i965/vec4: Allow reswizzling writemasks when swizzle is single-valued.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_cfg.h"
26 #include "brw_vs.h"
27 #include "brw_dead_control_flow.h"
28
29 extern "C" {
30 #include "main/macros.h"
31 #include "main/shaderobj.h"
32 #include "program/prog_print.h"
33 #include "program/prog_parameter.h"
34 }
35
36 #define MAX_INSTRUCTION (1 << 30)
37
38 using namespace brw;
39
40 namespace brw {
41
42 /**
43 * Common helper for constructing swizzles. When only a subset of
44 * channels of a vec4 are used, we don't want to reference the other
45 * channels, as that will tell optimization passes that those other
46 * channels are used.
47 */
48 unsigned
49 swizzle_for_size(int size)
50 {
51 static const unsigned size_swizzles[4] = {
52 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
53 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
54 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
55 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
56 };
57
58 assert((size >= 1) && (size <= 4));
59 return size_swizzles[size - 1];
60 }
61
62 void
63 src_reg::init()
64 {
65 memset(this, 0, sizeof(*this));
66
67 this->file = BAD_FILE;
68 }
69
70 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
71 {
72 init();
73
74 this->file = file;
75 this->reg = reg;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = BRW_SWIZZLE_XYZW;
80 }
81
82 /** Generic unset register constructor. */
83 src_reg::src_reg()
84 {
85 init();
86 }
87
88 src_reg::src_reg(float f)
89 {
90 init();
91
92 this->file = IMM;
93 this->type = BRW_REGISTER_TYPE_F;
94 this->fixed_hw_reg.dw1.f = f;
95 }
96
97 src_reg::src_reg(uint32_t u)
98 {
99 init();
100
101 this->file = IMM;
102 this->type = BRW_REGISTER_TYPE_UD;
103 this->fixed_hw_reg.dw1.ud = u;
104 }
105
106 src_reg::src_reg(int32_t i)
107 {
108 init();
109
110 this->file = IMM;
111 this->type = BRW_REGISTER_TYPE_D;
112 this->fixed_hw_reg.dw1.d = i;
113 }
114
115 src_reg::src_reg(struct brw_reg reg)
116 {
117 init();
118
119 this->file = HW_REG;
120 this->fixed_hw_reg = reg;
121 this->type = reg.type;
122 }
123
124 src_reg::src_reg(dst_reg reg)
125 {
126 init();
127
128 this->file = reg.file;
129 this->reg = reg.reg;
130 this->reg_offset = reg.reg_offset;
131 this->type = reg.type;
132 this->reladdr = reg.reladdr;
133 this->fixed_hw_reg = reg.fixed_hw_reg;
134
135 int swizzles[4];
136 int next_chan = 0;
137 int last = 0;
138
139 for (int i = 0; i < 4; i++) {
140 if (!(reg.writemask & (1 << i)))
141 continue;
142
143 swizzles[next_chan++] = last = i;
144 }
145
146 for (; next_chan < 4; next_chan++) {
147 swizzles[next_chan] = last;
148 }
149
150 this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
151 swizzles[2], swizzles[3]);
152 }
153
154 void
155 dst_reg::init()
156 {
157 memset(this, 0, sizeof(*this));
158 this->file = BAD_FILE;
159 this->writemask = WRITEMASK_XYZW;
160 }
161
162 dst_reg::dst_reg()
163 {
164 init();
165 }
166
167 dst_reg::dst_reg(register_file file, int reg)
168 {
169 init();
170
171 this->file = file;
172 this->reg = reg;
173 }
174
175 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
176 int writemask)
177 {
178 init();
179
180 this->file = file;
181 this->reg = reg;
182 this->type = brw_type_for_base_type(type);
183 this->writemask = writemask;
184 }
185
186 dst_reg::dst_reg(struct brw_reg reg)
187 {
188 init();
189
190 this->file = HW_REG;
191 this->fixed_hw_reg = reg;
192 this->type = reg.type;
193 }
194
195 dst_reg::dst_reg(src_reg reg)
196 {
197 init();
198
199 this->file = reg.file;
200 this->reg = reg.reg;
201 this->reg_offset = reg.reg_offset;
202 this->type = reg.type;
203 /* How should we do writemasking when converting from a src_reg? It seems
204 * pretty obvious that for src.xxxx the caller wants to write to src.x, but
205 * what about for src.wx? Just special-case src.xxxx for now.
206 */
207 if (reg.swizzle == BRW_SWIZZLE_XXXX)
208 this->writemask = WRITEMASK_X;
209 else
210 this->writemask = WRITEMASK_XYZW;
211 this->reladdr = reg.reladdr;
212 this->fixed_hw_reg = reg.fixed_hw_reg;
213 }
214
215 bool
216 vec4_instruction::is_send_from_grf()
217 {
218 switch (opcode) {
219 case SHADER_OPCODE_SHADER_TIME_ADD:
220 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
221 return true;
222 default:
223 return false;
224 }
225 }
226
227 bool
228 vec4_instruction::can_do_source_mods(struct brw_context *brw)
229 {
230 if (brw->gen == 6 && is_math())
231 return false;
232
233 if (is_send_from_grf())
234 return false;
235
236 if (!backend_instruction::can_do_source_mods())
237 return false;
238
239 return true;
240 }
241
242 /**
243 * Returns how many MRFs an opcode will write over.
244 *
245 * Note that this is not the 0 or 1 implied writes in an actual gen
246 * instruction -- the generate_* functions generate additional MOVs
247 * for setup.
248 */
249 int
250 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
251 {
252 if (inst->mlen == 0)
253 return 0;
254
255 switch (inst->opcode) {
256 case SHADER_OPCODE_RCP:
257 case SHADER_OPCODE_RSQ:
258 case SHADER_OPCODE_SQRT:
259 case SHADER_OPCODE_EXP2:
260 case SHADER_OPCODE_LOG2:
261 case SHADER_OPCODE_SIN:
262 case SHADER_OPCODE_COS:
263 return 1;
264 case SHADER_OPCODE_INT_QUOTIENT:
265 case SHADER_OPCODE_INT_REMAINDER:
266 case SHADER_OPCODE_POW:
267 return 2;
268 case VS_OPCODE_URB_WRITE:
269 return 1;
270 case VS_OPCODE_PULL_CONSTANT_LOAD:
271 return 2;
272 case SHADER_OPCODE_GEN4_SCRATCH_READ:
273 return 2;
274 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
275 return 3;
276 case GS_OPCODE_URB_WRITE:
277 case GS_OPCODE_THREAD_END:
278 return 0;
279 case SHADER_OPCODE_SHADER_TIME_ADD:
280 return 0;
281 case SHADER_OPCODE_TEX:
282 case SHADER_OPCODE_TXL:
283 case SHADER_OPCODE_TXD:
284 case SHADER_OPCODE_TXF:
285 case SHADER_OPCODE_TXF_CMS:
286 case SHADER_OPCODE_TXF_MCS:
287 case SHADER_OPCODE_TXS:
288 case SHADER_OPCODE_TG4:
289 case SHADER_OPCODE_TG4_OFFSET:
290 return inst->header_present ? 1 : 0;
291 case SHADER_OPCODE_UNTYPED_ATOMIC:
292 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
293 return 0;
294 default:
295 unreachable("not reached");
296 }
297 }
298
299 bool
300 src_reg::equals(const src_reg &r) const
301 {
302 return (file == r.file &&
303 reg == r.reg &&
304 reg_offset == r.reg_offset &&
305 type == r.type &&
306 negate == r.negate &&
307 abs == r.abs &&
308 swizzle == r.swizzle &&
309 !reladdr && !r.reladdr &&
310 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
311 sizeof(fixed_hw_reg)) == 0);
312 }
313
314 /* Replaces unused channels of a swizzle with channels that are used.
315 *
316 * For instance, this pass transforms
317 *
318 * mov vgrf4.yz, vgrf5.wxzy
319 *
320 * into
321 *
322 * mov vgrf4.yz, vgrf5.xxzx
323 *
324 * This eliminates false uses of some channels, letting dead code elimination
325 * remove the instructions that wrote them.
326 */
327 bool
328 vec4_visitor::opt_reduce_swizzle()
329 {
330 bool progress = false;
331
332 foreach_in_list_safe(vec4_instruction, inst, &instructions) {
333 if (inst->dst.file == BAD_FILE || inst->dst.file == HW_REG)
334 continue;
335
336 int swizzle[4];
337
338 /* Determine which channels of the sources are read. */
339 switch (inst->opcode) {
340 case BRW_OPCODE_DP4:
341 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
342 * but all four of src1.
343 */
344 swizzle[0] = 0;
345 swizzle[1] = 1;
346 swizzle[2] = 2;
347 swizzle[3] = 3;
348 break;
349 case BRW_OPCODE_DP3:
350 swizzle[0] = 0;
351 swizzle[1] = 1;
352 swizzle[2] = 2;
353 swizzle[3] = -1;
354 break;
355 case BRW_OPCODE_DP2:
356 swizzle[0] = 0;
357 swizzle[1] = 1;
358 swizzle[2] = -1;
359 swizzle[3] = -1;
360 break;
361 default:
362 swizzle[0] = inst->dst.writemask & WRITEMASK_X ? 0 : -1;
363 swizzle[1] = inst->dst.writemask & WRITEMASK_Y ? 1 : -1;
364 swizzle[2] = inst->dst.writemask & WRITEMASK_Z ? 2 : -1;
365 swizzle[3] = inst->dst.writemask & WRITEMASK_W ? 3 : -1;
366 break;
367 }
368
369 /* Resolve unread channels (-1) by assigning them the swizzle of the
370 * first channel that is used.
371 */
372 int first_used_channel = 0;
373 for (int i = 0; i < 4; i++) {
374 if (swizzle[i] != -1) {
375 first_used_channel = swizzle[i];
376 break;
377 }
378 }
379 for (int i = 0; i < 4; i++) {
380 if (swizzle[i] == -1) {
381 swizzle[i] = first_used_channel;
382 }
383 }
384
385 /* Update sources' swizzles. */
386 for (int i = 0; i < 3; i++) {
387 if (inst->src[i].file != GRF &&
388 inst->src[i].file != ATTR &&
389 inst->src[i].file != UNIFORM)
390 continue;
391
392 int swiz[4];
393 for (int j = 0; j < 4; j++) {
394 swiz[j] = BRW_GET_SWZ(inst->src[i].swizzle, swizzle[j]);
395 }
396
397 unsigned new_swizzle = BRW_SWIZZLE4(swiz[0], swiz[1], swiz[2], swiz[3]);
398 if (inst->src[i].swizzle != new_swizzle) {
399 inst->src[i].swizzle = new_swizzle;
400 progress = true;
401 }
402 }
403 }
404
405 if (progress)
406 invalidate_live_intervals();
407
408 return progress;
409 }
410
411 static bool
412 try_eliminate_instruction(vec4_instruction *inst, int new_writemask,
413 const struct brw_context *brw)
414 {
415 if (inst->has_side_effects())
416 return false;
417
418 if (new_writemask == 0) {
419 /* Don't dead code eliminate instructions that write to the
420 * accumulator as a side-effect. Instead just set the destination
421 * to the null register to free it.
422 */
423 if (inst->writes_accumulator || inst->writes_flag()) {
424 inst->dst = dst_reg(retype(brw_null_reg(), inst->dst.type));
425 } else {
426 inst->remove();
427 }
428
429 return true;
430 } else if (inst->dst.writemask != new_writemask) {
431 switch (inst->opcode) {
432 case SHADER_OPCODE_TXF_CMS:
433 case SHADER_OPCODE_GEN4_SCRATCH_READ:
434 case VS_OPCODE_PULL_CONSTANT_LOAD:
435 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
436 break;
437 default:
438 /* Do not set a writemask on Gen6 for math instructions, those are
439 * executed using align1 mode that does not support a destination mask.
440 */
441 if (!(brw->gen == 6 && inst->is_math()) && !inst->is_tex()) {
442 inst->dst.writemask = new_writemask;
443 return true;
444 }
445 }
446 }
447
448 return false;
449 }
450
451 /**
452 * Must be called after calculate_live_intervals() to remove unused
453 * writes to registers -- register allocation will fail otherwise
454 * because something deffed but not used won't be considered to
455 * interfere with other regs.
456 */
457 bool
458 vec4_visitor::dead_code_eliminate()
459 {
460 bool progress = false;
461 int pc = -1;
462
463 calculate_live_intervals();
464
465 foreach_in_list_safe(vec4_instruction, inst, &instructions) {
466 pc++;
467
468 bool inst_writes_flag = false;
469 if (inst->dst.file != GRF) {
470 if (inst->dst.is_null() && inst->writes_flag()) {
471 inst_writes_flag = true;
472 } else {
473 continue;
474 }
475 }
476
477 if (inst->dst.file == GRF) {
478 int write_mask = inst->dst.writemask;
479
480 for (int c = 0; c < 4; c++) {
481 if (write_mask & (1 << c)) {
482 assert(this->virtual_grf_end[inst->dst.reg * 4 + c] >= pc);
483 if (this->virtual_grf_end[inst->dst.reg * 4 + c] == pc) {
484 write_mask &= ~(1 << c);
485 }
486 }
487 }
488
489 progress = try_eliminate_instruction(inst, write_mask, brw) ||
490 progress;
491 }
492
493 if (inst->predicate || inst->prev == NULL)
494 continue;
495
496 int dead_channels;
497 if (inst_writes_flag) {
498 /* Arbitrarily chosen, other than not being an xyzw writemask. */
499 #define FLAG_WRITEMASK (1 << 5)
500 dead_channels = inst->reads_flag() ? 0 : FLAG_WRITEMASK;
501 } else {
502 dead_channels = inst->dst.writemask;
503
504 for (int i = 0; i < 3; i++) {
505 if (inst->src[i].file != GRF ||
506 inst->src[i].reg != inst->dst.reg)
507 continue;
508
509 for (int j = 0; j < 4; j++) {
510 int swiz = BRW_GET_SWZ(inst->src[i].swizzle, j);
511 dead_channels &= ~(1 << swiz);
512 }
513 }
514 }
515
516 for (exec_node *node = inst->prev, *prev = node->prev;
517 prev != NULL && dead_channels != 0;
518 node = prev, prev = prev->prev) {
519 vec4_instruction *scan_inst = (vec4_instruction *)node;
520
521 if (scan_inst->is_control_flow())
522 break;
523
524 if (inst_writes_flag) {
525 if (scan_inst->dst.is_null() && scan_inst->writes_flag()) {
526 scan_inst->remove();
527 progress = true;
528 continue;
529 } else if (scan_inst->reads_flag()) {
530 break;
531 }
532 }
533
534 if (inst->dst.file == scan_inst->dst.file &&
535 inst->dst.reg == scan_inst->dst.reg &&
536 inst->dst.reg_offset == scan_inst->dst.reg_offset) {
537 int new_writemask = scan_inst->dst.writemask & ~dead_channels;
538
539 progress = try_eliminate_instruction(scan_inst, new_writemask, brw) ||
540 progress;
541 }
542
543 for (int i = 0; i < 3; i++) {
544 if (scan_inst->src[i].file != inst->dst.file ||
545 scan_inst->src[i].reg != inst->dst.reg)
546 continue;
547
548 for (int j = 0; j < 4; j++) {
549 int swiz = BRW_GET_SWZ(scan_inst->src[i].swizzle, j);
550 dead_channels &= ~(1 << swiz);
551 }
552 }
553 }
554 }
555
556 if (progress)
557 invalidate_live_intervals();
558
559 return progress;
560 }
561
562 void
563 vec4_visitor::split_uniform_registers()
564 {
565 /* Prior to this, uniforms have been in an array sized according to
566 * the number of vector uniforms present, sparsely filled (so an
567 * aggregate results in reg indices being skipped over). Now we're
568 * going to cut those aggregates up so each .reg index is one
569 * vector. The goal is to make elimination of unused uniform
570 * components easier later.
571 */
572 foreach_in_list(vec4_instruction, inst, &instructions) {
573 for (int i = 0 ; i < 3; i++) {
574 if (inst->src[i].file != UNIFORM)
575 continue;
576
577 assert(!inst->src[i].reladdr);
578
579 inst->src[i].reg += inst->src[i].reg_offset;
580 inst->src[i].reg_offset = 0;
581 }
582 }
583
584 /* Update that everything is now vector-sized. */
585 for (int i = 0; i < this->uniforms; i++) {
586 this->uniform_size[i] = 1;
587 }
588 }
589
590 void
591 vec4_visitor::pack_uniform_registers()
592 {
593 bool uniform_used[this->uniforms];
594 int new_loc[this->uniforms];
595 int new_chan[this->uniforms];
596
597 memset(uniform_used, 0, sizeof(uniform_used));
598 memset(new_loc, 0, sizeof(new_loc));
599 memset(new_chan, 0, sizeof(new_chan));
600
601 /* Find which uniform vectors are actually used by the program. We
602 * expect unused vector elements when we've moved array access out
603 * to pull constants, and from some GLSL code generators like wine.
604 */
605 foreach_in_list(vec4_instruction, inst, &instructions) {
606 for (int i = 0 ; i < 3; i++) {
607 if (inst->src[i].file != UNIFORM)
608 continue;
609
610 uniform_used[inst->src[i].reg] = true;
611 }
612 }
613
614 int new_uniform_count = 0;
615
616 /* Now, figure out a packing of the live uniform vectors into our
617 * push constants.
618 */
619 for (int src = 0; src < uniforms; src++) {
620 assert(src < uniform_array_size);
621 int size = this->uniform_vector_size[src];
622
623 if (!uniform_used[src]) {
624 this->uniform_vector_size[src] = 0;
625 continue;
626 }
627
628 int dst;
629 /* Find the lowest place we can slot this uniform in. */
630 for (dst = 0; dst < src; dst++) {
631 if (this->uniform_vector_size[dst] + size <= 4)
632 break;
633 }
634
635 if (src == dst) {
636 new_loc[src] = dst;
637 new_chan[src] = 0;
638 } else {
639 new_loc[src] = dst;
640 new_chan[src] = this->uniform_vector_size[dst];
641
642 /* Move the references to the data */
643 for (int j = 0; j < size; j++) {
644 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
645 stage_prog_data->param[src * 4 + j];
646 }
647
648 this->uniform_vector_size[dst] += size;
649 this->uniform_vector_size[src] = 0;
650 }
651
652 new_uniform_count = MAX2(new_uniform_count, dst + 1);
653 }
654
655 this->uniforms = new_uniform_count;
656
657 /* Now, update the instructions for our repacked uniforms. */
658 foreach_in_list(vec4_instruction, inst, &instructions) {
659 for (int i = 0 ; i < 3; i++) {
660 int src = inst->src[i].reg;
661
662 if (inst->src[i].file != UNIFORM)
663 continue;
664
665 inst->src[i].reg = new_loc[src];
666
667 int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
668 int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
669 int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
670 int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
671 inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
672 }
673 }
674 }
675
676 /**
677 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
678 *
679 * While GLSL IR also performs this optimization, we end up with it in
680 * our instruction stream for a couple of reasons. One is that we
681 * sometimes generate silly instructions, for example in array access
682 * where we'll generate "ADD offset, index, base" even if base is 0.
683 * The other is that GLSL IR's constant propagation doesn't track the
684 * components of aggregates, so some VS patterns (initialize matrix to
685 * 0, accumulate in vertex blending factors) end up breaking down to
686 * instructions involving 0.
687 */
688 bool
689 vec4_visitor::opt_algebraic()
690 {
691 bool progress = false;
692
693 foreach_in_list(vec4_instruction, inst, &instructions) {
694 switch (inst->opcode) {
695 case BRW_OPCODE_ADD:
696 if (inst->src[1].is_zero()) {
697 inst->opcode = BRW_OPCODE_MOV;
698 inst->src[1] = src_reg();
699 progress = true;
700 }
701 break;
702
703 case BRW_OPCODE_MUL:
704 if (inst->src[1].is_zero()) {
705 inst->opcode = BRW_OPCODE_MOV;
706 switch (inst->src[0].type) {
707 case BRW_REGISTER_TYPE_F:
708 inst->src[0] = src_reg(0.0f);
709 break;
710 case BRW_REGISTER_TYPE_D:
711 inst->src[0] = src_reg(0);
712 break;
713 case BRW_REGISTER_TYPE_UD:
714 inst->src[0] = src_reg(0u);
715 break;
716 default:
717 unreachable("not reached");
718 }
719 inst->src[1] = src_reg();
720 progress = true;
721 } else if (inst->src[1].is_one()) {
722 inst->opcode = BRW_OPCODE_MOV;
723 inst->src[1] = src_reg();
724 progress = true;
725 }
726 break;
727 default:
728 break;
729 }
730 }
731
732 if (progress)
733 invalidate_live_intervals();
734
735 return progress;
736 }
737
738 /**
739 * Only a limited number of hardware registers may be used for push
740 * constants, so this turns access to the overflowed constants into
741 * pull constants.
742 */
743 void
744 vec4_visitor::move_push_constants_to_pull_constants()
745 {
746 int pull_constant_loc[this->uniforms];
747
748 /* Only allow 32 registers (256 uniform components) as push constants,
749 * which is the limit on gen6.
750 *
751 * If changing this value, note the limitation about total_regs in
752 * brw_curbe.c.
753 */
754 int max_uniform_components = 32 * 8;
755 if (this->uniforms * 4 <= max_uniform_components)
756 return;
757
758 /* Make some sort of choice as to which uniforms get sent to pull
759 * constants. We could potentially do something clever here like
760 * look for the most infrequently used uniform vec4s, but leave
761 * that for later.
762 */
763 for (int i = 0; i < this->uniforms * 4; i += 4) {
764 pull_constant_loc[i / 4] = -1;
765
766 if (i >= max_uniform_components) {
767 const gl_constant_value **values = &stage_prog_data->param[i];
768
769 /* Try to find an existing copy of this uniform in the pull
770 * constants if it was part of an array access already.
771 */
772 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
773 int matches;
774
775 for (matches = 0; matches < 4; matches++) {
776 if (stage_prog_data->pull_param[j + matches] != values[matches])
777 break;
778 }
779
780 if (matches == 4) {
781 pull_constant_loc[i / 4] = j / 4;
782 break;
783 }
784 }
785
786 if (pull_constant_loc[i / 4] == -1) {
787 assert(stage_prog_data->nr_pull_params % 4 == 0);
788 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
789
790 for (int j = 0; j < 4; j++) {
791 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
792 values[j];
793 }
794 }
795 }
796 }
797
798 /* Now actually rewrite usage of the things we've moved to pull
799 * constants.
800 */
801 foreach_in_list_safe(vec4_instruction, inst, &instructions) {
802 for (int i = 0 ; i < 3; i++) {
803 if (inst->src[i].file != UNIFORM ||
804 pull_constant_loc[inst->src[i].reg] == -1)
805 continue;
806
807 int uniform = inst->src[i].reg;
808
809 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
810
811 emit_pull_constant_load(inst, temp, inst->src[i],
812 pull_constant_loc[uniform]);
813
814 inst->src[i].file = temp.file;
815 inst->src[i].reg = temp.reg;
816 inst->src[i].reg_offset = temp.reg_offset;
817 inst->src[i].reladdr = NULL;
818 }
819 }
820
821 /* Repack push constants to remove the now-unused ones. */
822 pack_uniform_registers();
823 }
824
825 /**
826 * Sets the dependency control fields on instructions after register
827 * allocation and before the generator is run.
828 *
829 * When you have a sequence of instructions like:
830 *
831 * DP4 temp.x vertex uniform[0]
832 * DP4 temp.y vertex uniform[0]
833 * DP4 temp.z vertex uniform[0]
834 * DP4 temp.w vertex uniform[0]
835 *
836 * The hardware doesn't know that it can actually run the later instructions
837 * while the previous ones are in flight, producing stalls. However, we have
838 * manual fields we can set in the instructions that let it do so.
839 */
840 void
841 vec4_visitor::opt_set_dependency_control()
842 {
843 vec4_instruction *last_grf_write[BRW_MAX_GRF];
844 uint8_t grf_channels_written[BRW_MAX_GRF];
845 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
846 uint8_t mrf_channels_written[BRW_MAX_GRF];
847
848 calculate_cfg();
849
850 assert(prog_data->total_grf ||
851 !"Must be called after register allocation");
852
853 foreach_block (block, cfg) {
854 memset(last_grf_write, 0, sizeof(last_grf_write));
855 memset(last_mrf_write, 0, sizeof(last_mrf_write));
856
857 foreach_inst_in_block (vec4_instruction, inst, block) {
858 /* If we read from a register that we were doing dependency control
859 * on, don't do dependency control across the read.
860 */
861 for (int i = 0; i < 3; i++) {
862 int reg = inst->src[i].reg + inst->src[i].reg_offset;
863 if (inst->src[i].file == GRF) {
864 last_grf_write[reg] = NULL;
865 } else if (inst->src[i].file == HW_REG) {
866 memset(last_grf_write, 0, sizeof(last_grf_write));
867 break;
868 }
869 assert(inst->src[i].file != MRF);
870 }
871
872 /* In the presence of send messages, totally interrupt dependency
873 * control. They're long enough that the chance of dependency
874 * control around them just doesn't matter.
875 */
876 if (inst->mlen) {
877 memset(last_grf_write, 0, sizeof(last_grf_write));
878 memset(last_mrf_write, 0, sizeof(last_mrf_write));
879 continue;
880 }
881
882 /* It looks like setting dependency control on a predicated
883 * instruction hangs the GPU.
884 */
885 if (inst->predicate) {
886 memset(last_grf_write, 0, sizeof(last_grf_write));
887 memset(last_mrf_write, 0, sizeof(last_mrf_write));
888 continue;
889 }
890
891 /* Dependency control does not work well over math instructions.
892 */
893 if (inst->is_math()) {
894 memset(last_grf_write, 0, sizeof(last_grf_write));
895 memset(last_mrf_write, 0, sizeof(last_mrf_write));
896 continue;
897 }
898
899 /* Now, see if we can do dependency control for this instruction
900 * against a previous one writing to its destination.
901 */
902 int reg = inst->dst.reg + inst->dst.reg_offset;
903 if (inst->dst.file == GRF) {
904 if (last_grf_write[reg] &&
905 !(inst->dst.writemask & grf_channels_written[reg])) {
906 last_grf_write[reg]->no_dd_clear = true;
907 inst->no_dd_check = true;
908 } else {
909 grf_channels_written[reg] = 0;
910 }
911
912 last_grf_write[reg] = inst;
913 grf_channels_written[reg] |= inst->dst.writemask;
914 } else if (inst->dst.file == MRF) {
915 if (last_mrf_write[reg] &&
916 !(inst->dst.writemask & mrf_channels_written[reg])) {
917 last_mrf_write[reg]->no_dd_clear = true;
918 inst->no_dd_check = true;
919 } else {
920 mrf_channels_written[reg] = 0;
921 }
922
923 last_mrf_write[reg] = inst;
924 mrf_channels_written[reg] |= inst->dst.writemask;
925 } else if (inst->dst.reg == HW_REG) {
926 if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
927 memset(last_grf_write, 0, sizeof(last_grf_write));
928 if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
929 memset(last_mrf_write, 0, sizeof(last_mrf_write));
930 }
931 }
932 }
933 }
934
935 bool
936 vec4_instruction::can_reswizzle_dst(int dst_writemask,
937 int swizzle,
938 int swizzle_mask)
939 {
940 /* If this instruction sets anything not referenced by swizzle, then we'd
941 * totally break it when we reswizzle.
942 */
943 if (dst.writemask & ~swizzle_mask)
944 return false;
945
946 switch (opcode) {
947 default:
948 if (!brw_is_single_value_swizzle(swizzle)) {
949 /* Check if there happens to be no reswizzling required. */
950 for (int c = 0; c < 4; c++) {
951 int bit = 1 << BRW_GET_SWZ(swizzle, c);
952 /* Skip components of the swizzle not used by the dst. */
953 if (!(dst_writemask & (1 << c)))
954 continue;
955
956 /* We don't do the reswizzling yet, so just sanity check that we
957 * don't have to.
958 */
959 if (bit != (1 << c))
960 return false;
961 }
962 return true;
963 }
964 /* fallthrough */
965 case BRW_OPCODE_DP4:
966 case BRW_OPCODE_DP3:
967 case BRW_OPCODE_DP2:
968 return true;
969 }
970 }
971
972 /**
973 * For any channels in the swizzle's source that were populated by this
974 * instruction, rewrite the instruction to put the appropriate result directly
975 * in those channels.
976 *
977 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
978 */
979 void
980 vec4_instruction::reswizzle_dst(int dst_writemask, int swizzle)
981 {
982 int new_writemask = 0;
983
984 switch (opcode) {
985 default:
986 if (!brw_is_single_value_swizzle(swizzle)) {
987 for (int c = 0; c < 4; c++) {
988 /* Skip components of the swizzle not used by the dst. */
989 if (!(dst_writemask & (1 << c)))
990 continue;
991
992 /* We don't do the reswizzling yet, so just sanity check that we
993 * don't have to.
994 */
995 assert((1 << BRW_GET_SWZ(swizzle, c)) == (1 << c));
996 }
997 break;
998 }
999 /* fallthrough */
1000 case BRW_OPCODE_DP4:
1001 case BRW_OPCODE_DP3:
1002 case BRW_OPCODE_DP2:
1003 for (int c = 0; c < 4; c++) {
1004 int bit = 1 << BRW_GET_SWZ(swizzle, c);
1005 /* Skip components of the swizzle not used by the dst. */
1006 if (!(dst_writemask & (1 << c)))
1007 continue;
1008 /* If we were populating this component, then populate the
1009 * corresponding channel of the new dst.
1010 */
1011 if (dst.writemask & bit)
1012 new_writemask |= (1 << c);
1013 }
1014 dst.writemask = new_writemask;
1015 break;
1016 }
1017 }
1018
1019 /*
1020 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1021 * just written and then MOVed into another reg and making the original write
1022 * of the GRF write directly to the final destination instead.
1023 */
1024 bool
1025 vec4_visitor::opt_register_coalesce()
1026 {
1027 bool progress = false;
1028 int next_ip = 0;
1029
1030 calculate_live_intervals();
1031
1032 foreach_in_list_safe(vec4_instruction, inst, &instructions) {
1033 int ip = next_ip;
1034 next_ip++;
1035
1036 if (inst->opcode != BRW_OPCODE_MOV ||
1037 (inst->dst.file != GRF && inst->dst.file != MRF) ||
1038 inst->predicate ||
1039 inst->src[0].file != GRF ||
1040 inst->dst.type != inst->src[0].type ||
1041 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1042 continue;
1043
1044 bool to_mrf = (inst->dst.file == MRF);
1045
1046 /* Can't coalesce this GRF if someone else was going to
1047 * read it later.
1048 */
1049 if (this->virtual_grf_end[inst->src[0].reg * 4 + 0] > ip ||
1050 this->virtual_grf_end[inst->src[0].reg * 4 + 1] > ip ||
1051 this->virtual_grf_end[inst->src[0].reg * 4 + 2] > ip ||
1052 this->virtual_grf_end[inst->src[0].reg * 4 + 3] > ip)
1053 continue;
1054
1055 /* We need to check interference with the final destination between this
1056 * instruction and the earliest instruction involved in writing the GRF
1057 * we're eliminating. To do that, keep track of which of our source
1058 * channels we've seen initialized.
1059 */
1060 bool chans_needed[4] = {false, false, false, false};
1061 int chans_remaining = 0;
1062 int swizzle_mask = 0;
1063 for (int i = 0; i < 4; i++) {
1064 int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
1065
1066 if (!(inst->dst.writemask & (1 << i)))
1067 continue;
1068
1069 swizzle_mask |= (1 << chan);
1070
1071 if (!chans_needed[chan]) {
1072 chans_needed[chan] = true;
1073 chans_remaining++;
1074 }
1075 }
1076
1077 /* Now walk up the instruction stream trying to see if we can rewrite
1078 * everything writing to the temporary to write into the destination
1079 * instead.
1080 */
1081 vec4_instruction *scan_inst;
1082 for (scan_inst = (vec4_instruction *)inst->prev;
1083 scan_inst->prev != NULL;
1084 scan_inst = (vec4_instruction *)scan_inst->prev) {
1085 if (scan_inst->dst.file == GRF &&
1086 scan_inst->dst.reg == inst->src[0].reg &&
1087 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1088 /* Found something writing to the reg we want to coalesce away. */
1089 if (to_mrf) {
1090 /* SEND instructions can't have MRF as a destination. */
1091 if (scan_inst->mlen)
1092 break;
1093
1094 if (brw->gen == 6) {
1095 /* gen6 math instructions must have the destination be
1096 * GRF, so no compute-to-MRF for them.
1097 */
1098 if (scan_inst->is_math()) {
1099 break;
1100 }
1101 }
1102 }
1103
1104 /* If we can't handle the swizzle, bail. */
1105 if (!scan_inst->can_reswizzle_dst(inst->dst.writemask,
1106 inst->src[0].swizzle,
1107 swizzle_mask)) {
1108 break;
1109 }
1110
1111 /* Mark which channels we found unconditional writes for. */
1112 if (!scan_inst->predicate) {
1113 for (int i = 0; i < 4; i++) {
1114 if (scan_inst->dst.writemask & (1 << i) &&
1115 chans_needed[i]) {
1116 chans_needed[i] = false;
1117 chans_remaining--;
1118 }
1119 }
1120 }
1121
1122 if (chans_remaining == 0)
1123 break;
1124 }
1125
1126 /* We don't handle flow control here. Most computation of values
1127 * that could be coalesced happens just before their use.
1128 */
1129 if (scan_inst->opcode == BRW_OPCODE_DO ||
1130 scan_inst->opcode == BRW_OPCODE_WHILE ||
1131 scan_inst->opcode == BRW_OPCODE_ELSE ||
1132 scan_inst->opcode == BRW_OPCODE_ENDIF) {
1133 break;
1134 }
1135
1136 /* You can't read from an MRF, so if someone else reads our MRF's
1137 * source GRF that we wanted to rewrite, that stops us. If it's a
1138 * GRF we're trying to coalesce to, we don't actually handle
1139 * rewriting sources so bail in that case as well.
1140 */
1141 bool interfered = false;
1142 for (int i = 0; i < 3; i++) {
1143 if (scan_inst->src[i].file == GRF &&
1144 scan_inst->src[i].reg == inst->src[0].reg &&
1145 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1146 interfered = true;
1147 }
1148 }
1149 if (interfered)
1150 break;
1151
1152 /* If somebody else writes our destination here, we can't coalesce
1153 * before that.
1154 */
1155 if (scan_inst->dst.file == inst->dst.file &&
1156 scan_inst->dst.reg == inst->dst.reg) {
1157 break;
1158 }
1159
1160 /* Check for reads of the register we're trying to coalesce into. We
1161 * can't go rewriting instructions above that to put some other value
1162 * in the register instead.
1163 */
1164 if (to_mrf && scan_inst->mlen > 0) {
1165 if (inst->dst.reg >= scan_inst->base_mrf &&
1166 inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
1167 break;
1168 }
1169 } else {
1170 for (int i = 0; i < 3; i++) {
1171 if (scan_inst->src[i].file == inst->dst.file &&
1172 scan_inst->src[i].reg == inst->dst.reg &&
1173 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1174 interfered = true;
1175 }
1176 }
1177 if (interfered)
1178 break;
1179 }
1180 }
1181
1182 if (chans_remaining == 0) {
1183 /* If we've made it here, we have an MOV we want to coalesce out, and
1184 * a scan_inst pointing to the earliest instruction involved in
1185 * computing the value. Now go rewrite the instruction stream
1186 * between the two.
1187 */
1188
1189 while (scan_inst != inst) {
1190 if (scan_inst->dst.file == GRF &&
1191 scan_inst->dst.reg == inst->src[0].reg &&
1192 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1193 scan_inst->reswizzle_dst(inst->dst.writemask,
1194 inst->src[0].swizzle);
1195 scan_inst->dst.file = inst->dst.file;
1196 scan_inst->dst.reg = inst->dst.reg;
1197 scan_inst->dst.reg_offset = inst->dst.reg_offset;
1198 scan_inst->saturate |= inst->saturate;
1199 }
1200 scan_inst = (vec4_instruction *)scan_inst->next;
1201 }
1202 inst->remove();
1203 progress = true;
1204 }
1205 }
1206
1207 if (progress)
1208 invalidate_live_intervals();
1209
1210 return progress;
1211 }
1212
1213 /**
1214 * Splits virtual GRFs requesting more than one contiguous physical register.
1215 *
1216 * We initially create large virtual GRFs for temporary structures, arrays,
1217 * and matrices, so that the dereference visitor functions can add reg_offsets
1218 * to work their way down to the actual member being accessed. But when it
1219 * comes to optimization, we'd like to treat each register as individual
1220 * storage if possible.
1221 *
1222 * So far, the only thing that might prevent splitting is a send message from
1223 * a GRF on IVB.
1224 */
1225 void
1226 vec4_visitor::split_virtual_grfs()
1227 {
1228 int num_vars = this->virtual_grf_count;
1229 int new_virtual_grf[num_vars];
1230 bool split_grf[num_vars];
1231
1232 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1233
1234 /* Try to split anything > 0 sized. */
1235 for (int i = 0; i < num_vars; i++) {
1236 split_grf[i] = this->virtual_grf_sizes[i] != 1;
1237 }
1238
1239 /* Check that the instructions are compatible with the registers we're trying
1240 * to split.
1241 */
1242 foreach_in_list(vec4_instruction, inst, &instructions) {
1243 /* If there's a SEND message loading from a GRF on gen7+, it needs to be
1244 * contiguous.
1245 */
1246 if (inst->is_send_from_grf()) {
1247 for (int i = 0; i < 3; i++) {
1248 if (inst->src[i].file == GRF) {
1249 split_grf[inst->src[i].reg] = false;
1250 }
1251 }
1252 }
1253 }
1254
1255 /* Allocate new space for split regs. Note that the virtual
1256 * numbers will be contiguous.
1257 */
1258 for (int i = 0; i < num_vars; i++) {
1259 if (!split_grf[i])
1260 continue;
1261
1262 new_virtual_grf[i] = virtual_grf_alloc(1);
1263 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
1264 int reg = virtual_grf_alloc(1);
1265 assert(reg == new_virtual_grf[i] + j - 1);
1266 (void) reg;
1267 }
1268 this->virtual_grf_sizes[i] = 1;
1269 }
1270
1271 foreach_in_list(vec4_instruction, inst, &instructions) {
1272 if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
1273 inst->dst.reg_offset != 0) {
1274 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1275 inst->dst.reg_offset - 1);
1276 inst->dst.reg_offset = 0;
1277 }
1278 for (int i = 0; i < 3; i++) {
1279 if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
1280 inst->src[i].reg_offset != 0) {
1281 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1282 inst->src[i].reg_offset - 1);
1283 inst->src[i].reg_offset = 0;
1284 }
1285 }
1286 }
1287 invalidate_live_intervals();
1288 }
1289
1290 void
1291 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1292 {
1293 dump_instruction(be_inst, stderr);
1294 }
1295
1296 void
1297 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1298 {
1299 vec4_instruction *inst = (vec4_instruction *)be_inst;
1300
1301 if (inst->predicate) {
1302 fprintf(file, "(%cf0) ",
1303 inst->predicate_inverse ? '-' : '+');
1304 }
1305
1306 fprintf(file, "%s", brw_instruction_name(inst->opcode));
1307 if (inst->conditional_mod) {
1308 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1309 }
1310 fprintf(file, " ");
1311
1312 switch (inst->dst.file) {
1313 case GRF:
1314 fprintf(file, "vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
1315 break;
1316 case MRF:
1317 fprintf(file, "m%d", inst->dst.reg);
1318 break;
1319 case HW_REG:
1320 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1321 switch (inst->dst.fixed_hw_reg.nr) {
1322 case BRW_ARF_NULL:
1323 fprintf(file, "null");
1324 break;
1325 case BRW_ARF_ADDRESS:
1326 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
1327 break;
1328 case BRW_ARF_ACCUMULATOR:
1329 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
1330 break;
1331 case BRW_ARF_FLAG:
1332 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1333 inst->dst.fixed_hw_reg.subnr);
1334 break;
1335 default:
1336 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1337 inst->dst.fixed_hw_reg.subnr);
1338 break;
1339 }
1340 } else {
1341 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
1342 }
1343 if (inst->dst.fixed_hw_reg.subnr)
1344 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
1345 break;
1346 case BAD_FILE:
1347 fprintf(file, "(null)");
1348 break;
1349 default:
1350 fprintf(file, "???");
1351 break;
1352 }
1353 if (inst->dst.writemask != WRITEMASK_XYZW) {
1354 fprintf(file, ".");
1355 if (inst->dst.writemask & 1)
1356 fprintf(file, "x");
1357 if (inst->dst.writemask & 2)
1358 fprintf(file, "y");
1359 if (inst->dst.writemask & 4)
1360 fprintf(file, "z");
1361 if (inst->dst.writemask & 8)
1362 fprintf(file, "w");
1363 }
1364 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
1365
1366 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1367 if (inst->src[i].negate)
1368 fprintf(file, "-");
1369 if (inst->src[i].abs)
1370 fprintf(file, "|");
1371 switch (inst->src[i].file) {
1372 case GRF:
1373 fprintf(file, "vgrf%d", inst->src[i].reg);
1374 break;
1375 case ATTR:
1376 fprintf(file, "attr%d", inst->src[i].reg);
1377 break;
1378 case UNIFORM:
1379 fprintf(file, "u%d", inst->src[i].reg);
1380 break;
1381 case IMM:
1382 switch (inst->src[i].type) {
1383 case BRW_REGISTER_TYPE_F:
1384 fprintf(file, "%fF", inst->src[i].fixed_hw_reg.dw1.f);
1385 break;
1386 case BRW_REGISTER_TYPE_D:
1387 fprintf(file, "%dD", inst->src[i].fixed_hw_reg.dw1.d);
1388 break;
1389 case BRW_REGISTER_TYPE_UD:
1390 fprintf(file, "%uU", inst->src[i].fixed_hw_reg.dw1.ud);
1391 break;
1392 default:
1393 fprintf(file, "???");
1394 break;
1395 }
1396 break;
1397 case HW_REG:
1398 if (inst->src[i].fixed_hw_reg.negate)
1399 fprintf(file, "-");
1400 if (inst->src[i].fixed_hw_reg.abs)
1401 fprintf(file, "|");
1402 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1403 switch (inst->src[i].fixed_hw_reg.nr) {
1404 case BRW_ARF_NULL:
1405 fprintf(file, "null");
1406 break;
1407 case BRW_ARF_ADDRESS:
1408 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
1409 break;
1410 case BRW_ARF_ACCUMULATOR:
1411 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
1412 break;
1413 case BRW_ARF_FLAG:
1414 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1415 inst->src[i].fixed_hw_reg.subnr);
1416 break;
1417 default:
1418 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1419 inst->src[i].fixed_hw_reg.subnr);
1420 break;
1421 }
1422 } else {
1423 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
1424 }
1425 if (inst->src[i].fixed_hw_reg.subnr)
1426 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
1427 if (inst->src[i].fixed_hw_reg.abs)
1428 fprintf(file, "|");
1429 break;
1430 case BAD_FILE:
1431 fprintf(file, "(null)");
1432 break;
1433 default:
1434 fprintf(file, "???");
1435 break;
1436 }
1437
1438 /* Don't print .0; and only VGRFs have reg_offsets and sizes */
1439 if (inst->src[i].reg_offset != 0 &&
1440 inst->src[i].file == GRF &&
1441 virtual_grf_sizes[inst->src[i].reg] != 1)
1442 fprintf(file, ".%d", inst->src[i].reg_offset);
1443
1444 if (inst->src[i].file != IMM) {
1445 static const char *chans[4] = {"x", "y", "z", "w"};
1446 fprintf(file, ".");
1447 for (int c = 0; c < 4; c++) {
1448 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1449 }
1450 }
1451
1452 if (inst->src[i].abs)
1453 fprintf(file, "|");
1454
1455 if (inst->src[i].file != IMM) {
1456 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1457 }
1458
1459 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1460 fprintf(file, ", ");
1461 }
1462
1463 fprintf(file, "\n");
1464 }
1465
1466
1467 static inline struct brw_reg
1468 attribute_to_hw_reg(int attr, bool interleaved)
1469 {
1470 if (interleaved)
1471 return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1472 else
1473 return brw_vec8_grf(attr, 0);
1474 }
1475
1476
1477 /**
1478 * Replace each register of type ATTR in this->instructions with a reference
1479 * to a fixed HW register.
1480 *
1481 * If interleaved is true, then each attribute takes up half a register, with
1482 * register N containing attribute 2*N in its first half and attribute 2*N+1
1483 * in its second half (this corresponds to the payload setup used by geometry
1484 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
1485 * false, then each attribute takes up a whole register, with register N
1486 * containing attribute N (this corresponds to the payload setup used by
1487 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1488 */
1489 void
1490 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1491 bool interleaved)
1492 {
1493 foreach_in_list(vec4_instruction, inst, &instructions) {
1494 /* We have to support ATTR as a destination for GL_FIXED fixup. */
1495 if (inst->dst.file == ATTR) {
1496 int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
1497
1498 /* All attributes used in the shader need to have been assigned a
1499 * hardware register by the caller
1500 */
1501 assert(grf != 0);
1502
1503 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1504 reg.type = inst->dst.type;
1505 reg.dw1.bits.writemask = inst->dst.writemask;
1506
1507 inst->dst.file = HW_REG;
1508 inst->dst.fixed_hw_reg = reg;
1509 }
1510
1511 for (int i = 0; i < 3; i++) {
1512 if (inst->src[i].file != ATTR)
1513 continue;
1514
1515 int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
1516
1517 /* All attributes used in the shader need to have been assigned a
1518 * hardware register by the caller
1519 */
1520 assert(grf != 0);
1521
1522 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1523 reg.dw1.bits.swizzle = inst->src[i].swizzle;
1524 reg.type = inst->src[i].type;
1525 if (inst->src[i].abs)
1526 reg = brw_abs(reg);
1527 if (inst->src[i].negate)
1528 reg = negate(reg);
1529
1530 inst->src[i].file = HW_REG;
1531 inst->src[i].fixed_hw_reg = reg;
1532 }
1533 }
1534 }
1535
1536 int
1537 vec4_vs_visitor::setup_attributes(int payload_reg)
1538 {
1539 int nr_attributes;
1540 int attribute_map[VERT_ATTRIB_MAX + 1];
1541 memset(attribute_map, 0, sizeof(attribute_map));
1542
1543 nr_attributes = 0;
1544 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1545 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1546 attribute_map[i] = payload_reg + nr_attributes;
1547 nr_attributes++;
1548 }
1549 }
1550
1551 /* VertexID is stored by the VF as the last vertex element, but we
1552 * don't represent it with a flag in inputs_read, so we call it
1553 * VERT_ATTRIB_MAX.
1554 */
1555 if (vs_prog_data->uses_vertexid) {
1556 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1557 nr_attributes++;
1558 }
1559
1560 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1561
1562 /* The BSpec says we always have to read at least one thing from
1563 * the VF, and it appears that the hardware wedges otherwise.
1564 */
1565 if (nr_attributes == 0)
1566 nr_attributes = 1;
1567
1568 prog_data->urb_read_length = (nr_attributes + 1) / 2;
1569
1570 unsigned vue_entries =
1571 MAX2(nr_attributes, prog_data->vue_map.num_slots);
1572
1573 if (brw->gen == 6)
1574 prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
1575 else
1576 prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
1577
1578 return payload_reg + nr_attributes;
1579 }
1580
1581 int
1582 vec4_visitor::setup_uniforms(int reg)
1583 {
1584 prog_data->base.dispatch_grf_start_reg = reg;
1585
1586 /* The pre-gen6 VS requires that some push constants get loaded no
1587 * matter what, or the GPU would hang.
1588 */
1589 if (brw->gen < 6 && this->uniforms == 0) {
1590 assert(this->uniforms < this->uniform_array_size);
1591 this->uniform_vector_size[this->uniforms] = 1;
1592
1593 stage_prog_data->param =
1594 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1595 for (unsigned int i = 0; i < 4; i++) {
1596 unsigned int slot = this->uniforms * 4 + i;
1597 static gl_constant_value zero = { 0.0 };
1598 stage_prog_data->param[slot] = &zero;
1599 }
1600
1601 this->uniforms++;
1602 reg++;
1603 } else {
1604 reg += ALIGN(uniforms, 2) / 2;
1605 }
1606
1607 stage_prog_data->nr_params = this->uniforms * 4;
1608
1609 prog_data->curb_read_length = reg - prog_data->base.dispatch_grf_start_reg;
1610
1611 return reg;
1612 }
1613
1614 void
1615 vec4_vs_visitor::setup_payload(void)
1616 {
1617 int reg = 0;
1618
1619 /* The payload always contains important data in g0, which contains
1620 * the URB handles that are passed on to the URB write at the end
1621 * of the thread. So, we always start push constants at g1.
1622 */
1623 reg++;
1624
1625 reg = setup_uniforms(reg);
1626
1627 reg = setup_attributes(reg);
1628
1629 this->first_non_payload_grf = reg;
1630 }
1631
1632 src_reg
1633 vec4_visitor::get_timestamp()
1634 {
1635 assert(brw->gen >= 7);
1636
1637 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1638 BRW_ARF_TIMESTAMP,
1639 0,
1640 BRW_REGISTER_TYPE_UD,
1641 BRW_VERTICAL_STRIDE_0,
1642 BRW_WIDTH_4,
1643 BRW_HORIZONTAL_STRIDE_4,
1644 BRW_SWIZZLE_XYZW,
1645 WRITEMASK_XYZW));
1646
1647 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1648
1649 vec4_instruction *mov = emit(MOV(dst, ts));
1650 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1651 * even if it's not enabled in the dispatch.
1652 */
1653 mov->force_writemask_all = true;
1654
1655 return src_reg(dst);
1656 }
1657
1658 void
1659 vec4_visitor::emit_shader_time_begin()
1660 {
1661 current_annotation = "shader time start";
1662 shader_start_time = get_timestamp();
1663 }
1664
1665 void
1666 vec4_visitor::emit_shader_time_end()
1667 {
1668 current_annotation = "shader time end";
1669 src_reg shader_end_time = get_timestamp();
1670
1671
1672 /* Check that there weren't any timestamp reset events (assuming these
1673 * were the only two timestamp reads that happened).
1674 */
1675 src_reg reset_end = shader_end_time;
1676 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1677 vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
1678 test->conditional_mod = BRW_CONDITIONAL_Z;
1679
1680 emit(IF(BRW_PREDICATE_NORMAL));
1681
1682 /* Take the current timestamp and get the delta. */
1683 shader_start_time.negate = true;
1684 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1685 emit(ADD(diff, shader_start_time, shader_end_time));
1686
1687 /* If there were no instructions between the two timestamp gets, the diff
1688 * is 2 cycles. Remove that overhead, so I can forget about that when
1689 * trying to determine the time taken for single instructions.
1690 */
1691 emit(ADD(diff, src_reg(diff), src_reg(-2u)));
1692
1693 emit_shader_time_write(st_base, src_reg(diff));
1694 emit_shader_time_write(st_written, src_reg(1u));
1695 emit(BRW_OPCODE_ELSE);
1696 emit_shader_time_write(st_reset, src_reg(1u));
1697 emit(BRW_OPCODE_ENDIF);
1698 }
1699
1700 void
1701 vec4_visitor::emit_shader_time_write(enum shader_time_shader_type type,
1702 src_reg value)
1703 {
1704 int shader_time_index =
1705 brw_get_shader_time_index(brw, shader_prog, prog, type);
1706
1707 dst_reg dst =
1708 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1709
1710 dst_reg offset = dst;
1711 dst_reg time = dst;
1712 time.reg_offset++;
1713
1714 offset.type = BRW_REGISTER_TYPE_UD;
1715 emit(MOV(offset, src_reg(shader_time_index * SHADER_TIME_STRIDE)));
1716
1717 time.type = BRW_REGISTER_TYPE_UD;
1718 emit(MOV(time, src_reg(value)));
1719
1720 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1721 }
1722
1723 bool
1724 vec4_visitor::run()
1725 {
1726 sanity_param_count = prog->Parameters->NumParameters;
1727
1728 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1729 emit_shader_time_begin();
1730
1731 assign_common_binding_table_offsets(0);
1732
1733 emit_prolog();
1734
1735 /* Generate VS IR for main(). (the visitor only descends into
1736 * functions called "main").
1737 */
1738 if (shader) {
1739 visit_instructions(shader->base.ir);
1740 } else {
1741 emit_program_code();
1742 }
1743 base_ir = NULL;
1744
1745 if (key->userclip_active && !prog->UsesClipDistanceOut)
1746 setup_uniform_clipplane_values();
1747
1748 emit_thread_end();
1749
1750 /* Before any optimization, push array accesses out to scratch
1751 * space where we need them to be. This pass may allocate new
1752 * virtual GRFs, so we want to do it early. It also makes sure
1753 * that we have reladdr computations available for CSE, since we'll
1754 * often do repeated subexpressions for those.
1755 */
1756 if (shader) {
1757 move_grf_array_access_to_scratch();
1758 move_uniform_array_access_to_pull_constants();
1759 } else {
1760 /* The ARB_vertex_program frontend emits pull constant loads directly
1761 * rather than using reladdr, so we don't need to walk through all the
1762 * instructions looking for things to move. There isn't anything.
1763 *
1764 * We do still need to split things to vec4 size.
1765 */
1766 split_uniform_registers();
1767 }
1768 pack_uniform_registers();
1769 move_push_constants_to_pull_constants();
1770 split_virtual_grfs();
1771
1772 const char *stage_name = stage == MESA_SHADER_GEOMETRY ? "gs" : "vs";
1773
1774 #define OPT(pass, args...) do { \
1775 pass_num++; \
1776 bool this_progress = pass(args); \
1777 \
1778 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
1779 char filename[64]; \
1780 snprintf(filename, 64, "%s-%04d-%02d-%02d-" #pass, \
1781 stage_name, shader_prog->Name, iteration, pass_num); \
1782 \
1783 backend_visitor::dump_instructions(filename); \
1784 } \
1785 \
1786 progress = progress || this_progress; \
1787 } while (false)
1788
1789
1790 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
1791 char filename[64];
1792 snprintf(filename, 64, "%s-%04d-00-start",
1793 stage_name, shader_prog->Name);
1794
1795 backend_visitor::dump_instructions(filename);
1796 }
1797
1798 bool progress;
1799 int iteration = 0;
1800 do {
1801 progress = false;
1802 iteration++;
1803 int pass_num = 0;
1804
1805 OPT(opt_reduce_swizzle);
1806 OPT(dead_code_eliminate);
1807 OPT(dead_control_flow_eliminate, this);
1808 OPT(opt_copy_propagation);
1809 OPT(opt_algebraic);
1810 OPT(opt_cse);
1811 OPT(opt_register_coalesce);
1812 } while (progress);
1813
1814
1815 if (failed)
1816 return false;
1817
1818 setup_payload();
1819
1820 if (false) {
1821 /* Debug of register spilling: Go spill everything. */
1822 const int grf_count = virtual_grf_count;
1823 float spill_costs[virtual_grf_count];
1824 bool no_spill[virtual_grf_count];
1825 evaluate_spill_costs(spill_costs, no_spill);
1826 for (int i = 0; i < grf_count; i++) {
1827 if (no_spill[i])
1828 continue;
1829 spill_reg(i);
1830 }
1831 }
1832
1833 while (!reg_allocate()) {
1834 if (failed)
1835 return false;
1836 }
1837
1838 opt_schedule_instructions();
1839
1840 opt_set_dependency_control();
1841
1842 /* If any state parameters were appended, then ParameterValues could have
1843 * been realloced, in which case the driver uniform storage set up by
1844 * _mesa_associate_uniform_storage() would point to freed memory. Make
1845 * sure that didn't happen.
1846 */
1847 assert(sanity_param_count == prog->Parameters->NumParameters);
1848
1849 calculate_cfg();
1850
1851 return !failed;
1852 }
1853
1854 } /* namespace brw */
1855
1856 extern "C" {
1857
1858 /**
1859 * Compile a vertex shader.
1860 *
1861 * Returns the final assembly and the program's size.
1862 */
1863 const unsigned *
1864 brw_vs_emit(struct brw_context *brw,
1865 struct gl_shader_program *prog,
1866 struct brw_vs_compile *c,
1867 struct brw_vs_prog_data *prog_data,
1868 void *mem_ctx,
1869 unsigned *final_assembly_size)
1870 {
1871 bool start_busy = false;
1872 double start_time = 0;
1873
1874 if (unlikely(brw->perf_debug)) {
1875 start_busy = (brw->batch.last_bo &&
1876 drm_intel_bo_busy(brw->batch.last_bo));
1877 start_time = get_time();
1878 }
1879
1880 struct brw_shader *shader = NULL;
1881 if (prog)
1882 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
1883
1884 if (unlikely(INTEL_DEBUG & DEBUG_VS))
1885 brw_dump_ir(brw, "vertex", prog, &shader->base, &c->vp->program.Base);
1886
1887 vec4_vs_visitor v(brw, c, prog_data, prog, mem_ctx);
1888 if (!v.run()) {
1889 if (prog) {
1890 prog->LinkStatus = false;
1891 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1892 }
1893
1894 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1895 v.fail_msg);
1896
1897 return NULL;
1898 }
1899
1900 const unsigned *assembly = NULL;
1901 vec4_generator g(brw, prog, &c->vp->program.Base, &prog_data->base,
1902 mem_ctx, INTEL_DEBUG & DEBUG_VS);
1903 assembly = g.generate_assembly(v.cfg, final_assembly_size);
1904
1905 if (unlikely(brw->perf_debug) && shader) {
1906 if (shader->compiled_once) {
1907 brw_vs_debug_recompile(brw, prog, &c->key);
1908 }
1909 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
1910 perf_debug("VS compile took %.03f ms and stalled the GPU\n",
1911 (get_time() - start_time) * 1000);
1912 }
1913 shader->compiled_once = true;
1914 }
1915
1916 return assembly;
1917 }
1918
1919
1920 void
1921 brw_vec4_setup_prog_key_for_precompile(struct gl_context *ctx,
1922 struct brw_vec4_prog_key *key,
1923 GLuint id, struct gl_program *prog)
1924 {
1925 key->program_string_id = id;
1926 key->clamp_vertex_color = ctx->API == API_OPENGL_COMPAT;
1927
1928 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
1929 for (unsigned i = 0; i < sampler_count; i++) {
1930 if (prog->ShadowSamplers & (1 << i)) {
1931 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
1932 key->tex.swizzles[i] =
1933 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
1934 } else {
1935 /* Color sampler: assume no swizzling. */
1936 key->tex.swizzles[i] = SWIZZLE_XYZW;
1937 }
1938 }
1939 }
1940
1941 } /* extern "C" */