baf72a25c420487156746c6e49a834922eab618b
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_vs.h"
28 #include "brw_nir.h"
29 #include "brw_vec4_builder.h"
30 #include "brw_vec4_live_variables.h"
31 #include "brw_dead_control_flow.h"
32 #include "program/prog_parameter.h"
33
34 #define MAX_INSTRUCTION (1 << 30)
35
36 using namespace brw;
37
38 namespace brw {
39
40 void
41 src_reg::init()
42 {
43 memset(this, 0, sizeof(*this));
44
45 this->file = BAD_FILE;
46 }
47
48 src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
49 {
50 init();
51
52 this->file = file;
53 this->nr = nr;
54 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
55 this->swizzle = brw_swizzle_for_size(type->vector_elements);
56 else
57 this->swizzle = BRW_SWIZZLE_XYZW;
58 if (type)
59 this->type = brw_type_for_base_type(type);
60 }
61
62 /** Generic unset register constructor. */
63 src_reg::src_reg()
64 {
65 init();
66 }
67
68 src_reg::src_reg(struct ::brw_reg reg) :
69 backend_reg(reg)
70 {
71 this->reg_offset = 0;
72 this->reladdr = NULL;
73 }
74
75 src_reg::src_reg(const dst_reg &reg) :
76 backend_reg(reg)
77 {
78 this->reladdr = reg.reladdr;
79 this->swizzle = brw_swizzle_for_mask(reg.writemask);
80 }
81
82 void
83 dst_reg::init()
84 {
85 memset(this, 0, sizeof(*this));
86 this->file = BAD_FILE;
87 this->writemask = WRITEMASK_XYZW;
88 }
89
90 dst_reg::dst_reg()
91 {
92 init();
93 }
94
95 dst_reg::dst_reg(enum brw_reg_file file, int nr)
96 {
97 init();
98
99 this->file = file;
100 this->nr = nr;
101 }
102
103 dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
104 unsigned writemask)
105 {
106 init();
107
108 this->file = file;
109 this->nr = nr;
110 this->type = brw_type_for_base_type(type);
111 this->writemask = writemask;
112 }
113
114 dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
115 unsigned writemask)
116 {
117 init();
118
119 this->file = file;
120 this->nr = nr;
121 this->type = type;
122 this->writemask = writemask;
123 }
124
125 dst_reg::dst_reg(struct ::brw_reg reg) :
126 backend_reg(reg)
127 {
128 this->reg_offset = 0;
129 this->reladdr = NULL;
130 }
131
132 dst_reg::dst_reg(const src_reg &reg) :
133 backend_reg(reg)
134 {
135 this->writemask = brw_mask_for_swizzle(reg.swizzle);
136 this->reladdr = reg.reladdr;
137 }
138
139 bool
140 dst_reg::equals(const dst_reg &r) const
141 {
142 return (this->backend_reg::equals(r) &&
143 (reladdr == r.reladdr ||
144 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
145 }
146
147 bool
148 vec4_instruction::is_send_from_grf()
149 {
150 switch (opcode) {
151 case SHADER_OPCODE_SHADER_TIME_ADD:
152 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
153 case SHADER_OPCODE_UNTYPED_ATOMIC:
154 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
155 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
156 case SHADER_OPCODE_TYPED_ATOMIC:
157 case SHADER_OPCODE_TYPED_SURFACE_READ:
158 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
159 case VEC4_OPCODE_URB_READ:
160 case TCS_OPCODE_URB_WRITE:
161 case TCS_OPCODE_RELEASE_INPUT:
162 case SHADER_OPCODE_BARRIER:
163 return true;
164 default:
165 return false;
166 }
167 }
168
169 /**
170 * Returns true if this instruction's sources and destinations cannot
171 * safely be the same register.
172 *
173 * In most cases, a register can be written over safely by the same
174 * instruction that is its last use. For a single instruction, the
175 * sources are dereferenced before writing of the destination starts
176 * (naturally).
177 *
178 * However, there are a few cases where this can be problematic:
179 *
180 * - Virtual opcodes that translate to multiple instructions in the
181 * code generator: if src == dst and one instruction writes the
182 * destination before a later instruction reads the source, then
183 * src will have been clobbered.
184 *
185 * The register allocator uses this information to set up conflicts between
186 * GRF sources and the destination.
187 */
188 bool
189 vec4_instruction::has_source_and_destination_hazard() const
190 {
191 switch (opcode) {
192 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
193 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
194 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
195 return true;
196 default:
197 return false;
198 }
199 }
200
201 unsigned
202 vec4_instruction::regs_read(unsigned arg) const
203 {
204 if (src[arg].file == BAD_FILE)
205 return 0;
206
207 switch (opcode) {
208 case SHADER_OPCODE_SHADER_TIME_ADD:
209 case SHADER_OPCODE_UNTYPED_ATOMIC:
210 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
211 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
212 case SHADER_OPCODE_TYPED_ATOMIC:
213 case SHADER_OPCODE_TYPED_SURFACE_READ:
214 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
215 case TCS_OPCODE_URB_WRITE:
216 return arg == 0 ? mlen : 1;
217
218 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
219 return arg == 1 ? mlen : 1;
220
221 default:
222 return 1;
223 }
224 }
225
226 bool
227 vec4_instruction::can_do_source_mods(const struct brw_device_info *devinfo)
228 {
229 if (devinfo->gen == 6 && is_math())
230 return false;
231
232 if (is_send_from_grf())
233 return false;
234
235 if (!backend_instruction::can_do_source_mods())
236 return false;
237
238 return true;
239 }
240
241 bool
242 vec4_instruction::can_change_types() const
243 {
244 return dst.type == src[0].type &&
245 !src[0].abs && !src[0].negate && !saturate &&
246 (opcode == BRW_OPCODE_MOV ||
247 (opcode == BRW_OPCODE_SEL &&
248 dst.type == src[1].type &&
249 predicate != BRW_PREDICATE_NONE &&
250 !src[1].abs && !src[1].negate));
251 }
252
253 /**
254 * Returns how many MRFs an opcode will write over.
255 *
256 * Note that this is not the 0 or 1 implied writes in an actual gen
257 * instruction -- the generate_* functions generate additional MOVs
258 * for setup.
259 */
260 int
261 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
262 {
263 if (inst->mlen == 0 || inst->is_send_from_grf())
264 return 0;
265
266 switch (inst->opcode) {
267 case SHADER_OPCODE_RCP:
268 case SHADER_OPCODE_RSQ:
269 case SHADER_OPCODE_SQRT:
270 case SHADER_OPCODE_EXP2:
271 case SHADER_OPCODE_LOG2:
272 case SHADER_OPCODE_SIN:
273 case SHADER_OPCODE_COS:
274 return 1;
275 case SHADER_OPCODE_INT_QUOTIENT:
276 case SHADER_OPCODE_INT_REMAINDER:
277 case SHADER_OPCODE_POW:
278 case TCS_OPCODE_THREAD_END:
279 return 2;
280 case VS_OPCODE_URB_WRITE:
281 return 1;
282 case VS_OPCODE_PULL_CONSTANT_LOAD:
283 return 2;
284 case SHADER_OPCODE_GEN4_SCRATCH_READ:
285 return 2;
286 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
287 return 3;
288 case GS_OPCODE_URB_WRITE:
289 case GS_OPCODE_URB_WRITE_ALLOCATE:
290 case GS_OPCODE_THREAD_END:
291 return 0;
292 case GS_OPCODE_FF_SYNC:
293 return 1;
294 case TCS_OPCODE_URB_WRITE:
295 return 0;
296 case SHADER_OPCODE_SHADER_TIME_ADD:
297 return 0;
298 case SHADER_OPCODE_TEX:
299 case SHADER_OPCODE_TXL:
300 case SHADER_OPCODE_TXD:
301 case SHADER_OPCODE_TXF:
302 case SHADER_OPCODE_TXF_CMS:
303 case SHADER_OPCODE_TXF_CMS_W:
304 case SHADER_OPCODE_TXF_MCS:
305 case SHADER_OPCODE_TXS:
306 case SHADER_OPCODE_TG4:
307 case SHADER_OPCODE_TG4_OFFSET:
308 case SHADER_OPCODE_SAMPLEINFO:
309 case VS_OPCODE_GET_BUFFER_SIZE:
310 return inst->header_size;
311 default:
312 unreachable("not reached");
313 }
314 }
315
316 bool
317 src_reg::equals(const src_reg &r) const
318 {
319 return (this->backend_reg::equals(r) &&
320 !reladdr && !r.reladdr);
321 }
322
323 bool
324 vec4_visitor::vectorize_mov(bblock_t *block, vec4_instruction *inst,
325 uint8_t imm[4], vec4_instruction *imm_inst[4],
326 int inst_count, unsigned writemask)
327 {
328 if (inst_count < 2)
329 return false;
330
331 unsigned vf;
332 memcpy(&vf, imm, sizeof(vf));
333 vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
334 mov->dst.type = BRW_REGISTER_TYPE_F;
335 mov->dst.writemask = writemask;
336 inst->insert_before(block, mov);
337
338 for (int i = 0; i < inst_count; i++) {
339 imm_inst[i]->remove(block);
340 }
341
342 return true;
343 }
344
345 bool
346 vec4_visitor::opt_vector_float()
347 {
348 bool progress = false;
349
350 int last_reg = -1, last_reg_offset = -1;
351 enum brw_reg_file last_reg_file = BAD_FILE;
352
353 uint8_t imm[4] = { 0 };
354 int inst_count = 0;
355 vec4_instruction *imm_inst[4];
356 unsigned writemask = 0;
357
358 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
359 if (last_reg != inst->dst.nr ||
360 last_reg_offset != inst->dst.reg_offset ||
361 last_reg_file != inst->dst.file) {
362 progress |= vectorize_mov(block, inst, imm, imm_inst, inst_count,
363 writemask);
364 inst_count = 0;
365 writemask = 0;
366 last_reg = inst->dst.nr;
367 last_reg_offset = inst->dst.reg_offset;
368 last_reg_file = inst->dst.file;
369
370 for (int i = 0; i < 4; i++) {
371 imm[i] = 0;
372 }
373 }
374
375 if (inst->opcode != BRW_OPCODE_MOV ||
376 inst->dst.writemask == WRITEMASK_XYZW ||
377 inst->src[0].file != IMM ||
378 inst->predicate != BRW_PREDICATE_NONE) {
379 progress |= vectorize_mov(block, inst, imm, imm_inst, inst_count,
380 writemask);
381 inst_count = 0;
382 last_reg = -1;
383 continue;
384 }
385
386 int vf = brw_float_to_vf(inst->src[0].f);
387 if (vf == -1)
388 continue;
389
390 if ((inst->dst.writemask & WRITEMASK_X) != 0)
391 imm[0] = vf;
392 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
393 imm[1] = vf;
394 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
395 imm[2] = vf;
396 if ((inst->dst.writemask & WRITEMASK_W) != 0)
397 imm[3] = vf;
398
399 writemask |= inst->dst.writemask;
400 imm_inst[inst_count++] = inst;
401 }
402
403 if (progress)
404 invalidate_live_intervals();
405
406 return progress;
407 }
408
409 /* Replaces unused channels of a swizzle with channels that are used.
410 *
411 * For instance, this pass transforms
412 *
413 * mov vgrf4.yz, vgrf5.wxzy
414 *
415 * into
416 *
417 * mov vgrf4.yz, vgrf5.xxzx
418 *
419 * This eliminates false uses of some channels, letting dead code elimination
420 * remove the instructions that wrote them.
421 */
422 bool
423 vec4_visitor::opt_reduce_swizzle()
424 {
425 bool progress = false;
426
427 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
428 if (inst->dst.file == BAD_FILE ||
429 inst->dst.file == ARF ||
430 inst->dst.file == FIXED_GRF ||
431 inst->is_send_from_grf())
432 continue;
433
434 unsigned swizzle;
435
436 /* Determine which channels of the sources are read. */
437 switch (inst->opcode) {
438 case VEC4_OPCODE_PACK_BYTES:
439 case BRW_OPCODE_DP4:
440 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
441 * but all four of src1.
442 */
443 swizzle = brw_swizzle_for_size(4);
444 break;
445 case BRW_OPCODE_DP3:
446 swizzle = brw_swizzle_for_size(3);
447 break;
448 case BRW_OPCODE_DP2:
449 swizzle = brw_swizzle_for_size(2);
450 break;
451 default:
452 swizzle = brw_swizzle_for_mask(inst->dst.writemask);
453 break;
454 }
455
456 /* Update sources' swizzles. */
457 for (int i = 0; i < 3; i++) {
458 if (inst->src[i].file != VGRF &&
459 inst->src[i].file != ATTR &&
460 inst->src[i].file != UNIFORM)
461 continue;
462
463 const unsigned new_swizzle =
464 brw_compose_swizzle(swizzle, inst->src[i].swizzle);
465 if (inst->src[i].swizzle != new_swizzle) {
466 inst->src[i].swizzle = new_swizzle;
467 progress = true;
468 }
469 }
470 }
471
472 if (progress)
473 invalidate_live_intervals();
474
475 return progress;
476 }
477
478 void
479 vec4_visitor::split_uniform_registers()
480 {
481 /* Prior to this, uniforms have been in an array sized according to
482 * the number of vector uniforms present, sparsely filled (so an
483 * aggregate results in reg indices being skipped over). Now we're
484 * going to cut those aggregates up so each .nr index is one
485 * vector. The goal is to make elimination of unused uniform
486 * components easier later.
487 */
488 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
489 for (int i = 0 ; i < 3; i++) {
490 if (inst->src[i].file != UNIFORM)
491 continue;
492
493 assert(!inst->src[i].reladdr);
494
495 inst->src[i].nr += inst->src[i].reg_offset;
496 inst->src[i].reg_offset = 0;
497 }
498 }
499
500 /* Update that everything is now vector-sized. */
501 for (int i = 0; i < this->uniforms; i++) {
502 this->uniform_size[i] = 1;
503 }
504 }
505
506 void
507 vec4_visitor::pack_uniform_registers()
508 {
509 uint8_t chans_used[this->uniforms];
510 int new_loc[this->uniforms];
511 int new_chan[this->uniforms];
512
513 memset(chans_used, 0, sizeof(chans_used));
514 memset(new_loc, 0, sizeof(new_loc));
515 memset(new_chan, 0, sizeof(new_chan));
516
517 /* Find which uniform vectors are actually used by the program. We
518 * expect unused vector elements when we've moved array access out
519 * to pull constants, and from some GLSL code generators like wine.
520 */
521 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
522 unsigned readmask;
523 switch (inst->opcode) {
524 case VEC4_OPCODE_PACK_BYTES:
525 case BRW_OPCODE_DP4:
526 case BRW_OPCODE_DPH:
527 readmask = 0xf;
528 break;
529 case BRW_OPCODE_DP3:
530 readmask = 0x7;
531 break;
532 case BRW_OPCODE_DP2:
533 readmask = 0x3;
534 break;
535 default:
536 readmask = inst->dst.writemask;
537 break;
538 }
539
540 for (int i = 0 ; i < 3; i++) {
541 if (inst->src[i].file != UNIFORM)
542 continue;
543
544 int reg = inst->src[i].nr;
545 for (int c = 0; c < 4; c++) {
546 if (!(readmask & (1 << c)))
547 continue;
548
549 chans_used[reg] = MAX2(chans_used[reg],
550 BRW_GET_SWZ(inst->src[i].swizzle, c) + 1);
551 }
552 }
553 }
554
555 int new_uniform_count = 0;
556
557 /* Now, figure out a packing of the live uniform vectors into our
558 * push constants.
559 */
560 for (int src = 0; src < uniforms; src++) {
561 assert(src < uniform_array_size);
562 int size = chans_used[src];
563
564 if (size == 0)
565 continue;
566
567 int dst;
568 /* Find the lowest place we can slot this uniform in. */
569 for (dst = 0; dst < src; dst++) {
570 if (chans_used[dst] + size <= 4)
571 break;
572 }
573
574 if (src == dst) {
575 new_loc[src] = dst;
576 new_chan[src] = 0;
577 } else {
578 new_loc[src] = dst;
579 new_chan[src] = chans_used[dst];
580
581 /* Move the references to the data */
582 for (int j = 0; j < size; j++) {
583 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
584 stage_prog_data->param[src * 4 + j];
585 }
586
587 chans_used[dst] += size;
588 chans_used[src] = 0;
589 }
590
591 new_uniform_count = MAX2(new_uniform_count, dst + 1);
592 }
593
594 this->uniforms = new_uniform_count;
595
596 /* Now, update the instructions for our repacked uniforms. */
597 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
598 for (int i = 0 ; i < 3; i++) {
599 int src = inst->src[i].nr;
600
601 if (inst->src[i].file != UNIFORM)
602 continue;
603
604 inst->src[i].nr = new_loc[src];
605 inst->src[i].swizzle += BRW_SWIZZLE4(new_chan[src], new_chan[src],
606 new_chan[src], new_chan[src]);
607 }
608 }
609 }
610
611 /**
612 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
613 *
614 * While GLSL IR also performs this optimization, we end up with it in
615 * our instruction stream for a couple of reasons. One is that we
616 * sometimes generate silly instructions, for example in array access
617 * where we'll generate "ADD offset, index, base" even if base is 0.
618 * The other is that GLSL IR's constant propagation doesn't track the
619 * components of aggregates, so some VS patterns (initialize matrix to
620 * 0, accumulate in vertex blending factors) end up breaking down to
621 * instructions involving 0.
622 */
623 bool
624 vec4_visitor::opt_algebraic()
625 {
626 bool progress = false;
627
628 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
629 switch (inst->opcode) {
630 case BRW_OPCODE_MOV:
631 if (inst->src[0].file != IMM)
632 break;
633
634 if (inst->saturate) {
635 if (inst->dst.type != inst->src[0].type)
636 assert(!"unimplemented: saturate mixed types");
637
638 if (brw_saturate_immediate(inst->dst.type,
639 &inst->src[0].as_brw_reg())) {
640 inst->saturate = false;
641 progress = true;
642 }
643 }
644 break;
645
646 case VEC4_OPCODE_UNPACK_UNIFORM:
647 if (inst->src[0].file != UNIFORM) {
648 inst->opcode = BRW_OPCODE_MOV;
649 progress = true;
650 }
651 break;
652
653 case BRW_OPCODE_ADD:
654 if (inst->src[1].is_zero()) {
655 inst->opcode = BRW_OPCODE_MOV;
656 inst->src[1] = src_reg();
657 progress = true;
658 }
659 break;
660
661 case BRW_OPCODE_MUL:
662 if (inst->src[1].is_zero()) {
663 inst->opcode = BRW_OPCODE_MOV;
664 switch (inst->src[0].type) {
665 case BRW_REGISTER_TYPE_F:
666 inst->src[0] = brw_imm_f(0.0f);
667 break;
668 case BRW_REGISTER_TYPE_D:
669 inst->src[0] = brw_imm_d(0);
670 break;
671 case BRW_REGISTER_TYPE_UD:
672 inst->src[0] = brw_imm_ud(0u);
673 break;
674 default:
675 unreachable("not reached");
676 }
677 inst->src[1] = src_reg();
678 progress = true;
679 } else if (inst->src[1].is_one()) {
680 inst->opcode = BRW_OPCODE_MOV;
681 inst->src[1] = src_reg();
682 progress = true;
683 } else if (inst->src[1].is_negative_one()) {
684 inst->opcode = BRW_OPCODE_MOV;
685 inst->src[0].negate = !inst->src[0].negate;
686 inst->src[1] = src_reg();
687 progress = true;
688 }
689 break;
690 case BRW_OPCODE_CMP:
691 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
692 inst->src[0].abs &&
693 inst->src[0].negate &&
694 inst->src[1].is_zero()) {
695 inst->src[0].abs = false;
696 inst->src[0].negate = false;
697 inst->conditional_mod = BRW_CONDITIONAL_Z;
698 progress = true;
699 break;
700 }
701 break;
702 case SHADER_OPCODE_RCP: {
703 vec4_instruction *prev = (vec4_instruction *)inst->prev;
704 if (prev->opcode == SHADER_OPCODE_SQRT) {
705 if (inst->src[0].equals(src_reg(prev->dst))) {
706 inst->opcode = SHADER_OPCODE_RSQ;
707 inst->src[0] = prev->src[0];
708 progress = true;
709 }
710 }
711 break;
712 }
713 case SHADER_OPCODE_BROADCAST:
714 if (is_uniform(inst->src[0]) ||
715 inst->src[1].is_zero()) {
716 inst->opcode = BRW_OPCODE_MOV;
717 inst->src[1] = src_reg();
718 inst->force_writemask_all = true;
719 progress = true;
720 }
721 break;
722
723 default:
724 break;
725 }
726 }
727
728 if (progress)
729 invalidate_live_intervals();
730
731 return progress;
732 }
733
734 /**
735 * Only a limited number of hardware registers may be used for push
736 * constants, so this turns access to the overflowed constants into
737 * pull constants.
738 */
739 void
740 vec4_visitor::move_push_constants_to_pull_constants()
741 {
742 int pull_constant_loc[this->uniforms];
743
744 /* Only allow 32 registers (256 uniform components) as push constants,
745 * which is the limit on gen6.
746 *
747 * If changing this value, note the limitation about total_regs in
748 * brw_curbe.c.
749 */
750 int max_uniform_components = 32 * 8;
751 if (this->uniforms * 4 <= max_uniform_components)
752 return;
753
754 /* Make some sort of choice as to which uniforms get sent to pull
755 * constants. We could potentially do something clever here like
756 * look for the most infrequently used uniform vec4s, but leave
757 * that for later.
758 */
759 for (int i = 0; i < this->uniforms * 4; i += 4) {
760 pull_constant_loc[i / 4] = -1;
761
762 if (i >= max_uniform_components) {
763 const gl_constant_value **values = &stage_prog_data->param[i];
764
765 /* Try to find an existing copy of this uniform in the pull
766 * constants if it was part of an array access already.
767 */
768 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
769 int matches;
770
771 for (matches = 0; matches < 4; matches++) {
772 if (stage_prog_data->pull_param[j + matches] != values[matches])
773 break;
774 }
775
776 if (matches == 4) {
777 pull_constant_loc[i / 4] = j / 4;
778 break;
779 }
780 }
781
782 if (pull_constant_loc[i / 4] == -1) {
783 assert(stage_prog_data->nr_pull_params % 4 == 0);
784 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
785
786 for (int j = 0; j < 4; j++) {
787 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
788 values[j];
789 }
790 }
791 }
792 }
793
794 /* Now actually rewrite usage of the things we've moved to pull
795 * constants.
796 */
797 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
798 for (int i = 0 ; i < 3; i++) {
799 if (inst->src[i].file != UNIFORM ||
800 pull_constant_loc[inst->src[i].nr] == -1)
801 continue;
802
803 int uniform = inst->src[i].nr;
804
805 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
806
807 emit_pull_constant_load(block, inst, temp, inst->src[i],
808 pull_constant_loc[uniform]);
809
810 inst->src[i].file = temp.file;
811 inst->src[i].nr = temp.nr;
812 inst->src[i].reg_offset = temp.reg_offset;
813 inst->src[i].reladdr = NULL;
814 }
815 }
816
817 /* Repack push constants to remove the now-unused ones. */
818 pack_uniform_registers();
819 }
820
821 /* Conditions for which we want to avoid setting the dependency control bits */
822 bool
823 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
824 {
825 #define IS_DWORD(reg) \
826 (reg.type == BRW_REGISTER_TYPE_UD || \
827 reg.type == BRW_REGISTER_TYPE_D)
828
829 /* "When source or destination datatype is 64b or operation is integer DWord
830 * multiply, DepCtrl must not be used."
831 * May apply to future SoCs as well.
832 */
833 if (devinfo->is_cherryview) {
834 if (inst->opcode == BRW_OPCODE_MUL &&
835 IS_DWORD(inst->src[0]) &&
836 IS_DWORD(inst->src[1]))
837 return true;
838 }
839 #undef IS_DWORD
840
841 if (devinfo->gen >= 8) {
842 if (inst->opcode == BRW_OPCODE_F32TO16)
843 return true;
844 }
845
846 /*
847 * mlen:
848 * In the presence of send messages, totally interrupt dependency
849 * control. They're long enough that the chance of dependency
850 * control around them just doesn't matter.
851 *
852 * predicate:
853 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
854 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
855 * completes the scoreboard clear must have a non-zero execution mask. This
856 * means, if any kind of predication can change the execution mask or channel
857 * enable of the last instruction, the optimization must be avoided. This is
858 * to avoid instructions being shot down the pipeline when no writes are
859 * required.
860 *
861 * math:
862 * Dependency control does not work well over math instructions.
863 * NB: Discovered empirically
864 */
865 return (inst->mlen || inst->predicate || inst->is_math());
866 }
867
868 /**
869 * Sets the dependency control fields on instructions after register
870 * allocation and before the generator is run.
871 *
872 * When you have a sequence of instructions like:
873 *
874 * DP4 temp.x vertex uniform[0]
875 * DP4 temp.y vertex uniform[0]
876 * DP4 temp.z vertex uniform[0]
877 * DP4 temp.w vertex uniform[0]
878 *
879 * The hardware doesn't know that it can actually run the later instructions
880 * while the previous ones are in flight, producing stalls. However, we have
881 * manual fields we can set in the instructions that let it do so.
882 */
883 void
884 vec4_visitor::opt_set_dependency_control()
885 {
886 vec4_instruction *last_grf_write[BRW_MAX_GRF];
887 uint8_t grf_channels_written[BRW_MAX_GRF];
888 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
889 uint8_t mrf_channels_written[BRW_MAX_GRF];
890
891 assert(prog_data->total_grf ||
892 !"Must be called after register allocation");
893
894 foreach_block (block, cfg) {
895 memset(last_grf_write, 0, sizeof(last_grf_write));
896 memset(last_mrf_write, 0, sizeof(last_mrf_write));
897
898 foreach_inst_in_block (vec4_instruction, inst, block) {
899 /* If we read from a register that we were doing dependency control
900 * on, don't do dependency control across the read.
901 */
902 for (int i = 0; i < 3; i++) {
903 int reg = inst->src[i].nr + inst->src[i].reg_offset;
904 if (inst->src[i].file == VGRF) {
905 last_grf_write[reg] = NULL;
906 } else if (inst->src[i].file == FIXED_GRF) {
907 memset(last_grf_write, 0, sizeof(last_grf_write));
908 break;
909 }
910 assert(inst->src[i].file != MRF);
911 }
912
913 if (is_dep_ctrl_unsafe(inst)) {
914 memset(last_grf_write, 0, sizeof(last_grf_write));
915 memset(last_mrf_write, 0, sizeof(last_mrf_write));
916 continue;
917 }
918
919 /* Now, see if we can do dependency control for this instruction
920 * against a previous one writing to its destination.
921 */
922 int reg = inst->dst.nr + inst->dst.reg_offset;
923 if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
924 if (last_grf_write[reg] &&
925 !(inst->dst.writemask & grf_channels_written[reg])) {
926 last_grf_write[reg]->no_dd_clear = true;
927 inst->no_dd_check = true;
928 } else {
929 grf_channels_written[reg] = 0;
930 }
931
932 last_grf_write[reg] = inst;
933 grf_channels_written[reg] |= inst->dst.writemask;
934 } else if (inst->dst.file == MRF) {
935 if (last_mrf_write[reg] &&
936 !(inst->dst.writemask & mrf_channels_written[reg])) {
937 last_mrf_write[reg]->no_dd_clear = true;
938 inst->no_dd_check = true;
939 } else {
940 mrf_channels_written[reg] = 0;
941 }
942
943 last_mrf_write[reg] = inst;
944 mrf_channels_written[reg] |= inst->dst.writemask;
945 }
946 }
947 }
948 }
949
950 bool
951 vec4_instruction::can_reswizzle(const struct brw_device_info *devinfo,
952 int dst_writemask,
953 int swizzle,
954 int swizzle_mask)
955 {
956 /* Gen6 MATH instructions can not execute in align16 mode, so swizzles
957 * or writemasking are not allowed.
958 */
959 if (devinfo->gen == 6 && is_math() &&
960 (swizzle != BRW_SWIZZLE_XYZW || dst_writemask != WRITEMASK_XYZW))
961 return false;
962
963 /* If this instruction sets anything not referenced by swizzle, then we'd
964 * totally break it when we reswizzle.
965 */
966 if (dst.writemask & ~swizzle_mask)
967 return false;
968
969 if (mlen > 0)
970 return false;
971
972 for (int i = 0; i < 3; i++) {
973 if (src[i].is_accumulator())
974 return false;
975 }
976
977 return true;
978 }
979
980 /**
981 * For any channels in the swizzle's source that were populated by this
982 * instruction, rewrite the instruction to put the appropriate result directly
983 * in those channels.
984 *
985 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
986 */
987 void
988 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
989 {
990 /* Destination write mask doesn't correspond to source swizzle for the dot
991 * product and pack_bytes instructions.
992 */
993 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
994 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
995 opcode != VEC4_OPCODE_PACK_BYTES) {
996 for (int i = 0; i < 3; i++) {
997 if (src[i].file == BAD_FILE || src[i].file == IMM)
998 continue;
999
1000 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
1001 }
1002 }
1003
1004 /* Apply the specified swizzle and writemask to the original mask of
1005 * written components.
1006 */
1007 dst.writemask = dst_writemask &
1008 brw_apply_swizzle_to_mask(swizzle, dst.writemask);
1009 }
1010
1011 /*
1012 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1013 * just written and then MOVed into another reg and making the original write
1014 * of the GRF write directly to the final destination instead.
1015 */
1016 bool
1017 vec4_visitor::opt_register_coalesce()
1018 {
1019 bool progress = false;
1020 int next_ip = 0;
1021
1022 calculate_live_intervals();
1023
1024 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1025 int ip = next_ip;
1026 next_ip++;
1027
1028 if (inst->opcode != BRW_OPCODE_MOV ||
1029 (inst->dst.file != VGRF && inst->dst.file != MRF) ||
1030 inst->predicate ||
1031 inst->src[0].file != VGRF ||
1032 inst->dst.type != inst->src[0].type ||
1033 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1034 continue;
1035
1036 /* Remove no-op MOVs */
1037 if (inst->dst.file == inst->src[0].file &&
1038 inst->dst.nr == inst->src[0].nr &&
1039 inst->dst.reg_offset == inst->src[0].reg_offset) {
1040 bool is_nop_mov = true;
1041
1042 for (unsigned c = 0; c < 4; c++) {
1043 if ((inst->dst.writemask & (1 << c)) == 0)
1044 continue;
1045
1046 if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
1047 is_nop_mov = false;
1048 break;
1049 }
1050 }
1051
1052 if (is_nop_mov) {
1053 inst->remove(block);
1054 progress = true;
1055 continue;
1056 }
1057 }
1058
1059 bool to_mrf = (inst->dst.file == MRF);
1060
1061 /* Can't coalesce this GRF if someone else was going to
1062 * read it later.
1063 */
1064 if (var_range_end(var_from_reg(alloc, inst->src[0]), 4) > ip)
1065 continue;
1066
1067 /* We need to check interference with the final destination between this
1068 * instruction and the earliest instruction involved in writing the GRF
1069 * we're eliminating. To do that, keep track of which of our source
1070 * channels we've seen initialized.
1071 */
1072 const unsigned chans_needed =
1073 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1074 inst->dst.writemask);
1075 unsigned chans_remaining = chans_needed;
1076
1077 /* Now walk up the instruction stream trying to see if we can rewrite
1078 * everything writing to the temporary to write into the destination
1079 * instead.
1080 */
1081 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1082 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1083 inst) {
1084 _scan_inst = scan_inst;
1085
1086 if (inst->src[0].in_range(scan_inst->dst, scan_inst->regs_written)) {
1087 /* Found something writing to the reg we want to coalesce away. */
1088 if (to_mrf) {
1089 /* SEND instructions can't have MRF as a destination. */
1090 if (scan_inst->mlen)
1091 break;
1092
1093 if (devinfo->gen == 6) {
1094 /* gen6 math instructions must have the destination be
1095 * VGRF, so no compute-to-MRF for them.
1096 */
1097 if (scan_inst->is_math()) {
1098 break;
1099 }
1100 }
1101 }
1102
1103 /* This doesn't handle saturation on the instruction we
1104 * want to coalesce away if the register types do not match.
1105 * But if scan_inst is a non type-converting 'mov', we can fix
1106 * the types later.
1107 */
1108 if (inst->saturate &&
1109 inst->dst.type != scan_inst->dst.type &&
1110 !(scan_inst->opcode == BRW_OPCODE_MOV &&
1111 scan_inst->dst.type == scan_inst->src[0].type))
1112 break;
1113
1114 /* If we can't handle the swizzle, bail. */
1115 if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
1116 inst->src[0].swizzle,
1117 chans_needed)) {
1118 break;
1119 }
1120
1121 /* This doesn't handle coalescing of multiple registers. */
1122 if (scan_inst->regs_written > 1)
1123 break;
1124
1125 /* Mark which channels we found unconditional writes for. */
1126 if (!scan_inst->predicate)
1127 chans_remaining &= ~scan_inst->dst.writemask;
1128
1129 if (chans_remaining == 0)
1130 break;
1131 }
1132
1133 /* You can't read from an MRF, so if someone else reads our MRF's
1134 * source GRF that we wanted to rewrite, that stops us. If it's a
1135 * GRF we're trying to coalesce to, we don't actually handle
1136 * rewriting sources so bail in that case as well.
1137 */
1138 bool interfered = false;
1139 for (int i = 0; i < 3; i++) {
1140 if (inst->src[0].in_range(scan_inst->src[i],
1141 scan_inst->regs_read(i)))
1142 interfered = true;
1143 }
1144 if (interfered)
1145 break;
1146
1147 /* If somebody else writes the same channels of our destination here,
1148 * we can't coalesce before that.
1149 */
1150 if (inst->dst.in_range(scan_inst->dst, scan_inst->regs_written) &&
1151 (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1152 break;
1153 }
1154
1155 /* Check for reads of the register we're trying to coalesce into. We
1156 * can't go rewriting instructions above that to put some other value
1157 * in the register instead.
1158 */
1159 if (to_mrf && scan_inst->mlen > 0) {
1160 if (inst->dst.nr >= scan_inst->base_mrf &&
1161 inst->dst.nr < scan_inst->base_mrf + scan_inst->mlen) {
1162 break;
1163 }
1164 } else {
1165 for (int i = 0; i < 3; i++) {
1166 if (inst->dst.in_range(scan_inst->src[i],
1167 scan_inst->regs_read(i)))
1168 interfered = true;
1169 }
1170 if (interfered)
1171 break;
1172 }
1173 }
1174
1175 if (chans_remaining == 0) {
1176 /* If we've made it here, we have an MOV we want to coalesce out, and
1177 * a scan_inst pointing to the earliest instruction involved in
1178 * computing the value. Now go rewrite the instruction stream
1179 * between the two.
1180 */
1181 vec4_instruction *scan_inst = _scan_inst;
1182 while (scan_inst != inst) {
1183 if (scan_inst->dst.file == VGRF &&
1184 scan_inst->dst.nr == inst->src[0].nr &&
1185 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1186 scan_inst->reswizzle(inst->dst.writemask,
1187 inst->src[0].swizzle);
1188 scan_inst->dst.file = inst->dst.file;
1189 scan_inst->dst.nr = inst->dst.nr;
1190 scan_inst->dst.reg_offset = inst->dst.reg_offset;
1191 if (inst->saturate &&
1192 inst->dst.type != scan_inst->dst.type) {
1193 /* If we have reached this point, scan_inst is a non
1194 * type-converting 'mov' and we can modify its register types
1195 * to match the ones in inst. Otherwise, we could have an
1196 * incorrect saturation result.
1197 */
1198 scan_inst->dst.type = inst->dst.type;
1199 scan_inst->src[0].type = inst->src[0].type;
1200 }
1201 scan_inst->saturate |= inst->saturate;
1202 }
1203 scan_inst = (vec4_instruction *)scan_inst->next;
1204 }
1205 inst->remove(block);
1206 progress = true;
1207 }
1208 }
1209
1210 if (progress)
1211 invalidate_live_intervals();
1212
1213 return progress;
1214 }
1215
1216 /**
1217 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1218 * flow. We could probably do better here with some form of divergence
1219 * analysis.
1220 */
1221 bool
1222 vec4_visitor::eliminate_find_live_channel()
1223 {
1224 bool progress = false;
1225 unsigned depth = 0;
1226
1227 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1228 switch (inst->opcode) {
1229 case BRW_OPCODE_IF:
1230 case BRW_OPCODE_DO:
1231 depth++;
1232 break;
1233
1234 case BRW_OPCODE_ENDIF:
1235 case BRW_OPCODE_WHILE:
1236 depth--;
1237 break;
1238
1239 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1240 if (depth == 0) {
1241 inst->opcode = BRW_OPCODE_MOV;
1242 inst->src[0] = brw_imm_d(0);
1243 inst->force_writemask_all = true;
1244 progress = true;
1245 }
1246 break;
1247
1248 default:
1249 break;
1250 }
1251 }
1252
1253 return progress;
1254 }
1255
1256 /**
1257 * Splits virtual GRFs requesting more than one contiguous physical register.
1258 *
1259 * We initially create large virtual GRFs for temporary structures, arrays,
1260 * and matrices, so that the dereference visitor functions can add reg_offsets
1261 * to work their way down to the actual member being accessed. But when it
1262 * comes to optimization, we'd like to treat each register as individual
1263 * storage if possible.
1264 *
1265 * So far, the only thing that might prevent splitting is a send message from
1266 * a GRF on IVB.
1267 */
1268 void
1269 vec4_visitor::split_virtual_grfs()
1270 {
1271 int num_vars = this->alloc.count;
1272 int new_virtual_grf[num_vars];
1273 bool split_grf[num_vars];
1274
1275 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1276
1277 /* Try to split anything > 0 sized. */
1278 for (int i = 0; i < num_vars; i++) {
1279 split_grf[i] = this->alloc.sizes[i] != 1;
1280 }
1281
1282 /* Check that the instructions are compatible with the registers we're trying
1283 * to split.
1284 */
1285 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1286 if (inst->dst.file == VGRF && inst->regs_written > 1)
1287 split_grf[inst->dst.nr] = false;
1288
1289 for (int i = 0; i < 3; i++) {
1290 if (inst->src[i].file == VGRF && inst->regs_read(i) > 1)
1291 split_grf[inst->src[i].nr] = false;
1292 }
1293 }
1294
1295 /* Allocate new space for split regs. Note that the virtual
1296 * numbers will be contiguous.
1297 */
1298 for (int i = 0; i < num_vars; i++) {
1299 if (!split_grf[i])
1300 continue;
1301
1302 new_virtual_grf[i] = alloc.allocate(1);
1303 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1304 unsigned reg = alloc.allocate(1);
1305 assert(reg == new_virtual_grf[i] + j - 1);
1306 (void) reg;
1307 }
1308 this->alloc.sizes[i] = 1;
1309 }
1310
1311 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1312 if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
1313 inst->dst.reg_offset != 0) {
1314 inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
1315 inst->dst.reg_offset - 1);
1316 inst->dst.reg_offset = 0;
1317 }
1318 for (int i = 0; i < 3; i++) {
1319 if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
1320 inst->src[i].reg_offset != 0) {
1321 inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
1322 inst->src[i].reg_offset - 1);
1323 inst->src[i].reg_offset = 0;
1324 }
1325 }
1326 }
1327 invalidate_live_intervals();
1328 }
1329
1330 void
1331 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1332 {
1333 dump_instruction(be_inst, stderr);
1334 }
1335
1336 void
1337 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1338 {
1339 vec4_instruction *inst = (vec4_instruction *)be_inst;
1340
1341 if (inst->predicate) {
1342 fprintf(file, "(%cf0.%d%s) ",
1343 inst->predicate_inverse ? '-' : '+',
1344 inst->flag_subreg,
1345 pred_ctrl_align16[inst->predicate]);
1346 }
1347
1348 fprintf(file, "%s", brw_instruction_name(inst->opcode));
1349 if (inst->saturate)
1350 fprintf(file, ".sat");
1351 if (inst->conditional_mod) {
1352 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1353 if (!inst->predicate &&
1354 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1355 inst->opcode != BRW_OPCODE_IF &&
1356 inst->opcode != BRW_OPCODE_WHILE))) {
1357 fprintf(file, ".f0.%d", inst->flag_subreg);
1358 }
1359 }
1360 fprintf(file, " ");
1361
1362 switch (inst->dst.file) {
1363 case VGRF:
1364 fprintf(file, "vgrf%d.%d", inst->dst.nr, inst->dst.reg_offset);
1365 break;
1366 case FIXED_GRF:
1367 fprintf(file, "g%d", inst->dst.nr);
1368 break;
1369 case MRF:
1370 fprintf(file, "m%d", inst->dst.nr);
1371 break;
1372 case ARF:
1373 switch (inst->dst.nr) {
1374 case BRW_ARF_NULL:
1375 fprintf(file, "null");
1376 break;
1377 case BRW_ARF_ADDRESS:
1378 fprintf(file, "a0.%d", inst->dst.subnr);
1379 break;
1380 case BRW_ARF_ACCUMULATOR:
1381 fprintf(file, "acc%d", inst->dst.subnr);
1382 break;
1383 case BRW_ARF_FLAG:
1384 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1385 break;
1386 default:
1387 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1388 break;
1389 }
1390 if (inst->dst.subnr)
1391 fprintf(file, "+%d", inst->dst.subnr);
1392 break;
1393 case BAD_FILE:
1394 fprintf(file, "(null)");
1395 break;
1396 case IMM:
1397 case ATTR:
1398 case UNIFORM:
1399 unreachable("not reached");
1400 }
1401 if (inst->dst.writemask != WRITEMASK_XYZW) {
1402 fprintf(file, ".");
1403 if (inst->dst.writemask & 1)
1404 fprintf(file, "x");
1405 if (inst->dst.writemask & 2)
1406 fprintf(file, "y");
1407 if (inst->dst.writemask & 4)
1408 fprintf(file, "z");
1409 if (inst->dst.writemask & 8)
1410 fprintf(file, "w");
1411 }
1412 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
1413
1414 if (inst->src[0].file != BAD_FILE)
1415 fprintf(file, ", ");
1416
1417 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1418 if (inst->src[i].negate)
1419 fprintf(file, "-");
1420 if (inst->src[i].abs)
1421 fprintf(file, "|");
1422 switch (inst->src[i].file) {
1423 case VGRF:
1424 fprintf(file, "vgrf%d", inst->src[i].nr);
1425 break;
1426 case FIXED_GRF:
1427 fprintf(file, "g%d", inst->src[i].nr);
1428 break;
1429 case ATTR:
1430 fprintf(file, "attr%d", inst->src[i].nr);
1431 break;
1432 case UNIFORM:
1433 fprintf(file, "u%d", inst->src[i].nr);
1434 break;
1435 case IMM:
1436 switch (inst->src[i].type) {
1437 case BRW_REGISTER_TYPE_F:
1438 fprintf(file, "%fF", inst->src[i].f);
1439 break;
1440 case BRW_REGISTER_TYPE_D:
1441 fprintf(file, "%dD", inst->src[i].d);
1442 break;
1443 case BRW_REGISTER_TYPE_UD:
1444 fprintf(file, "%uU", inst->src[i].ud);
1445 break;
1446 case BRW_REGISTER_TYPE_VF:
1447 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1448 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
1449 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
1450 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
1451 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
1452 break;
1453 default:
1454 fprintf(file, "???");
1455 break;
1456 }
1457 break;
1458 case ARF:
1459 switch (inst->src[i].nr) {
1460 case BRW_ARF_NULL:
1461 fprintf(file, "null");
1462 break;
1463 case BRW_ARF_ADDRESS:
1464 fprintf(file, "a0.%d", inst->src[i].subnr);
1465 break;
1466 case BRW_ARF_ACCUMULATOR:
1467 fprintf(file, "acc%d", inst->src[i].subnr);
1468 break;
1469 case BRW_ARF_FLAG:
1470 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1471 break;
1472 default:
1473 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1474 break;
1475 }
1476 if (inst->src[i].subnr)
1477 fprintf(file, "+%d", inst->src[i].subnr);
1478 break;
1479 case BAD_FILE:
1480 fprintf(file, "(null)");
1481 break;
1482 case MRF:
1483 unreachable("not reached");
1484 }
1485
1486 /* Don't print .0; and only VGRFs have reg_offsets and sizes */
1487 if (inst->src[i].reg_offset != 0 &&
1488 inst->src[i].file == VGRF &&
1489 alloc.sizes[inst->src[i].nr] != 1)
1490 fprintf(file, ".%d", inst->src[i].reg_offset);
1491
1492 if (inst->src[i].file != IMM) {
1493 static const char *chans[4] = {"x", "y", "z", "w"};
1494 fprintf(file, ".");
1495 for (int c = 0; c < 4; c++) {
1496 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1497 }
1498 }
1499
1500 if (inst->src[i].abs)
1501 fprintf(file, "|");
1502
1503 if (inst->src[i].file != IMM) {
1504 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1505 }
1506
1507 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1508 fprintf(file, ", ");
1509 }
1510
1511 if (inst->force_writemask_all)
1512 fprintf(file, " NoMask");
1513
1514 fprintf(file, "\n");
1515 }
1516
1517
1518 static inline struct brw_reg
1519 attribute_to_hw_reg(int attr, bool interleaved)
1520 {
1521 if (interleaved)
1522 return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1523 else
1524 return brw_vec8_grf(attr, 0);
1525 }
1526
1527
1528 /**
1529 * Replace each register of type ATTR in this->instructions with a reference
1530 * to a fixed HW register.
1531 *
1532 * If interleaved is true, then each attribute takes up half a register, with
1533 * register N containing attribute 2*N in its first half and attribute 2*N+1
1534 * in its second half (this corresponds to the payload setup used by geometry
1535 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
1536 * false, then each attribute takes up a whole register, with register N
1537 * containing attribute N (this corresponds to the payload setup used by
1538 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1539 */
1540 void
1541 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1542 bool interleaved)
1543 {
1544 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1545 for (int i = 0; i < 3; i++) {
1546 if (inst->src[i].file != ATTR)
1547 continue;
1548
1549 int grf = attribute_map[inst->src[i].nr + inst->src[i].reg_offset];
1550
1551 /* All attributes used in the shader need to have been assigned a
1552 * hardware register by the caller
1553 */
1554 assert(grf != 0);
1555
1556 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1557 reg.swizzle = inst->src[i].swizzle;
1558 reg.type = inst->src[i].type;
1559 if (inst->src[i].abs)
1560 reg = brw_abs(reg);
1561 if (inst->src[i].negate)
1562 reg = negate(reg);
1563
1564 inst->src[i] = reg;
1565 }
1566 }
1567 }
1568
1569 int
1570 vec4_vs_visitor::setup_attributes(int payload_reg)
1571 {
1572 int nr_attributes;
1573 int attribute_map[VERT_ATTRIB_MAX + 2];
1574 memset(attribute_map, 0, sizeof(attribute_map));
1575
1576 nr_attributes = 0;
1577 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1578 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1579 attribute_map[i] = payload_reg + nr_attributes;
1580 nr_attributes++;
1581 }
1582 }
1583
1584 /* VertexID is stored by the VF as the last vertex element, but we
1585 * don't represent it with a flag in inputs_read, so we call it
1586 * VERT_ATTRIB_MAX.
1587 */
1588 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid ||
1589 vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) {
1590 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1591 nr_attributes++;
1592 }
1593
1594 if (vs_prog_data->uses_drawid) {
1595 attribute_map[VERT_ATTRIB_MAX + 1] = payload_reg + nr_attributes;
1596 nr_attributes++;
1597 }
1598
1599 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1600
1601 return payload_reg + vs_prog_data->nr_attributes;
1602 }
1603
1604 int
1605 vec4_visitor::setup_uniforms(int reg)
1606 {
1607 prog_data->base.dispatch_grf_start_reg = reg;
1608
1609 /* The pre-gen6 VS requires that some push constants get loaded no
1610 * matter what, or the GPU would hang.
1611 */
1612 if (devinfo->gen < 6 && this->uniforms == 0) {
1613 assert(this->uniforms < this->uniform_array_size);
1614
1615 stage_prog_data->param =
1616 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1617 for (unsigned int i = 0; i < 4; i++) {
1618 unsigned int slot = this->uniforms * 4 + i;
1619 static gl_constant_value zero = { 0.0 };
1620 stage_prog_data->param[slot] = &zero;
1621 }
1622
1623 this->uniforms++;
1624 reg++;
1625 } else {
1626 reg += ALIGN(uniforms, 2) / 2;
1627 }
1628
1629 stage_prog_data->nr_params = this->uniforms * 4;
1630
1631 prog_data->base.curb_read_length =
1632 reg - prog_data->base.dispatch_grf_start_reg;
1633
1634 return reg;
1635 }
1636
1637 void
1638 vec4_vs_visitor::setup_payload(void)
1639 {
1640 int reg = 0;
1641
1642 /* The payload always contains important data in g0, which contains
1643 * the URB handles that are passed on to the URB write at the end
1644 * of the thread. So, we always start push constants at g1.
1645 */
1646 reg++;
1647
1648 reg = setup_uniforms(reg);
1649
1650 reg = setup_attributes(reg);
1651
1652 this->first_non_payload_grf = reg;
1653 }
1654
1655 bool
1656 vec4_visitor::lower_minmax()
1657 {
1658 assert(devinfo->gen < 6);
1659
1660 bool progress = false;
1661
1662 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1663 const vec4_builder ibld(this, block, inst);
1664
1665 if (inst->opcode == BRW_OPCODE_SEL &&
1666 inst->predicate == BRW_PREDICATE_NONE) {
1667 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
1668 * the original SEL.L/GE instruction
1669 */
1670 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
1671 inst->conditional_mod);
1672 inst->predicate = BRW_PREDICATE_NORMAL;
1673 inst->conditional_mod = BRW_CONDITIONAL_NONE;
1674
1675 progress = true;
1676 }
1677 }
1678
1679 if (progress)
1680 invalidate_live_intervals();
1681
1682 return progress;
1683 }
1684
1685 src_reg
1686 vec4_visitor::get_timestamp()
1687 {
1688 assert(devinfo->gen >= 7);
1689
1690 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1691 BRW_ARF_TIMESTAMP,
1692 0,
1693 0,
1694 0,
1695 BRW_REGISTER_TYPE_UD,
1696 BRW_VERTICAL_STRIDE_0,
1697 BRW_WIDTH_4,
1698 BRW_HORIZONTAL_STRIDE_4,
1699 BRW_SWIZZLE_XYZW,
1700 WRITEMASK_XYZW));
1701
1702 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1703
1704 vec4_instruction *mov = emit(MOV(dst, ts));
1705 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1706 * even if it's not enabled in the dispatch.
1707 */
1708 mov->force_writemask_all = true;
1709
1710 return src_reg(dst);
1711 }
1712
1713 void
1714 vec4_visitor::emit_shader_time_begin()
1715 {
1716 current_annotation = "shader time start";
1717 shader_start_time = get_timestamp();
1718 }
1719
1720 void
1721 vec4_visitor::emit_shader_time_end()
1722 {
1723 current_annotation = "shader time end";
1724 src_reg shader_end_time = get_timestamp();
1725
1726
1727 /* Check that there weren't any timestamp reset events (assuming these
1728 * were the only two timestamp reads that happened).
1729 */
1730 src_reg reset_end = shader_end_time;
1731 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1732 vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
1733 test->conditional_mod = BRW_CONDITIONAL_Z;
1734
1735 emit(IF(BRW_PREDICATE_NORMAL));
1736
1737 /* Take the current timestamp and get the delta. */
1738 shader_start_time.negate = true;
1739 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1740 emit(ADD(diff, shader_start_time, shader_end_time));
1741
1742 /* If there were no instructions between the two timestamp gets, the diff
1743 * is 2 cycles. Remove that overhead, so I can forget about that when
1744 * trying to determine the time taken for single instructions.
1745 */
1746 emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
1747
1748 emit_shader_time_write(0, src_reg(diff));
1749 emit_shader_time_write(1, brw_imm_ud(1u));
1750 emit(BRW_OPCODE_ELSE);
1751 emit_shader_time_write(2, brw_imm_ud(1u));
1752 emit(BRW_OPCODE_ENDIF);
1753 }
1754
1755 void
1756 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
1757 {
1758 dst_reg dst =
1759 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1760
1761 dst_reg offset = dst;
1762 dst_reg time = dst;
1763 time.reg_offset++;
1764
1765 offset.type = BRW_REGISTER_TYPE_UD;
1766 int index = shader_time_index * 3 + shader_time_subindex;
1767 emit(MOV(offset, brw_imm_d(index * SHADER_TIME_STRIDE)));
1768
1769 time.type = BRW_REGISTER_TYPE_UD;
1770 emit(MOV(time, value));
1771
1772 vec4_instruction *inst =
1773 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1774 inst->mlen = 2;
1775 }
1776
1777 void
1778 vec4_visitor::convert_to_hw_regs()
1779 {
1780 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1781 for (int i = 0; i < 3; i++) {
1782 struct src_reg &src = inst->src[i];
1783 struct brw_reg reg;
1784 switch (src.file) {
1785 case VGRF:
1786 reg = brw_vec8_grf(src.nr + src.reg_offset, 0);
1787 reg.type = src.type;
1788 reg.swizzle = src.swizzle;
1789 reg.abs = src.abs;
1790 reg.negate = src.negate;
1791 break;
1792
1793 case UNIFORM:
1794 reg = stride(brw_vec4_grf(prog_data->base.dispatch_grf_start_reg +
1795 (src.nr + src.reg_offset) / 2,
1796 ((src.nr + src.reg_offset) % 2) * 4),
1797 0, 4, 1);
1798 reg.type = src.type;
1799 reg.swizzle = src.swizzle;
1800 reg.abs = src.abs;
1801 reg.negate = src.negate;
1802
1803 /* This should have been moved to pull constants. */
1804 assert(!src.reladdr);
1805 break;
1806
1807 case ARF:
1808 case FIXED_GRF:
1809 case IMM:
1810 continue;
1811
1812 case BAD_FILE:
1813 /* Probably unused. */
1814 reg = brw_null_reg();
1815 break;
1816
1817 case MRF:
1818 case ATTR:
1819 unreachable("not reached");
1820 }
1821
1822 src = reg;
1823 }
1824
1825 if (inst->is_3src()) {
1826 /* 3-src instructions with scalar sources support arbitrary subnr,
1827 * but don't actually use swizzles. Convert swizzle into subnr.
1828 */
1829 for (int i = 0; i < 3; i++) {
1830 if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0) {
1831 assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
1832 inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
1833 }
1834 }
1835 }
1836
1837 dst_reg &dst = inst->dst;
1838 struct brw_reg reg;
1839
1840 switch (inst->dst.file) {
1841 case VGRF:
1842 reg = brw_vec8_grf(dst.nr + dst.reg_offset, 0);
1843 reg.type = dst.type;
1844 reg.writemask = dst.writemask;
1845 break;
1846
1847 case MRF:
1848 assert(((dst.nr + dst.reg_offset) & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
1849 reg = brw_message_reg(dst.nr + dst.reg_offset);
1850 reg.type = dst.type;
1851 reg.writemask = dst.writemask;
1852 break;
1853
1854 case ARF:
1855 case FIXED_GRF:
1856 reg = dst.as_brw_reg();
1857 break;
1858
1859 case BAD_FILE:
1860 reg = brw_null_reg();
1861 break;
1862
1863 case IMM:
1864 case ATTR:
1865 case UNIFORM:
1866 unreachable("not reached");
1867 }
1868
1869 dst = reg;
1870 }
1871 }
1872
1873 bool
1874 vec4_visitor::run()
1875 {
1876 if (shader_time_index >= 0)
1877 emit_shader_time_begin();
1878
1879 emit_prolog();
1880
1881 emit_nir_code();
1882 if (failed)
1883 return false;
1884 base_ir = NULL;
1885
1886 emit_thread_end();
1887
1888 calculate_cfg();
1889
1890 /* Before any optimization, push array accesses out to scratch
1891 * space where we need them to be. This pass may allocate new
1892 * virtual GRFs, so we want to do it early. It also makes sure
1893 * that we have reladdr computations available for CSE, since we'll
1894 * often do repeated subexpressions for those.
1895 */
1896 move_grf_array_access_to_scratch();
1897 move_uniform_array_access_to_pull_constants();
1898
1899 pack_uniform_registers();
1900 move_push_constants_to_pull_constants();
1901 split_virtual_grfs();
1902
1903 #define OPT(pass, args...) ({ \
1904 pass_num++; \
1905 bool this_progress = pass(args); \
1906 \
1907 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
1908 char filename[64]; \
1909 snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \
1910 stage_abbrev, nir->info.name, iteration, pass_num); \
1911 \
1912 backend_shader::dump_instructions(filename); \
1913 } \
1914 \
1915 progress = progress || this_progress; \
1916 this_progress; \
1917 })
1918
1919
1920 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
1921 char filename[64];
1922 snprintf(filename, 64, "%s-%s-00-00-start",
1923 stage_abbrev, nir->info.name);
1924
1925 backend_shader::dump_instructions(filename);
1926 }
1927
1928 bool progress;
1929 int iteration = 0;
1930 int pass_num = 0;
1931 do {
1932 progress = false;
1933 pass_num = 0;
1934 iteration++;
1935
1936 OPT(opt_predicated_break, this);
1937 OPT(opt_reduce_swizzle);
1938 OPT(dead_code_eliminate);
1939 OPT(dead_control_flow_eliminate, this);
1940 OPT(opt_copy_propagation);
1941 OPT(opt_cmod_propagation);
1942 OPT(opt_cse);
1943 OPT(opt_algebraic);
1944 OPT(opt_register_coalesce);
1945 OPT(eliminate_find_live_channel);
1946 } while (progress);
1947
1948 pass_num = 0;
1949
1950 if (OPT(opt_vector_float)) {
1951 OPT(opt_cse);
1952 OPT(opt_copy_propagation, false);
1953 OPT(opt_copy_propagation, true);
1954 OPT(dead_code_eliminate);
1955 }
1956
1957 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
1958 OPT(opt_cmod_propagation);
1959 OPT(opt_cse);
1960 OPT(opt_copy_propagation);
1961 OPT(dead_code_eliminate);
1962 }
1963
1964 if (failed)
1965 return false;
1966
1967 setup_payload();
1968
1969 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) {
1970 /* Debug of register spilling: Go spill everything. */
1971 const int grf_count = alloc.count;
1972 float spill_costs[alloc.count];
1973 bool no_spill[alloc.count];
1974 evaluate_spill_costs(spill_costs, no_spill);
1975 for (int i = 0; i < grf_count; i++) {
1976 if (no_spill[i])
1977 continue;
1978 spill_reg(i);
1979 }
1980 }
1981
1982 bool allocated_without_spills = reg_allocate();
1983
1984 if (!allocated_without_spills) {
1985 compiler->shader_perf_log(log_data,
1986 "%s shader triggered register spilling. "
1987 "Try reducing the number of live vec4 values "
1988 "to improve performance.\n",
1989 stage_name);
1990
1991 while (!reg_allocate()) {
1992 if (failed)
1993 return false;
1994 }
1995 }
1996
1997 opt_schedule_instructions();
1998
1999 opt_set_dependency_control();
2000
2001 convert_to_hw_regs();
2002
2003 if (last_scratch > 0) {
2004 prog_data->base.total_scratch =
2005 brw_get_scratch_size(last_scratch * REG_SIZE);
2006 }
2007
2008 return !failed;
2009 }
2010
2011 } /* namespace brw */
2012
2013 extern "C" {
2014
2015 /**
2016 * Compile a vertex shader.
2017 *
2018 * Returns the final assembly and the program's size.
2019 */
2020 const unsigned *
2021 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
2022 void *mem_ctx,
2023 const struct brw_vs_prog_key *key,
2024 struct brw_vs_prog_data *prog_data,
2025 const nir_shader *src_shader,
2026 gl_clip_plane *clip_planes,
2027 bool use_legacy_snorm_formula,
2028 int shader_time_index,
2029 unsigned *final_assembly_size,
2030 char **error_str)
2031 {
2032 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
2033 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
2034 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
2035 is_scalar);
2036 brw_nir_lower_vs_inputs(shader, compiler->devinfo, is_scalar,
2037 use_legacy_snorm_formula, key->gl_attrib_wa_flags);
2038 brw_nir_lower_vue_outputs(shader, is_scalar);
2039 shader = brw_postprocess_nir(shader, compiler->devinfo, is_scalar);
2040
2041 const unsigned *assembly = NULL;
2042
2043 unsigned nr_attributes = _mesa_bitcount_64(prog_data->inputs_read);
2044
2045 /* gl_VertexID and gl_InstanceID are system values, but arrive via an
2046 * incoming vertex attribute. So, add an extra slot.
2047 */
2048 if (shader->info.system_values_read &
2049 (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
2050 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
2051 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
2052 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) {
2053 nr_attributes++;
2054 }
2055
2056 /* gl_DrawID has its very own vec4 */
2057 if (shader->info.system_values_read & BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID)) {
2058 nr_attributes++;
2059 }
2060
2061 /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
2062 * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in
2063 * vec4 mode, the hardware appears to wedge unless we read something.
2064 */
2065 if (is_scalar)
2066 prog_data->base.urb_read_length = DIV_ROUND_UP(nr_attributes, 2);
2067 else
2068 prog_data->base.urb_read_length = DIV_ROUND_UP(MAX2(nr_attributes, 1), 2);
2069
2070 prog_data->nr_attributes = nr_attributes;
2071
2072 /* Since vertex shaders reuse the same VUE entry for inputs and outputs
2073 * (overwriting the original contents), we need to make sure the size is
2074 * the larger of the two.
2075 */
2076 const unsigned vue_entries =
2077 MAX2(nr_attributes, (unsigned)prog_data->base.vue_map.num_slots);
2078
2079 if (compiler->devinfo->gen == 6)
2080 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
2081 else
2082 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
2083
2084 if (is_scalar) {
2085 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
2086
2087 fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base,
2088 NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */
2089 shader, 8, shader_time_index);
2090 if (!v.run_vs(clip_planes)) {
2091 if (error_str)
2092 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2093
2094 return NULL;
2095 }
2096
2097 fs_generator g(compiler, log_data, mem_ctx, (void *) key,
2098 &prog_data->base.base, v.promoted_constants,
2099 v.runtime_check_aads_emit, MESA_SHADER_VERTEX);
2100 if (INTEL_DEBUG & DEBUG_VS) {
2101 const char *debug_name =
2102 ralloc_asprintf(mem_ctx, "%s vertex shader %s",
2103 shader->info.label ? shader->info.label : "unnamed",
2104 shader->info.name);
2105
2106 g.enable_debug(debug_name);
2107 }
2108 g.generate_code(v.cfg, 8);
2109 assembly = g.get_assembly(final_assembly_size);
2110 }
2111
2112 if (!assembly) {
2113 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
2114
2115 vec4_vs_visitor v(compiler, log_data, key, prog_data,
2116 shader, clip_planes, mem_ctx,
2117 shader_time_index, use_legacy_snorm_formula);
2118 if (!v.run()) {
2119 if (error_str)
2120 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2121
2122 return NULL;
2123 }
2124
2125 assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
2126 shader, &prog_data->base, v.cfg,
2127 final_assembly_size);
2128 }
2129
2130 return assembly;
2131 }
2132
2133 } /* extern "C" */