i965: Quiet another compiler warning about uninitialized values.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_vs.h"
28 #include "brw_dead_control_flow.h"
29
30 extern "C" {
31 #include "main/macros.h"
32 #include "main/shaderobj.h"
33 #include "program/prog_print.h"
34 #include "program/prog_parameter.h"
35 }
36
37 #define MAX_INSTRUCTION (1 << 30)
38
39 using namespace brw;
40
41 namespace brw {
42
43 /**
44 * Common helper for constructing swizzles. When only a subset of
45 * channels of a vec4 are used, we don't want to reference the other
46 * channels, as that will tell optimization passes that those other
47 * channels are used.
48 */
49 unsigned
50 swizzle_for_size(int size)
51 {
52 static const unsigned size_swizzles[4] = {
53 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
54 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
55 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
56 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
57 };
58
59 assert((size >= 1) && (size <= 4));
60 return size_swizzles[size - 1];
61 }
62
63 void
64 src_reg::init()
65 {
66 memset(this, 0, sizeof(*this));
67
68 this->file = BAD_FILE;
69 }
70
71 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
72 {
73 init();
74
75 this->file = file;
76 this->reg = reg;
77 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
78 this->swizzle = swizzle_for_size(type->vector_elements);
79 else
80 this->swizzle = BRW_SWIZZLE_XYZW;
81 }
82
83 /** Generic unset register constructor. */
84 src_reg::src_reg()
85 {
86 init();
87 }
88
89 src_reg::src_reg(float f)
90 {
91 init();
92
93 this->file = IMM;
94 this->type = BRW_REGISTER_TYPE_F;
95 this->fixed_hw_reg.dw1.f = f;
96 }
97
98 src_reg::src_reg(uint32_t u)
99 {
100 init();
101
102 this->file = IMM;
103 this->type = BRW_REGISTER_TYPE_UD;
104 this->fixed_hw_reg.dw1.ud = u;
105 }
106
107 src_reg::src_reg(int32_t i)
108 {
109 init();
110
111 this->file = IMM;
112 this->type = BRW_REGISTER_TYPE_D;
113 this->fixed_hw_reg.dw1.d = i;
114 }
115
116 src_reg::src_reg(uint8_t vf[4])
117 {
118 init();
119
120 this->file = IMM;
121 this->type = BRW_REGISTER_TYPE_VF;
122 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
123 }
124
125 src_reg::src_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
126 {
127 init();
128
129 this->file = IMM;
130 this->type = BRW_REGISTER_TYPE_VF;
131 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
132 (vf1 << 8) |
133 (vf2 << 16) |
134 (vf3 << 24);
135 }
136
137 src_reg::src_reg(struct brw_reg reg)
138 {
139 init();
140
141 this->file = HW_REG;
142 this->fixed_hw_reg = reg;
143 this->type = reg.type;
144 }
145
146 src_reg::src_reg(dst_reg reg)
147 {
148 init();
149
150 this->file = reg.file;
151 this->reg = reg.reg;
152 this->reg_offset = reg.reg_offset;
153 this->type = reg.type;
154 this->reladdr = reg.reladdr;
155 this->fixed_hw_reg = reg.fixed_hw_reg;
156
157 int swizzles[4];
158 int next_chan = 0;
159 int last = 0;
160
161 for (int i = 0; i < 4; i++) {
162 if (!(reg.writemask & (1 << i)))
163 continue;
164
165 swizzles[next_chan++] = last = i;
166 }
167
168 for (; next_chan < 4; next_chan++) {
169 swizzles[next_chan] = last;
170 }
171
172 this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
173 swizzles[2], swizzles[3]);
174 }
175
176 void
177 dst_reg::init()
178 {
179 memset(this, 0, sizeof(*this));
180 this->file = BAD_FILE;
181 this->writemask = WRITEMASK_XYZW;
182 }
183
184 dst_reg::dst_reg()
185 {
186 init();
187 }
188
189 dst_reg::dst_reg(register_file file, int reg)
190 {
191 init();
192
193 this->file = file;
194 this->reg = reg;
195 }
196
197 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
198 int writemask)
199 {
200 init();
201
202 this->file = file;
203 this->reg = reg;
204 this->type = brw_type_for_base_type(type);
205 this->writemask = writemask;
206 }
207
208 dst_reg::dst_reg(struct brw_reg reg)
209 {
210 init();
211
212 this->file = HW_REG;
213 this->fixed_hw_reg = reg;
214 this->type = reg.type;
215 }
216
217 dst_reg::dst_reg(src_reg reg)
218 {
219 init();
220
221 this->file = reg.file;
222 this->reg = reg.reg;
223 this->reg_offset = reg.reg_offset;
224 this->type = reg.type;
225 /* How should we do writemasking when converting from a src_reg? It seems
226 * pretty obvious that for src.xxxx the caller wants to write to src.x, but
227 * what about for src.wx? Just special-case src.xxxx for now.
228 */
229 if (reg.swizzle == BRW_SWIZZLE_XXXX)
230 this->writemask = WRITEMASK_X;
231 else
232 this->writemask = WRITEMASK_XYZW;
233 this->reladdr = reg.reladdr;
234 this->fixed_hw_reg = reg.fixed_hw_reg;
235 }
236
237 bool
238 dst_reg::equals(const dst_reg &r) const
239 {
240 return (file == r.file &&
241 reg == r.reg &&
242 reg_offset == r.reg_offset &&
243 type == r.type &&
244 negate == r.negate &&
245 abs == r.abs &&
246 writemask == r.writemask &&
247 (reladdr == r.reladdr ||
248 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))) &&
249 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
250 sizeof(fixed_hw_reg)) == 0);
251 }
252
253 bool
254 vec4_instruction::is_send_from_grf()
255 {
256 switch (opcode) {
257 case SHADER_OPCODE_SHADER_TIME_ADD:
258 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
259 return true;
260 default:
261 return false;
262 }
263 }
264
265 unsigned
266 vec4_instruction::regs_read(unsigned arg) const
267 {
268 if (src[arg].file == BAD_FILE)
269 return 0;
270
271 switch (opcode) {
272 case SHADER_OPCODE_SHADER_TIME_ADD:
273 return arg == 0 ? mlen : 1;
274
275 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
276 return arg == 1 ? mlen : 1;
277
278 default:
279 return 1;
280 }
281 }
282
283 bool
284 vec4_instruction::can_do_source_mods(struct brw_context *brw)
285 {
286 if (brw->gen == 6 && is_math())
287 return false;
288
289 if (is_send_from_grf())
290 return false;
291
292 if (!backend_instruction::can_do_source_mods())
293 return false;
294
295 return true;
296 }
297
298 /**
299 * Returns how many MRFs an opcode will write over.
300 *
301 * Note that this is not the 0 or 1 implied writes in an actual gen
302 * instruction -- the generate_* functions generate additional MOVs
303 * for setup.
304 */
305 int
306 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
307 {
308 if (inst->mlen == 0 || inst->is_send_from_grf())
309 return 0;
310
311 switch (inst->opcode) {
312 case SHADER_OPCODE_RCP:
313 case SHADER_OPCODE_RSQ:
314 case SHADER_OPCODE_SQRT:
315 case SHADER_OPCODE_EXP2:
316 case SHADER_OPCODE_LOG2:
317 case SHADER_OPCODE_SIN:
318 case SHADER_OPCODE_COS:
319 return 1;
320 case SHADER_OPCODE_INT_QUOTIENT:
321 case SHADER_OPCODE_INT_REMAINDER:
322 case SHADER_OPCODE_POW:
323 return 2;
324 case VS_OPCODE_URB_WRITE:
325 return 1;
326 case VS_OPCODE_PULL_CONSTANT_LOAD:
327 return 2;
328 case SHADER_OPCODE_GEN4_SCRATCH_READ:
329 return 2;
330 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
331 return 3;
332 case GS_OPCODE_URB_WRITE:
333 case GS_OPCODE_URB_WRITE_ALLOCATE:
334 case GS_OPCODE_THREAD_END:
335 return 0;
336 case GS_OPCODE_FF_SYNC:
337 return 1;
338 case SHADER_OPCODE_SHADER_TIME_ADD:
339 return 0;
340 case SHADER_OPCODE_TEX:
341 case SHADER_OPCODE_TXL:
342 case SHADER_OPCODE_TXD:
343 case SHADER_OPCODE_TXF:
344 case SHADER_OPCODE_TXF_CMS:
345 case SHADER_OPCODE_TXF_MCS:
346 case SHADER_OPCODE_TXS:
347 case SHADER_OPCODE_TG4:
348 case SHADER_OPCODE_TG4_OFFSET:
349 return inst->header_present ? 1 : 0;
350 case SHADER_OPCODE_UNTYPED_ATOMIC:
351 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
352 return 0;
353 default:
354 unreachable("not reached");
355 }
356 }
357
358 bool
359 src_reg::equals(const src_reg &r) const
360 {
361 return (file == r.file &&
362 reg == r.reg &&
363 reg_offset == r.reg_offset &&
364 type == r.type &&
365 negate == r.negate &&
366 abs == r.abs &&
367 swizzle == r.swizzle &&
368 !reladdr && !r.reladdr &&
369 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
370 sizeof(fixed_hw_reg)) == 0);
371 }
372
373 bool
374 vec4_visitor::opt_vector_float()
375 {
376 bool progress = false;
377
378 int last_reg = -1, last_reg_offset = -1;
379 enum register_file last_reg_file = BAD_FILE;
380
381 int remaining_channels = 0;
382 uint8_t imm[4];
383 int inst_count = 0;
384 vec4_instruction *imm_inst[4];
385
386 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
387 if (last_reg != inst->dst.reg ||
388 last_reg_offset != inst->dst.reg_offset ||
389 last_reg_file != inst->dst.file) {
390 last_reg = inst->dst.reg;
391 last_reg_offset = inst->dst.reg_offset;
392 last_reg_file = inst->dst.file;
393 remaining_channels = WRITEMASK_XYZW;
394
395 inst_count = 0;
396 }
397
398 if (inst->opcode != BRW_OPCODE_MOV ||
399 inst->dst.writemask == WRITEMASK_XYZW ||
400 inst->src[0].file != IMM)
401 continue;
402
403 int vf = brw_float_to_vf(inst->src[0].fixed_hw_reg.dw1.f);
404 if (vf == -1)
405 continue;
406
407 if ((inst->dst.writemask & WRITEMASK_X) != 0)
408 imm[0] = vf;
409 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
410 imm[1] = vf;
411 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
412 imm[2] = vf;
413 if ((inst->dst.writemask & WRITEMASK_W) != 0)
414 imm[3] = vf;
415
416 imm_inst[inst_count++] = inst;
417
418 remaining_channels &= ~inst->dst.writemask;
419 if (remaining_channels == 0) {
420 vec4_instruction *mov = MOV(inst->dst, imm);
421 mov->dst.type = BRW_REGISTER_TYPE_F;
422 mov->dst.writemask = WRITEMASK_XYZW;
423 inst->insert_after(block, mov);
424 last_reg = -1;
425
426 for (int i = 0; i < inst_count; i++) {
427 imm_inst[i]->remove(block);
428 }
429 progress = true;
430 }
431 }
432
433 if (progress)
434 invalidate_live_intervals();
435
436 return progress;
437 }
438
439 /* Replaces unused channels of a swizzle with channels that are used.
440 *
441 * For instance, this pass transforms
442 *
443 * mov vgrf4.yz, vgrf5.wxzy
444 *
445 * into
446 *
447 * mov vgrf4.yz, vgrf5.xxzx
448 *
449 * This eliminates false uses of some channels, letting dead code elimination
450 * remove the instructions that wrote them.
451 */
452 bool
453 vec4_visitor::opt_reduce_swizzle()
454 {
455 bool progress = false;
456
457 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
458 if (inst->dst.file == BAD_FILE || inst->dst.file == HW_REG)
459 continue;
460
461 int swizzle[4];
462
463 /* Determine which channels of the sources are read. */
464 switch (inst->opcode) {
465 case VEC4_OPCODE_PACK_BYTES:
466 swizzle[0] = 0;
467 swizzle[1] = 1;
468 swizzle[2] = 2;
469 swizzle[3] = 3;
470 break;
471 case BRW_OPCODE_DP4:
472 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
473 * but all four of src1.
474 */
475 swizzle[0] = 0;
476 swizzle[1] = 1;
477 swizzle[2] = 2;
478 swizzle[3] = 3;
479 break;
480 case BRW_OPCODE_DP3:
481 swizzle[0] = 0;
482 swizzle[1] = 1;
483 swizzle[2] = 2;
484 swizzle[3] = -1;
485 break;
486 case BRW_OPCODE_DP2:
487 swizzle[0] = 0;
488 swizzle[1] = 1;
489 swizzle[2] = -1;
490 swizzle[3] = -1;
491 break;
492 default:
493 swizzle[0] = inst->dst.writemask & WRITEMASK_X ? 0 : -1;
494 swizzle[1] = inst->dst.writemask & WRITEMASK_Y ? 1 : -1;
495 swizzle[2] = inst->dst.writemask & WRITEMASK_Z ? 2 : -1;
496 swizzle[3] = inst->dst.writemask & WRITEMASK_W ? 3 : -1;
497 break;
498 }
499
500 /* Resolve unread channels (-1) by assigning them the swizzle of the
501 * first channel that is used.
502 */
503 int first_used_channel = 0;
504 for (int i = 0; i < 4; i++) {
505 if (swizzle[i] != -1) {
506 first_used_channel = swizzle[i];
507 break;
508 }
509 }
510 for (int i = 0; i < 4; i++) {
511 if (swizzle[i] == -1) {
512 swizzle[i] = first_used_channel;
513 }
514 }
515
516 /* Update sources' swizzles. */
517 for (int i = 0; i < 3; i++) {
518 if (inst->src[i].file != GRF &&
519 inst->src[i].file != ATTR &&
520 inst->src[i].file != UNIFORM)
521 continue;
522
523 int swiz[4];
524 for (int j = 0; j < 4; j++) {
525 swiz[j] = BRW_GET_SWZ(inst->src[i].swizzle, swizzle[j]);
526 }
527
528 unsigned new_swizzle = BRW_SWIZZLE4(swiz[0], swiz[1], swiz[2], swiz[3]);
529 if (inst->src[i].swizzle != new_swizzle) {
530 inst->src[i].swizzle = new_swizzle;
531 progress = true;
532 }
533 }
534 }
535
536 if (progress)
537 invalidate_live_intervals();
538
539 return progress;
540 }
541
542 void
543 vec4_visitor::split_uniform_registers()
544 {
545 /* Prior to this, uniforms have been in an array sized according to
546 * the number of vector uniforms present, sparsely filled (so an
547 * aggregate results in reg indices being skipped over). Now we're
548 * going to cut those aggregates up so each .reg index is one
549 * vector. The goal is to make elimination of unused uniform
550 * components easier later.
551 */
552 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
553 for (int i = 0 ; i < 3; i++) {
554 if (inst->src[i].file != UNIFORM)
555 continue;
556
557 assert(!inst->src[i].reladdr);
558
559 inst->src[i].reg += inst->src[i].reg_offset;
560 inst->src[i].reg_offset = 0;
561 }
562 }
563
564 /* Update that everything is now vector-sized. */
565 for (int i = 0; i < this->uniforms; i++) {
566 this->uniform_size[i] = 1;
567 }
568 }
569
570 void
571 vec4_visitor::pack_uniform_registers()
572 {
573 bool uniform_used[this->uniforms];
574 int new_loc[this->uniforms];
575 int new_chan[this->uniforms];
576
577 memset(uniform_used, 0, sizeof(uniform_used));
578 memset(new_loc, 0, sizeof(new_loc));
579 memset(new_chan, 0, sizeof(new_chan));
580
581 /* Find which uniform vectors are actually used by the program. We
582 * expect unused vector elements when we've moved array access out
583 * to pull constants, and from some GLSL code generators like wine.
584 */
585 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
586 for (int i = 0 ; i < 3; i++) {
587 if (inst->src[i].file != UNIFORM)
588 continue;
589
590 uniform_used[inst->src[i].reg] = true;
591 }
592 }
593
594 int new_uniform_count = 0;
595
596 /* Now, figure out a packing of the live uniform vectors into our
597 * push constants.
598 */
599 for (int src = 0; src < uniforms; src++) {
600 assert(src < uniform_array_size);
601 int size = this->uniform_vector_size[src];
602
603 if (!uniform_used[src]) {
604 this->uniform_vector_size[src] = 0;
605 continue;
606 }
607
608 int dst;
609 /* Find the lowest place we can slot this uniform in. */
610 for (dst = 0; dst < src; dst++) {
611 if (this->uniform_vector_size[dst] + size <= 4)
612 break;
613 }
614
615 if (src == dst) {
616 new_loc[src] = dst;
617 new_chan[src] = 0;
618 } else {
619 new_loc[src] = dst;
620 new_chan[src] = this->uniform_vector_size[dst];
621
622 /* Move the references to the data */
623 for (int j = 0; j < size; j++) {
624 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
625 stage_prog_data->param[src * 4 + j];
626 }
627
628 this->uniform_vector_size[dst] += size;
629 this->uniform_vector_size[src] = 0;
630 }
631
632 new_uniform_count = MAX2(new_uniform_count, dst + 1);
633 }
634
635 this->uniforms = new_uniform_count;
636
637 /* Now, update the instructions for our repacked uniforms. */
638 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
639 for (int i = 0 ; i < 3; i++) {
640 int src = inst->src[i].reg;
641
642 if (inst->src[i].file != UNIFORM)
643 continue;
644
645 inst->src[i].reg = new_loc[src];
646
647 int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
648 int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
649 int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
650 int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
651 inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
652 }
653 }
654 }
655
656 /**
657 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
658 *
659 * While GLSL IR also performs this optimization, we end up with it in
660 * our instruction stream for a couple of reasons. One is that we
661 * sometimes generate silly instructions, for example in array access
662 * where we'll generate "ADD offset, index, base" even if base is 0.
663 * The other is that GLSL IR's constant propagation doesn't track the
664 * components of aggregates, so some VS patterns (initialize matrix to
665 * 0, accumulate in vertex blending factors) end up breaking down to
666 * instructions involving 0.
667 */
668 bool
669 vec4_visitor::opt_algebraic()
670 {
671 bool progress = false;
672
673 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
674 switch (inst->opcode) {
675 case BRW_OPCODE_MOV:
676 if (inst->src[0].file != IMM)
677 break;
678
679 if (inst->saturate) {
680 if (inst->dst.type != inst->src[0].type)
681 assert(!"unimplemented: saturate mixed types");
682
683 if (brw_saturate_immediate(inst->dst.type,
684 &inst->src[0].fixed_hw_reg)) {
685 inst->saturate = false;
686 progress = true;
687 }
688 }
689 break;
690
691 case VEC4_OPCODE_UNPACK_UNIFORM:
692 if (inst->src[0].file != UNIFORM) {
693 inst->opcode = BRW_OPCODE_MOV;
694 progress = true;
695 }
696 break;
697
698 case BRW_OPCODE_ADD:
699 if (inst->src[1].is_zero()) {
700 inst->opcode = BRW_OPCODE_MOV;
701 inst->src[1] = src_reg();
702 progress = true;
703 }
704 break;
705
706 case BRW_OPCODE_MUL:
707 if (inst->src[1].is_zero()) {
708 inst->opcode = BRW_OPCODE_MOV;
709 switch (inst->src[0].type) {
710 case BRW_REGISTER_TYPE_F:
711 inst->src[0] = src_reg(0.0f);
712 break;
713 case BRW_REGISTER_TYPE_D:
714 inst->src[0] = src_reg(0);
715 break;
716 case BRW_REGISTER_TYPE_UD:
717 inst->src[0] = src_reg(0u);
718 break;
719 default:
720 unreachable("not reached");
721 }
722 inst->src[1] = src_reg();
723 progress = true;
724 } else if (inst->src[1].is_one()) {
725 inst->opcode = BRW_OPCODE_MOV;
726 inst->src[1] = src_reg();
727 progress = true;
728 }
729 break;
730 case BRW_OPCODE_CMP:
731 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
732 inst->src[0].abs &&
733 inst->src[0].negate &&
734 inst->src[1].is_zero()) {
735 inst->src[0].abs = false;
736 inst->src[0].negate = false;
737 inst->conditional_mod = BRW_CONDITIONAL_Z;
738 progress = true;
739 break;
740 }
741 break;
742 case SHADER_OPCODE_RCP: {
743 vec4_instruction *prev = (vec4_instruction *)inst->prev;
744 if (prev->opcode == SHADER_OPCODE_SQRT) {
745 if (inst->src[0].equals(src_reg(prev->dst))) {
746 inst->opcode = SHADER_OPCODE_RSQ;
747 inst->src[0] = prev->src[0];
748 progress = true;
749 }
750 }
751 break;
752 }
753 default:
754 break;
755 }
756 }
757
758 if (progress)
759 invalidate_live_intervals();
760
761 return progress;
762 }
763
764 /**
765 * Only a limited number of hardware registers may be used for push
766 * constants, so this turns access to the overflowed constants into
767 * pull constants.
768 */
769 void
770 vec4_visitor::move_push_constants_to_pull_constants()
771 {
772 int pull_constant_loc[this->uniforms];
773
774 /* Only allow 32 registers (256 uniform components) as push constants,
775 * which is the limit on gen6.
776 *
777 * If changing this value, note the limitation about total_regs in
778 * brw_curbe.c.
779 */
780 int max_uniform_components = 32 * 8;
781 if (this->uniforms * 4 <= max_uniform_components)
782 return;
783
784 /* Make some sort of choice as to which uniforms get sent to pull
785 * constants. We could potentially do something clever here like
786 * look for the most infrequently used uniform vec4s, but leave
787 * that for later.
788 */
789 for (int i = 0; i < this->uniforms * 4; i += 4) {
790 pull_constant_loc[i / 4] = -1;
791
792 if (i >= max_uniform_components) {
793 const gl_constant_value **values = &stage_prog_data->param[i];
794
795 /* Try to find an existing copy of this uniform in the pull
796 * constants if it was part of an array access already.
797 */
798 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
799 int matches;
800
801 for (matches = 0; matches < 4; matches++) {
802 if (stage_prog_data->pull_param[j + matches] != values[matches])
803 break;
804 }
805
806 if (matches == 4) {
807 pull_constant_loc[i / 4] = j / 4;
808 break;
809 }
810 }
811
812 if (pull_constant_loc[i / 4] == -1) {
813 assert(stage_prog_data->nr_pull_params % 4 == 0);
814 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
815
816 for (int j = 0; j < 4; j++) {
817 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
818 values[j];
819 }
820 }
821 }
822 }
823
824 /* Now actually rewrite usage of the things we've moved to pull
825 * constants.
826 */
827 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
828 for (int i = 0 ; i < 3; i++) {
829 if (inst->src[i].file != UNIFORM ||
830 pull_constant_loc[inst->src[i].reg] == -1)
831 continue;
832
833 int uniform = inst->src[i].reg;
834
835 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
836
837 emit_pull_constant_load(block, inst, temp, inst->src[i],
838 pull_constant_loc[uniform]);
839
840 inst->src[i].file = temp.file;
841 inst->src[i].reg = temp.reg;
842 inst->src[i].reg_offset = temp.reg_offset;
843 inst->src[i].reladdr = NULL;
844 }
845 }
846
847 /* Repack push constants to remove the now-unused ones. */
848 pack_uniform_registers();
849 }
850
851 /* Conditions for which we want to avoid setting the dependency control bits */
852 bool
853 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
854 {
855 #define IS_DWORD(reg) \
856 (reg.type == BRW_REGISTER_TYPE_UD || \
857 reg.type == BRW_REGISTER_TYPE_D)
858
859 /* "When source or destination datatype is 64b or operation is integer DWord
860 * multiply, DepCtrl must not be used."
861 * May apply to future SoCs as well.
862 */
863 if (brw->is_cherryview) {
864 if (inst->opcode == BRW_OPCODE_MUL &&
865 IS_DWORD(inst->src[0]) &&
866 IS_DWORD(inst->src[1]))
867 return true;
868 }
869 #undef IS_DWORD
870
871 if (brw->gen >= 8) {
872 if (inst->opcode == BRW_OPCODE_F32TO16)
873 return true;
874 }
875
876 /*
877 * mlen:
878 * In the presence of send messages, totally interrupt dependency
879 * control. They're long enough that the chance of dependency
880 * control around them just doesn't matter.
881 *
882 * predicate:
883 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
884 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
885 * completes the scoreboard clear must have a non-zero execution mask. This
886 * means, if any kind of predication can change the execution mask or channel
887 * enable of the last instruction, the optimization must be avoided. This is
888 * to avoid instructions being shot down the pipeline when no writes are
889 * required.
890 *
891 * math:
892 * Dependency control does not work well over math instructions.
893 * NB: Discovered empirically
894 */
895 return (inst->mlen || inst->predicate || inst->is_math());
896 }
897
898 /**
899 * Sets the dependency control fields on instructions after register
900 * allocation and before the generator is run.
901 *
902 * When you have a sequence of instructions like:
903 *
904 * DP4 temp.x vertex uniform[0]
905 * DP4 temp.y vertex uniform[0]
906 * DP4 temp.z vertex uniform[0]
907 * DP4 temp.w vertex uniform[0]
908 *
909 * The hardware doesn't know that it can actually run the later instructions
910 * while the previous ones are in flight, producing stalls. However, we have
911 * manual fields we can set in the instructions that let it do so.
912 */
913 void
914 vec4_visitor::opt_set_dependency_control()
915 {
916 vec4_instruction *last_grf_write[BRW_MAX_GRF];
917 uint8_t grf_channels_written[BRW_MAX_GRF];
918 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
919 uint8_t mrf_channels_written[BRW_MAX_GRF];
920
921 assert(prog_data->total_grf ||
922 !"Must be called after register allocation");
923
924 foreach_block (block, cfg) {
925 memset(last_grf_write, 0, sizeof(last_grf_write));
926 memset(last_mrf_write, 0, sizeof(last_mrf_write));
927
928 foreach_inst_in_block (vec4_instruction, inst, block) {
929 /* If we read from a register that we were doing dependency control
930 * on, don't do dependency control across the read.
931 */
932 for (int i = 0; i < 3; i++) {
933 int reg = inst->src[i].reg + inst->src[i].reg_offset;
934 if (inst->src[i].file == GRF) {
935 last_grf_write[reg] = NULL;
936 } else if (inst->src[i].file == HW_REG) {
937 memset(last_grf_write, 0, sizeof(last_grf_write));
938 break;
939 }
940 assert(inst->src[i].file != MRF);
941 }
942
943 if (is_dep_ctrl_unsafe(inst)) {
944 memset(last_grf_write, 0, sizeof(last_grf_write));
945 memset(last_mrf_write, 0, sizeof(last_mrf_write));
946 continue;
947 }
948
949 /* Now, see if we can do dependency control for this instruction
950 * against a previous one writing to its destination.
951 */
952 int reg = inst->dst.reg + inst->dst.reg_offset;
953 if (inst->dst.file == GRF) {
954 if (last_grf_write[reg] &&
955 !(inst->dst.writemask & grf_channels_written[reg])) {
956 last_grf_write[reg]->no_dd_clear = true;
957 inst->no_dd_check = true;
958 } else {
959 grf_channels_written[reg] = 0;
960 }
961
962 last_grf_write[reg] = inst;
963 grf_channels_written[reg] |= inst->dst.writemask;
964 } else if (inst->dst.file == MRF) {
965 if (last_mrf_write[reg] &&
966 !(inst->dst.writemask & mrf_channels_written[reg])) {
967 last_mrf_write[reg]->no_dd_clear = true;
968 inst->no_dd_check = true;
969 } else {
970 mrf_channels_written[reg] = 0;
971 }
972
973 last_mrf_write[reg] = inst;
974 mrf_channels_written[reg] |= inst->dst.writemask;
975 } else if (inst->dst.reg == HW_REG) {
976 if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
977 memset(last_grf_write, 0, sizeof(last_grf_write));
978 if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
979 memset(last_mrf_write, 0, sizeof(last_mrf_write));
980 }
981 }
982 }
983 }
984
985 bool
986 vec4_instruction::can_reswizzle(int dst_writemask,
987 int swizzle,
988 int swizzle_mask)
989 {
990 /* If this instruction sets anything not referenced by swizzle, then we'd
991 * totally break it when we reswizzle.
992 */
993 if (dst.writemask & ~swizzle_mask)
994 return false;
995
996 if (mlen > 0)
997 return false;
998
999 return true;
1000 }
1001
1002 /**
1003 * For any channels in the swizzle's source that were populated by this
1004 * instruction, rewrite the instruction to put the appropriate result directly
1005 * in those channels.
1006 *
1007 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
1008 */
1009 void
1010 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
1011 {
1012 int new_writemask = 0;
1013 int new_swizzle[4] = { 0 };
1014
1015 /* Dot product instructions write a single result into all channels. */
1016 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
1017 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2) {
1018 for (int i = 0; i < 3; i++) {
1019 if (src[i].file == BAD_FILE || src[i].file == IMM)
1020 continue;
1021
1022 /* Destination write mask doesn't correspond to source swizzle for the
1023 * pack_bytes instruction.
1024 */
1025 if (opcode == VEC4_OPCODE_PACK_BYTES)
1026 continue;
1027
1028 for (int c = 0; c < 4; c++) {
1029 new_swizzle[c] = BRW_GET_SWZ(src[i].swizzle, BRW_GET_SWZ(swizzle, c));
1030 }
1031
1032 src[i].swizzle = BRW_SWIZZLE4(new_swizzle[0], new_swizzle[1],
1033 new_swizzle[2], new_swizzle[3]);
1034 }
1035 }
1036
1037 for (int c = 0; c < 4; c++) {
1038 int bit = 1 << BRW_GET_SWZ(swizzle, c);
1039 /* Skip components of the swizzle not used by the dst. */
1040 if (!(dst_writemask & (1 << c)))
1041 continue;
1042 /* If we were populating this component, then populate the
1043 * corresponding channel of the new dst.
1044 */
1045 if (dst.writemask & bit)
1046 new_writemask |= (1 << c);
1047 }
1048 dst.writemask = new_writemask;
1049 }
1050
1051 /*
1052 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1053 * just written and then MOVed into another reg and making the original write
1054 * of the GRF write directly to the final destination instead.
1055 */
1056 bool
1057 vec4_visitor::opt_register_coalesce()
1058 {
1059 bool progress = false;
1060 int next_ip = 0;
1061
1062 calculate_live_intervals();
1063
1064 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1065 int ip = next_ip;
1066 next_ip++;
1067
1068 if (inst->opcode != BRW_OPCODE_MOV ||
1069 (inst->dst.file != GRF && inst->dst.file != MRF) ||
1070 inst->predicate ||
1071 inst->src[0].file != GRF ||
1072 inst->dst.type != inst->src[0].type ||
1073 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1074 continue;
1075
1076 bool to_mrf = (inst->dst.file == MRF);
1077
1078 /* Can't coalesce this GRF if someone else was going to
1079 * read it later.
1080 */
1081 if (this->virtual_grf_end[inst->src[0].reg * 4 + 0] > ip ||
1082 this->virtual_grf_end[inst->src[0].reg * 4 + 1] > ip ||
1083 this->virtual_grf_end[inst->src[0].reg * 4 + 2] > ip ||
1084 this->virtual_grf_end[inst->src[0].reg * 4 + 3] > ip)
1085 continue;
1086
1087 /* We need to check interference with the final destination between this
1088 * instruction and the earliest instruction involved in writing the GRF
1089 * we're eliminating. To do that, keep track of which of our source
1090 * channels we've seen initialized.
1091 */
1092 bool chans_needed[4] = {false, false, false, false};
1093 int chans_remaining = 0;
1094 int swizzle_mask = 0;
1095 for (int i = 0; i < 4; i++) {
1096 int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
1097
1098 if (!(inst->dst.writemask & (1 << i)))
1099 continue;
1100
1101 swizzle_mask |= (1 << chan);
1102
1103 if (!chans_needed[chan]) {
1104 chans_needed[chan] = true;
1105 chans_remaining++;
1106 }
1107 }
1108
1109 /* Now walk up the instruction stream trying to see if we can rewrite
1110 * everything writing to the temporary to write into the destination
1111 * instead.
1112 */
1113 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1114 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1115 inst, block) {
1116 _scan_inst = scan_inst;
1117
1118 if (scan_inst->dst.file == GRF &&
1119 scan_inst->dst.reg == inst->src[0].reg &&
1120 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1121 /* Found something writing to the reg we want to coalesce away. */
1122 if (to_mrf) {
1123 /* SEND instructions can't have MRF as a destination. */
1124 if (scan_inst->mlen)
1125 break;
1126
1127 if (brw->gen == 6) {
1128 /* gen6 math instructions must have the destination be
1129 * GRF, so no compute-to-MRF for them.
1130 */
1131 if (scan_inst->is_math()) {
1132 break;
1133 }
1134 }
1135 }
1136
1137 /* If we can't handle the swizzle, bail. */
1138 if (!scan_inst->can_reswizzle(inst->dst.writemask,
1139 inst->src[0].swizzle,
1140 swizzle_mask)) {
1141 break;
1142 }
1143
1144 /* Mark which channels we found unconditional writes for. */
1145 if (!scan_inst->predicate) {
1146 for (int i = 0; i < 4; i++) {
1147 if (scan_inst->dst.writemask & (1 << i) &&
1148 chans_needed[i]) {
1149 chans_needed[i] = false;
1150 chans_remaining--;
1151 }
1152 }
1153 }
1154
1155 if (chans_remaining == 0)
1156 break;
1157 }
1158
1159 /* You can't read from an MRF, so if someone else reads our MRF's
1160 * source GRF that we wanted to rewrite, that stops us. If it's a
1161 * GRF we're trying to coalesce to, we don't actually handle
1162 * rewriting sources so bail in that case as well.
1163 */
1164 bool interfered = false;
1165 for (int i = 0; i < 3; i++) {
1166 if (scan_inst->src[i].file == GRF &&
1167 scan_inst->src[i].reg == inst->src[0].reg &&
1168 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1169 interfered = true;
1170 }
1171 }
1172 if (interfered)
1173 break;
1174
1175 /* If somebody else writes our destination here, we can't coalesce
1176 * before that.
1177 */
1178 if (scan_inst->dst.file == inst->dst.file &&
1179 scan_inst->dst.reg == inst->dst.reg) {
1180 break;
1181 }
1182
1183 /* Check for reads of the register we're trying to coalesce into. We
1184 * can't go rewriting instructions above that to put some other value
1185 * in the register instead.
1186 */
1187 if (to_mrf && scan_inst->mlen > 0) {
1188 if (inst->dst.reg >= scan_inst->base_mrf &&
1189 inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
1190 break;
1191 }
1192 } else {
1193 for (int i = 0; i < 3; i++) {
1194 if (scan_inst->src[i].file == inst->dst.file &&
1195 scan_inst->src[i].reg == inst->dst.reg &&
1196 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1197 interfered = true;
1198 }
1199 }
1200 if (interfered)
1201 break;
1202 }
1203 }
1204
1205 if (chans_remaining == 0) {
1206 /* If we've made it here, we have an MOV we want to coalesce out, and
1207 * a scan_inst pointing to the earliest instruction involved in
1208 * computing the value. Now go rewrite the instruction stream
1209 * between the two.
1210 */
1211 vec4_instruction *scan_inst = _scan_inst;
1212 while (scan_inst != inst) {
1213 if (scan_inst->dst.file == GRF &&
1214 scan_inst->dst.reg == inst->src[0].reg &&
1215 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1216 scan_inst->reswizzle(inst->dst.writemask,
1217 inst->src[0].swizzle);
1218 scan_inst->dst.file = inst->dst.file;
1219 scan_inst->dst.reg = inst->dst.reg;
1220 scan_inst->dst.reg_offset = inst->dst.reg_offset;
1221 scan_inst->saturate |= inst->saturate;
1222 }
1223 scan_inst = (vec4_instruction *)scan_inst->next;
1224 }
1225 inst->remove(block);
1226 progress = true;
1227 }
1228 }
1229
1230 if (progress)
1231 invalidate_live_intervals();
1232
1233 return progress;
1234 }
1235
1236 /**
1237 * Splits virtual GRFs requesting more than one contiguous physical register.
1238 *
1239 * We initially create large virtual GRFs for temporary structures, arrays,
1240 * and matrices, so that the dereference visitor functions can add reg_offsets
1241 * to work their way down to the actual member being accessed. But when it
1242 * comes to optimization, we'd like to treat each register as individual
1243 * storage if possible.
1244 *
1245 * So far, the only thing that might prevent splitting is a send message from
1246 * a GRF on IVB.
1247 */
1248 void
1249 vec4_visitor::split_virtual_grfs()
1250 {
1251 int num_vars = this->alloc.count;
1252 int new_virtual_grf[num_vars];
1253 bool split_grf[num_vars];
1254
1255 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1256
1257 /* Try to split anything > 0 sized. */
1258 for (int i = 0; i < num_vars; i++) {
1259 split_grf[i] = this->alloc.sizes[i] != 1;
1260 }
1261
1262 /* Check that the instructions are compatible with the registers we're trying
1263 * to split.
1264 */
1265 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1266 /* If there's a SEND message loading from a GRF on gen7+, it needs to be
1267 * contiguous.
1268 */
1269 if (inst->is_send_from_grf()) {
1270 for (int i = 0; i < 3; i++) {
1271 if (inst->src[i].file == GRF) {
1272 split_grf[inst->src[i].reg] = false;
1273 }
1274 }
1275 }
1276 }
1277
1278 /* Allocate new space for split regs. Note that the virtual
1279 * numbers will be contiguous.
1280 */
1281 for (int i = 0; i < num_vars; i++) {
1282 if (!split_grf[i])
1283 continue;
1284
1285 new_virtual_grf[i] = alloc.allocate(1);
1286 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1287 unsigned reg = alloc.allocate(1);
1288 assert(reg == new_virtual_grf[i] + j - 1);
1289 (void) reg;
1290 }
1291 this->alloc.sizes[i] = 1;
1292 }
1293
1294 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1295 if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
1296 inst->dst.reg_offset != 0) {
1297 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1298 inst->dst.reg_offset - 1);
1299 inst->dst.reg_offset = 0;
1300 }
1301 for (int i = 0; i < 3; i++) {
1302 if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
1303 inst->src[i].reg_offset != 0) {
1304 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1305 inst->src[i].reg_offset - 1);
1306 inst->src[i].reg_offset = 0;
1307 }
1308 }
1309 }
1310 invalidate_live_intervals();
1311 }
1312
1313 void
1314 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1315 {
1316 dump_instruction(be_inst, stderr);
1317 }
1318
1319 void
1320 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1321 {
1322 vec4_instruction *inst = (vec4_instruction *)be_inst;
1323
1324 if (inst->predicate) {
1325 fprintf(file, "(%cf0.%d) ",
1326 inst->predicate_inverse ? '-' : '+',
1327 inst->flag_subreg);
1328 }
1329
1330 fprintf(file, "%s", brw_instruction_name(inst->opcode));
1331 if (inst->conditional_mod) {
1332 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1333 if (!inst->predicate &&
1334 (brw->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1335 inst->opcode != BRW_OPCODE_IF &&
1336 inst->opcode != BRW_OPCODE_WHILE))) {
1337 fprintf(file, ".f0.%d", inst->flag_subreg);
1338 }
1339 }
1340 fprintf(file, " ");
1341
1342 switch (inst->dst.file) {
1343 case GRF:
1344 fprintf(file, "vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
1345 break;
1346 case MRF:
1347 fprintf(file, "m%d", inst->dst.reg);
1348 break;
1349 case HW_REG:
1350 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1351 switch (inst->dst.fixed_hw_reg.nr) {
1352 case BRW_ARF_NULL:
1353 fprintf(file, "null");
1354 break;
1355 case BRW_ARF_ADDRESS:
1356 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
1357 break;
1358 case BRW_ARF_ACCUMULATOR:
1359 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
1360 break;
1361 case BRW_ARF_FLAG:
1362 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1363 inst->dst.fixed_hw_reg.subnr);
1364 break;
1365 default:
1366 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1367 inst->dst.fixed_hw_reg.subnr);
1368 break;
1369 }
1370 } else {
1371 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
1372 }
1373 if (inst->dst.fixed_hw_reg.subnr)
1374 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
1375 break;
1376 case BAD_FILE:
1377 fprintf(file, "(null)");
1378 break;
1379 default:
1380 fprintf(file, "???");
1381 break;
1382 }
1383 if (inst->dst.writemask != WRITEMASK_XYZW) {
1384 fprintf(file, ".");
1385 if (inst->dst.writemask & 1)
1386 fprintf(file, "x");
1387 if (inst->dst.writemask & 2)
1388 fprintf(file, "y");
1389 if (inst->dst.writemask & 4)
1390 fprintf(file, "z");
1391 if (inst->dst.writemask & 8)
1392 fprintf(file, "w");
1393 }
1394 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
1395
1396 if (inst->src[0].file != BAD_FILE)
1397 fprintf(file, ", ");
1398
1399 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1400 if (inst->src[i].negate)
1401 fprintf(file, "-");
1402 if (inst->src[i].abs)
1403 fprintf(file, "|");
1404 switch (inst->src[i].file) {
1405 case GRF:
1406 fprintf(file, "vgrf%d", inst->src[i].reg);
1407 break;
1408 case ATTR:
1409 fprintf(file, "attr%d", inst->src[i].reg);
1410 break;
1411 case UNIFORM:
1412 fprintf(file, "u%d", inst->src[i].reg);
1413 break;
1414 case IMM:
1415 switch (inst->src[i].type) {
1416 case BRW_REGISTER_TYPE_F:
1417 fprintf(file, "%fF", inst->src[i].fixed_hw_reg.dw1.f);
1418 break;
1419 case BRW_REGISTER_TYPE_D:
1420 fprintf(file, "%dD", inst->src[i].fixed_hw_reg.dw1.d);
1421 break;
1422 case BRW_REGISTER_TYPE_UD:
1423 fprintf(file, "%uU", inst->src[i].fixed_hw_reg.dw1.ud);
1424 break;
1425 case BRW_REGISTER_TYPE_VF:
1426 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1427 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
1428 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
1429 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
1430 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
1431 break;
1432 default:
1433 fprintf(file, "???");
1434 break;
1435 }
1436 break;
1437 case HW_REG:
1438 if (inst->src[i].fixed_hw_reg.negate)
1439 fprintf(file, "-");
1440 if (inst->src[i].fixed_hw_reg.abs)
1441 fprintf(file, "|");
1442 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1443 switch (inst->src[i].fixed_hw_reg.nr) {
1444 case BRW_ARF_NULL:
1445 fprintf(file, "null");
1446 break;
1447 case BRW_ARF_ADDRESS:
1448 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
1449 break;
1450 case BRW_ARF_ACCUMULATOR:
1451 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
1452 break;
1453 case BRW_ARF_FLAG:
1454 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1455 inst->src[i].fixed_hw_reg.subnr);
1456 break;
1457 default:
1458 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1459 inst->src[i].fixed_hw_reg.subnr);
1460 break;
1461 }
1462 } else {
1463 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
1464 }
1465 if (inst->src[i].fixed_hw_reg.subnr)
1466 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
1467 if (inst->src[i].fixed_hw_reg.abs)
1468 fprintf(file, "|");
1469 break;
1470 case BAD_FILE:
1471 fprintf(file, "(null)");
1472 break;
1473 default:
1474 fprintf(file, "???");
1475 break;
1476 }
1477
1478 /* Don't print .0; and only VGRFs have reg_offsets and sizes */
1479 if (inst->src[i].reg_offset != 0 &&
1480 inst->src[i].file == GRF &&
1481 alloc.sizes[inst->src[i].reg] != 1)
1482 fprintf(file, ".%d", inst->src[i].reg_offset);
1483
1484 if (inst->src[i].file != IMM) {
1485 static const char *chans[4] = {"x", "y", "z", "w"};
1486 fprintf(file, ".");
1487 for (int c = 0; c < 4; c++) {
1488 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1489 }
1490 }
1491
1492 if (inst->src[i].abs)
1493 fprintf(file, "|");
1494
1495 if (inst->src[i].file != IMM) {
1496 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1497 }
1498
1499 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1500 fprintf(file, ", ");
1501 }
1502
1503 fprintf(file, "\n");
1504 }
1505
1506
1507 static inline struct brw_reg
1508 attribute_to_hw_reg(int attr, bool interleaved)
1509 {
1510 if (interleaved)
1511 return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1512 else
1513 return brw_vec8_grf(attr, 0);
1514 }
1515
1516
1517 /**
1518 * Replace each register of type ATTR in this->instructions with a reference
1519 * to a fixed HW register.
1520 *
1521 * If interleaved is true, then each attribute takes up half a register, with
1522 * register N containing attribute 2*N in its first half and attribute 2*N+1
1523 * in its second half (this corresponds to the payload setup used by geometry
1524 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
1525 * false, then each attribute takes up a whole register, with register N
1526 * containing attribute N (this corresponds to the payload setup used by
1527 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1528 */
1529 void
1530 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1531 bool interleaved)
1532 {
1533 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1534 /* We have to support ATTR as a destination for GL_FIXED fixup. */
1535 if (inst->dst.file == ATTR) {
1536 int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
1537
1538 /* All attributes used in the shader need to have been assigned a
1539 * hardware register by the caller
1540 */
1541 assert(grf != 0);
1542
1543 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1544 reg.type = inst->dst.type;
1545 reg.dw1.bits.writemask = inst->dst.writemask;
1546
1547 inst->dst.file = HW_REG;
1548 inst->dst.fixed_hw_reg = reg;
1549 }
1550
1551 for (int i = 0; i < 3; i++) {
1552 if (inst->src[i].file != ATTR)
1553 continue;
1554
1555 int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
1556
1557 /* All attributes used in the shader need to have been assigned a
1558 * hardware register by the caller
1559 */
1560 assert(grf != 0);
1561
1562 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1563 reg.dw1.bits.swizzle = inst->src[i].swizzle;
1564 reg.type = inst->src[i].type;
1565 if (inst->src[i].abs)
1566 reg = brw_abs(reg);
1567 if (inst->src[i].negate)
1568 reg = negate(reg);
1569
1570 inst->src[i].file = HW_REG;
1571 inst->src[i].fixed_hw_reg = reg;
1572 }
1573 }
1574 }
1575
1576 int
1577 vec4_vs_visitor::setup_attributes(int payload_reg)
1578 {
1579 int nr_attributes;
1580 int attribute_map[VERT_ATTRIB_MAX + 1];
1581 memset(attribute_map, 0, sizeof(attribute_map));
1582
1583 nr_attributes = 0;
1584 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1585 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1586 attribute_map[i] = payload_reg + nr_attributes;
1587 nr_attributes++;
1588 }
1589 }
1590
1591 /* VertexID is stored by the VF as the last vertex element, but we
1592 * don't represent it with a flag in inputs_read, so we call it
1593 * VERT_ATTRIB_MAX.
1594 */
1595 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
1596 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1597 nr_attributes++;
1598 }
1599
1600 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1601
1602 /* The BSpec says we always have to read at least one thing from
1603 * the VF, and it appears that the hardware wedges otherwise.
1604 */
1605 if (nr_attributes == 0)
1606 nr_attributes = 1;
1607
1608 prog_data->urb_read_length = (nr_attributes + 1) / 2;
1609
1610 unsigned vue_entries =
1611 MAX2(nr_attributes, prog_data->vue_map.num_slots);
1612
1613 if (brw->gen == 6)
1614 prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
1615 else
1616 prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
1617
1618 return payload_reg + nr_attributes;
1619 }
1620
1621 int
1622 vec4_visitor::setup_uniforms(int reg)
1623 {
1624 prog_data->base.dispatch_grf_start_reg = reg;
1625
1626 /* The pre-gen6 VS requires that some push constants get loaded no
1627 * matter what, or the GPU would hang.
1628 */
1629 if (brw->gen < 6 && this->uniforms == 0) {
1630 assert(this->uniforms < this->uniform_array_size);
1631 this->uniform_vector_size[this->uniforms] = 1;
1632
1633 stage_prog_data->param =
1634 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1635 for (unsigned int i = 0; i < 4; i++) {
1636 unsigned int slot = this->uniforms * 4 + i;
1637 static gl_constant_value zero = { 0.0 };
1638 stage_prog_data->param[slot] = &zero;
1639 }
1640
1641 this->uniforms++;
1642 reg++;
1643 } else {
1644 reg += ALIGN(uniforms, 2) / 2;
1645 }
1646
1647 stage_prog_data->nr_params = this->uniforms * 4;
1648
1649 prog_data->base.curb_read_length =
1650 reg - prog_data->base.dispatch_grf_start_reg;
1651
1652 return reg;
1653 }
1654
1655 void
1656 vec4_vs_visitor::setup_payload(void)
1657 {
1658 int reg = 0;
1659
1660 /* The payload always contains important data in g0, which contains
1661 * the URB handles that are passed on to the URB write at the end
1662 * of the thread. So, we always start push constants at g1.
1663 */
1664 reg++;
1665
1666 reg = setup_uniforms(reg);
1667
1668 reg = setup_attributes(reg);
1669
1670 this->first_non_payload_grf = reg;
1671 }
1672
1673 void
1674 vec4_visitor::assign_binding_table_offsets()
1675 {
1676 assign_common_binding_table_offsets(0);
1677 }
1678
1679 src_reg
1680 vec4_visitor::get_timestamp()
1681 {
1682 assert(brw->gen >= 7);
1683
1684 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1685 BRW_ARF_TIMESTAMP,
1686 0,
1687 0,
1688 0,
1689 BRW_REGISTER_TYPE_UD,
1690 BRW_VERTICAL_STRIDE_0,
1691 BRW_WIDTH_4,
1692 BRW_HORIZONTAL_STRIDE_4,
1693 BRW_SWIZZLE_XYZW,
1694 WRITEMASK_XYZW));
1695
1696 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1697
1698 vec4_instruction *mov = emit(MOV(dst, ts));
1699 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1700 * even if it's not enabled in the dispatch.
1701 */
1702 mov->force_writemask_all = true;
1703
1704 return src_reg(dst);
1705 }
1706
1707 void
1708 vec4_visitor::emit_shader_time_begin()
1709 {
1710 current_annotation = "shader time start";
1711 shader_start_time = get_timestamp();
1712 }
1713
1714 void
1715 vec4_visitor::emit_shader_time_end()
1716 {
1717 current_annotation = "shader time end";
1718 src_reg shader_end_time = get_timestamp();
1719
1720
1721 /* Check that there weren't any timestamp reset events (assuming these
1722 * were the only two timestamp reads that happened).
1723 */
1724 src_reg reset_end = shader_end_time;
1725 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1726 vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
1727 test->conditional_mod = BRW_CONDITIONAL_Z;
1728
1729 emit(IF(BRW_PREDICATE_NORMAL));
1730
1731 /* Take the current timestamp and get the delta. */
1732 shader_start_time.negate = true;
1733 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1734 emit(ADD(diff, shader_start_time, shader_end_time));
1735
1736 /* If there were no instructions between the two timestamp gets, the diff
1737 * is 2 cycles. Remove that overhead, so I can forget about that when
1738 * trying to determine the time taken for single instructions.
1739 */
1740 emit(ADD(diff, src_reg(diff), src_reg(-2u)));
1741
1742 emit_shader_time_write(st_base, src_reg(diff));
1743 emit_shader_time_write(st_written, src_reg(1u));
1744 emit(BRW_OPCODE_ELSE);
1745 emit_shader_time_write(st_reset, src_reg(1u));
1746 emit(BRW_OPCODE_ENDIF);
1747 }
1748
1749 void
1750 vec4_visitor::emit_shader_time_write(enum shader_time_shader_type type,
1751 src_reg value)
1752 {
1753 int shader_time_index =
1754 brw_get_shader_time_index(brw, shader_prog, prog, type);
1755
1756 dst_reg dst =
1757 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1758
1759 dst_reg offset = dst;
1760 dst_reg time = dst;
1761 time.reg_offset++;
1762
1763 offset.type = BRW_REGISTER_TYPE_UD;
1764 emit(MOV(offset, src_reg(shader_time_index * SHADER_TIME_STRIDE)));
1765
1766 time.type = BRW_REGISTER_TYPE_UD;
1767 emit(MOV(time, src_reg(value)));
1768
1769 vec4_instruction *inst =
1770 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1771 inst->mlen = 2;
1772 }
1773
1774 bool
1775 vec4_visitor::run()
1776 {
1777 sanity_param_count = prog->Parameters->NumParameters;
1778
1779 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1780 emit_shader_time_begin();
1781
1782 assign_binding_table_offsets();
1783
1784 emit_prolog();
1785
1786 /* Generate VS IR for main(). (the visitor only descends into
1787 * functions called "main").
1788 */
1789 if (shader) {
1790 visit_instructions(shader->base.ir);
1791 } else {
1792 emit_program_code();
1793 }
1794 base_ir = NULL;
1795
1796 if (key->userclip_active && !prog->UsesClipDistanceOut)
1797 setup_uniform_clipplane_values();
1798
1799 emit_thread_end();
1800
1801 calculate_cfg();
1802
1803 /* Before any optimization, push array accesses out to scratch
1804 * space where we need them to be. This pass may allocate new
1805 * virtual GRFs, so we want to do it early. It also makes sure
1806 * that we have reladdr computations available for CSE, since we'll
1807 * often do repeated subexpressions for those.
1808 */
1809 if (shader) {
1810 move_grf_array_access_to_scratch();
1811 move_uniform_array_access_to_pull_constants();
1812 } else {
1813 /* The ARB_vertex_program frontend emits pull constant loads directly
1814 * rather than using reladdr, so we don't need to walk through all the
1815 * instructions looking for things to move. There isn't anything.
1816 *
1817 * We do still need to split things to vec4 size.
1818 */
1819 split_uniform_registers();
1820 }
1821 pack_uniform_registers();
1822 move_push_constants_to_pull_constants();
1823 split_virtual_grfs();
1824
1825 const char *stage_name = stage == MESA_SHADER_GEOMETRY ? "gs" : "vs";
1826
1827 #define OPT(pass, args...) ({ \
1828 pass_num++; \
1829 bool this_progress = pass(args); \
1830 \
1831 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
1832 char filename[64]; \
1833 snprintf(filename, 64, "%s-%04d-%02d-%02d-" #pass, \
1834 stage_name, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
1835 \
1836 backend_visitor::dump_instructions(filename); \
1837 } \
1838 \
1839 progress = progress || this_progress; \
1840 this_progress; \
1841 })
1842
1843
1844 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
1845 char filename[64];
1846 snprintf(filename, 64, "%s-%04d-00-start",
1847 stage_name, shader_prog ? shader_prog->Name : 0);
1848
1849 backend_visitor::dump_instructions(filename);
1850 }
1851
1852 bool progress;
1853 int iteration = 0;
1854 int pass_num = 0;
1855 do {
1856 progress = false;
1857 pass_num = 0;
1858 iteration++;
1859
1860 OPT(opt_reduce_swizzle);
1861 OPT(dead_code_eliminate);
1862 OPT(dead_control_flow_eliminate, this);
1863 OPT(opt_copy_propagation);
1864 OPT(opt_cse);
1865 OPT(opt_algebraic);
1866 OPT(opt_register_coalesce);
1867 } while (progress);
1868
1869 pass_num = 0;
1870
1871 if (OPT(opt_vector_float)) {
1872 OPT(opt_cse);
1873 OPT(opt_copy_propagation, false);
1874 OPT(opt_copy_propagation, true);
1875 OPT(dead_code_eliminate);
1876 }
1877
1878 if (failed)
1879 return false;
1880
1881 setup_payload();
1882
1883 if (false) {
1884 /* Debug of register spilling: Go spill everything. */
1885 const int grf_count = alloc.count;
1886 float spill_costs[alloc.count];
1887 bool no_spill[alloc.count];
1888 evaluate_spill_costs(spill_costs, no_spill);
1889 for (int i = 0; i < grf_count; i++) {
1890 if (no_spill[i])
1891 continue;
1892 spill_reg(i);
1893 }
1894 }
1895
1896 while (!reg_allocate()) {
1897 if (failed)
1898 return false;
1899 }
1900
1901 opt_schedule_instructions();
1902
1903 opt_set_dependency_control();
1904
1905 /* If any state parameters were appended, then ParameterValues could have
1906 * been realloced, in which case the driver uniform storage set up by
1907 * _mesa_associate_uniform_storage() would point to freed memory. Make
1908 * sure that didn't happen.
1909 */
1910 assert(sanity_param_count == prog->Parameters->NumParameters);
1911
1912 return !failed;
1913 }
1914
1915 } /* namespace brw */
1916
1917 extern "C" {
1918
1919 /**
1920 * Compile a vertex shader.
1921 *
1922 * Returns the final assembly and the program's size.
1923 */
1924 const unsigned *
1925 brw_vs_emit(struct brw_context *brw,
1926 struct gl_shader_program *prog,
1927 struct brw_vs_compile *c,
1928 struct brw_vs_prog_data *prog_data,
1929 void *mem_ctx,
1930 unsigned *final_assembly_size)
1931 {
1932 bool start_busy = false;
1933 double start_time = 0;
1934 const unsigned *assembly = NULL;
1935
1936 if (unlikely(brw->perf_debug)) {
1937 start_busy = (brw->batch.last_bo &&
1938 drm_intel_bo_busy(brw->batch.last_bo));
1939 start_time = get_time();
1940 }
1941
1942 struct brw_shader *shader = NULL;
1943 if (prog)
1944 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
1945
1946 if (unlikely(INTEL_DEBUG & DEBUG_VS))
1947 brw_dump_ir("vertex", prog, &shader->base, &c->vp->program.Base);
1948
1949 if (prog && brw->gen >= 8 && brw->scalar_vs) {
1950 fs_visitor v(brw, mem_ctx, &c->key, prog_data, prog, &c->vp->program, 8);
1951 if (!v.run_vs()) {
1952 if (prog) {
1953 prog->LinkStatus = false;
1954 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1955 }
1956
1957 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1958 v.fail_msg);
1959
1960 return NULL;
1961 }
1962
1963 fs_generator g(brw, mem_ctx, (void *) &c->key, &prog_data->base.base,
1964 &c->vp->program.Base, v.runtime_check_aads_emit, "VS");
1965 if (INTEL_DEBUG & DEBUG_VS) {
1966 char *name = ralloc_asprintf(mem_ctx, "%s vertex shader %d",
1967 prog->Label ? prog->Label : "unnamed",
1968 prog->Name);
1969 g.enable_debug(name);
1970 }
1971 g.generate_code(v.cfg, 8);
1972 assembly = g.get_assembly(final_assembly_size);
1973
1974 if (assembly)
1975 prog_data->base.simd8 = true;
1976 c->base.last_scratch = v.last_scratch;
1977 }
1978
1979 if (!assembly) {
1980 vec4_vs_visitor v(brw, c, prog_data, prog, mem_ctx);
1981 if (!v.run()) {
1982 if (prog) {
1983 prog->LinkStatus = false;
1984 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1985 }
1986
1987 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1988 v.fail_msg);
1989
1990 return NULL;
1991 }
1992
1993 vec4_generator g(brw, prog, &c->vp->program.Base, &prog_data->base,
1994 mem_ctx, INTEL_DEBUG & DEBUG_VS, "vertex", "VS");
1995 assembly = g.generate_assembly(v.cfg, final_assembly_size);
1996 }
1997
1998 if (unlikely(brw->perf_debug) && shader) {
1999 if (shader->compiled_once) {
2000 brw_vs_debug_recompile(brw, prog, &c->key);
2001 }
2002 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
2003 perf_debug("VS compile took %.03f ms and stalled the GPU\n",
2004 (get_time() - start_time) * 1000);
2005 }
2006 shader->compiled_once = true;
2007 }
2008
2009 return assembly;
2010 }
2011
2012
2013 void
2014 brw_vue_setup_prog_key_for_precompile(struct gl_context *ctx,
2015 struct brw_vue_prog_key *key,
2016 GLuint id, struct gl_program *prog)
2017 {
2018 struct brw_context *brw = brw_context(ctx);
2019 key->program_string_id = id;
2020
2021 const bool has_shader_channel_select = brw->is_haswell || brw->gen >= 8;
2022 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
2023 for (unsigned i = 0; i < sampler_count; i++) {
2024 if (!has_shader_channel_select && (prog->ShadowSamplers & (1 << i))) {
2025 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
2026 key->tex.swizzles[i] =
2027 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
2028 } else {
2029 /* Color sampler: assume no swizzling. */
2030 key->tex.swizzles[i] = SWIZZLE_XYZW;
2031 }
2032 }
2033 }
2034
2035 } /* extern "C" */