fa992766a43c16fe91e50df19a186342c1600666
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_cfg.h"
26 #include "brw_vs.h"
27 #include "brw_dead_control_flow.h"
28
29 extern "C" {
30 #include "main/macros.h"
31 #include "main/shaderobj.h"
32 #include "program/prog_print.h"
33 #include "program/prog_parameter.h"
34 }
35
36 #define MAX_INSTRUCTION (1 << 30)
37
38 using namespace brw;
39
40 namespace brw {
41
42 /**
43 * Common helper for constructing swizzles. When only a subset of
44 * channels of a vec4 are used, we don't want to reference the other
45 * channels, as that will tell optimization passes that those other
46 * channels are used.
47 */
48 unsigned
49 swizzle_for_size(int size)
50 {
51 static const unsigned size_swizzles[4] = {
52 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
53 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
54 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
55 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
56 };
57
58 assert((size >= 1) && (size <= 4));
59 return size_swizzles[size - 1];
60 }
61
62 void
63 src_reg::init()
64 {
65 memset(this, 0, sizeof(*this));
66
67 this->file = BAD_FILE;
68 }
69
70 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
71 {
72 init();
73
74 this->file = file;
75 this->reg = reg;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = BRW_SWIZZLE_XYZW;
80 }
81
82 /** Generic unset register constructor. */
83 src_reg::src_reg()
84 {
85 init();
86 }
87
88 src_reg::src_reg(float f)
89 {
90 init();
91
92 this->file = IMM;
93 this->type = BRW_REGISTER_TYPE_F;
94 this->fixed_hw_reg.dw1.f = f;
95 }
96
97 src_reg::src_reg(uint32_t u)
98 {
99 init();
100
101 this->file = IMM;
102 this->type = BRW_REGISTER_TYPE_UD;
103 this->fixed_hw_reg.dw1.ud = u;
104 }
105
106 src_reg::src_reg(int32_t i)
107 {
108 init();
109
110 this->file = IMM;
111 this->type = BRW_REGISTER_TYPE_D;
112 this->fixed_hw_reg.dw1.d = i;
113 }
114
115 src_reg::src_reg(struct brw_reg reg)
116 {
117 init();
118
119 this->file = HW_REG;
120 this->fixed_hw_reg = reg;
121 this->type = reg.type;
122 }
123
124 src_reg::src_reg(dst_reg reg)
125 {
126 init();
127
128 this->file = reg.file;
129 this->reg = reg.reg;
130 this->reg_offset = reg.reg_offset;
131 this->type = reg.type;
132 this->reladdr = reg.reladdr;
133 this->fixed_hw_reg = reg.fixed_hw_reg;
134
135 int swizzles[4];
136 int next_chan = 0;
137 int last = 0;
138
139 for (int i = 0; i < 4; i++) {
140 if (!(reg.writemask & (1 << i)))
141 continue;
142
143 swizzles[next_chan++] = last = i;
144 }
145
146 for (; next_chan < 4; next_chan++) {
147 swizzles[next_chan] = last;
148 }
149
150 this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
151 swizzles[2], swizzles[3]);
152 }
153
154 void
155 dst_reg::init()
156 {
157 memset(this, 0, sizeof(*this));
158 this->file = BAD_FILE;
159 this->writemask = WRITEMASK_XYZW;
160 }
161
162 dst_reg::dst_reg()
163 {
164 init();
165 }
166
167 dst_reg::dst_reg(register_file file, int reg)
168 {
169 init();
170
171 this->file = file;
172 this->reg = reg;
173 }
174
175 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
176 int writemask)
177 {
178 init();
179
180 this->file = file;
181 this->reg = reg;
182 this->type = brw_type_for_base_type(type);
183 this->writemask = writemask;
184 }
185
186 dst_reg::dst_reg(struct brw_reg reg)
187 {
188 init();
189
190 this->file = HW_REG;
191 this->fixed_hw_reg = reg;
192 this->type = reg.type;
193 }
194
195 dst_reg::dst_reg(src_reg reg)
196 {
197 init();
198
199 this->file = reg.file;
200 this->reg = reg.reg;
201 this->reg_offset = reg.reg_offset;
202 this->type = reg.type;
203 /* How should we do writemasking when converting from a src_reg? It seems
204 * pretty obvious that for src.xxxx the caller wants to write to src.x, but
205 * what about for src.wx? Just special-case src.xxxx for now.
206 */
207 if (reg.swizzle == BRW_SWIZZLE_XXXX)
208 this->writemask = WRITEMASK_X;
209 else
210 this->writemask = WRITEMASK_XYZW;
211 this->reladdr = reg.reladdr;
212 this->fixed_hw_reg = reg.fixed_hw_reg;
213 }
214
215 bool
216 vec4_instruction::is_send_from_grf()
217 {
218 switch (opcode) {
219 case SHADER_OPCODE_SHADER_TIME_ADD:
220 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
221 return true;
222 default:
223 return false;
224 }
225 }
226
227 bool
228 vec4_instruction::can_do_source_mods(struct brw_context *brw)
229 {
230 if (brw->gen == 6 && is_math())
231 return false;
232
233 if (is_send_from_grf())
234 return false;
235
236 if (!backend_instruction::can_do_source_mods())
237 return false;
238
239 return true;
240 }
241
242 /**
243 * Returns how many MRFs an opcode will write over.
244 *
245 * Note that this is not the 0 or 1 implied writes in an actual gen
246 * instruction -- the generate_* functions generate additional MOVs
247 * for setup.
248 */
249 int
250 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
251 {
252 if (inst->mlen == 0)
253 return 0;
254
255 switch (inst->opcode) {
256 case SHADER_OPCODE_RCP:
257 case SHADER_OPCODE_RSQ:
258 case SHADER_OPCODE_SQRT:
259 case SHADER_OPCODE_EXP2:
260 case SHADER_OPCODE_LOG2:
261 case SHADER_OPCODE_SIN:
262 case SHADER_OPCODE_COS:
263 return 1;
264 case SHADER_OPCODE_INT_QUOTIENT:
265 case SHADER_OPCODE_INT_REMAINDER:
266 case SHADER_OPCODE_POW:
267 return 2;
268 case VS_OPCODE_URB_WRITE:
269 return 1;
270 case VS_OPCODE_PULL_CONSTANT_LOAD:
271 return 2;
272 case SHADER_OPCODE_GEN4_SCRATCH_READ:
273 return 2;
274 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
275 return 3;
276 case GS_OPCODE_URB_WRITE:
277 case GS_OPCODE_THREAD_END:
278 return 0;
279 case GS_OPCODE_FF_SYNC:
280 return 1;
281 case SHADER_OPCODE_SHADER_TIME_ADD:
282 return 0;
283 case SHADER_OPCODE_TEX:
284 case SHADER_OPCODE_TXL:
285 case SHADER_OPCODE_TXD:
286 case SHADER_OPCODE_TXF:
287 case SHADER_OPCODE_TXF_CMS:
288 case SHADER_OPCODE_TXF_MCS:
289 case SHADER_OPCODE_TXS:
290 case SHADER_OPCODE_TG4:
291 case SHADER_OPCODE_TG4_OFFSET:
292 return inst->header_present ? 1 : 0;
293 case SHADER_OPCODE_UNTYPED_ATOMIC:
294 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
295 return 0;
296 default:
297 unreachable("not reached");
298 }
299 }
300
301 bool
302 src_reg::equals(const src_reg &r) const
303 {
304 return (file == r.file &&
305 reg == r.reg &&
306 reg_offset == r.reg_offset &&
307 type == r.type &&
308 negate == r.negate &&
309 abs == r.abs &&
310 swizzle == r.swizzle &&
311 !reladdr && !r.reladdr &&
312 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
313 sizeof(fixed_hw_reg)) == 0);
314 }
315
316 /* Replaces unused channels of a swizzle with channels that are used.
317 *
318 * For instance, this pass transforms
319 *
320 * mov vgrf4.yz, vgrf5.wxzy
321 *
322 * into
323 *
324 * mov vgrf4.yz, vgrf5.xxzx
325 *
326 * This eliminates false uses of some channels, letting dead code elimination
327 * remove the instructions that wrote them.
328 */
329 bool
330 vec4_visitor::opt_reduce_swizzle()
331 {
332 bool progress = false;
333
334 foreach_in_list_safe(vec4_instruction, inst, &instructions) {
335 if (inst->dst.file == BAD_FILE || inst->dst.file == HW_REG)
336 continue;
337
338 int swizzle[4];
339
340 /* Determine which channels of the sources are read. */
341 switch (inst->opcode) {
342 case BRW_OPCODE_DP4:
343 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
344 * but all four of src1.
345 */
346 swizzle[0] = 0;
347 swizzle[1] = 1;
348 swizzle[2] = 2;
349 swizzle[3] = 3;
350 break;
351 case BRW_OPCODE_DP3:
352 swizzle[0] = 0;
353 swizzle[1] = 1;
354 swizzle[2] = 2;
355 swizzle[3] = -1;
356 break;
357 case BRW_OPCODE_DP2:
358 swizzle[0] = 0;
359 swizzle[1] = 1;
360 swizzle[2] = -1;
361 swizzle[3] = -1;
362 break;
363 default:
364 swizzle[0] = inst->dst.writemask & WRITEMASK_X ? 0 : -1;
365 swizzle[1] = inst->dst.writemask & WRITEMASK_Y ? 1 : -1;
366 swizzle[2] = inst->dst.writemask & WRITEMASK_Z ? 2 : -1;
367 swizzle[3] = inst->dst.writemask & WRITEMASK_W ? 3 : -1;
368 break;
369 }
370
371 /* Resolve unread channels (-1) by assigning them the swizzle of the
372 * first channel that is used.
373 */
374 int first_used_channel = 0;
375 for (int i = 0; i < 4; i++) {
376 if (swizzle[i] != -1) {
377 first_used_channel = swizzle[i];
378 break;
379 }
380 }
381 for (int i = 0; i < 4; i++) {
382 if (swizzle[i] == -1) {
383 swizzle[i] = first_used_channel;
384 }
385 }
386
387 /* Update sources' swizzles. */
388 for (int i = 0; i < 3; i++) {
389 if (inst->src[i].file != GRF &&
390 inst->src[i].file != ATTR &&
391 inst->src[i].file != UNIFORM)
392 continue;
393
394 int swiz[4];
395 for (int j = 0; j < 4; j++) {
396 swiz[j] = BRW_GET_SWZ(inst->src[i].swizzle, swizzle[j]);
397 }
398
399 unsigned new_swizzle = BRW_SWIZZLE4(swiz[0], swiz[1], swiz[2], swiz[3]);
400 if (inst->src[i].swizzle != new_swizzle) {
401 inst->src[i].swizzle = new_swizzle;
402 progress = true;
403 }
404 }
405 }
406
407 if (progress)
408 invalidate_live_intervals(false);
409
410 return progress;
411 }
412
413 static bool
414 try_eliminate_instruction(vec4_instruction *inst, int new_writemask,
415 const struct brw_context *brw)
416 {
417 if (inst->has_side_effects())
418 return false;
419
420 if (new_writemask == 0) {
421 /* Don't dead code eliminate instructions that write to the
422 * accumulator as a side-effect. Instead just set the destination
423 * to the null register to free it.
424 */
425 if (inst->writes_accumulator || inst->writes_flag()) {
426 inst->dst = dst_reg(retype(brw_null_reg(), inst->dst.type));
427 } else {
428 inst->remove();
429 }
430
431 return true;
432 } else if (inst->dst.writemask != new_writemask) {
433 switch (inst->opcode) {
434 case SHADER_OPCODE_TXF_CMS:
435 case SHADER_OPCODE_GEN4_SCRATCH_READ:
436 case VS_OPCODE_PULL_CONSTANT_LOAD:
437 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
438 break;
439 default:
440 /* Do not set a writemask on Gen6 for math instructions, those are
441 * executed using align1 mode that does not support a destination mask.
442 */
443 if (!(brw->gen == 6 && inst->is_math()) && !inst->is_tex()) {
444 inst->dst.writemask = new_writemask;
445 return true;
446 }
447 }
448 }
449
450 return false;
451 }
452
453 /**
454 * Must be called after calculate_live_intervals() to remove unused
455 * writes to registers -- register allocation will fail otherwise
456 * because something deffed but not used won't be considered to
457 * interfere with other regs.
458 */
459 bool
460 vec4_visitor::dead_code_eliminate()
461 {
462 bool progress = false;
463 int pc = -1;
464
465 calculate_live_intervals();
466
467 foreach_in_list_safe(vec4_instruction, inst, &instructions) {
468 pc++;
469
470 bool inst_writes_flag = false;
471 if (inst->dst.file != GRF) {
472 if (inst->dst.is_null() && inst->writes_flag()) {
473 inst_writes_flag = true;
474 } else {
475 continue;
476 }
477 }
478
479 if (inst->dst.file == GRF) {
480 int write_mask = inst->dst.writemask;
481
482 for (int c = 0; c < 4; c++) {
483 if (write_mask & (1 << c)) {
484 assert(this->virtual_grf_end[inst->dst.reg * 4 + c] >= pc);
485 if (this->virtual_grf_end[inst->dst.reg * 4 + c] == pc) {
486 write_mask &= ~(1 << c);
487 }
488 }
489 }
490
491 progress = try_eliminate_instruction(inst, write_mask, brw) ||
492 progress;
493 }
494
495 if (inst->predicate || inst->prev == NULL)
496 continue;
497
498 int dead_channels;
499 if (inst_writes_flag) {
500 /* Arbitrarily chosen, other than not being an xyzw writemask. */
501 #define FLAG_WRITEMASK (1 << 5)
502 dead_channels = inst->reads_flag() ? 0 : FLAG_WRITEMASK;
503 } else {
504 dead_channels = inst->dst.writemask;
505
506 for (int i = 0; i < 3; i++) {
507 if (inst->src[i].file != GRF ||
508 inst->src[i].reg != inst->dst.reg)
509 continue;
510
511 for (int j = 0; j < 4; j++) {
512 int swiz = BRW_GET_SWZ(inst->src[i].swizzle, j);
513 dead_channels &= ~(1 << swiz);
514 }
515 }
516 }
517
518 for (exec_node *node = inst->prev, *prev = node->prev;
519 prev != NULL && dead_channels != 0;
520 node = prev, prev = prev->prev) {
521 vec4_instruction *scan_inst = (vec4_instruction *)node;
522
523 if (scan_inst->is_control_flow())
524 break;
525
526 if (inst_writes_flag) {
527 if (scan_inst->dst.is_null() && scan_inst->writes_flag()) {
528 scan_inst->remove();
529 progress = true;
530 continue;
531 } else if (scan_inst->reads_flag()) {
532 break;
533 }
534 }
535
536 if (inst->dst.file == scan_inst->dst.file &&
537 inst->dst.reg == scan_inst->dst.reg &&
538 inst->dst.reg_offset == scan_inst->dst.reg_offset) {
539 int new_writemask = scan_inst->dst.writemask & ~dead_channels;
540
541 progress = try_eliminate_instruction(scan_inst, new_writemask, brw) ||
542 progress;
543 }
544
545 for (int i = 0; i < 3; i++) {
546 if (scan_inst->src[i].file != inst->dst.file ||
547 scan_inst->src[i].reg != inst->dst.reg)
548 continue;
549
550 for (int j = 0; j < 4; j++) {
551 int swiz = BRW_GET_SWZ(scan_inst->src[i].swizzle, j);
552 dead_channels &= ~(1 << swiz);
553 }
554 }
555 }
556 }
557
558 if (progress)
559 invalidate_live_intervals();
560
561 return progress;
562 }
563
564 void
565 vec4_visitor::split_uniform_registers()
566 {
567 /* Prior to this, uniforms have been in an array sized according to
568 * the number of vector uniforms present, sparsely filled (so an
569 * aggregate results in reg indices being skipped over). Now we're
570 * going to cut those aggregates up so each .reg index is one
571 * vector. The goal is to make elimination of unused uniform
572 * components easier later.
573 */
574 foreach_in_list(vec4_instruction, inst, &instructions) {
575 for (int i = 0 ; i < 3; i++) {
576 if (inst->src[i].file != UNIFORM)
577 continue;
578
579 assert(!inst->src[i].reladdr);
580
581 inst->src[i].reg += inst->src[i].reg_offset;
582 inst->src[i].reg_offset = 0;
583 }
584 }
585
586 /* Update that everything is now vector-sized. */
587 for (int i = 0; i < this->uniforms; i++) {
588 this->uniform_size[i] = 1;
589 }
590 }
591
592 void
593 vec4_visitor::pack_uniform_registers()
594 {
595 bool uniform_used[this->uniforms];
596 int new_loc[this->uniforms];
597 int new_chan[this->uniforms];
598
599 memset(uniform_used, 0, sizeof(uniform_used));
600 memset(new_loc, 0, sizeof(new_loc));
601 memset(new_chan, 0, sizeof(new_chan));
602
603 /* Find which uniform vectors are actually used by the program. We
604 * expect unused vector elements when we've moved array access out
605 * to pull constants, and from some GLSL code generators like wine.
606 */
607 foreach_in_list(vec4_instruction, inst, &instructions) {
608 for (int i = 0 ; i < 3; i++) {
609 if (inst->src[i].file != UNIFORM)
610 continue;
611
612 uniform_used[inst->src[i].reg] = true;
613 }
614 }
615
616 int new_uniform_count = 0;
617
618 /* Now, figure out a packing of the live uniform vectors into our
619 * push constants.
620 */
621 for (int src = 0; src < uniforms; src++) {
622 assert(src < uniform_array_size);
623 int size = this->uniform_vector_size[src];
624
625 if (!uniform_used[src]) {
626 this->uniform_vector_size[src] = 0;
627 continue;
628 }
629
630 int dst;
631 /* Find the lowest place we can slot this uniform in. */
632 for (dst = 0; dst < src; dst++) {
633 if (this->uniform_vector_size[dst] + size <= 4)
634 break;
635 }
636
637 if (src == dst) {
638 new_loc[src] = dst;
639 new_chan[src] = 0;
640 } else {
641 new_loc[src] = dst;
642 new_chan[src] = this->uniform_vector_size[dst];
643
644 /* Move the references to the data */
645 for (int j = 0; j < size; j++) {
646 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
647 stage_prog_data->param[src * 4 + j];
648 }
649
650 this->uniform_vector_size[dst] += size;
651 this->uniform_vector_size[src] = 0;
652 }
653
654 new_uniform_count = MAX2(new_uniform_count, dst + 1);
655 }
656
657 this->uniforms = new_uniform_count;
658
659 /* Now, update the instructions for our repacked uniforms. */
660 foreach_in_list(vec4_instruction, inst, &instructions) {
661 for (int i = 0 ; i < 3; i++) {
662 int src = inst->src[i].reg;
663
664 if (inst->src[i].file != UNIFORM)
665 continue;
666
667 inst->src[i].reg = new_loc[src];
668
669 int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
670 int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
671 int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
672 int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
673 inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
674 }
675 }
676 }
677
678 /**
679 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
680 *
681 * While GLSL IR also performs this optimization, we end up with it in
682 * our instruction stream for a couple of reasons. One is that we
683 * sometimes generate silly instructions, for example in array access
684 * where we'll generate "ADD offset, index, base" even if base is 0.
685 * The other is that GLSL IR's constant propagation doesn't track the
686 * components of aggregates, so some VS patterns (initialize matrix to
687 * 0, accumulate in vertex blending factors) end up breaking down to
688 * instructions involving 0.
689 */
690 bool
691 vec4_visitor::opt_algebraic()
692 {
693 bool progress = false;
694
695 foreach_in_list(vec4_instruction, inst, &instructions) {
696 switch (inst->opcode) {
697 case BRW_OPCODE_ADD:
698 if (inst->src[1].is_zero()) {
699 inst->opcode = BRW_OPCODE_MOV;
700 inst->src[1] = src_reg();
701 progress = true;
702 }
703 break;
704
705 case BRW_OPCODE_MUL:
706 if (inst->src[1].is_zero()) {
707 inst->opcode = BRW_OPCODE_MOV;
708 switch (inst->src[0].type) {
709 case BRW_REGISTER_TYPE_F:
710 inst->src[0] = src_reg(0.0f);
711 break;
712 case BRW_REGISTER_TYPE_D:
713 inst->src[0] = src_reg(0);
714 break;
715 case BRW_REGISTER_TYPE_UD:
716 inst->src[0] = src_reg(0u);
717 break;
718 default:
719 unreachable("not reached");
720 }
721 inst->src[1] = src_reg();
722 progress = true;
723 } else if (inst->src[1].is_one()) {
724 inst->opcode = BRW_OPCODE_MOV;
725 inst->src[1] = src_reg();
726 progress = true;
727 }
728 break;
729 default:
730 break;
731 }
732 }
733
734 if (progress)
735 invalidate_live_intervals();
736
737 return progress;
738 }
739
740 /**
741 * Only a limited number of hardware registers may be used for push
742 * constants, so this turns access to the overflowed constants into
743 * pull constants.
744 */
745 void
746 vec4_visitor::move_push_constants_to_pull_constants()
747 {
748 int pull_constant_loc[this->uniforms];
749
750 /* Only allow 32 registers (256 uniform components) as push constants,
751 * which is the limit on gen6.
752 *
753 * If changing this value, note the limitation about total_regs in
754 * brw_curbe.c.
755 */
756 int max_uniform_components = 32 * 8;
757 if (this->uniforms * 4 <= max_uniform_components)
758 return;
759
760 /* Make some sort of choice as to which uniforms get sent to pull
761 * constants. We could potentially do something clever here like
762 * look for the most infrequently used uniform vec4s, but leave
763 * that for later.
764 */
765 for (int i = 0; i < this->uniforms * 4; i += 4) {
766 pull_constant_loc[i / 4] = -1;
767
768 if (i >= max_uniform_components) {
769 const gl_constant_value **values = &stage_prog_data->param[i];
770
771 /* Try to find an existing copy of this uniform in the pull
772 * constants if it was part of an array access already.
773 */
774 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
775 int matches;
776
777 for (matches = 0; matches < 4; matches++) {
778 if (stage_prog_data->pull_param[j + matches] != values[matches])
779 break;
780 }
781
782 if (matches == 4) {
783 pull_constant_loc[i / 4] = j / 4;
784 break;
785 }
786 }
787
788 if (pull_constant_loc[i / 4] == -1) {
789 assert(stage_prog_data->nr_pull_params % 4 == 0);
790 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
791
792 for (int j = 0; j < 4; j++) {
793 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
794 values[j];
795 }
796 }
797 }
798 }
799
800 /* Now actually rewrite usage of the things we've moved to pull
801 * constants.
802 */
803 foreach_in_list_safe(vec4_instruction, inst, &instructions) {
804 for (int i = 0 ; i < 3; i++) {
805 if (inst->src[i].file != UNIFORM ||
806 pull_constant_loc[inst->src[i].reg] == -1)
807 continue;
808
809 int uniform = inst->src[i].reg;
810
811 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
812
813 emit_pull_constant_load(inst, temp, inst->src[i],
814 pull_constant_loc[uniform]);
815
816 inst->src[i].file = temp.file;
817 inst->src[i].reg = temp.reg;
818 inst->src[i].reg_offset = temp.reg_offset;
819 inst->src[i].reladdr = NULL;
820 }
821 }
822
823 /* Repack push constants to remove the now-unused ones. */
824 pack_uniform_registers();
825 }
826
827 /**
828 * Sets the dependency control fields on instructions after register
829 * allocation and before the generator is run.
830 *
831 * When you have a sequence of instructions like:
832 *
833 * DP4 temp.x vertex uniform[0]
834 * DP4 temp.y vertex uniform[0]
835 * DP4 temp.z vertex uniform[0]
836 * DP4 temp.w vertex uniform[0]
837 *
838 * The hardware doesn't know that it can actually run the later instructions
839 * while the previous ones are in flight, producing stalls. However, we have
840 * manual fields we can set in the instructions that let it do so.
841 */
842 void
843 vec4_visitor::opt_set_dependency_control()
844 {
845 vec4_instruction *last_grf_write[BRW_MAX_GRF];
846 uint8_t grf_channels_written[BRW_MAX_GRF];
847 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
848 uint8_t mrf_channels_written[BRW_MAX_GRF];
849
850 calculate_cfg();
851
852 assert(prog_data->total_grf ||
853 !"Must be called after register allocation");
854
855 foreach_block (block, cfg) {
856 memset(last_grf_write, 0, sizeof(last_grf_write));
857 memset(last_mrf_write, 0, sizeof(last_mrf_write));
858
859 foreach_inst_in_block (vec4_instruction, inst, block) {
860 /* If we read from a register that we were doing dependency control
861 * on, don't do dependency control across the read.
862 */
863 for (int i = 0; i < 3; i++) {
864 int reg = inst->src[i].reg + inst->src[i].reg_offset;
865 if (inst->src[i].file == GRF) {
866 last_grf_write[reg] = NULL;
867 } else if (inst->src[i].file == HW_REG) {
868 memset(last_grf_write, 0, sizeof(last_grf_write));
869 break;
870 }
871 assert(inst->src[i].file != MRF);
872 }
873
874 /* In the presence of send messages, totally interrupt dependency
875 * control. They're long enough that the chance of dependency
876 * control around them just doesn't matter.
877 */
878 if (inst->mlen) {
879 memset(last_grf_write, 0, sizeof(last_grf_write));
880 memset(last_mrf_write, 0, sizeof(last_mrf_write));
881 continue;
882 }
883
884 /* It looks like setting dependency control on a predicated
885 * instruction hangs the GPU.
886 */
887 if (inst->predicate) {
888 memset(last_grf_write, 0, sizeof(last_grf_write));
889 memset(last_mrf_write, 0, sizeof(last_mrf_write));
890 continue;
891 }
892
893 /* Dependency control does not work well over math instructions.
894 */
895 if (inst->is_math()) {
896 memset(last_grf_write, 0, sizeof(last_grf_write));
897 memset(last_mrf_write, 0, sizeof(last_mrf_write));
898 continue;
899 }
900
901 /* Now, see if we can do dependency control for this instruction
902 * against a previous one writing to its destination.
903 */
904 int reg = inst->dst.reg + inst->dst.reg_offset;
905 if (inst->dst.file == GRF) {
906 if (last_grf_write[reg] &&
907 !(inst->dst.writemask & grf_channels_written[reg])) {
908 last_grf_write[reg]->no_dd_clear = true;
909 inst->no_dd_check = true;
910 } else {
911 grf_channels_written[reg] = 0;
912 }
913
914 last_grf_write[reg] = inst;
915 grf_channels_written[reg] |= inst->dst.writemask;
916 } else if (inst->dst.file == MRF) {
917 if (last_mrf_write[reg] &&
918 !(inst->dst.writemask & mrf_channels_written[reg])) {
919 last_mrf_write[reg]->no_dd_clear = true;
920 inst->no_dd_check = true;
921 } else {
922 mrf_channels_written[reg] = 0;
923 }
924
925 last_mrf_write[reg] = inst;
926 mrf_channels_written[reg] |= inst->dst.writemask;
927 } else if (inst->dst.reg == HW_REG) {
928 if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
929 memset(last_grf_write, 0, sizeof(last_grf_write));
930 if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
931 memset(last_mrf_write, 0, sizeof(last_mrf_write));
932 }
933 }
934 }
935 }
936
937 bool
938 vec4_instruction::can_reswizzle(int dst_writemask,
939 int swizzle,
940 int swizzle_mask)
941 {
942 /* If this instruction sets anything not referenced by swizzle, then we'd
943 * totally break it when we reswizzle.
944 */
945 if (dst.writemask & ~swizzle_mask)
946 return false;
947
948 if (mlen > 0)
949 return false;
950
951 return true;
952 }
953
954 /**
955 * For any channels in the swizzle's source that were populated by this
956 * instruction, rewrite the instruction to put the appropriate result directly
957 * in those channels.
958 *
959 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
960 */
961 void
962 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
963 {
964 int new_writemask = 0;
965 int new_swizzle[4] = { 0 };
966
967 /* Dot product instructions write a single result into all channels. */
968 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
969 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2) {
970 for (int i = 0; i < 3; i++) {
971 if (src[i].file == BAD_FILE || src[i].file == IMM)
972 continue;
973
974 for (int c = 0; c < 4; c++) {
975 new_swizzle[c] = BRW_GET_SWZ(src[i].swizzle, BRW_GET_SWZ(swizzle, c));
976 }
977
978 src[i].swizzle = BRW_SWIZZLE4(new_swizzle[0], new_swizzle[1],
979 new_swizzle[2], new_swizzle[3]);
980 }
981 }
982
983 for (int c = 0; c < 4; c++) {
984 int bit = 1 << BRW_GET_SWZ(swizzle, c);
985 /* Skip components of the swizzle not used by the dst. */
986 if (!(dst_writemask & (1 << c)))
987 continue;
988 /* If we were populating this component, then populate the
989 * corresponding channel of the new dst.
990 */
991 if (dst.writemask & bit)
992 new_writemask |= (1 << c);
993 }
994 dst.writemask = new_writemask;
995 }
996
997 /*
998 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
999 * just written and then MOVed into another reg and making the original write
1000 * of the GRF write directly to the final destination instead.
1001 */
1002 bool
1003 vec4_visitor::opt_register_coalesce()
1004 {
1005 bool progress = false;
1006 int next_ip = 0;
1007
1008 calculate_live_intervals();
1009
1010 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1011 int ip = next_ip;
1012 next_ip++;
1013
1014 if (inst->opcode != BRW_OPCODE_MOV ||
1015 (inst->dst.file != GRF && inst->dst.file != MRF) ||
1016 inst->predicate ||
1017 inst->src[0].file != GRF ||
1018 inst->dst.type != inst->src[0].type ||
1019 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1020 continue;
1021
1022 bool to_mrf = (inst->dst.file == MRF);
1023
1024 /* Can't coalesce this GRF if someone else was going to
1025 * read it later.
1026 */
1027 if (this->virtual_grf_end[inst->src[0].reg * 4 + 0] > ip ||
1028 this->virtual_grf_end[inst->src[0].reg * 4 + 1] > ip ||
1029 this->virtual_grf_end[inst->src[0].reg * 4 + 2] > ip ||
1030 this->virtual_grf_end[inst->src[0].reg * 4 + 3] > ip)
1031 continue;
1032
1033 /* We need to check interference with the final destination between this
1034 * instruction and the earliest instruction involved in writing the GRF
1035 * we're eliminating. To do that, keep track of which of our source
1036 * channels we've seen initialized.
1037 */
1038 bool chans_needed[4] = {false, false, false, false};
1039 int chans_remaining = 0;
1040 int swizzle_mask = 0;
1041 for (int i = 0; i < 4; i++) {
1042 int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
1043
1044 if (!(inst->dst.writemask & (1 << i)))
1045 continue;
1046
1047 swizzle_mask |= (1 << chan);
1048
1049 if (!chans_needed[chan]) {
1050 chans_needed[chan] = true;
1051 chans_remaining++;
1052 }
1053 }
1054
1055 /* Now walk up the instruction stream trying to see if we can rewrite
1056 * everything writing to the temporary to write into the destination
1057 * instead.
1058 */
1059 vec4_instruction *scan_inst;
1060 for (scan_inst = (vec4_instruction *)inst->prev;
1061 scan_inst->prev != NULL;
1062 scan_inst = (vec4_instruction *)scan_inst->prev) {
1063 if (scan_inst->dst.file == GRF &&
1064 scan_inst->dst.reg == inst->src[0].reg &&
1065 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1066 /* Found something writing to the reg we want to coalesce away. */
1067 if (to_mrf) {
1068 /* SEND instructions can't have MRF as a destination. */
1069 if (scan_inst->mlen)
1070 break;
1071
1072 if (brw->gen == 6) {
1073 /* gen6 math instructions must have the destination be
1074 * GRF, so no compute-to-MRF for them.
1075 */
1076 if (scan_inst->is_math()) {
1077 break;
1078 }
1079 }
1080 }
1081
1082 /* If we can't handle the swizzle, bail. */
1083 if (!scan_inst->can_reswizzle(inst->dst.writemask,
1084 inst->src[0].swizzle,
1085 swizzle_mask)) {
1086 break;
1087 }
1088
1089 /* Mark which channels we found unconditional writes for. */
1090 if (!scan_inst->predicate) {
1091 for (int i = 0; i < 4; i++) {
1092 if (scan_inst->dst.writemask & (1 << i) &&
1093 chans_needed[i]) {
1094 chans_needed[i] = false;
1095 chans_remaining--;
1096 }
1097 }
1098 }
1099
1100 if (chans_remaining == 0)
1101 break;
1102 }
1103
1104 /* We don't handle flow control here. Most computation of values
1105 * that could be coalesced happens just before their use.
1106 */
1107 if (scan_inst->opcode == BRW_OPCODE_DO ||
1108 scan_inst->opcode == BRW_OPCODE_WHILE ||
1109 scan_inst->opcode == BRW_OPCODE_ELSE ||
1110 scan_inst->opcode == BRW_OPCODE_ENDIF) {
1111 break;
1112 }
1113
1114 /* You can't read from an MRF, so if someone else reads our MRF's
1115 * source GRF that we wanted to rewrite, that stops us. If it's a
1116 * GRF we're trying to coalesce to, we don't actually handle
1117 * rewriting sources so bail in that case as well.
1118 */
1119 bool interfered = false;
1120 for (int i = 0; i < 3; i++) {
1121 if (scan_inst->src[i].file == GRF &&
1122 scan_inst->src[i].reg == inst->src[0].reg &&
1123 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1124 interfered = true;
1125 }
1126 }
1127 if (interfered)
1128 break;
1129
1130 /* If somebody else writes our destination here, we can't coalesce
1131 * before that.
1132 */
1133 if (scan_inst->dst.file == inst->dst.file &&
1134 scan_inst->dst.reg == inst->dst.reg) {
1135 break;
1136 }
1137
1138 /* Check for reads of the register we're trying to coalesce into. We
1139 * can't go rewriting instructions above that to put some other value
1140 * in the register instead.
1141 */
1142 if (to_mrf && scan_inst->mlen > 0) {
1143 if (inst->dst.reg >= scan_inst->base_mrf &&
1144 inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
1145 break;
1146 }
1147 } else {
1148 for (int i = 0; i < 3; i++) {
1149 if (scan_inst->src[i].file == inst->dst.file &&
1150 scan_inst->src[i].reg == inst->dst.reg &&
1151 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1152 interfered = true;
1153 }
1154 }
1155 if (interfered)
1156 break;
1157 }
1158 }
1159
1160 if (chans_remaining == 0) {
1161 /* If we've made it here, we have an MOV we want to coalesce out, and
1162 * a scan_inst pointing to the earliest instruction involved in
1163 * computing the value. Now go rewrite the instruction stream
1164 * between the two.
1165 */
1166
1167 while (scan_inst != inst) {
1168 if (scan_inst->dst.file == GRF &&
1169 scan_inst->dst.reg == inst->src[0].reg &&
1170 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1171 scan_inst->reswizzle(inst->dst.writemask,
1172 inst->src[0].swizzle);
1173 scan_inst->dst.file = inst->dst.file;
1174 scan_inst->dst.reg = inst->dst.reg;
1175 scan_inst->dst.reg_offset = inst->dst.reg_offset;
1176 scan_inst->saturate |= inst->saturate;
1177 }
1178 scan_inst = (vec4_instruction *)scan_inst->next;
1179 }
1180 inst->remove(block);
1181 progress = true;
1182 }
1183 }
1184
1185 if (progress)
1186 invalidate_live_intervals(false);
1187
1188 return progress;
1189 }
1190
1191 /**
1192 * Splits virtual GRFs requesting more than one contiguous physical register.
1193 *
1194 * We initially create large virtual GRFs for temporary structures, arrays,
1195 * and matrices, so that the dereference visitor functions can add reg_offsets
1196 * to work their way down to the actual member being accessed. But when it
1197 * comes to optimization, we'd like to treat each register as individual
1198 * storage if possible.
1199 *
1200 * So far, the only thing that might prevent splitting is a send message from
1201 * a GRF on IVB.
1202 */
1203 void
1204 vec4_visitor::split_virtual_grfs()
1205 {
1206 int num_vars = this->virtual_grf_count;
1207 int new_virtual_grf[num_vars];
1208 bool split_grf[num_vars];
1209
1210 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1211
1212 /* Try to split anything > 0 sized. */
1213 for (int i = 0; i < num_vars; i++) {
1214 split_grf[i] = this->virtual_grf_sizes[i] != 1;
1215 }
1216
1217 /* Check that the instructions are compatible with the registers we're trying
1218 * to split.
1219 */
1220 foreach_in_list(vec4_instruction, inst, &instructions) {
1221 /* If there's a SEND message loading from a GRF on gen7+, it needs to be
1222 * contiguous.
1223 */
1224 if (inst->is_send_from_grf()) {
1225 for (int i = 0; i < 3; i++) {
1226 if (inst->src[i].file == GRF) {
1227 split_grf[inst->src[i].reg] = false;
1228 }
1229 }
1230 }
1231 }
1232
1233 /* Allocate new space for split regs. Note that the virtual
1234 * numbers will be contiguous.
1235 */
1236 for (int i = 0; i < num_vars; i++) {
1237 if (!split_grf[i])
1238 continue;
1239
1240 new_virtual_grf[i] = virtual_grf_alloc(1);
1241 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
1242 int reg = virtual_grf_alloc(1);
1243 assert(reg == new_virtual_grf[i] + j - 1);
1244 (void) reg;
1245 }
1246 this->virtual_grf_sizes[i] = 1;
1247 }
1248
1249 foreach_in_list(vec4_instruction, inst, &instructions) {
1250 if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
1251 inst->dst.reg_offset != 0) {
1252 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1253 inst->dst.reg_offset - 1);
1254 inst->dst.reg_offset = 0;
1255 }
1256 for (int i = 0; i < 3; i++) {
1257 if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
1258 inst->src[i].reg_offset != 0) {
1259 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1260 inst->src[i].reg_offset - 1);
1261 inst->src[i].reg_offset = 0;
1262 }
1263 }
1264 }
1265 invalidate_live_intervals(false);
1266 }
1267
1268 void
1269 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1270 {
1271 dump_instruction(be_inst, stderr);
1272 }
1273
1274 void
1275 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1276 {
1277 vec4_instruction *inst = (vec4_instruction *)be_inst;
1278
1279 if (inst->predicate) {
1280 fprintf(file, "(%cf0) ",
1281 inst->predicate_inverse ? '-' : '+');
1282 }
1283
1284 fprintf(file, "%s", brw_instruction_name(inst->opcode));
1285 if (inst->conditional_mod) {
1286 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1287 }
1288 fprintf(file, " ");
1289
1290 switch (inst->dst.file) {
1291 case GRF:
1292 fprintf(file, "vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
1293 break;
1294 case MRF:
1295 fprintf(file, "m%d", inst->dst.reg);
1296 break;
1297 case HW_REG:
1298 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1299 switch (inst->dst.fixed_hw_reg.nr) {
1300 case BRW_ARF_NULL:
1301 fprintf(file, "null");
1302 break;
1303 case BRW_ARF_ADDRESS:
1304 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
1305 break;
1306 case BRW_ARF_ACCUMULATOR:
1307 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
1308 break;
1309 case BRW_ARF_FLAG:
1310 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1311 inst->dst.fixed_hw_reg.subnr);
1312 break;
1313 default:
1314 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1315 inst->dst.fixed_hw_reg.subnr);
1316 break;
1317 }
1318 } else {
1319 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
1320 }
1321 if (inst->dst.fixed_hw_reg.subnr)
1322 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
1323 break;
1324 case BAD_FILE:
1325 fprintf(file, "(null)");
1326 break;
1327 default:
1328 fprintf(file, "???");
1329 break;
1330 }
1331 if (inst->dst.writemask != WRITEMASK_XYZW) {
1332 fprintf(file, ".");
1333 if (inst->dst.writemask & 1)
1334 fprintf(file, "x");
1335 if (inst->dst.writemask & 2)
1336 fprintf(file, "y");
1337 if (inst->dst.writemask & 4)
1338 fprintf(file, "z");
1339 if (inst->dst.writemask & 8)
1340 fprintf(file, "w");
1341 }
1342 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
1343
1344 if (inst->src[0].file != BAD_FILE)
1345 fprintf(file, ", ");
1346
1347 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1348 if (inst->src[i].negate)
1349 fprintf(file, "-");
1350 if (inst->src[i].abs)
1351 fprintf(file, "|");
1352 switch (inst->src[i].file) {
1353 case GRF:
1354 fprintf(file, "vgrf%d", inst->src[i].reg);
1355 break;
1356 case ATTR:
1357 fprintf(file, "attr%d", inst->src[i].reg);
1358 break;
1359 case UNIFORM:
1360 fprintf(file, "u%d", inst->src[i].reg);
1361 break;
1362 case IMM:
1363 switch (inst->src[i].type) {
1364 case BRW_REGISTER_TYPE_F:
1365 fprintf(file, "%fF", inst->src[i].fixed_hw_reg.dw1.f);
1366 break;
1367 case BRW_REGISTER_TYPE_D:
1368 fprintf(file, "%dD", inst->src[i].fixed_hw_reg.dw1.d);
1369 break;
1370 case BRW_REGISTER_TYPE_UD:
1371 fprintf(file, "%uU", inst->src[i].fixed_hw_reg.dw1.ud);
1372 break;
1373 default:
1374 fprintf(file, "???");
1375 break;
1376 }
1377 break;
1378 case HW_REG:
1379 if (inst->src[i].fixed_hw_reg.negate)
1380 fprintf(file, "-");
1381 if (inst->src[i].fixed_hw_reg.abs)
1382 fprintf(file, "|");
1383 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1384 switch (inst->src[i].fixed_hw_reg.nr) {
1385 case BRW_ARF_NULL:
1386 fprintf(file, "null");
1387 break;
1388 case BRW_ARF_ADDRESS:
1389 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
1390 break;
1391 case BRW_ARF_ACCUMULATOR:
1392 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
1393 break;
1394 case BRW_ARF_FLAG:
1395 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1396 inst->src[i].fixed_hw_reg.subnr);
1397 break;
1398 default:
1399 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1400 inst->src[i].fixed_hw_reg.subnr);
1401 break;
1402 }
1403 } else {
1404 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
1405 }
1406 if (inst->src[i].fixed_hw_reg.subnr)
1407 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
1408 if (inst->src[i].fixed_hw_reg.abs)
1409 fprintf(file, "|");
1410 break;
1411 case BAD_FILE:
1412 fprintf(file, "(null)");
1413 break;
1414 default:
1415 fprintf(file, "???");
1416 break;
1417 }
1418
1419 /* Don't print .0; and only VGRFs have reg_offsets and sizes */
1420 if (inst->src[i].reg_offset != 0 &&
1421 inst->src[i].file == GRF &&
1422 virtual_grf_sizes[inst->src[i].reg] != 1)
1423 fprintf(file, ".%d", inst->src[i].reg_offset);
1424
1425 if (inst->src[i].file != IMM) {
1426 static const char *chans[4] = {"x", "y", "z", "w"};
1427 fprintf(file, ".");
1428 for (int c = 0; c < 4; c++) {
1429 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1430 }
1431 }
1432
1433 if (inst->src[i].abs)
1434 fprintf(file, "|");
1435
1436 if (inst->src[i].file != IMM) {
1437 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1438 }
1439
1440 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1441 fprintf(file, ", ");
1442 }
1443
1444 fprintf(file, "\n");
1445 }
1446
1447
1448 static inline struct brw_reg
1449 attribute_to_hw_reg(int attr, bool interleaved)
1450 {
1451 if (interleaved)
1452 return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1453 else
1454 return brw_vec8_grf(attr, 0);
1455 }
1456
1457
1458 /**
1459 * Replace each register of type ATTR in this->instructions with a reference
1460 * to a fixed HW register.
1461 *
1462 * If interleaved is true, then each attribute takes up half a register, with
1463 * register N containing attribute 2*N in its first half and attribute 2*N+1
1464 * in its second half (this corresponds to the payload setup used by geometry
1465 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
1466 * false, then each attribute takes up a whole register, with register N
1467 * containing attribute N (this corresponds to the payload setup used by
1468 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1469 */
1470 void
1471 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1472 bool interleaved)
1473 {
1474 foreach_in_list(vec4_instruction, inst, &instructions) {
1475 /* We have to support ATTR as a destination for GL_FIXED fixup. */
1476 if (inst->dst.file == ATTR) {
1477 int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
1478
1479 /* All attributes used in the shader need to have been assigned a
1480 * hardware register by the caller
1481 */
1482 assert(grf != 0);
1483
1484 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1485 reg.type = inst->dst.type;
1486 reg.dw1.bits.writemask = inst->dst.writemask;
1487
1488 inst->dst.file = HW_REG;
1489 inst->dst.fixed_hw_reg = reg;
1490 }
1491
1492 for (int i = 0; i < 3; i++) {
1493 if (inst->src[i].file != ATTR)
1494 continue;
1495
1496 int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
1497
1498 /* All attributes used in the shader need to have been assigned a
1499 * hardware register by the caller
1500 */
1501 assert(grf != 0);
1502
1503 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1504 reg.dw1.bits.swizzle = inst->src[i].swizzle;
1505 reg.type = inst->src[i].type;
1506 if (inst->src[i].abs)
1507 reg = brw_abs(reg);
1508 if (inst->src[i].negate)
1509 reg = negate(reg);
1510
1511 inst->src[i].file = HW_REG;
1512 inst->src[i].fixed_hw_reg = reg;
1513 }
1514 }
1515 }
1516
1517 int
1518 vec4_vs_visitor::setup_attributes(int payload_reg)
1519 {
1520 int nr_attributes;
1521 int attribute_map[VERT_ATTRIB_MAX + 1];
1522 memset(attribute_map, 0, sizeof(attribute_map));
1523
1524 nr_attributes = 0;
1525 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1526 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1527 attribute_map[i] = payload_reg + nr_attributes;
1528 nr_attributes++;
1529 }
1530 }
1531
1532 /* VertexID is stored by the VF as the last vertex element, but we
1533 * don't represent it with a flag in inputs_read, so we call it
1534 * VERT_ATTRIB_MAX.
1535 */
1536 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
1537 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1538 nr_attributes++;
1539 }
1540
1541 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1542
1543 /* The BSpec says we always have to read at least one thing from
1544 * the VF, and it appears that the hardware wedges otherwise.
1545 */
1546 if (nr_attributes == 0)
1547 nr_attributes = 1;
1548
1549 prog_data->urb_read_length = (nr_attributes + 1) / 2;
1550
1551 unsigned vue_entries =
1552 MAX2(nr_attributes, prog_data->vue_map.num_slots);
1553
1554 if (brw->gen == 6)
1555 prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
1556 else
1557 prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
1558
1559 return payload_reg + nr_attributes;
1560 }
1561
1562 int
1563 vec4_visitor::setup_uniforms(int reg)
1564 {
1565 prog_data->base.dispatch_grf_start_reg = reg;
1566
1567 /* The pre-gen6 VS requires that some push constants get loaded no
1568 * matter what, or the GPU would hang.
1569 */
1570 if (brw->gen < 6 && this->uniforms == 0) {
1571 assert(this->uniforms < this->uniform_array_size);
1572 this->uniform_vector_size[this->uniforms] = 1;
1573
1574 stage_prog_data->param =
1575 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1576 for (unsigned int i = 0; i < 4; i++) {
1577 unsigned int slot = this->uniforms * 4 + i;
1578 static gl_constant_value zero = { 0.0 };
1579 stage_prog_data->param[slot] = &zero;
1580 }
1581
1582 this->uniforms++;
1583 reg++;
1584 } else {
1585 reg += ALIGN(uniforms, 2) / 2;
1586 }
1587
1588 stage_prog_data->nr_params = this->uniforms * 4;
1589
1590 prog_data->base.curb_read_length =
1591 reg - prog_data->base.dispatch_grf_start_reg;
1592
1593 return reg;
1594 }
1595
1596 void
1597 vec4_vs_visitor::setup_payload(void)
1598 {
1599 int reg = 0;
1600
1601 /* The payload always contains important data in g0, which contains
1602 * the URB handles that are passed on to the URB write at the end
1603 * of the thread. So, we always start push constants at g1.
1604 */
1605 reg++;
1606
1607 reg = setup_uniforms(reg);
1608
1609 reg = setup_attributes(reg);
1610
1611 this->first_non_payload_grf = reg;
1612 }
1613
1614 src_reg
1615 vec4_visitor::get_timestamp()
1616 {
1617 assert(brw->gen >= 7);
1618
1619 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1620 BRW_ARF_TIMESTAMP,
1621 0,
1622 BRW_REGISTER_TYPE_UD,
1623 BRW_VERTICAL_STRIDE_0,
1624 BRW_WIDTH_4,
1625 BRW_HORIZONTAL_STRIDE_4,
1626 BRW_SWIZZLE_XYZW,
1627 WRITEMASK_XYZW));
1628
1629 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1630
1631 vec4_instruction *mov = emit(MOV(dst, ts));
1632 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1633 * even if it's not enabled in the dispatch.
1634 */
1635 mov->force_writemask_all = true;
1636
1637 return src_reg(dst);
1638 }
1639
1640 void
1641 vec4_visitor::emit_shader_time_begin()
1642 {
1643 current_annotation = "shader time start";
1644 shader_start_time = get_timestamp();
1645 }
1646
1647 void
1648 vec4_visitor::emit_shader_time_end()
1649 {
1650 current_annotation = "shader time end";
1651 src_reg shader_end_time = get_timestamp();
1652
1653
1654 /* Check that there weren't any timestamp reset events (assuming these
1655 * were the only two timestamp reads that happened).
1656 */
1657 src_reg reset_end = shader_end_time;
1658 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1659 vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
1660 test->conditional_mod = BRW_CONDITIONAL_Z;
1661
1662 emit(IF(BRW_PREDICATE_NORMAL));
1663
1664 /* Take the current timestamp and get the delta. */
1665 shader_start_time.negate = true;
1666 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1667 emit(ADD(diff, shader_start_time, shader_end_time));
1668
1669 /* If there were no instructions between the two timestamp gets, the diff
1670 * is 2 cycles. Remove that overhead, so I can forget about that when
1671 * trying to determine the time taken for single instructions.
1672 */
1673 emit(ADD(diff, src_reg(diff), src_reg(-2u)));
1674
1675 emit_shader_time_write(st_base, src_reg(diff));
1676 emit_shader_time_write(st_written, src_reg(1u));
1677 emit(BRW_OPCODE_ELSE);
1678 emit_shader_time_write(st_reset, src_reg(1u));
1679 emit(BRW_OPCODE_ENDIF);
1680 }
1681
1682 void
1683 vec4_visitor::emit_shader_time_write(enum shader_time_shader_type type,
1684 src_reg value)
1685 {
1686 int shader_time_index =
1687 brw_get_shader_time_index(brw, shader_prog, prog, type);
1688
1689 dst_reg dst =
1690 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1691
1692 dst_reg offset = dst;
1693 dst_reg time = dst;
1694 time.reg_offset++;
1695
1696 offset.type = BRW_REGISTER_TYPE_UD;
1697 emit(MOV(offset, src_reg(shader_time_index * SHADER_TIME_STRIDE)));
1698
1699 time.type = BRW_REGISTER_TYPE_UD;
1700 emit(MOV(time, src_reg(value)));
1701
1702 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1703 }
1704
1705 bool
1706 vec4_visitor::run()
1707 {
1708 sanity_param_count = prog->Parameters->NumParameters;
1709
1710 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1711 emit_shader_time_begin();
1712
1713 assign_common_binding_table_offsets(0);
1714
1715 emit_prolog();
1716
1717 /* Generate VS IR for main(). (the visitor only descends into
1718 * functions called "main").
1719 */
1720 if (shader) {
1721 visit_instructions(shader->base.ir);
1722 } else {
1723 emit_program_code();
1724 }
1725 base_ir = NULL;
1726
1727 if (key->userclip_active && !prog->UsesClipDistanceOut)
1728 setup_uniform_clipplane_values();
1729
1730 emit_thread_end();
1731
1732 /* Before any optimization, push array accesses out to scratch
1733 * space where we need them to be. This pass may allocate new
1734 * virtual GRFs, so we want to do it early. It also makes sure
1735 * that we have reladdr computations available for CSE, since we'll
1736 * often do repeated subexpressions for those.
1737 */
1738 if (shader) {
1739 move_grf_array_access_to_scratch();
1740 move_uniform_array_access_to_pull_constants();
1741 } else {
1742 /* The ARB_vertex_program frontend emits pull constant loads directly
1743 * rather than using reladdr, so we don't need to walk through all the
1744 * instructions looking for things to move. There isn't anything.
1745 *
1746 * We do still need to split things to vec4 size.
1747 */
1748 split_uniform_registers();
1749 }
1750 pack_uniform_registers();
1751 move_push_constants_to_pull_constants();
1752 split_virtual_grfs();
1753
1754 const char *stage_name = stage == MESA_SHADER_GEOMETRY ? "gs" : "vs";
1755
1756 #define OPT(pass, args...) do { \
1757 pass_num++; \
1758 bool this_progress = pass(args); \
1759 \
1760 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
1761 char filename[64]; \
1762 snprintf(filename, 64, "%s-%04d-%02d-%02d-" #pass, \
1763 stage_name, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
1764 \
1765 backend_visitor::dump_instructions(filename); \
1766 } \
1767 \
1768 progress = progress || this_progress; \
1769 } while (false)
1770
1771
1772 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
1773 char filename[64];
1774 snprintf(filename, 64, "%s-%04d-00-start",
1775 stage_name, shader_prog ? shader_prog->Name : 0);
1776
1777 backend_visitor::dump_instructions(filename);
1778 }
1779
1780 bool progress;
1781 int iteration = 0;
1782 do {
1783 progress = false;
1784 iteration++;
1785 int pass_num = 0;
1786
1787 OPT(opt_reduce_swizzle);
1788 OPT(dead_code_eliminate);
1789 OPT(dead_control_flow_eliminate, this);
1790 OPT(opt_copy_propagation);
1791 OPT(opt_algebraic);
1792 OPT(opt_cse);
1793 OPT(opt_register_coalesce);
1794 } while (progress);
1795
1796
1797 if (failed)
1798 return false;
1799
1800 setup_payload();
1801
1802 if (false) {
1803 /* Debug of register spilling: Go spill everything. */
1804 const int grf_count = virtual_grf_count;
1805 float spill_costs[virtual_grf_count];
1806 bool no_spill[virtual_grf_count];
1807 evaluate_spill_costs(spill_costs, no_spill);
1808 for (int i = 0; i < grf_count; i++) {
1809 if (no_spill[i])
1810 continue;
1811 spill_reg(i);
1812 }
1813 }
1814
1815 while (!reg_allocate()) {
1816 if (failed)
1817 return false;
1818 }
1819
1820 opt_schedule_instructions();
1821
1822 opt_set_dependency_control();
1823
1824 /* If any state parameters were appended, then ParameterValues could have
1825 * been realloced, in which case the driver uniform storage set up by
1826 * _mesa_associate_uniform_storage() would point to freed memory. Make
1827 * sure that didn't happen.
1828 */
1829 assert(sanity_param_count == prog->Parameters->NumParameters);
1830
1831 calculate_cfg();
1832
1833 return !failed;
1834 }
1835
1836 } /* namespace brw */
1837
1838 extern "C" {
1839
1840 /**
1841 * Compile a vertex shader.
1842 *
1843 * Returns the final assembly and the program's size.
1844 */
1845 const unsigned *
1846 brw_vs_emit(struct brw_context *brw,
1847 struct gl_shader_program *prog,
1848 struct brw_vs_compile *c,
1849 struct brw_vs_prog_data *prog_data,
1850 void *mem_ctx,
1851 unsigned *final_assembly_size)
1852 {
1853 bool start_busy = false;
1854 double start_time = 0;
1855
1856 if (unlikely(brw->perf_debug)) {
1857 start_busy = (brw->batch.last_bo &&
1858 drm_intel_bo_busy(brw->batch.last_bo));
1859 start_time = get_time();
1860 }
1861
1862 struct brw_shader *shader = NULL;
1863 if (prog)
1864 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
1865
1866 if (unlikely(INTEL_DEBUG & DEBUG_VS))
1867 brw_dump_ir(brw, "vertex", prog, &shader->base, &c->vp->program.Base);
1868
1869 vec4_vs_visitor v(brw, c, prog_data, prog, mem_ctx);
1870 if (!v.run()) {
1871 if (prog) {
1872 prog->LinkStatus = false;
1873 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1874 }
1875
1876 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1877 v.fail_msg);
1878
1879 return NULL;
1880 }
1881
1882 const unsigned *assembly = NULL;
1883 vec4_generator g(brw, prog, &c->vp->program.Base, &prog_data->base,
1884 mem_ctx, INTEL_DEBUG & DEBUG_VS);
1885 assembly = g.generate_assembly(v.cfg, final_assembly_size);
1886
1887 if (unlikely(brw->perf_debug) && shader) {
1888 if (shader->compiled_once) {
1889 brw_vs_debug_recompile(brw, prog, &c->key);
1890 }
1891 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
1892 perf_debug("VS compile took %.03f ms and stalled the GPU\n",
1893 (get_time() - start_time) * 1000);
1894 }
1895 shader->compiled_once = true;
1896 }
1897
1898 return assembly;
1899 }
1900
1901
1902 void
1903 brw_vec4_setup_prog_key_for_precompile(struct gl_context *ctx,
1904 struct brw_vec4_prog_key *key,
1905 GLuint id, struct gl_program *prog)
1906 {
1907 key->program_string_id = id;
1908 key->clamp_vertex_color = ctx->API == API_OPENGL_COMPAT;
1909
1910 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
1911 for (unsigned i = 0; i < sampler_count; i++) {
1912 if (prog->ShadowSamplers & (1 << i)) {
1913 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
1914 key->tex.swizzles[i] =
1915 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
1916 } else {
1917 /* Color sampler: assume no swizzling. */
1918 key->tex.swizzles[i] = SWIZZLE_XYZW;
1919 }
1920 }
1921 }
1922
1923 } /* extern "C" */