1482 fprintf(file, "???");
1483 break;
1484 }
1485
1486 /* Don't print .0; and only VGRFs have reg_offsets and sizes */
1487 if (inst->src[i].reg_offset != 0 &&
1488 inst->src[i].file == GRF &&
1489 alloc.sizes[inst->src[i].reg] != 1)
1490 fprintf(file, ".%d", inst->src[i].reg_offset);
1491
1492 if (inst->src[i].file != IMM) {
1493 static const char *chans[4] = {"x", "y", "z", "w"};
1494 fprintf(file, ".");
1495 for (int c = 0; c < 4; c++) {
1496 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1497 }
1498 }
1499
1500 if (inst->src[i].abs)
1501 fprintf(file, "|");
1502
1503 if (inst->src[i].file != IMM) {
1504 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1505 }
1506
1507 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1508 fprintf(file, ", ");
1509 }
1510
1511 fprintf(file, "\n");
1512 }
1513
1514
1515 static inline struct brw_reg
1516 attribute_to_hw_reg(int attr, bool interleaved)
1517 {
1518 if (interleaved)
1519 return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1520 else
1521 return brw_vec8_grf(attr, 0);
1522 }
1523
1524
1525 /**
1526 * Replace each register of type ATTR in this->instructions with a reference
1527 * to a fixed HW register.
1528 *
1529 * If interleaved is true, then each attribute takes up half a register, with
1530 * register N containing attribute 2*N in its first half and attribute 2*N+1
1531 * in its second half (this corresponds to the payload setup used by geometry
1532 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
1533 * false, then each attribute takes up a whole register, with register N
1534 * containing attribute N (this corresponds to the payload setup used by
1535 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1536 */
1537 void
1538 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1539 bool interleaved)
1540 {
1541 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1542 /* We have to support ATTR as a destination for GL_FIXED fixup. */
1543 if (inst->dst.file == ATTR) {
1544 int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
1545
1546 /* All attributes used in the shader need to have been assigned a
1547 * hardware register by the caller
1548 */
1549 assert(grf != 0);
1550
1551 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1552 reg.type = inst->dst.type;
1553 reg.dw1.bits.writemask = inst->dst.writemask;
1554
1555 inst->dst.file = HW_REG;
1556 inst->dst.fixed_hw_reg = reg;
1557 }
1558
1559 for (int i = 0; i < 3; i++) {
1560 if (inst->src[i].file != ATTR)
1561 continue;
1562
1563 int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
1564
1565 /* All attributes used in the shader need to have been assigned a
1566 * hardware register by the caller
1567 */
1568 assert(grf != 0);
1569
1570 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1571 reg.dw1.bits.swizzle = inst->src[i].swizzle;
1572 reg.type = inst->src[i].type;
1573 if (inst->src[i].abs)
1574 reg = brw_abs(reg);
1575 if (inst->src[i].negate)
1576 reg = negate(reg);
1577
1578 inst->src[i].file = HW_REG;
1579 inst->src[i].fixed_hw_reg = reg;
1580 }
1581 }
1582 }
1583
1584 int
1585 vec4_vs_visitor::setup_attributes(int payload_reg)
1586 {
1587 int nr_attributes;
1588 int attribute_map[VERT_ATTRIB_MAX + 1];
1589 memset(attribute_map, 0, sizeof(attribute_map));
1590
1591 nr_attributes = 0;
1592 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1593 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1594 attribute_map[i] = payload_reg + nr_attributes;
1595 nr_attributes++;
1596 }
1597 }
1598
1599 /* VertexID is stored by the VF as the last vertex element, but we
1600 * don't represent it with a flag in inputs_read, so we call it
1601 * VERT_ATTRIB_MAX.
1602 */
1603 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
1604 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1605 nr_attributes++;
1606 }
1607
1608 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1609
1610 /* The BSpec says we always have to read at least one thing from
1611 * the VF, and it appears that the hardware wedges otherwise.
1612 */
1613 if (nr_attributes == 0)
1614 nr_attributes = 1;
1615
1616 prog_data->urb_read_length = (nr_attributes + 1) / 2;
1617
1618 unsigned vue_entries =
1619 MAX2(nr_attributes, prog_data->vue_map.num_slots);
1620
1621 if (brw->gen == 6)
1622 prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
1623 else
1624 prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
1625
1626 return payload_reg + nr_attributes;
1627 }
1628
1629 int
1630 vec4_visitor::setup_uniforms(int reg)
1631 {
1632 prog_data->base.dispatch_grf_start_reg = reg;
1633
1634 /* The pre-gen6 VS requires that some push constants get loaded no
1635 * matter what, or the GPU would hang.
1636 */
1637 if (brw->gen < 6 && this->uniforms == 0) {
1638 assert(this->uniforms < this->uniform_array_size);
1639 this->uniform_vector_size[this->uniforms] = 1;
1640
1641 stage_prog_data->param =
1642 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1643 for (unsigned int i = 0; i < 4; i++) {
1644 unsigned int slot = this->uniforms * 4 + i;
1645 static gl_constant_value zero = { 0.0 };
1646 stage_prog_data->param[slot] = &zero;
1647 }
1648
1649 this->uniforms++;
1650 reg++;
1651 } else {
1652 reg += ALIGN(uniforms, 2) / 2;
1653 }
1654
1655 stage_prog_data->nr_params = this->uniforms * 4;
1656
1657 prog_data->base.curb_read_length =
1658 reg - prog_data->base.dispatch_grf_start_reg;
1659
1660 return reg;
1661 }
1662
1663 void
1664 vec4_vs_visitor::setup_payload(void)
1665 {
1666 int reg = 0;
1667
1668 /* The payload always contains important data in g0, which contains
1669 * the URB handles that are passed on to the URB write at the end
1670 * of the thread. So, we always start push constants at g1.
1671 */
1672 reg++;
1673
1674 reg = setup_uniforms(reg);
1675
1676 reg = setup_attributes(reg);
1677
1678 this->first_non_payload_grf = reg;
1679 }
1680
1681 void
1682 vec4_visitor::assign_binding_table_offsets()
1683 {
1684 assign_common_binding_table_offsets(0);
1685 }
1686
1687 src_reg
1688 vec4_visitor::get_timestamp()
1689 {
1690 assert(brw->gen >= 7);
1691
1692 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1693 BRW_ARF_TIMESTAMP,
1694 0,
1695 0,
1696 0,
1697 BRW_REGISTER_TYPE_UD,
1698 BRW_VERTICAL_STRIDE_0,
1699 BRW_WIDTH_4,
1700 BRW_HORIZONTAL_STRIDE_4,
1701 BRW_SWIZZLE_XYZW,
1702 WRITEMASK_XYZW));
1703
1704 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1705
1706 vec4_instruction *mov = emit(MOV(dst, ts));
1707 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1708 * even if it's not enabled in the dispatch.
1709 */
1710 mov->force_writemask_all = true;
1711
1712 return src_reg(dst);
1713 }
1714
1715 void
1716 vec4_visitor::emit_shader_time_begin()
1717 {
1718 current_annotation = "shader time start";
1719 shader_start_time = get_timestamp();
1720 }
1721
1722 void
1723 vec4_visitor::emit_shader_time_end()
1724 {
1725 current_annotation = "shader time end";
1726 src_reg shader_end_time = get_timestamp();
1727
1728
1729 /* Check that there weren't any timestamp reset events (assuming these
1730 * were the only two timestamp reads that happened).
1731 */
1732 src_reg reset_end = shader_end_time;
1733 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1734 vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
1735 test->conditional_mod = BRW_CONDITIONAL_Z;
1736
1737 emit(IF(BRW_PREDICATE_NORMAL));
1738
1739 /* Take the current timestamp and get the delta. */
1740 shader_start_time.negate = true;
1741 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1742 emit(ADD(diff, shader_start_time, shader_end_time));
1743
1744 /* If there were no instructions between the two timestamp gets, the diff
1745 * is 2 cycles. Remove that overhead, so I can forget about that when
1746 * trying to determine the time taken for single instructions.
1747 */
1748 emit(ADD(diff, src_reg(diff), src_reg(-2u)));
1749
1750 emit_shader_time_write(st_base, src_reg(diff));
1751 emit_shader_time_write(st_written, src_reg(1u));
1752 emit(BRW_OPCODE_ELSE);
1753 emit_shader_time_write(st_reset, src_reg(1u));
1754 emit(BRW_OPCODE_ENDIF);
1755 }
1756
1757 void
1758 vec4_visitor::emit_shader_time_write(enum shader_time_shader_type type,
1759 src_reg value)
1760 {
1761 int shader_time_index =
1762 brw_get_shader_time_index(brw, shader_prog, prog, type);
1763
1764 dst_reg dst =
1765 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1766
1767 dst_reg offset = dst;
1768 dst_reg time = dst;
1769 time.reg_offset++;
1770
1771 offset.type = BRW_REGISTER_TYPE_UD;
1772 emit(MOV(offset, src_reg(shader_time_index * SHADER_TIME_STRIDE)));
1773
1774 time.type = BRW_REGISTER_TYPE_UD;
1775 emit(MOV(time, src_reg(value)));
1776
1777 vec4_instruction *inst =
1778 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1779 inst->mlen = 2;
1780 }
1781
1782 bool
1783 vec4_visitor::run()
1784 {
1785 sanity_param_count = prog->Parameters->NumParameters;
1786
1787 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1788 emit_shader_time_begin();
1789
1790 assign_binding_table_offsets();
1791
1792 emit_prolog();
1793
1794 /* Generate VS IR for main(). (the visitor only descends into
1795 * functions called "main").
1796 */
1797 if (shader) {
1798 visit_instructions(shader->base.ir);
1799 } else {
1800 emit_program_code();
1801 }
1802 base_ir = NULL;
1803
1804 if (key->userclip_active && !prog->UsesClipDistanceOut)
1805 setup_uniform_clipplane_values();
1806
1807 emit_thread_end();
1808
1809 calculate_cfg();
1810
1811 /* Before any optimization, push array accesses out to scratch
1812 * space where we need them to be. This pass may allocate new
1813 * virtual GRFs, so we want to do it early. It also makes sure
1814 * that we have reladdr computations available for CSE, since we'll
1815 * often do repeated subexpressions for those.
1816 */
1817 if (shader) {
1818 move_grf_array_access_to_scratch();
1819 move_uniform_array_access_to_pull_constants();
1820 } else {
1821 /* The ARB_vertex_program frontend emits pull constant loads directly
1822 * rather than using reladdr, so we don't need to walk through all the
1823 * instructions looking for things to move. There isn't anything.
1824 *
1825 * We do still need to split things to vec4 size.
1826 */
1827 split_uniform_registers();
1828 }
1829 pack_uniform_registers();
1830 move_push_constants_to_pull_constants();
1831 split_virtual_grfs();
1832
1833 const char *stage_name = stage == MESA_SHADER_GEOMETRY ? "gs" : "vs";
1834
1835 #define OPT(pass, args...) ({ \
1836 pass_num++; \
1837 bool this_progress = pass(args); \
1838 \
1839 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
1840 char filename[64]; \
1841 snprintf(filename, 64, "%s-%04d-%02d-%02d-" #pass, \
1842 stage_name, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
1843 \
1844 backend_visitor::dump_instructions(filename); \
1845 } \
1846 \
1847 progress = progress || this_progress; \
1848 this_progress; \
1849 })
1850
1851
1852 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
1853 char filename[64];
1854 snprintf(filename, 64, "%s-%04d-00-start",
1855 stage_name, shader_prog ? shader_prog->Name : 0);
1856
1857 backend_visitor::dump_instructions(filename);
1858 }
1859
1860 bool progress;
1861 int iteration = 0;
1862 int pass_num = 0;
1863 do {
1864 progress = false;
1865 pass_num = 0;
1866 iteration++;
1867
1868 OPT(opt_reduce_swizzle);
1869 OPT(dead_code_eliminate);
1870 OPT(dead_control_flow_eliminate, this);
1871 OPT(opt_copy_propagation);
1872 OPT(opt_cse);
1873 OPT(opt_algebraic);
1874 OPT(opt_register_coalesce);
1875 } while (progress);
1876
1877 pass_num = 0;
1878
1879 if (OPT(opt_vector_float)) {
1880 OPT(opt_cse);
1881 OPT(opt_copy_propagation, false);
1882 OPT(opt_copy_propagation, true);
1883 OPT(dead_code_eliminate);
1884 }
1885
1886 if (failed)
1887 return false;
1888
1889 setup_payload();
1890
1891 if (false) {
1892 /* Debug of register spilling: Go spill everything. */
1893 const int grf_count = alloc.count;
1894 float spill_costs[alloc.count];
1895 bool no_spill[alloc.count];
1896 evaluate_spill_costs(spill_costs, no_spill);
1897 for (int i = 0; i < grf_count; i++) {
1898 if (no_spill[i])
1899 continue;
1900 spill_reg(i);
1901 }
1902 }
1903
1904 while (!reg_allocate()) {
1905 if (failed)
1906 return false;
1907 }
1908
1909 opt_schedule_instructions();
1910
1911 opt_set_dependency_control();
1912
1913 /* If any state parameters were appended, then ParameterValues could have
1914 * been realloced, in which case the driver uniform storage set up by
1915 * _mesa_associate_uniform_storage() would point to freed memory. Make
1916 * sure that didn't happen.
1917 */
1918 assert(sanity_param_count == prog->Parameters->NumParameters);
1919
1920 return !failed;
1921 }
1922
1923 } /* namespace brw */
1924
1925 extern "C" {
1926
1927 /**
1928 * Compile a vertex shader.
1929 *
1930 * Returns the final assembly and the program's size.
1931 */
1932 const unsigned *
1933 brw_vs_emit(struct brw_context *brw,
1934 struct gl_shader_program *prog,
1935 struct brw_vs_compile *c,
1936 struct brw_vs_prog_data *prog_data,
1937 void *mem_ctx,
1938 unsigned *final_assembly_size)
1939 {
1940 bool start_busy = false;
1941 double start_time = 0;
1942 const unsigned *assembly = NULL;
1943
1944 if (unlikely(brw->perf_debug)) {
1945 start_busy = (brw->batch.last_bo &&
1946 drm_intel_bo_busy(brw->batch.last_bo));
1947 start_time = get_time();
1948 }
1949
1950 struct brw_shader *shader = NULL;
1951 if (prog)
1952 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
1953
1954 if (unlikely(INTEL_DEBUG & DEBUG_VS))
1955 brw_dump_ir("vertex", prog, &shader->base, &c->vp->program.Base);
1956
1957 if (prog && brw->gen >= 8 && brw->scalar_vs) {
1958 fs_visitor v(brw, mem_ctx, &c->key, prog_data, prog, &c->vp->program, 8);
1959 if (!v.run_vs()) {
1960 if (prog) {
1961 prog->LinkStatus = false;
1962 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1963 }
1964
1965 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1966 v.fail_msg);
1967
1968 return NULL;
1969 }
1970
1971 fs_generator g(brw, mem_ctx, (void *) &c->key, &prog_data->base.base,
1972 &c->vp->program.Base, v.promoted_constants,
1973 v.runtime_check_aads_emit, "VS");
1974 if (INTEL_DEBUG & DEBUG_VS) {
1975 char *name = ralloc_asprintf(mem_ctx, "%s vertex shader %d",
1976 prog->Label ? prog->Label : "unnamed",
1977 prog->Name);
1978 g.enable_debug(name);
1979 }
1980 g.generate_code(v.cfg, 8);
1981 assembly = g.get_assembly(final_assembly_size);
1982
1983 if (assembly)
1984 prog_data->base.simd8 = true;
1985 c->base.last_scratch = v.last_scratch;
1986 }
1987
1988 if (!assembly) {
1989 vec4_vs_visitor v(brw, c, prog_data, prog, mem_ctx);
1990 if (!v.run()) {
1991 if (prog) {
1992 prog->LinkStatus = false;
1993 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1994 }
1995
1996 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1997 v.fail_msg);
1998
1999 return NULL;
2000 }
2001
2002 vec4_generator g(brw, prog, &c->vp->program.Base, &prog_data->base,
2003 mem_ctx, INTEL_DEBUG & DEBUG_VS, "vertex", "VS");
2004 assembly = g.generate_assembly(v.cfg, final_assembly_size);
2005 }
2006
2007 if (unlikely(brw->perf_debug) && shader) {
2008 if (shader->compiled_once) {
2009 brw_vs_debug_recompile(brw, prog, &c->key);
2010 }
2011 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
2012 perf_debug("VS compile took %.03f ms and stalled the GPU\n",
2013 (get_time() - start_time) * 1000);
2014 }
2015 shader->compiled_once = true;
2016 }
2017
2018 return assembly;
2019 }
2020
2021
2022 void
2023 brw_vue_setup_prog_key_for_precompile(struct gl_context *ctx,
2024 struct brw_vue_prog_key *key,
2025 GLuint id, struct gl_program *prog)
2026 {
2027 struct brw_context *brw = brw_context(ctx);
2028 key->program_string_id = id;
2029
2030 const bool has_shader_channel_select = brw->is_haswell || brw->gen >= 8;
2031 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
2032 for (unsigned i = 0; i < sampler_count; i++) {
2033 if (!has_shader_channel_select && (prog->ShadowSamplers & (1 << i))) {
2034 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
2035 key->tex.swizzles[i] =
2036 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
2037 } else {
2038 /* Color sampler: assume no swizzling. */
2039 key->tex.swizzles[i] = SWIZZLE_XYZW;
2040 }
2041 }
2042 }
2043
2044 } /* extern "C" */