d1a3d48f9c404e8f883c27556745e89cf8b02236
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_cfg.h"
26 #include "brw_vs.h"
27 #include "brw_dead_control_flow.h"
28
29 extern "C" {
30 #include "main/macros.h"
31 #include "main/shaderobj.h"
32 #include "program/prog_print.h"
33 #include "program/prog_parameter.h"
34 }
35
36 #define MAX_INSTRUCTION (1 << 30)
37
38 using namespace brw;
39
40 namespace brw {
41
42 /**
43 * Common helper for constructing swizzles. When only a subset of
44 * channels of a vec4 are used, we don't want to reference the other
45 * channels, as that will tell optimization passes that those other
46 * channels are used.
47 */
48 unsigned
49 swizzle_for_size(int size)
50 {
51 static const unsigned size_swizzles[4] = {
52 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
53 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
54 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
55 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
56 };
57
58 assert((size >= 1) && (size <= 4));
59 return size_swizzles[size - 1];
60 }
61
62 void
63 src_reg::init()
64 {
65 memset(this, 0, sizeof(*this));
66
67 this->file = BAD_FILE;
68 }
69
70 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
71 {
72 init();
73
74 this->file = file;
75 this->reg = reg;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = BRW_SWIZZLE_XYZW;
80 }
81
82 /** Generic unset register constructor. */
83 src_reg::src_reg()
84 {
85 init();
86 }
87
88 src_reg::src_reg(float f)
89 {
90 init();
91
92 this->file = IMM;
93 this->type = BRW_REGISTER_TYPE_F;
94 this->fixed_hw_reg.dw1.f = f;
95 }
96
97 src_reg::src_reg(uint32_t u)
98 {
99 init();
100
101 this->file = IMM;
102 this->type = BRW_REGISTER_TYPE_UD;
103 this->fixed_hw_reg.dw1.ud = u;
104 }
105
106 src_reg::src_reg(int32_t i)
107 {
108 init();
109
110 this->file = IMM;
111 this->type = BRW_REGISTER_TYPE_D;
112 this->fixed_hw_reg.dw1.d = i;
113 }
114
115 src_reg::src_reg(struct brw_reg reg)
116 {
117 init();
118
119 this->file = HW_REG;
120 this->fixed_hw_reg = reg;
121 this->type = reg.type;
122 }
123
124 src_reg::src_reg(dst_reg reg)
125 {
126 init();
127
128 this->file = reg.file;
129 this->reg = reg.reg;
130 this->reg_offset = reg.reg_offset;
131 this->type = reg.type;
132 this->reladdr = reg.reladdr;
133 this->fixed_hw_reg = reg.fixed_hw_reg;
134
135 int swizzles[4];
136 int next_chan = 0;
137 int last = 0;
138
139 for (int i = 0; i < 4; i++) {
140 if (!(reg.writemask & (1 << i)))
141 continue;
142
143 swizzles[next_chan++] = last = i;
144 }
145
146 for (; next_chan < 4; next_chan++) {
147 swizzles[next_chan] = last;
148 }
149
150 this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
151 swizzles[2], swizzles[3]);
152 }
153
154 void
155 dst_reg::init()
156 {
157 memset(this, 0, sizeof(*this));
158 this->file = BAD_FILE;
159 this->writemask = WRITEMASK_XYZW;
160 }
161
162 dst_reg::dst_reg()
163 {
164 init();
165 }
166
167 dst_reg::dst_reg(register_file file, int reg)
168 {
169 init();
170
171 this->file = file;
172 this->reg = reg;
173 }
174
175 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
176 int writemask)
177 {
178 init();
179
180 this->file = file;
181 this->reg = reg;
182 this->type = brw_type_for_base_type(type);
183 this->writemask = writemask;
184 }
185
186 dst_reg::dst_reg(struct brw_reg reg)
187 {
188 init();
189
190 this->file = HW_REG;
191 this->fixed_hw_reg = reg;
192 this->type = reg.type;
193 }
194
195 dst_reg::dst_reg(src_reg reg)
196 {
197 init();
198
199 this->file = reg.file;
200 this->reg = reg.reg;
201 this->reg_offset = reg.reg_offset;
202 this->type = reg.type;
203 /* How should we do writemasking when converting from a src_reg? It seems
204 * pretty obvious that for src.xxxx the caller wants to write to src.x, but
205 * what about for src.wx? Just special-case src.xxxx for now.
206 */
207 if (reg.swizzle == BRW_SWIZZLE_XXXX)
208 this->writemask = WRITEMASK_X;
209 else
210 this->writemask = WRITEMASK_XYZW;
211 this->reladdr = reg.reladdr;
212 this->fixed_hw_reg = reg.fixed_hw_reg;
213 }
214
215 bool
216 vec4_instruction::is_send_from_grf()
217 {
218 switch (opcode) {
219 case SHADER_OPCODE_SHADER_TIME_ADD:
220 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
221 return true;
222 default:
223 return false;
224 }
225 }
226
227 bool
228 vec4_instruction::can_do_source_mods(struct brw_context *brw)
229 {
230 if (brw->gen == 6 && is_math())
231 return false;
232
233 if (is_send_from_grf())
234 return false;
235
236 if (!backend_instruction::can_do_source_mods())
237 return false;
238
239 return true;
240 }
241
242 /**
243 * Returns how many MRFs an opcode will write over.
244 *
245 * Note that this is not the 0 or 1 implied writes in an actual gen
246 * instruction -- the generate_* functions generate additional MOVs
247 * for setup.
248 */
249 int
250 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
251 {
252 if (inst->mlen == 0)
253 return 0;
254
255 switch (inst->opcode) {
256 case SHADER_OPCODE_RCP:
257 case SHADER_OPCODE_RSQ:
258 case SHADER_OPCODE_SQRT:
259 case SHADER_OPCODE_EXP2:
260 case SHADER_OPCODE_LOG2:
261 case SHADER_OPCODE_SIN:
262 case SHADER_OPCODE_COS:
263 return 1;
264 case SHADER_OPCODE_INT_QUOTIENT:
265 case SHADER_OPCODE_INT_REMAINDER:
266 case SHADER_OPCODE_POW:
267 return 2;
268 case VS_OPCODE_URB_WRITE:
269 return 1;
270 case VS_OPCODE_PULL_CONSTANT_LOAD:
271 return 2;
272 case SHADER_OPCODE_GEN4_SCRATCH_READ:
273 return 2;
274 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
275 return 3;
276 case GS_OPCODE_URB_WRITE:
277 case GS_OPCODE_URB_WRITE_ALLOCATE:
278 case GS_OPCODE_THREAD_END:
279 return 0;
280 case GS_OPCODE_FF_SYNC:
281 return 1;
282 case SHADER_OPCODE_SHADER_TIME_ADD:
283 return 0;
284 case SHADER_OPCODE_TEX:
285 case SHADER_OPCODE_TXL:
286 case SHADER_OPCODE_TXD:
287 case SHADER_OPCODE_TXF:
288 case SHADER_OPCODE_TXF_CMS:
289 case SHADER_OPCODE_TXF_MCS:
290 case SHADER_OPCODE_TXS:
291 case SHADER_OPCODE_TG4:
292 case SHADER_OPCODE_TG4_OFFSET:
293 return inst->header_present ? 1 : 0;
294 case SHADER_OPCODE_UNTYPED_ATOMIC:
295 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
296 return 0;
297 default:
298 unreachable("not reached");
299 }
300 }
301
302 bool
303 src_reg::equals(const src_reg &r) const
304 {
305 return (file == r.file &&
306 reg == r.reg &&
307 reg_offset == r.reg_offset &&
308 type == r.type &&
309 negate == r.negate &&
310 abs == r.abs &&
311 swizzle == r.swizzle &&
312 !reladdr && !r.reladdr &&
313 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
314 sizeof(fixed_hw_reg)) == 0);
315 }
316
317 /* Replaces unused channels of a swizzle with channels that are used.
318 *
319 * For instance, this pass transforms
320 *
321 * mov vgrf4.yz, vgrf5.wxzy
322 *
323 * into
324 *
325 * mov vgrf4.yz, vgrf5.xxzx
326 *
327 * This eliminates false uses of some channels, letting dead code elimination
328 * remove the instructions that wrote them.
329 */
330 bool
331 vec4_visitor::opt_reduce_swizzle()
332 {
333 bool progress = false;
334
335 foreach_in_list_safe(vec4_instruction, inst, &instructions) {
336 if (inst->dst.file == BAD_FILE || inst->dst.file == HW_REG)
337 continue;
338
339 int swizzle[4];
340
341 /* Determine which channels of the sources are read. */
342 switch (inst->opcode) {
343 case BRW_OPCODE_DP4:
344 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
345 * but all four of src1.
346 */
347 swizzle[0] = 0;
348 swizzle[1] = 1;
349 swizzle[2] = 2;
350 swizzle[3] = 3;
351 break;
352 case BRW_OPCODE_DP3:
353 swizzle[0] = 0;
354 swizzle[1] = 1;
355 swizzle[2] = 2;
356 swizzle[3] = -1;
357 break;
358 case BRW_OPCODE_DP2:
359 swizzle[0] = 0;
360 swizzle[1] = 1;
361 swizzle[2] = -1;
362 swizzle[3] = -1;
363 break;
364 default:
365 swizzle[0] = inst->dst.writemask & WRITEMASK_X ? 0 : -1;
366 swizzle[1] = inst->dst.writemask & WRITEMASK_Y ? 1 : -1;
367 swizzle[2] = inst->dst.writemask & WRITEMASK_Z ? 2 : -1;
368 swizzle[3] = inst->dst.writemask & WRITEMASK_W ? 3 : -1;
369 break;
370 }
371
372 /* Resolve unread channels (-1) by assigning them the swizzle of the
373 * first channel that is used.
374 */
375 int first_used_channel = 0;
376 for (int i = 0; i < 4; i++) {
377 if (swizzle[i] != -1) {
378 first_used_channel = swizzle[i];
379 break;
380 }
381 }
382 for (int i = 0; i < 4; i++) {
383 if (swizzle[i] == -1) {
384 swizzle[i] = first_used_channel;
385 }
386 }
387
388 /* Update sources' swizzles. */
389 for (int i = 0; i < 3; i++) {
390 if (inst->src[i].file != GRF &&
391 inst->src[i].file != ATTR &&
392 inst->src[i].file != UNIFORM)
393 continue;
394
395 int swiz[4];
396 for (int j = 0; j < 4; j++) {
397 swiz[j] = BRW_GET_SWZ(inst->src[i].swizzle, swizzle[j]);
398 }
399
400 unsigned new_swizzle = BRW_SWIZZLE4(swiz[0], swiz[1], swiz[2], swiz[3]);
401 if (inst->src[i].swizzle != new_swizzle) {
402 inst->src[i].swizzle = new_swizzle;
403 progress = true;
404 }
405 }
406 }
407
408 if (progress)
409 invalidate_live_intervals();
410
411 return progress;
412 }
413
414 static bool
415 try_eliminate_instruction(vec4_instruction *inst, int new_writemask,
416 const struct brw_context *brw)
417 {
418 if (inst->has_side_effects())
419 return false;
420
421 if (new_writemask == 0) {
422 /* Don't dead code eliminate instructions that write to the
423 * accumulator as a side-effect. Instead just set the destination
424 * to the null register to free it.
425 */
426 if (inst->writes_accumulator || inst->writes_flag()) {
427 inst->dst = dst_reg(retype(brw_null_reg(), inst->dst.type));
428 } else {
429 inst->opcode = BRW_OPCODE_NOP;
430 }
431
432 return true;
433 } else if (inst->dst.writemask != new_writemask) {
434 switch (inst->opcode) {
435 case SHADER_OPCODE_TXF_CMS:
436 case SHADER_OPCODE_GEN4_SCRATCH_READ:
437 case VS_OPCODE_PULL_CONSTANT_LOAD:
438 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
439 break;
440 default:
441 /* Do not set a writemask on Gen6 for math instructions, those are
442 * executed using align1 mode that does not support a destination mask.
443 */
444 if (!(brw->gen == 6 && inst->is_math()) && !inst->is_tex()) {
445 inst->dst.writemask = new_writemask;
446 return true;
447 }
448 }
449 }
450
451 return false;
452 }
453
454 /**
455 * Must be called after calculate_live_intervals() to remove unused
456 * writes to registers -- register allocation will fail otherwise
457 * because something deffed but not used won't be considered to
458 * interfere with other regs.
459 */
460 bool
461 vec4_visitor::dead_code_eliminate()
462 {
463 bool progress = false;
464 int pc = -1;
465
466 calculate_live_intervals();
467
468 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
469 pc++;
470
471 bool inst_writes_flag = false;
472 if (inst->dst.file != GRF) {
473 if (inst->dst.is_null() && inst->writes_flag()) {
474 inst_writes_flag = true;
475 } else {
476 continue;
477 }
478 }
479
480 if (inst->dst.file == GRF) {
481 int write_mask = inst->dst.writemask;
482
483 for (int c = 0; c < 4; c++) {
484 if (write_mask & (1 << c)) {
485 assert(this->virtual_grf_end[inst->dst.reg * 4 + c] >= pc);
486 if (this->virtual_grf_end[inst->dst.reg * 4 + c] == pc) {
487 write_mask &= ~(1 << c);
488 }
489 }
490 }
491
492 progress = try_eliminate_instruction(inst, write_mask, brw) ||
493 progress;
494 }
495
496 if (inst->predicate || inst->prev == NULL)
497 continue;
498
499 int dead_channels;
500 if (inst_writes_flag) {
501 /* Arbitrarily chosen, other than not being an xyzw writemask. */
502 #define FLAG_WRITEMASK (1 << 5)
503 dead_channels = inst->reads_flag() ? 0 : FLAG_WRITEMASK;
504 } else {
505 dead_channels = inst->dst.writemask;
506
507 for (int i = 0; i < 3; i++) {
508 if (inst->src[i].file != GRF ||
509 inst->src[i].reg != inst->dst.reg)
510 continue;
511
512 for (int j = 0; j < 4; j++) {
513 int swiz = BRW_GET_SWZ(inst->src[i].swizzle, j);
514 dead_channels &= ~(1 << swiz);
515 }
516 }
517 }
518
519 for (exec_node *node = inst->prev, *prev = node->prev;
520 prev != NULL && dead_channels != 0;
521 node = prev, prev = prev->prev) {
522 vec4_instruction *scan_inst = (vec4_instruction *)node;
523
524 if (scan_inst->is_control_flow())
525 break;
526
527 if (inst_writes_flag) {
528 if (scan_inst->dst.is_null() && scan_inst->writes_flag()) {
529 scan_inst->opcode = BRW_OPCODE_NOP;
530 progress = true;
531 continue;
532 } else if (scan_inst->reads_flag()) {
533 break;
534 }
535 }
536
537 if (inst->dst.file == scan_inst->dst.file &&
538 inst->dst.reg == scan_inst->dst.reg &&
539 inst->dst.reg_offset == scan_inst->dst.reg_offset) {
540 int new_writemask = scan_inst->dst.writemask & ~dead_channels;
541
542 progress = try_eliminate_instruction(scan_inst, new_writemask, brw) ||
543 progress;
544 }
545
546 for (int i = 0; i < 3; i++) {
547 if (scan_inst->src[i].file != inst->dst.file ||
548 scan_inst->src[i].reg != inst->dst.reg)
549 continue;
550
551 for (int j = 0; j < 4; j++) {
552 int swiz = BRW_GET_SWZ(scan_inst->src[i].swizzle, j);
553 dead_channels &= ~(1 << swiz);
554 }
555 }
556 }
557 }
558
559 if (progress) {
560 foreach_block_and_inst_safe (block, backend_instruction, inst, cfg) {
561 if (inst->opcode == BRW_OPCODE_NOP) {
562 inst->remove(block);
563 }
564 }
565
566 invalidate_live_intervals();
567 }
568
569 return progress;
570 }
571
572 void
573 vec4_visitor::split_uniform_registers()
574 {
575 /* Prior to this, uniforms have been in an array sized according to
576 * the number of vector uniforms present, sparsely filled (so an
577 * aggregate results in reg indices being skipped over). Now we're
578 * going to cut those aggregates up so each .reg index is one
579 * vector. The goal is to make elimination of unused uniform
580 * components easier later.
581 */
582 foreach_in_list(vec4_instruction, inst, &instructions) {
583 for (int i = 0 ; i < 3; i++) {
584 if (inst->src[i].file != UNIFORM)
585 continue;
586
587 assert(!inst->src[i].reladdr);
588
589 inst->src[i].reg += inst->src[i].reg_offset;
590 inst->src[i].reg_offset = 0;
591 }
592 }
593
594 /* Update that everything is now vector-sized. */
595 for (int i = 0; i < this->uniforms; i++) {
596 this->uniform_size[i] = 1;
597 }
598 }
599
600 void
601 vec4_visitor::pack_uniform_registers()
602 {
603 bool uniform_used[this->uniforms];
604 int new_loc[this->uniforms];
605 int new_chan[this->uniforms];
606
607 memset(uniform_used, 0, sizeof(uniform_used));
608 memset(new_loc, 0, sizeof(new_loc));
609 memset(new_chan, 0, sizeof(new_chan));
610
611 /* Find which uniform vectors are actually used by the program. We
612 * expect unused vector elements when we've moved array access out
613 * to pull constants, and from some GLSL code generators like wine.
614 */
615 foreach_in_list(vec4_instruction, inst, &instructions) {
616 for (int i = 0 ; i < 3; i++) {
617 if (inst->src[i].file != UNIFORM)
618 continue;
619
620 uniform_used[inst->src[i].reg] = true;
621 }
622 }
623
624 int new_uniform_count = 0;
625
626 /* Now, figure out a packing of the live uniform vectors into our
627 * push constants.
628 */
629 for (int src = 0; src < uniforms; src++) {
630 assert(src < uniform_array_size);
631 int size = this->uniform_vector_size[src];
632
633 if (!uniform_used[src]) {
634 this->uniform_vector_size[src] = 0;
635 continue;
636 }
637
638 int dst;
639 /* Find the lowest place we can slot this uniform in. */
640 for (dst = 0; dst < src; dst++) {
641 if (this->uniform_vector_size[dst] + size <= 4)
642 break;
643 }
644
645 if (src == dst) {
646 new_loc[src] = dst;
647 new_chan[src] = 0;
648 } else {
649 new_loc[src] = dst;
650 new_chan[src] = this->uniform_vector_size[dst];
651
652 /* Move the references to the data */
653 for (int j = 0; j < size; j++) {
654 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
655 stage_prog_data->param[src * 4 + j];
656 }
657
658 this->uniform_vector_size[dst] += size;
659 this->uniform_vector_size[src] = 0;
660 }
661
662 new_uniform_count = MAX2(new_uniform_count, dst + 1);
663 }
664
665 this->uniforms = new_uniform_count;
666
667 /* Now, update the instructions for our repacked uniforms. */
668 foreach_in_list(vec4_instruction, inst, &instructions) {
669 for (int i = 0 ; i < 3; i++) {
670 int src = inst->src[i].reg;
671
672 if (inst->src[i].file != UNIFORM)
673 continue;
674
675 inst->src[i].reg = new_loc[src];
676
677 int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
678 int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
679 int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
680 int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
681 inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
682 }
683 }
684 }
685
686 /**
687 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
688 *
689 * While GLSL IR also performs this optimization, we end up with it in
690 * our instruction stream for a couple of reasons. One is that we
691 * sometimes generate silly instructions, for example in array access
692 * where we'll generate "ADD offset, index, base" even if base is 0.
693 * The other is that GLSL IR's constant propagation doesn't track the
694 * components of aggregates, so some VS patterns (initialize matrix to
695 * 0, accumulate in vertex blending factors) end up breaking down to
696 * instructions involving 0.
697 */
698 bool
699 vec4_visitor::opt_algebraic()
700 {
701 bool progress = false;
702
703 calculate_cfg();
704
705 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
706 switch (inst->opcode) {
707 case BRW_OPCODE_ADD:
708 if (inst->src[1].is_zero()) {
709 inst->opcode = BRW_OPCODE_MOV;
710 inst->src[1] = src_reg();
711 progress = true;
712 }
713 break;
714
715 case BRW_OPCODE_MUL:
716 if (inst->src[1].is_zero()) {
717 inst->opcode = BRW_OPCODE_MOV;
718 switch (inst->src[0].type) {
719 case BRW_REGISTER_TYPE_F:
720 inst->src[0] = src_reg(0.0f);
721 break;
722 case BRW_REGISTER_TYPE_D:
723 inst->src[0] = src_reg(0);
724 break;
725 case BRW_REGISTER_TYPE_UD:
726 inst->src[0] = src_reg(0u);
727 break;
728 default:
729 unreachable("not reached");
730 }
731 inst->src[1] = src_reg();
732 progress = true;
733 } else if (inst->src[1].is_one()) {
734 inst->opcode = BRW_OPCODE_MOV;
735 inst->src[1] = src_reg();
736 progress = true;
737 }
738 break;
739 default:
740 break;
741 }
742 }
743
744 if (progress)
745 invalidate_live_intervals();
746
747 return progress;
748 }
749
750 /**
751 * Only a limited number of hardware registers may be used for push
752 * constants, so this turns access to the overflowed constants into
753 * pull constants.
754 */
755 void
756 vec4_visitor::move_push_constants_to_pull_constants()
757 {
758 int pull_constant_loc[this->uniforms];
759
760 /* Only allow 32 registers (256 uniform components) as push constants,
761 * which is the limit on gen6.
762 *
763 * If changing this value, note the limitation about total_regs in
764 * brw_curbe.c.
765 */
766 int max_uniform_components = 32 * 8;
767 if (this->uniforms * 4 <= max_uniform_components)
768 return;
769
770 /* Make some sort of choice as to which uniforms get sent to pull
771 * constants. We could potentially do something clever here like
772 * look for the most infrequently used uniform vec4s, but leave
773 * that for later.
774 */
775 for (int i = 0; i < this->uniforms * 4; i += 4) {
776 pull_constant_loc[i / 4] = -1;
777
778 if (i >= max_uniform_components) {
779 const gl_constant_value **values = &stage_prog_data->param[i];
780
781 /* Try to find an existing copy of this uniform in the pull
782 * constants if it was part of an array access already.
783 */
784 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
785 int matches;
786
787 for (matches = 0; matches < 4; matches++) {
788 if (stage_prog_data->pull_param[j + matches] != values[matches])
789 break;
790 }
791
792 if (matches == 4) {
793 pull_constant_loc[i / 4] = j / 4;
794 break;
795 }
796 }
797
798 if (pull_constant_loc[i / 4] == -1) {
799 assert(stage_prog_data->nr_pull_params % 4 == 0);
800 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
801
802 for (int j = 0; j < 4; j++) {
803 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
804 values[j];
805 }
806 }
807 }
808 }
809
810 calculate_cfg();
811
812 /* Now actually rewrite usage of the things we've moved to pull
813 * constants.
814 */
815 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
816 for (int i = 0 ; i < 3; i++) {
817 if (inst->src[i].file != UNIFORM ||
818 pull_constant_loc[inst->src[i].reg] == -1)
819 continue;
820
821 int uniform = inst->src[i].reg;
822
823 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
824
825 emit_pull_constant_load(block, inst, temp, inst->src[i],
826 pull_constant_loc[uniform]);
827
828 inst->src[i].file = temp.file;
829 inst->src[i].reg = temp.reg;
830 inst->src[i].reg_offset = temp.reg_offset;
831 inst->src[i].reladdr = NULL;
832 }
833 }
834
835 /* Repack push constants to remove the now-unused ones. */
836 pack_uniform_registers();
837 }
838
839 /**
840 * Sets the dependency control fields on instructions after register
841 * allocation and before the generator is run.
842 *
843 * When you have a sequence of instructions like:
844 *
845 * DP4 temp.x vertex uniform[0]
846 * DP4 temp.y vertex uniform[0]
847 * DP4 temp.z vertex uniform[0]
848 * DP4 temp.w vertex uniform[0]
849 *
850 * The hardware doesn't know that it can actually run the later instructions
851 * while the previous ones are in flight, producing stalls. However, we have
852 * manual fields we can set in the instructions that let it do so.
853 */
854 void
855 vec4_visitor::opt_set_dependency_control()
856 {
857 vec4_instruction *last_grf_write[BRW_MAX_GRF];
858 uint8_t grf_channels_written[BRW_MAX_GRF];
859 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
860 uint8_t mrf_channels_written[BRW_MAX_GRF];
861
862 calculate_cfg();
863
864 assert(prog_data->total_grf ||
865 !"Must be called after register allocation");
866
867 foreach_block (block, cfg) {
868 memset(last_grf_write, 0, sizeof(last_grf_write));
869 memset(last_mrf_write, 0, sizeof(last_mrf_write));
870
871 foreach_inst_in_block (vec4_instruction, inst, block) {
872 /* If we read from a register that we were doing dependency control
873 * on, don't do dependency control across the read.
874 */
875 for (int i = 0; i < 3; i++) {
876 int reg = inst->src[i].reg + inst->src[i].reg_offset;
877 if (inst->src[i].file == GRF) {
878 last_grf_write[reg] = NULL;
879 } else if (inst->src[i].file == HW_REG) {
880 memset(last_grf_write, 0, sizeof(last_grf_write));
881 break;
882 }
883 assert(inst->src[i].file != MRF);
884 }
885
886 /* In the presence of send messages, totally interrupt dependency
887 * control. They're long enough that the chance of dependency
888 * control around them just doesn't matter.
889 */
890 if (inst->mlen) {
891 memset(last_grf_write, 0, sizeof(last_grf_write));
892 memset(last_mrf_write, 0, sizeof(last_mrf_write));
893 continue;
894 }
895
896 /* It looks like setting dependency control on a predicated
897 * instruction hangs the GPU.
898 */
899 if (inst->predicate) {
900 memset(last_grf_write, 0, sizeof(last_grf_write));
901 memset(last_mrf_write, 0, sizeof(last_mrf_write));
902 continue;
903 }
904
905 /* Dependency control does not work well over math instructions.
906 */
907 if (inst->is_math()) {
908 memset(last_grf_write, 0, sizeof(last_grf_write));
909 memset(last_mrf_write, 0, sizeof(last_mrf_write));
910 continue;
911 }
912
913 /* Now, see if we can do dependency control for this instruction
914 * against a previous one writing to its destination.
915 */
916 int reg = inst->dst.reg + inst->dst.reg_offset;
917 if (inst->dst.file == GRF) {
918 if (last_grf_write[reg] &&
919 !(inst->dst.writemask & grf_channels_written[reg])) {
920 last_grf_write[reg]->no_dd_clear = true;
921 inst->no_dd_check = true;
922 } else {
923 grf_channels_written[reg] = 0;
924 }
925
926 last_grf_write[reg] = inst;
927 grf_channels_written[reg] |= inst->dst.writemask;
928 } else if (inst->dst.file == MRF) {
929 if (last_mrf_write[reg] &&
930 !(inst->dst.writemask & mrf_channels_written[reg])) {
931 last_mrf_write[reg]->no_dd_clear = true;
932 inst->no_dd_check = true;
933 } else {
934 mrf_channels_written[reg] = 0;
935 }
936
937 last_mrf_write[reg] = inst;
938 mrf_channels_written[reg] |= inst->dst.writemask;
939 } else if (inst->dst.reg == HW_REG) {
940 if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
941 memset(last_grf_write, 0, sizeof(last_grf_write));
942 if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
943 memset(last_mrf_write, 0, sizeof(last_mrf_write));
944 }
945 }
946 }
947 }
948
949 bool
950 vec4_instruction::can_reswizzle(int dst_writemask,
951 int swizzle,
952 int swizzle_mask)
953 {
954 /* If this instruction sets anything not referenced by swizzle, then we'd
955 * totally break it when we reswizzle.
956 */
957 if (dst.writemask & ~swizzle_mask)
958 return false;
959
960 if (mlen > 0)
961 return false;
962
963 return true;
964 }
965
966 /**
967 * For any channels in the swizzle's source that were populated by this
968 * instruction, rewrite the instruction to put the appropriate result directly
969 * in those channels.
970 *
971 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
972 */
973 void
974 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
975 {
976 int new_writemask = 0;
977 int new_swizzle[4] = { 0 };
978
979 /* Dot product instructions write a single result into all channels. */
980 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
981 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2) {
982 for (int i = 0; i < 3; i++) {
983 if (src[i].file == BAD_FILE || src[i].file == IMM)
984 continue;
985
986 for (int c = 0; c < 4; c++) {
987 new_swizzle[c] = BRW_GET_SWZ(src[i].swizzle, BRW_GET_SWZ(swizzle, c));
988 }
989
990 src[i].swizzle = BRW_SWIZZLE4(new_swizzle[0], new_swizzle[1],
991 new_swizzle[2], new_swizzle[3]);
992 }
993 }
994
995 for (int c = 0; c < 4; c++) {
996 int bit = 1 << BRW_GET_SWZ(swizzle, c);
997 /* Skip components of the swizzle not used by the dst. */
998 if (!(dst_writemask & (1 << c)))
999 continue;
1000 /* If we were populating this component, then populate the
1001 * corresponding channel of the new dst.
1002 */
1003 if (dst.writemask & bit)
1004 new_writemask |= (1 << c);
1005 }
1006 dst.writemask = new_writemask;
1007 }
1008
1009 /*
1010 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1011 * just written and then MOVed into another reg and making the original write
1012 * of the GRF write directly to the final destination instead.
1013 */
1014 bool
1015 vec4_visitor::opt_register_coalesce()
1016 {
1017 bool progress = false;
1018 int next_ip = 0;
1019
1020 calculate_live_intervals();
1021
1022 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1023 int ip = next_ip;
1024 next_ip++;
1025
1026 if (inst->opcode != BRW_OPCODE_MOV ||
1027 (inst->dst.file != GRF && inst->dst.file != MRF) ||
1028 inst->predicate ||
1029 inst->src[0].file != GRF ||
1030 inst->dst.type != inst->src[0].type ||
1031 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1032 continue;
1033
1034 bool to_mrf = (inst->dst.file == MRF);
1035
1036 /* Can't coalesce this GRF if someone else was going to
1037 * read it later.
1038 */
1039 if (this->virtual_grf_end[inst->src[0].reg * 4 + 0] > ip ||
1040 this->virtual_grf_end[inst->src[0].reg * 4 + 1] > ip ||
1041 this->virtual_grf_end[inst->src[0].reg * 4 + 2] > ip ||
1042 this->virtual_grf_end[inst->src[0].reg * 4 + 3] > ip)
1043 continue;
1044
1045 /* We need to check interference with the final destination between this
1046 * instruction and the earliest instruction involved in writing the GRF
1047 * we're eliminating. To do that, keep track of which of our source
1048 * channels we've seen initialized.
1049 */
1050 bool chans_needed[4] = {false, false, false, false};
1051 int chans_remaining = 0;
1052 int swizzle_mask = 0;
1053 for (int i = 0; i < 4; i++) {
1054 int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
1055
1056 if (!(inst->dst.writemask & (1 << i)))
1057 continue;
1058
1059 swizzle_mask |= (1 << chan);
1060
1061 if (!chans_needed[chan]) {
1062 chans_needed[chan] = true;
1063 chans_remaining++;
1064 }
1065 }
1066
1067 /* Now walk up the instruction stream trying to see if we can rewrite
1068 * everything writing to the temporary to write into the destination
1069 * instead.
1070 */
1071 vec4_instruction *scan_inst;
1072 for (scan_inst = (vec4_instruction *)inst->prev;
1073 scan_inst->prev != NULL;
1074 scan_inst = (vec4_instruction *)scan_inst->prev) {
1075 if (scan_inst->dst.file == GRF &&
1076 scan_inst->dst.reg == inst->src[0].reg &&
1077 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1078 /* Found something writing to the reg we want to coalesce away. */
1079 if (to_mrf) {
1080 /* SEND instructions can't have MRF as a destination. */
1081 if (scan_inst->mlen)
1082 break;
1083
1084 if (brw->gen == 6) {
1085 /* gen6 math instructions must have the destination be
1086 * GRF, so no compute-to-MRF for them.
1087 */
1088 if (scan_inst->is_math()) {
1089 break;
1090 }
1091 }
1092 }
1093
1094 /* If we can't handle the swizzle, bail. */
1095 if (!scan_inst->can_reswizzle(inst->dst.writemask,
1096 inst->src[0].swizzle,
1097 swizzle_mask)) {
1098 break;
1099 }
1100
1101 /* Mark which channels we found unconditional writes for. */
1102 if (!scan_inst->predicate) {
1103 for (int i = 0; i < 4; i++) {
1104 if (scan_inst->dst.writemask & (1 << i) &&
1105 chans_needed[i]) {
1106 chans_needed[i] = false;
1107 chans_remaining--;
1108 }
1109 }
1110 }
1111
1112 if (chans_remaining == 0)
1113 break;
1114 }
1115
1116 /* We don't handle flow control here. Most computation of values
1117 * that could be coalesced happens just before their use.
1118 */
1119 if (scan_inst->opcode == BRW_OPCODE_DO ||
1120 scan_inst->opcode == BRW_OPCODE_WHILE ||
1121 scan_inst->opcode == BRW_OPCODE_ELSE ||
1122 scan_inst->opcode == BRW_OPCODE_ENDIF) {
1123 break;
1124 }
1125
1126 /* You can't read from an MRF, so if someone else reads our MRF's
1127 * source GRF that we wanted to rewrite, that stops us. If it's a
1128 * GRF we're trying to coalesce to, we don't actually handle
1129 * rewriting sources so bail in that case as well.
1130 */
1131 bool interfered = false;
1132 for (int i = 0; i < 3; i++) {
1133 if (scan_inst->src[i].file == GRF &&
1134 scan_inst->src[i].reg == inst->src[0].reg &&
1135 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1136 interfered = true;
1137 }
1138 }
1139 if (interfered)
1140 break;
1141
1142 /* If somebody else writes our destination here, we can't coalesce
1143 * before that.
1144 */
1145 if (scan_inst->dst.file == inst->dst.file &&
1146 scan_inst->dst.reg == inst->dst.reg) {
1147 break;
1148 }
1149
1150 /* Check for reads of the register we're trying to coalesce into. We
1151 * can't go rewriting instructions above that to put some other value
1152 * in the register instead.
1153 */
1154 if (to_mrf && scan_inst->mlen > 0) {
1155 if (inst->dst.reg >= scan_inst->base_mrf &&
1156 inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
1157 break;
1158 }
1159 } else {
1160 for (int i = 0; i < 3; i++) {
1161 if (scan_inst->src[i].file == inst->dst.file &&
1162 scan_inst->src[i].reg == inst->dst.reg &&
1163 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1164 interfered = true;
1165 }
1166 }
1167 if (interfered)
1168 break;
1169 }
1170 }
1171
1172 if (chans_remaining == 0) {
1173 /* If we've made it here, we have an MOV we want to coalesce out, and
1174 * a scan_inst pointing to the earliest instruction involved in
1175 * computing the value. Now go rewrite the instruction stream
1176 * between the two.
1177 */
1178
1179 while (scan_inst != inst) {
1180 if (scan_inst->dst.file == GRF &&
1181 scan_inst->dst.reg == inst->src[0].reg &&
1182 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1183 scan_inst->reswizzle(inst->dst.writemask,
1184 inst->src[0].swizzle);
1185 scan_inst->dst.file = inst->dst.file;
1186 scan_inst->dst.reg = inst->dst.reg;
1187 scan_inst->dst.reg_offset = inst->dst.reg_offset;
1188 scan_inst->saturate |= inst->saturate;
1189 }
1190 scan_inst = (vec4_instruction *)scan_inst->next;
1191 }
1192 inst->remove(block);
1193 progress = true;
1194 }
1195 }
1196
1197 if (progress)
1198 invalidate_live_intervals();
1199
1200 return progress;
1201 }
1202
1203 /**
1204 * Splits virtual GRFs requesting more than one contiguous physical register.
1205 *
1206 * We initially create large virtual GRFs for temporary structures, arrays,
1207 * and matrices, so that the dereference visitor functions can add reg_offsets
1208 * to work their way down to the actual member being accessed. But when it
1209 * comes to optimization, we'd like to treat each register as individual
1210 * storage if possible.
1211 *
1212 * So far, the only thing that might prevent splitting is a send message from
1213 * a GRF on IVB.
1214 */
1215 void
1216 vec4_visitor::split_virtual_grfs()
1217 {
1218 int num_vars = this->virtual_grf_count;
1219 int new_virtual_grf[num_vars];
1220 bool split_grf[num_vars];
1221
1222 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1223
1224 /* Try to split anything > 0 sized. */
1225 for (int i = 0; i < num_vars; i++) {
1226 split_grf[i] = this->virtual_grf_sizes[i] != 1;
1227 }
1228
1229 /* Check that the instructions are compatible with the registers we're trying
1230 * to split.
1231 */
1232 foreach_in_list(vec4_instruction, inst, &instructions) {
1233 /* If there's a SEND message loading from a GRF on gen7+, it needs to be
1234 * contiguous.
1235 */
1236 if (inst->is_send_from_grf()) {
1237 for (int i = 0; i < 3; i++) {
1238 if (inst->src[i].file == GRF) {
1239 split_grf[inst->src[i].reg] = false;
1240 }
1241 }
1242 }
1243 }
1244
1245 /* Allocate new space for split regs. Note that the virtual
1246 * numbers will be contiguous.
1247 */
1248 for (int i = 0; i < num_vars; i++) {
1249 if (!split_grf[i])
1250 continue;
1251
1252 new_virtual_grf[i] = virtual_grf_alloc(1);
1253 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
1254 int reg = virtual_grf_alloc(1);
1255 assert(reg == new_virtual_grf[i] + j - 1);
1256 (void) reg;
1257 }
1258 this->virtual_grf_sizes[i] = 1;
1259 }
1260
1261 foreach_in_list(vec4_instruction, inst, &instructions) {
1262 if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
1263 inst->dst.reg_offset != 0) {
1264 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1265 inst->dst.reg_offset - 1);
1266 inst->dst.reg_offset = 0;
1267 }
1268 for (int i = 0; i < 3; i++) {
1269 if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
1270 inst->src[i].reg_offset != 0) {
1271 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1272 inst->src[i].reg_offset - 1);
1273 inst->src[i].reg_offset = 0;
1274 }
1275 }
1276 }
1277 invalidate_live_intervals();
1278 }
1279
1280 void
1281 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1282 {
1283 dump_instruction(be_inst, stderr);
1284 }
1285
1286 void
1287 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1288 {
1289 vec4_instruction *inst = (vec4_instruction *)be_inst;
1290
1291 if (inst->predicate) {
1292 fprintf(file, "(%cf0) ",
1293 inst->predicate_inverse ? '-' : '+');
1294 }
1295
1296 fprintf(file, "%s", brw_instruction_name(inst->opcode));
1297 if (inst->conditional_mod) {
1298 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1299 }
1300 fprintf(file, " ");
1301
1302 switch (inst->dst.file) {
1303 case GRF:
1304 fprintf(file, "vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
1305 break;
1306 case MRF:
1307 fprintf(file, "m%d", inst->dst.reg);
1308 break;
1309 case HW_REG:
1310 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1311 switch (inst->dst.fixed_hw_reg.nr) {
1312 case BRW_ARF_NULL:
1313 fprintf(file, "null");
1314 break;
1315 case BRW_ARF_ADDRESS:
1316 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
1317 break;
1318 case BRW_ARF_ACCUMULATOR:
1319 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
1320 break;
1321 case BRW_ARF_FLAG:
1322 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1323 inst->dst.fixed_hw_reg.subnr);
1324 break;
1325 default:
1326 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1327 inst->dst.fixed_hw_reg.subnr);
1328 break;
1329 }
1330 } else {
1331 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
1332 }
1333 if (inst->dst.fixed_hw_reg.subnr)
1334 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
1335 break;
1336 case BAD_FILE:
1337 fprintf(file, "(null)");
1338 break;
1339 default:
1340 fprintf(file, "???");
1341 break;
1342 }
1343 if (inst->dst.writemask != WRITEMASK_XYZW) {
1344 fprintf(file, ".");
1345 if (inst->dst.writemask & 1)
1346 fprintf(file, "x");
1347 if (inst->dst.writemask & 2)
1348 fprintf(file, "y");
1349 if (inst->dst.writemask & 4)
1350 fprintf(file, "z");
1351 if (inst->dst.writemask & 8)
1352 fprintf(file, "w");
1353 }
1354 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
1355
1356 if (inst->src[0].file != BAD_FILE)
1357 fprintf(file, ", ");
1358
1359 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1360 if (inst->src[i].negate)
1361 fprintf(file, "-");
1362 if (inst->src[i].abs)
1363 fprintf(file, "|");
1364 switch (inst->src[i].file) {
1365 case GRF:
1366 fprintf(file, "vgrf%d", inst->src[i].reg);
1367 break;
1368 case ATTR:
1369 fprintf(file, "attr%d", inst->src[i].reg);
1370 break;
1371 case UNIFORM:
1372 fprintf(file, "u%d", inst->src[i].reg);
1373 break;
1374 case IMM:
1375 switch (inst->src[i].type) {
1376 case BRW_REGISTER_TYPE_F:
1377 fprintf(file, "%fF", inst->src[i].fixed_hw_reg.dw1.f);
1378 break;
1379 case BRW_REGISTER_TYPE_D:
1380 fprintf(file, "%dD", inst->src[i].fixed_hw_reg.dw1.d);
1381 break;
1382 case BRW_REGISTER_TYPE_UD:
1383 fprintf(file, "%uU", inst->src[i].fixed_hw_reg.dw1.ud);
1384 break;
1385 default:
1386 fprintf(file, "???");
1387 break;
1388 }
1389 break;
1390 case HW_REG:
1391 if (inst->src[i].fixed_hw_reg.negate)
1392 fprintf(file, "-");
1393 if (inst->src[i].fixed_hw_reg.abs)
1394 fprintf(file, "|");
1395 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1396 switch (inst->src[i].fixed_hw_reg.nr) {
1397 case BRW_ARF_NULL:
1398 fprintf(file, "null");
1399 break;
1400 case BRW_ARF_ADDRESS:
1401 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
1402 break;
1403 case BRW_ARF_ACCUMULATOR:
1404 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
1405 break;
1406 case BRW_ARF_FLAG:
1407 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1408 inst->src[i].fixed_hw_reg.subnr);
1409 break;
1410 default:
1411 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1412 inst->src[i].fixed_hw_reg.subnr);
1413 break;
1414 }
1415 } else {
1416 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
1417 }
1418 if (inst->src[i].fixed_hw_reg.subnr)
1419 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
1420 if (inst->src[i].fixed_hw_reg.abs)
1421 fprintf(file, "|");
1422 break;
1423 case BAD_FILE:
1424 fprintf(file, "(null)");
1425 break;
1426 default:
1427 fprintf(file, "???");
1428 break;
1429 }
1430
1431 /* Don't print .0; and only VGRFs have reg_offsets and sizes */
1432 if (inst->src[i].reg_offset != 0 &&
1433 inst->src[i].file == GRF &&
1434 virtual_grf_sizes[inst->src[i].reg] != 1)
1435 fprintf(file, ".%d", inst->src[i].reg_offset);
1436
1437 if (inst->src[i].file != IMM) {
1438 static const char *chans[4] = {"x", "y", "z", "w"};
1439 fprintf(file, ".");
1440 for (int c = 0; c < 4; c++) {
1441 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1442 }
1443 }
1444
1445 if (inst->src[i].abs)
1446 fprintf(file, "|");
1447
1448 if (inst->src[i].file != IMM) {
1449 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1450 }
1451
1452 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1453 fprintf(file, ", ");
1454 }
1455
1456 fprintf(file, "\n");
1457 }
1458
1459
1460 static inline struct brw_reg
1461 attribute_to_hw_reg(int attr, bool interleaved)
1462 {
1463 if (interleaved)
1464 return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1465 else
1466 return brw_vec8_grf(attr, 0);
1467 }
1468
1469
1470 /**
1471 * Replace each register of type ATTR in this->instructions with a reference
1472 * to a fixed HW register.
1473 *
1474 * If interleaved is true, then each attribute takes up half a register, with
1475 * register N containing attribute 2*N in its first half and attribute 2*N+1
1476 * in its second half (this corresponds to the payload setup used by geometry
1477 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
1478 * false, then each attribute takes up a whole register, with register N
1479 * containing attribute N (this corresponds to the payload setup used by
1480 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1481 */
1482 void
1483 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1484 bool interleaved)
1485 {
1486 foreach_in_list(vec4_instruction, inst, &instructions) {
1487 /* We have to support ATTR as a destination for GL_FIXED fixup. */
1488 if (inst->dst.file == ATTR) {
1489 int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
1490
1491 /* All attributes used in the shader need to have been assigned a
1492 * hardware register by the caller
1493 */
1494 assert(grf != 0);
1495
1496 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1497 reg.type = inst->dst.type;
1498 reg.dw1.bits.writemask = inst->dst.writemask;
1499
1500 inst->dst.file = HW_REG;
1501 inst->dst.fixed_hw_reg = reg;
1502 }
1503
1504 for (int i = 0; i < 3; i++) {
1505 if (inst->src[i].file != ATTR)
1506 continue;
1507
1508 int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
1509
1510 /* All attributes used in the shader need to have been assigned a
1511 * hardware register by the caller
1512 */
1513 assert(grf != 0);
1514
1515 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1516 reg.dw1.bits.swizzle = inst->src[i].swizzle;
1517 reg.type = inst->src[i].type;
1518 if (inst->src[i].abs)
1519 reg = brw_abs(reg);
1520 if (inst->src[i].negate)
1521 reg = negate(reg);
1522
1523 inst->src[i].file = HW_REG;
1524 inst->src[i].fixed_hw_reg = reg;
1525 }
1526 }
1527 }
1528
1529 int
1530 vec4_vs_visitor::setup_attributes(int payload_reg)
1531 {
1532 int nr_attributes;
1533 int attribute_map[VERT_ATTRIB_MAX + 1];
1534 memset(attribute_map, 0, sizeof(attribute_map));
1535
1536 nr_attributes = 0;
1537 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1538 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1539 attribute_map[i] = payload_reg + nr_attributes;
1540 nr_attributes++;
1541 }
1542 }
1543
1544 /* VertexID is stored by the VF as the last vertex element, but we
1545 * don't represent it with a flag in inputs_read, so we call it
1546 * VERT_ATTRIB_MAX.
1547 */
1548 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
1549 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1550 nr_attributes++;
1551 }
1552
1553 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1554
1555 /* The BSpec says we always have to read at least one thing from
1556 * the VF, and it appears that the hardware wedges otherwise.
1557 */
1558 if (nr_attributes == 0)
1559 nr_attributes = 1;
1560
1561 prog_data->urb_read_length = (nr_attributes + 1) / 2;
1562
1563 unsigned vue_entries =
1564 MAX2(nr_attributes, prog_data->vue_map.num_slots);
1565
1566 if (brw->gen == 6)
1567 prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
1568 else
1569 prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
1570
1571 return payload_reg + nr_attributes;
1572 }
1573
1574 int
1575 vec4_visitor::setup_uniforms(int reg)
1576 {
1577 prog_data->base.dispatch_grf_start_reg = reg;
1578
1579 /* The pre-gen6 VS requires that some push constants get loaded no
1580 * matter what, or the GPU would hang.
1581 */
1582 if (brw->gen < 6 && this->uniforms == 0) {
1583 assert(this->uniforms < this->uniform_array_size);
1584 this->uniform_vector_size[this->uniforms] = 1;
1585
1586 stage_prog_data->param =
1587 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1588 for (unsigned int i = 0; i < 4; i++) {
1589 unsigned int slot = this->uniforms * 4 + i;
1590 static gl_constant_value zero = { 0.0 };
1591 stage_prog_data->param[slot] = &zero;
1592 }
1593
1594 this->uniforms++;
1595 reg++;
1596 } else {
1597 reg += ALIGN(uniforms, 2) / 2;
1598 }
1599
1600 stage_prog_data->nr_params = this->uniforms * 4;
1601
1602 prog_data->base.curb_read_length =
1603 reg - prog_data->base.dispatch_grf_start_reg;
1604
1605 return reg;
1606 }
1607
1608 void
1609 vec4_vs_visitor::setup_payload(void)
1610 {
1611 int reg = 0;
1612
1613 /* The payload always contains important data in g0, which contains
1614 * the URB handles that are passed on to the URB write at the end
1615 * of the thread. So, we always start push constants at g1.
1616 */
1617 reg++;
1618
1619 reg = setup_uniforms(reg);
1620
1621 reg = setup_attributes(reg);
1622
1623 this->first_non_payload_grf = reg;
1624 }
1625
1626 void
1627 vec4_visitor::assign_binding_table_offsets()
1628 {
1629 assign_common_binding_table_offsets(0);
1630 }
1631
1632 src_reg
1633 vec4_visitor::get_timestamp()
1634 {
1635 assert(brw->gen >= 7);
1636
1637 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1638 BRW_ARF_TIMESTAMP,
1639 0,
1640 BRW_REGISTER_TYPE_UD,
1641 BRW_VERTICAL_STRIDE_0,
1642 BRW_WIDTH_4,
1643 BRW_HORIZONTAL_STRIDE_4,
1644 BRW_SWIZZLE_XYZW,
1645 WRITEMASK_XYZW));
1646
1647 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1648
1649 vec4_instruction *mov = emit(MOV(dst, ts));
1650 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1651 * even if it's not enabled in the dispatch.
1652 */
1653 mov->force_writemask_all = true;
1654
1655 return src_reg(dst);
1656 }
1657
1658 void
1659 vec4_visitor::emit_shader_time_begin()
1660 {
1661 current_annotation = "shader time start";
1662 shader_start_time = get_timestamp();
1663 }
1664
1665 void
1666 vec4_visitor::emit_shader_time_end()
1667 {
1668 current_annotation = "shader time end";
1669 src_reg shader_end_time = get_timestamp();
1670
1671
1672 /* Check that there weren't any timestamp reset events (assuming these
1673 * were the only two timestamp reads that happened).
1674 */
1675 src_reg reset_end = shader_end_time;
1676 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1677 vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
1678 test->conditional_mod = BRW_CONDITIONAL_Z;
1679
1680 emit(IF(BRW_PREDICATE_NORMAL));
1681
1682 /* Take the current timestamp and get the delta. */
1683 shader_start_time.negate = true;
1684 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1685 emit(ADD(diff, shader_start_time, shader_end_time));
1686
1687 /* If there were no instructions between the two timestamp gets, the diff
1688 * is 2 cycles. Remove that overhead, so I can forget about that when
1689 * trying to determine the time taken for single instructions.
1690 */
1691 emit(ADD(diff, src_reg(diff), src_reg(-2u)));
1692
1693 emit_shader_time_write(st_base, src_reg(diff));
1694 emit_shader_time_write(st_written, src_reg(1u));
1695 emit(BRW_OPCODE_ELSE);
1696 emit_shader_time_write(st_reset, src_reg(1u));
1697 emit(BRW_OPCODE_ENDIF);
1698 }
1699
1700 void
1701 vec4_visitor::emit_shader_time_write(enum shader_time_shader_type type,
1702 src_reg value)
1703 {
1704 int shader_time_index =
1705 brw_get_shader_time_index(brw, shader_prog, prog, type);
1706
1707 dst_reg dst =
1708 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1709
1710 dst_reg offset = dst;
1711 dst_reg time = dst;
1712 time.reg_offset++;
1713
1714 offset.type = BRW_REGISTER_TYPE_UD;
1715 emit(MOV(offset, src_reg(shader_time_index * SHADER_TIME_STRIDE)));
1716
1717 time.type = BRW_REGISTER_TYPE_UD;
1718 emit(MOV(time, src_reg(value)));
1719
1720 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1721 }
1722
1723 bool
1724 vec4_visitor::run()
1725 {
1726 sanity_param_count = prog->Parameters->NumParameters;
1727
1728 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1729 emit_shader_time_begin();
1730
1731 assign_binding_table_offsets();
1732
1733 emit_prolog();
1734
1735 /* Generate VS IR for main(). (the visitor only descends into
1736 * functions called "main").
1737 */
1738 if (shader) {
1739 visit_instructions(shader->base.ir);
1740 } else {
1741 emit_program_code();
1742 }
1743 base_ir = NULL;
1744
1745 if (key->userclip_active && !prog->UsesClipDistanceOut)
1746 setup_uniform_clipplane_values();
1747
1748 emit_thread_end();
1749
1750 /* Before any optimization, push array accesses out to scratch
1751 * space where we need them to be. This pass may allocate new
1752 * virtual GRFs, so we want to do it early. It also makes sure
1753 * that we have reladdr computations available for CSE, since we'll
1754 * often do repeated subexpressions for those.
1755 */
1756 if (shader) {
1757 move_grf_array_access_to_scratch();
1758 move_uniform_array_access_to_pull_constants();
1759 } else {
1760 /* The ARB_vertex_program frontend emits pull constant loads directly
1761 * rather than using reladdr, so we don't need to walk through all the
1762 * instructions looking for things to move. There isn't anything.
1763 *
1764 * We do still need to split things to vec4 size.
1765 */
1766 split_uniform_registers();
1767 }
1768 pack_uniform_registers();
1769 move_push_constants_to_pull_constants();
1770 split_virtual_grfs();
1771
1772 const char *stage_name = stage == MESA_SHADER_GEOMETRY ? "gs" : "vs";
1773
1774 #define OPT(pass, args...) do { \
1775 pass_num++; \
1776 bool this_progress = pass(args); \
1777 \
1778 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
1779 char filename[64]; \
1780 snprintf(filename, 64, "%s-%04d-%02d-%02d-" #pass, \
1781 stage_name, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
1782 \
1783 backend_visitor::dump_instructions(filename); \
1784 } \
1785 \
1786 progress = progress || this_progress; \
1787 } while (false)
1788
1789
1790 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
1791 char filename[64];
1792 snprintf(filename, 64, "%s-%04d-00-start",
1793 stage_name, shader_prog ? shader_prog->Name : 0);
1794
1795 backend_visitor::dump_instructions(filename);
1796 }
1797
1798 bool progress;
1799 int iteration = 0;
1800 do {
1801 progress = false;
1802 iteration++;
1803 int pass_num = 0;
1804
1805 OPT(opt_reduce_swizzle);
1806 OPT(dead_code_eliminate);
1807 OPT(dead_control_flow_eliminate, this);
1808 OPT(opt_copy_propagation);
1809 OPT(opt_algebraic);
1810 OPT(opt_cse);
1811 OPT(opt_register_coalesce);
1812 } while (progress);
1813
1814
1815 if (failed)
1816 return false;
1817
1818 setup_payload();
1819
1820 if (false) {
1821 /* Debug of register spilling: Go spill everything. */
1822 const int grf_count = virtual_grf_count;
1823 float spill_costs[virtual_grf_count];
1824 bool no_spill[virtual_grf_count];
1825 evaluate_spill_costs(spill_costs, no_spill);
1826 for (int i = 0; i < grf_count; i++) {
1827 if (no_spill[i])
1828 continue;
1829 spill_reg(i);
1830 }
1831 }
1832
1833 while (!reg_allocate()) {
1834 if (failed)
1835 return false;
1836 }
1837
1838 opt_schedule_instructions();
1839
1840 opt_set_dependency_control();
1841
1842 /* If any state parameters were appended, then ParameterValues could have
1843 * been realloced, in which case the driver uniform storage set up by
1844 * _mesa_associate_uniform_storage() would point to freed memory. Make
1845 * sure that didn't happen.
1846 */
1847 assert(sanity_param_count == prog->Parameters->NumParameters);
1848
1849 calculate_cfg();
1850
1851 return !failed;
1852 }
1853
1854 } /* namespace brw */
1855
1856 extern "C" {
1857
1858 /**
1859 * Compile a vertex shader.
1860 *
1861 * Returns the final assembly and the program's size.
1862 */
1863 const unsigned *
1864 brw_vs_emit(struct brw_context *brw,
1865 struct gl_shader_program *prog,
1866 struct brw_vs_compile *c,
1867 struct brw_vs_prog_data *prog_data,
1868 void *mem_ctx,
1869 unsigned *final_assembly_size)
1870 {
1871 bool start_busy = false;
1872 double start_time = 0;
1873
1874 if (unlikely(brw->perf_debug)) {
1875 start_busy = (brw->batch.last_bo &&
1876 drm_intel_bo_busy(brw->batch.last_bo));
1877 start_time = get_time();
1878 }
1879
1880 struct brw_shader *shader = NULL;
1881 if (prog)
1882 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
1883
1884 if (unlikely(INTEL_DEBUG & DEBUG_VS))
1885 brw_dump_ir(brw, "vertex", prog, &shader->base, &c->vp->program.Base);
1886
1887 vec4_vs_visitor v(brw, c, prog_data, prog, mem_ctx);
1888 if (!v.run()) {
1889 if (prog) {
1890 prog->LinkStatus = false;
1891 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1892 }
1893
1894 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1895 v.fail_msg);
1896
1897 return NULL;
1898 }
1899
1900 const unsigned *assembly = NULL;
1901 vec4_generator g(brw, prog, &c->vp->program.Base, &prog_data->base,
1902 mem_ctx, INTEL_DEBUG & DEBUG_VS);
1903 assembly = g.generate_assembly(v.cfg, final_assembly_size);
1904
1905 if (unlikely(brw->perf_debug) && shader) {
1906 if (shader->compiled_once) {
1907 brw_vs_debug_recompile(brw, prog, &c->key);
1908 }
1909 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
1910 perf_debug("VS compile took %.03f ms and stalled the GPU\n",
1911 (get_time() - start_time) * 1000);
1912 }
1913 shader->compiled_once = true;
1914 }
1915
1916 return assembly;
1917 }
1918
1919
1920 void
1921 brw_vec4_setup_prog_key_for_precompile(struct gl_context *ctx,
1922 struct brw_vec4_prog_key *key,
1923 GLuint id, struct gl_program *prog)
1924 {
1925 key->program_string_id = id;
1926 key->clamp_vertex_color = ctx->API == API_OPENGL_COMPAT;
1927
1928 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
1929 for (unsigned i = 0; i < sampler_count; i++) {
1930 if (prog->ShadowSamplers & (1 << i)) {
1931 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
1932 key->tex.swizzles[i] =
1933 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
1934 } else {
1935 /* Color sampler: assume no swizzling. */
1936 key->tex.swizzles[i] = SWIZZLE_XYZW;
1937 }
1938 }
1939 }
1940
1941 } /* extern "C" */