i965: Pass a shader stage abbreviation to fs_generator().
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_vs.h"
28 #include "brw_dead_control_flow.h"
29
30 extern "C" {
31 #include "main/macros.h"
32 #include "main/shaderobj.h"
33 #include "program/prog_print.h"
34 #include "program/prog_parameter.h"
35 }
36
37 #define MAX_INSTRUCTION (1 << 30)
38
39 using namespace brw;
40
41 namespace brw {
42
43 /**
44 * Common helper for constructing swizzles. When only a subset of
45 * channels of a vec4 are used, we don't want to reference the other
46 * channels, as that will tell optimization passes that those other
47 * channels are used.
48 */
49 unsigned
50 swizzle_for_size(int size)
51 {
52 static const unsigned size_swizzles[4] = {
53 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
54 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
55 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
56 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
57 };
58
59 assert((size >= 1) && (size <= 4));
60 return size_swizzles[size - 1];
61 }
62
63 void
64 src_reg::init()
65 {
66 memset(this, 0, sizeof(*this));
67
68 this->file = BAD_FILE;
69 }
70
71 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
72 {
73 init();
74
75 this->file = file;
76 this->reg = reg;
77 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
78 this->swizzle = swizzle_for_size(type->vector_elements);
79 else
80 this->swizzle = BRW_SWIZZLE_XYZW;
81 }
82
83 /** Generic unset register constructor. */
84 src_reg::src_reg()
85 {
86 init();
87 }
88
89 src_reg::src_reg(float f)
90 {
91 init();
92
93 this->file = IMM;
94 this->type = BRW_REGISTER_TYPE_F;
95 this->fixed_hw_reg.dw1.f = f;
96 }
97
98 src_reg::src_reg(uint32_t u)
99 {
100 init();
101
102 this->file = IMM;
103 this->type = BRW_REGISTER_TYPE_UD;
104 this->fixed_hw_reg.dw1.ud = u;
105 }
106
107 src_reg::src_reg(int32_t i)
108 {
109 init();
110
111 this->file = IMM;
112 this->type = BRW_REGISTER_TYPE_D;
113 this->fixed_hw_reg.dw1.d = i;
114 }
115
116 src_reg::src_reg(uint8_t vf[4])
117 {
118 init();
119
120 this->file = IMM;
121 this->type = BRW_REGISTER_TYPE_VF;
122 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
123 }
124
125 src_reg::src_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
126 {
127 init();
128
129 this->file = IMM;
130 this->type = BRW_REGISTER_TYPE_VF;
131 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
132 (vf1 << 8) |
133 (vf2 << 16) |
134 (vf3 << 24);
135 }
136
137 src_reg::src_reg(struct brw_reg reg)
138 {
139 init();
140
141 this->file = HW_REG;
142 this->fixed_hw_reg = reg;
143 this->type = reg.type;
144 }
145
146 src_reg::src_reg(dst_reg reg)
147 {
148 init();
149
150 this->file = reg.file;
151 this->reg = reg.reg;
152 this->reg_offset = reg.reg_offset;
153 this->type = reg.type;
154 this->reladdr = reg.reladdr;
155 this->fixed_hw_reg = reg.fixed_hw_reg;
156
157 int swizzles[4];
158 int next_chan = 0;
159 int last = 0;
160
161 for (int i = 0; i < 4; i++) {
162 if (!(reg.writemask & (1 << i)))
163 continue;
164
165 swizzles[next_chan++] = last = i;
166 }
167
168 for (; next_chan < 4; next_chan++) {
169 swizzles[next_chan] = last;
170 }
171
172 this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
173 swizzles[2], swizzles[3]);
174 }
175
176 void
177 dst_reg::init()
178 {
179 memset(this, 0, sizeof(*this));
180 this->file = BAD_FILE;
181 this->writemask = WRITEMASK_XYZW;
182 }
183
184 dst_reg::dst_reg()
185 {
186 init();
187 }
188
189 dst_reg::dst_reg(register_file file, int reg)
190 {
191 init();
192
193 this->file = file;
194 this->reg = reg;
195 }
196
197 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
198 int writemask)
199 {
200 init();
201
202 this->file = file;
203 this->reg = reg;
204 this->type = brw_type_for_base_type(type);
205 this->writemask = writemask;
206 }
207
208 dst_reg::dst_reg(struct brw_reg reg)
209 {
210 init();
211
212 this->file = HW_REG;
213 this->fixed_hw_reg = reg;
214 this->type = reg.type;
215 }
216
217 dst_reg::dst_reg(src_reg reg)
218 {
219 init();
220
221 this->file = reg.file;
222 this->reg = reg.reg;
223 this->reg_offset = reg.reg_offset;
224 this->type = reg.type;
225 /* How should we do writemasking when converting from a src_reg? It seems
226 * pretty obvious that for src.xxxx the caller wants to write to src.x, but
227 * what about for src.wx? Just special-case src.xxxx for now.
228 */
229 if (reg.swizzle == BRW_SWIZZLE_XXXX)
230 this->writemask = WRITEMASK_X;
231 else
232 this->writemask = WRITEMASK_XYZW;
233 this->reladdr = reg.reladdr;
234 this->fixed_hw_reg = reg.fixed_hw_reg;
235 }
236
237 bool
238 vec4_instruction::is_send_from_grf()
239 {
240 switch (opcode) {
241 case SHADER_OPCODE_SHADER_TIME_ADD:
242 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
243 return true;
244 default:
245 return false;
246 }
247 }
248
249 bool
250 vec4_instruction::can_do_source_mods(struct brw_context *brw)
251 {
252 if (brw->gen == 6 && is_math())
253 return false;
254
255 if (is_send_from_grf())
256 return false;
257
258 if (!backend_instruction::can_do_source_mods())
259 return false;
260
261 return true;
262 }
263
264 /**
265 * Returns how many MRFs an opcode will write over.
266 *
267 * Note that this is not the 0 or 1 implied writes in an actual gen
268 * instruction -- the generate_* functions generate additional MOVs
269 * for setup.
270 */
271 int
272 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
273 {
274 if (inst->mlen == 0)
275 return 0;
276
277 switch (inst->opcode) {
278 case SHADER_OPCODE_RCP:
279 case SHADER_OPCODE_RSQ:
280 case SHADER_OPCODE_SQRT:
281 case SHADER_OPCODE_EXP2:
282 case SHADER_OPCODE_LOG2:
283 case SHADER_OPCODE_SIN:
284 case SHADER_OPCODE_COS:
285 return 1;
286 case SHADER_OPCODE_INT_QUOTIENT:
287 case SHADER_OPCODE_INT_REMAINDER:
288 case SHADER_OPCODE_POW:
289 return 2;
290 case VS_OPCODE_URB_WRITE:
291 return 1;
292 case VS_OPCODE_PULL_CONSTANT_LOAD:
293 return 2;
294 case SHADER_OPCODE_GEN4_SCRATCH_READ:
295 return 2;
296 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
297 return 3;
298 case GS_OPCODE_URB_WRITE:
299 case GS_OPCODE_URB_WRITE_ALLOCATE:
300 case GS_OPCODE_THREAD_END:
301 return 0;
302 case GS_OPCODE_FF_SYNC:
303 return 1;
304 case SHADER_OPCODE_SHADER_TIME_ADD:
305 return 0;
306 case SHADER_OPCODE_TEX:
307 case SHADER_OPCODE_TXL:
308 case SHADER_OPCODE_TXD:
309 case SHADER_OPCODE_TXF:
310 case SHADER_OPCODE_TXF_CMS:
311 case SHADER_OPCODE_TXF_MCS:
312 case SHADER_OPCODE_TXS:
313 case SHADER_OPCODE_TG4:
314 case SHADER_OPCODE_TG4_OFFSET:
315 return inst->header_present ? 1 : 0;
316 case SHADER_OPCODE_UNTYPED_ATOMIC:
317 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
318 return 0;
319 default:
320 unreachable("not reached");
321 }
322 }
323
324 bool
325 src_reg::equals(const src_reg &r) const
326 {
327 return (file == r.file &&
328 reg == r.reg &&
329 reg_offset == r.reg_offset &&
330 type == r.type &&
331 negate == r.negate &&
332 abs == r.abs &&
333 swizzle == r.swizzle &&
334 !reladdr && !r.reladdr &&
335 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
336 sizeof(fixed_hw_reg)) == 0);
337 }
338
339 bool
340 vec4_visitor::opt_vector_float()
341 {
342 bool progress = false;
343
344 int last_reg = -1;
345 int remaining_channels;
346 uint8_t imm[4];
347 int inst_count;
348 vec4_instruction *imm_inst[4];
349
350 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
351 if (last_reg != inst->dst.reg) {
352 last_reg = inst->dst.reg;
353 remaining_channels = WRITEMASK_XYZW;
354
355 inst_count = 0;
356 }
357
358 if (inst->opcode != BRW_OPCODE_MOV ||
359 inst->dst.writemask == WRITEMASK_XYZW ||
360 inst->src[0].file != IMM)
361 continue;
362
363 int vf = brw_float_to_vf(inst->src[0].fixed_hw_reg.dw1.f);
364 if (vf == -1)
365 continue;
366
367 if ((inst->dst.writemask & WRITEMASK_X) != 0)
368 imm[0] = vf;
369 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
370 imm[1] = vf;
371 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
372 imm[2] = vf;
373 if ((inst->dst.writemask & WRITEMASK_W) != 0)
374 imm[3] = vf;
375
376 imm_inst[inst_count++] = inst;
377
378 remaining_channels &= ~inst->dst.writemask;
379 if (remaining_channels == 0) {
380 vec4_instruction *mov = MOV(inst->dst, imm);
381 mov->dst.type = BRW_REGISTER_TYPE_F;
382 mov->dst.writemask = WRITEMASK_XYZW;
383 inst->insert_after(block, mov);
384 last_reg = -1;
385
386 for (int i = 0; i < inst_count; i++) {
387 imm_inst[i]->remove(block);
388 }
389 progress = true;
390 }
391 }
392
393 if (progress)
394 invalidate_live_intervals();
395
396 return progress;
397 }
398
399 /* Replaces unused channels of a swizzle with channels that are used.
400 *
401 * For instance, this pass transforms
402 *
403 * mov vgrf4.yz, vgrf5.wxzy
404 *
405 * into
406 *
407 * mov vgrf4.yz, vgrf5.xxzx
408 *
409 * This eliminates false uses of some channels, letting dead code elimination
410 * remove the instructions that wrote them.
411 */
412 bool
413 vec4_visitor::opt_reduce_swizzle()
414 {
415 bool progress = false;
416
417 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
418 if (inst->dst.file == BAD_FILE || inst->dst.file == HW_REG)
419 continue;
420
421 int swizzle[4];
422
423 /* Determine which channels of the sources are read. */
424 switch (inst->opcode) {
425 case VEC4_OPCODE_PACK_BYTES:
426 swizzle[0] = 0;
427 swizzle[1] = 1;
428 swizzle[2] = 2;
429 swizzle[3] = 3;
430 break;
431 case BRW_OPCODE_DP4:
432 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
433 * but all four of src1.
434 */
435 swizzle[0] = 0;
436 swizzle[1] = 1;
437 swizzle[2] = 2;
438 swizzle[3] = 3;
439 break;
440 case BRW_OPCODE_DP3:
441 swizzle[0] = 0;
442 swizzle[1] = 1;
443 swizzle[2] = 2;
444 swizzle[3] = -1;
445 break;
446 case BRW_OPCODE_DP2:
447 swizzle[0] = 0;
448 swizzle[1] = 1;
449 swizzle[2] = -1;
450 swizzle[3] = -1;
451 break;
452 default:
453 swizzle[0] = inst->dst.writemask & WRITEMASK_X ? 0 : -1;
454 swizzle[1] = inst->dst.writemask & WRITEMASK_Y ? 1 : -1;
455 swizzle[2] = inst->dst.writemask & WRITEMASK_Z ? 2 : -1;
456 swizzle[3] = inst->dst.writemask & WRITEMASK_W ? 3 : -1;
457 break;
458 }
459
460 /* Resolve unread channels (-1) by assigning them the swizzle of the
461 * first channel that is used.
462 */
463 int first_used_channel = 0;
464 for (int i = 0; i < 4; i++) {
465 if (swizzle[i] != -1) {
466 first_used_channel = swizzle[i];
467 break;
468 }
469 }
470 for (int i = 0; i < 4; i++) {
471 if (swizzle[i] == -1) {
472 swizzle[i] = first_used_channel;
473 }
474 }
475
476 /* Update sources' swizzles. */
477 for (int i = 0; i < 3; i++) {
478 if (inst->src[i].file != GRF &&
479 inst->src[i].file != ATTR &&
480 inst->src[i].file != UNIFORM)
481 continue;
482
483 int swiz[4];
484 for (int j = 0; j < 4; j++) {
485 swiz[j] = BRW_GET_SWZ(inst->src[i].swizzle, swizzle[j]);
486 }
487
488 unsigned new_swizzle = BRW_SWIZZLE4(swiz[0], swiz[1], swiz[2], swiz[3]);
489 if (inst->src[i].swizzle != new_swizzle) {
490 inst->src[i].swizzle = new_swizzle;
491 progress = true;
492 }
493 }
494 }
495
496 if (progress)
497 invalidate_live_intervals();
498
499 return progress;
500 }
501
502 void
503 vec4_visitor::split_uniform_registers()
504 {
505 /* Prior to this, uniforms have been in an array sized according to
506 * the number of vector uniforms present, sparsely filled (so an
507 * aggregate results in reg indices being skipped over). Now we're
508 * going to cut those aggregates up so each .reg index is one
509 * vector. The goal is to make elimination of unused uniform
510 * components easier later.
511 */
512 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
513 for (int i = 0 ; i < 3; i++) {
514 if (inst->src[i].file != UNIFORM)
515 continue;
516
517 assert(!inst->src[i].reladdr);
518
519 inst->src[i].reg += inst->src[i].reg_offset;
520 inst->src[i].reg_offset = 0;
521 }
522 }
523
524 /* Update that everything is now vector-sized. */
525 for (int i = 0; i < this->uniforms; i++) {
526 this->uniform_size[i] = 1;
527 }
528 }
529
530 void
531 vec4_visitor::pack_uniform_registers()
532 {
533 bool uniform_used[this->uniforms];
534 int new_loc[this->uniforms];
535 int new_chan[this->uniforms];
536
537 memset(uniform_used, 0, sizeof(uniform_used));
538 memset(new_loc, 0, sizeof(new_loc));
539 memset(new_chan, 0, sizeof(new_chan));
540
541 /* Find which uniform vectors are actually used by the program. We
542 * expect unused vector elements when we've moved array access out
543 * to pull constants, and from some GLSL code generators like wine.
544 */
545 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
546 for (int i = 0 ; i < 3; i++) {
547 if (inst->src[i].file != UNIFORM)
548 continue;
549
550 uniform_used[inst->src[i].reg] = true;
551 }
552 }
553
554 int new_uniform_count = 0;
555
556 /* Now, figure out a packing of the live uniform vectors into our
557 * push constants.
558 */
559 for (int src = 0; src < uniforms; src++) {
560 assert(src < uniform_array_size);
561 int size = this->uniform_vector_size[src];
562
563 if (!uniform_used[src]) {
564 this->uniform_vector_size[src] = 0;
565 continue;
566 }
567
568 int dst;
569 /* Find the lowest place we can slot this uniform in. */
570 for (dst = 0; dst < src; dst++) {
571 if (this->uniform_vector_size[dst] + size <= 4)
572 break;
573 }
574
575 if (src == dst) {
576 new_loc[src] = dst;
577 new_chan[src] = 0;
578 } else {
579 new_loc[src] = dst;
580 new_chan[src] = this->uniform_vector_size[dst];
581
582 /* Move the references to the data */
583 for (int j = 0; j < size; j++) {
584 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
585 stage_prog_data->param[src * 4 + j];
586 }
587
588 this->uniform_vector_size[dst] += size;
589 this->uniform_vector_size[src] = 0;
590 }
591
592 new_uniform_count = MAX2(new_uniform_count, dst + 1);
593 }
594
595 this->uniforms = new_uniform_count;
596
597 /* Now, update the instructions for our repacked uniforms. */
598 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
599 for (int i = 0 ; i < 3; i++) {
600 int src = inst->src[i].reg;
601
602 if (inst->src[i].file != UNIFORM)
603 continue;
604
605 inst->src[i].reg = new_loc[src];
606
607 int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
608 int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
609 int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
610 int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
611 inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
612 }
613 }
614 }
615
616 /**
617 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
618 *
619 * While GLSL IR also performs this optimization, we end up with it in
620 * our instruction stream for a couple of reasons. One is that we
621 * sometimes generate silly instructions, for example in array access
622 * where we'll generate "ADD offset, index, base" even if base is 0.
623 * The other is that GLSL IR's constant propagation doesn't track the
624 * components of aggregates, so some VS patterns (initialize matrix to
625 * 0, accumulate in vertex blending factors) end up breaking down to
626 * instructions involving 0.
627 */
628 bool
629 vec4_visitor::opt_algebraic()
630 {
631 bool progress = false;
632
633 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
634 switch (inst->opcode) {
635 case BRW_OPCODE_MOV:
636 if (inst->src[0].file != IMM)
637 break;
638
639 if (inst->saturate) {
640 if (inst->dst.type != inst->src[0].type)
641 assert(!"unimplemented: saturate mixed types");
642
643 if (brw_saturate_immediate(inst->dst.type,
644 &inst->src[0].fixed_hw_reg)) {
645 inst->saturate = false;
646 progress = true;
647 }
648 }
649 break;
650
651 case VEC4_OPCODE_UNPACK_UNIFORM:
652 if (inst->src[0].file != UNIFORM) {
653 inst->opcode = BRW_OPCODE_MOV;
654 progress = true;
655 }
656 break;
657
658 case BRW_OPCODE_ADD:
659 if (inst->src[1].is_zero()) {
660 inst->opcode = BRW_OPCODE_MOV;
661 inst->src[1] = src_reg();
662 progress = true;
663 }
664 break;
665
666 case BRW_OPCODE_MUL:
667 if (inst->src[1].is_zero()) {
668 inst->opcode = BRW_OPCODE_MOV;
669 switch (inst->src[0].type) {
670 case BRW_REGISTER_TYPE_F:
671 inst->src[0] = src_reg(0.0f);
672 break;
673 case BRW_REGISTER_TYPE_D:
674 inst->src[0] = src_reg(0);
675 break;
676 case BRW_REGISTER_TYPE_UD:
677 inst->src[0] = src_reg(0u);
678 break;
679 default:
680 unreachable("not reached");
681 }
682 inst->src[1] = src_reg();
683 progress = true;
684 } else if (inst->src[1].is_one()) {
685 inst->opcode = BRW_OPCODE_MOV;
686 inst->src[1] = src_reg();
687 progress = true;
688 }
689 break;
690 case SHADER_OPCODE_RCP: {
691 vec4_instruction *prev = (vec4_instruction *)inst->prev;
692 if (prev->opcode == SHADER_OPCODE_SQRT) {
693 if (inst->src[0].equals(src_reg(prev->dst))) {
694 inst->opcode = SHADER_OPCODE_RSQ;
695 inst->src[0] = prev->src[0];
696 progress = true;
697 }
698 }
699 break;
700 }
701 default:
702 break;
703 }
704 }
705
706 if (progress)
707 invalidate_live_intervals();
708
709 return progress;
710 }
711
712 /**
713 * Only a limited number of hardware registers may be used for push
714 * constants, so this turns access to the overflowed constants into
715 * pull constants.
716 */
717 void
718 vec4_visitor::move_push_constants_to_pull_constants()
719 {
720 int pull_constant_loc[this->uniforms];
721
722 /* Only allow 32 registers (256 uniform components) as push constants,
723 * which is the limit on gen6.
724 *
725 * If changing this value, note the limitation about total_regs in
726 * brw_curbe.c.
727 */
728 int max_uniform_components = 32 * 8;
729 if (this->uniforms * 4 <= max_uniform_components)
730 return;
731
732 /* Make some sort of choice as to which uniforms get sent to pull
733 * constants. We could potentially do something clever here like
734 * look for the most infrequently used uniform vec4s, but leave
735 * that for later.
736 */
737 for (int i = 0; i < this->uniforms * 4; i += 4) {
738 pull_constant_loc[i / 4] = -1;
739
740 if (i >= max_uniform_components) {
741 const gl_constant_value **values = &stage_prog_data->param[i];
742
743 /* Try to find an existing copy of this uniform in the pull
744 * constants if it was part of an array access already.
745 */
746 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
747 int matches;
748
749 for (matches = 0; matches < 4; matches++) {
750 if (stage_prog_data->pull_param[j + matches] != values[matches])
751 break;
752 }
753
754 if (matches == 4) {
755 pull_constant_loc[i / 4] = j / 4;
756 break;
757 }
758 }
759
760 if (pull_constant_loc[i / 4] == -1) {
761 assert(stage_prog_data->nr_pull_params % 4 == 0);
762 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
763
764 for (int j = 0; j < 4; j++) {
765 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
766 values[j];
767 }
768 }
769 }
770 }
771
772 /* Now actually rewrite usage of the things we've moved to pull
773 * constants.
774 */
775 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
776 for (int i = 0 ; i < 3; i++) {
777 if (inst->src[i].file != UNIFORM ||
778 pull_constant_loc[inst->src[i].reg] == -1)
779 continue;
780
781 int uniform = inst->src[i].reg;
782
783 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
784
785 emit_pull_constant_load(block, inst, temp, inst->src[i],
786 pull_constant_loc[uniform]);
787
788 inst->src[i].file = temp.file;
789 inst->src[i].reg = temp.reg;
790 inst->src[i].reg_offset = temp.reg_offset;
791 inst->src[i].reladdr = NULL;
792 }
793 }
794
795 /* Repack push constants to remove the now-unused ones. */
796 pack_uniform_registers();
797 }
798
799 /* Conditions for which we want to avoid setting the dependency control bits */
800 bool
801 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
802 {
803 #define IS_DWORD(reg) \
804 (reg.type == BRW_REGISTER_TYPE_UD || \
805 reg.type == BRW_REGISTER_TYPE_D)
806
807 /* From the destination hazard section of the spec:
808 * > Instructions other than send, may use this control as long as operations
809 * > that have different pipeline latencies are not mixed.
810 */
811 if (brw->gen >= 8) {
812 if (inst->opcode == BRW_OPCODE_MUL &&
813 IS_DWORD(inst->src[0]) &&
814 IS_DWORD(inst->src[1]))
815 return true;
816 }
817 #undef IS_DWORD
818
819 /*
820 * mlen:
821 * In the presence of send messages, totally interrupt dependency
822 * control. They're long enough that the chance of dependency
823 * control around them just doesn't matter.
824 *
825 * predicate:
826 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
827 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
828 * completes the scoreboard clear must have a non-zero execution mask. This
829 * means, if any kind of predication can change the execution mask or channel
830 * enable of the last instruction, the optimization must be avoided. This is
831 * to avoid instructions being shot down the pipeline when no writes are
832 * required.
833 *
834 * math:
835 * Dependency control does not work well over math instructions.
836 * NB: Discovered empirically
837 */
838 return (inst->mlen || inst->predicate || inst->is_math());
839 }
840
841 /**
842 * Sets the dependency control fields on instructions after register
843 * allocation and before the generator is run.
844 *
845 * When you have a sequence of instructions like:
846 *
847 * DP4 temp.x vertex uniform[0]
848 * DP4 temp.y vertex uniform[0]
849 * DP4 temp.z vertex uniform[0]
850 * DP4 temp.w vertex uniform[0]
851 *
852 * The hardware doesn't know that it can actually run the later instructions
853 * while the previous ones are in flight, producing stalls. However, we have
854 * manual fields we can set in the instructions that let it do so.
855 */
856 void
857 vec4_visitor::opt_set_dependency_control()
858 {
859 vec4_instruction *last_grf_write[BRW_MAX_GRF];
860 uint8_t grf_channels_written[BRW_MAX_GRF];
861 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
862 uint8_t mrf_channels_written[BRW_MAX_GRF];
863
864 assert(prog_data->total_grf ||
865 !"Must be called after register allocation");
866
867 foreach_block (block, cfg) {
868 memset(last_grf_write, 0, sizeof(last_grf_write));
869 memset(last_mrf_write, 0, sizeof(last_mrf_write));
870
871 foreach_inst_in_block (vec4_instruction, inst, block) {
872 /* If we read from a register that we were doing dependency control
873 * on, don't do dependency control across the read.
874 */
875 for (int i = 0; i < 3; i++) {
876 int reg = inst->src[i].reg + inst->src[i].reg_offset;
877 if (inst->src[i].file == GRF) {
878 last_grf_write[reg] = NULL;
879 } else if (inst->src[i].file == HW_REG) {
880 memset(last_grf_write, 0, sizeof(last_grf_write));
881 break;
882 }
883 assert(inst->src[i].file != MRF);
884 }
885
886 if (is_dep_ctrl_unsafe(inst)) {
887 memset(last_grf_write, 0, sizeof(last_grf_write));
888 memset(last_mrf_write, 0, sizeof(last_mrf_write));
889 continue;
890 }
891
892 /* Now, see if we can do dependency control for this instruction
893 * against a previous one writing to its destination.
894 */
895 int reg = inst->dst.reg + inst->dst.reg_offset;
896 if (inst->dst.file == GRF) {
897 if (last_grf_write[reg] &&
898 !(inst->dst.writemask & grf_channels_written[reg])) {
899 last_grf_write[reg]->no_dd_clear = true;
900 inst->no_dd_check = true;
901 } else {
902 grf_channels_written[reg] = 0;
903 }
904
905 last_grf_write[reg] = inst;
906 grf_channels_written[reg] |= inst->dst.writemask;
907 } else if (inst->dst.file == MRF) {
908 if (last_mrf_write[reg] &&
909 !(inst->dst.writemask & mrf_channels_written[reg])) {
910 last_mrf_write[reg]->no_dd_clear = true;
911 inst->no_dd_check = true;
912 } else {
913 mrf_channels_written[reg] = 0;
914 }
915
916 last_mrf_write[reg] = inst;
917 mrf_channels_written[reg] |= inst->dst.writemask;
918 } else if (inst->dst.reg == HW_REG) {
919 if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
920 memset(last_grf_write, 0, sizeof(last_grf_write));
921 if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
922 memset(last_mrf_write, 0, sizeof(last_mrf_write));
923 }
924 }
925 }
926 }
927
928 bool
929 vec4_instruction::can_reswizzle(int dst_writemask,
930 int swizzle,
931 int swizzle_mask)
932 {
933 /* If this instruction sets anything not referenced by swizzle, then we'd
934 * totally break it when we reswizzle.
935 */
936 if (dst.writemask & ~swizzle_mask)
937 return false;
938
939 if (mlen > 0)
940 return false;
941
942 return true;
943 }
944
945 /**
946 * For any channels in the swizzle's source that were populated by this
947 * instruction, rewrite the instruction to put the appropriate result directly
948 * in those channels.
949 *
950 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
951 */
952 void
953 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
954 {
955 int new_writemask = 0;
956 int new_swizzle[4] = { 0 };
957
958 /* Dot product instructions write a single result into all channels. */
959 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
960 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2) {
961 for (int i = 0; i < 3; i++) {
962 if (src[i].file == BAD_FILE || src[i].file == IMM)
963 continue;
964
965 /* Destination write mask doesn't correspond to source swizzle for the
966 * pack_bytes instruction.
967 */
968 if (opcode == VEC4_OPCODE_PACK_BYTES)
969 continue;
970
971 for (int c = 0; c < 4; c++) {
972 new_swizzle[c] = BRW_GET_SWZ(src[i].swizzle, BRW_GET_SWZ(swizzle, c));
973 }
974
975 src[i].swizzle = BRW_SWIZZLE4(new_swizzle[0], new_swizzle[1],
976 new_swizzle[2], new_swizzle[3]);
977 }
978 }
979
980 for (int c = 0; c < 4; c++) {
981 int bit = 1 << BRW_GET_SWZ(swizzle, c);
982 /* Skip components of the swizzle not used by the dst. */
983 if (!(dst_writemask & (1 << c)))
984 continue;
985 /* If we were populating this component, then populate the
986 * corresponding channel of the new dst.
987 */
988 if (dst.writemask & bit)
989 new_writemask |= (1 << c);
990 }
991 dst.writemask = new_writemask;
992 }
993
994 /*
995 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
996 * just written and then MOVed into another reg and making the original write
997 * of the GRF write directly to the final destination instead.
998 */
999 bool
1000 vec4_visitor::opt_register_coalesce()
1001 {
1002 bool progress = false;
1003 int next_ip = 0;
1004
1005 calculate_live_intervals();
1006
1007 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1008 int ip = next_ip;
1009 next_ip++;
1010
1011 if (inst->opcode != BRW_OPCODE_MOV ||
1012 (inst->dst.file != GRF && inst->dst.file != MRF) ||
1013 inst->predicate ||
1014 inst->src[0].file != GRF ||
1015 inst->dst.type != inst->src[0].type ||
1016 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1017 continue;
1018
1019 bool to_mrf = (inst->dst.file == MRF);
1020
1021 /* Can't coalesce this GRF if someone else was going to
1022 * read it later.
1023 */
1024 if (this->virtual_grf_end[inst->src[0].reg * 4 + 0] > ip ||
1025 this->virtual_grf_end[inst->src[0].reg * 4 + 1] > ip ||
1026 this->virtual_grf_end[inst->src[0].reg * 4 + 2] > ip ||
1027 this->virtual_grf_end[inst->src[0].reg * 4 + 3] > ip)
1028 continue;
1029
1030 /* We need to check interference with the final destination between this
1031 * instruction and the earliest instruction involved in writing the GRF
1032 * we're eliminating. To do that, keep track of which of our source
1033 * channels we've seen initialized.
1034 */
1035 bool chans_needed[4] = {false, false, false, false};
1036 int chans_remaining = 0;
1037 int swizzle_mask = 0;
1038 for (int i = 0; i < 4; i++) {
1039 int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
1040
1041 if (!(inst->dst.writemask & (1 << i)))
1042 continue;
1043
1044 swizzle_mask |= (1 << chan);
1045
1046 if (!chans_needed[chan]) {
1047 chans_needed[chan] = true;
1048 chans_remaining++;
1049 }
1050 }
1051
1052 /* Now walk up the instruction stream trying to see if we can rewrite
1053 * everything writing to the temporary to write into the destination
1054 * instead.
1055 */
1056 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1057 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1058 inst, block) {
1059 _scan_inst = scan_inst;
1060
1061 if (scan_inst->dst.file == GRF &&
1062 scan_inst->dst.reg == inst->src[0].reg &&
1063 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1064 /* Found something writing to the reg we want to coalesce away. */
1065 if (to_mrf) {
1066 /* SEND instructions can't have MRF as a destination. */
1067 if (scan_inst->mlen)
1068 break;
1069
1070 if (brw->gen == 6) {
1071 /* gen6 math instructions must have the destination be
1072 * GRF, so no compute-to-MRF for them.
1073 */
1074 if (scan_inst->is_math()) {
1075 break;
1076 }
1077 }
1078 }
1079
1080 /* If we can't handle the swizzle, bail. */
1081 if (!scan_inst->can_reswizzle(inst->dst.writemask,
1082 inst->src[0].swizzle,
1083 swizzle_mask)) {
1084 break;
1085 }
1086
1087 /* Mark which channels we found unconditional writes for. */
1088 if (!scan_inst->predicate) {
1089 for (int i = 0; i < 4; i++) {
1090 if (scan_inst->dst.writemask & (1 << i) &&
1091 chans_needed[i]) {
1092 chans_needed[i] = false;
1093 chans_remaining--;
1094 }
1095 }
1096 }
1097
1098 if (chans_remaining == 0)
1099 break;
1100 }
1101
1102 /* You can't read from an MRF, so if someone else reads our MRF's
1103 * source GRF that we wanted to rewrite, that stops us. If it's a
1104 * GRF we're trying to coalesce to, we don't actually handle
1105 * rewriting sources so bail in that case as well.
1106 */
1107 bool interfered = false;
1108 for (int i = 0; i < 3; i++) {
1109 if (scan_inst->src[i].file == GRF &&
1110 scan_inst->src[i].reg == inst->src[0].reg &&
1111 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1112 interfered = true;
1113 }
1114 }
1115 if (interfered)
1116 break;
1117
1118 /* If somebody else writes our destination here, we can't coalesce
1119 * before that.
1120 */
1121 if (scan_inst->dst.file == inst->dst.file &&
1122 scan_inst->dst.reg == inst->dst.reg) {
1123 break;
1124 }
1125
1126 /* Check for reads of the register we're trying to coalesce into. We
1127 * can't go rewriting instructions above that to put some other value
1128 * in the register instead.
1129 */
1130 if (to_mrf && scan_inst->mlen > 0) {
1131 if (inst->dst.reg >= scan_inst->base_mrf &&
1132 inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
1133 break;
1134 }
1135 } else {
1136 for (int i = 0; i < 3; i++) {
1137 if (scan_inst->src[i].file == inst->dst.file &&
1138 scan_inst->src[i].reg == inst->dst.reg &&
1139 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1140 interfered = true;
1141 }
1142 }
1143 if (interfered)
1144 break;
1145 }
1146 }
1147
1148 if (chans_remaining == 0) {
1149 /* If we've made it here, we have an MOV we want to coalesce out, and
1150 * a scan_inst pointing to the earliest instruction involved in
1151 * computing the value. Now go rewrite the instruction stream
1152 * between the two.
1153 */
1154 vec4_instruction *scan_inst = _scan_inst;
1155 while (scan_inst != inst) {
1156 if (scan_inst->dst.file == GRF &&
1157 scan_inst->dst.reg == inst->src[0].reg &&
1158 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1159 scan_inst->reswizzle(inst->dst.writemask,
1160 inst->src[0].swizzle);
1161 scan_inst->dst.file = inst->dst.file;
1162 scan_inst->dst.reg = inst->dst.reg;
1163 scan_inst->dst.reg_offset = inst->dst.reg_offset;
1164 scan_inst->saturate |= inst->saturate;
1165 }
1166 scan_inst = (vec4_instruction *)scan_inst->next;
1167 }
1168 inst->remove(block);
1169 progress = true;
1170 }
1171 }
1172
1173 if (progress)
1174 invalidate_live_intervals();
1175
1176 return progress;
1177 }
1178
1179 /**
1180 * Splits virtual GRFs requesting more than one contiguous physical register.
1181 *
1182 * We initially create large virtual GRFs for temporary structures, arrays,
1183 * and matrices, so that the dereference visitor functions can add reg_offsets
1184 * to work their way down to the actual member being accessed. But when it
1185 * comes to optimization, we'd like to treat each register as individual
1186 * storage if possible.
1187 *
1188 * So far, the only thing that might prevent splitting is a send message from
1189 * a GRF on IVB.
1190 */
1191 void
1192 vec4_visitor::split_virtual_grfs()
1193 {
1194 int num_vars = this->virtual_grf_count;
1195 int new_virtual_grf[num_vars];
1196 bool split_grf[num_vars];
1197
1198 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1199
1200 /* Try to split anything > 0 sized. */
1201 for (int i = 0; i < num_vars; i++) {
1202 split_grf[i] = this->virtual_grf_sizes[i] != 1;
1203 }
1204
1205 /* Check that the instructions are compatible with the registers we're trying
1206 * to split.
1207 */
1208 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1209 /* If there's a SEND message loading from a GRF on gen7+, it needs to be
1210 * contiguous.
1211 */
1212 if (inst->is_send_from_grf()) {
1213 for (int i = 0; i < 3; i++) {
1214 if (inst->src[i].file == GRF) {
1215 split_grf[inst->src[i].reg] = false;
1216 }
1217 }
1218 }
1219 }
1220
1221 /* Allocate new space for split regs. Note that the virtual
1222 * numbers will be contiguous.
1223 */
1224 for (int i = 0; i < num_vars; i++) {
1225 if (!split_grf[i])
1226 continue;
1227
1228 new_virtual_grf[i] = virtual_grf_alloc(1);
1229 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
1230 int reg = virtual_grf_alloc(1);
1231 assert(reg == new_virtual_grf[i] + j - 1);
1232 (void) reg;
1233 }
1234 this->virtual_grf_sizes[i] = 1;
1235 }
1236
1237 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1238 if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
1239 inst->dst.reg_offset != 0) {
1240 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1241 inst->dst.reg_offset - 1);
1242 inst->dst.reg_offset = 0;
1243 }
1244 for (int i = 0; i < 3; i++) {
1245 if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
1246 inst->src[i].reg_offset != 0) {
1247 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1248 inst->src[i].reg_offset - 1);
1249 inst->src[i].reg_offset = 0;
1250 }
1251 }
1252 }
1253 invalidate_live_intervals();
1254 }
1255
1256 void
1257 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1258 {
1259 dump_instruction(be_inst, stderr);
1260 }
1261
1262 void
1263 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1264 {
1265 vec4_instruction *inst = (vec4_instruction *)be_inst;
1266
1267 if (inst->predicate) {
1268 fprintf(file, "(%cf0) ",
1269 inst->predicate_inverse ? '-' : '+');
1270 }
1271
1272 fprintf(file, "%s", brw_instruction_name(inst->opcode));
1273 if (inst->conditional_mod) {
1274 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1275 }
1276 fprintf(file, " ");
1277
1278 switch (inst->dst.file) {
1279 case GRF:
1280 fprintf(file, "vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
1281 break;
1282 case MRF:
1283 fprintf(file, "m%d", inst->dst.reg);
1284 break;
1285 case HW_REG:
1286 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1287 switch (inst->dst.fixed_hw_reg.nr) {
1288 case BRW_ARF_NULL:
1289 fprintf(file, "null");
1290 break;
1291 case BRW_ARF_ADDRESS:
1292 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
1293 break;
1294 case BRW_ARF_ACCUMULATOR:
1295 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
1296 break;
1297 case BRW_ARF_FLAG:
1298 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1299 inst->dst.fixed_hw_reg.subnr);
1300 break;
1301 default:
1302 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1303 inst->dst.fixed_hw_reg.subnr);
1304 break;
1305 }
1306 } else {
1307 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
1308 }
1309 if (inst->dst.fixed_hw_reg.subnr)
1310 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
1311 break;
1312 case BAD_FILE:
1313 fprintf(file, "(null)");
1314 break;
1315 default:
1316 fprintf(file, "???");
1317 break;
1318 }
1319 if (inst->dst.writemask != WRITEMASK_XYZW) {
1320 fprintf(file, ".");
1321 if (inst->dst.writemask & 1)
1322 fprintf(file, "x");
1323 if (inst->dst.writemask & 2)
1324 fprintf(file, "y");
1325 if (inst->dst.writemask & 4)
1326 fprintf(file, "z");
1327 if (inst->dst.writemask & 8)
1328 fprintf(file, "w");
1329 }
1330 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
1331
1332 if (inst->src[0].file != BAD_FILE)
1333 fprintf(file, ", ");
1334
1335 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1336 if (inst->src[i].negate)
1337 fprintf(file, "-");
1338 if (inst->src[i].abs)
1339 fprintf(file, "|");
1340 switch (inst->src[i].file) {
1341 case GRF:
1342 fprintf(file, "vgrf%d", inst->src[i].reg);
1343 break;
1344 case ATTR:
1345 fprintf(file, "attr%d", inst->src[i].reg);
1346 break;
1347 case UNIFORM:
1348 fprintf(file, "u%d", inst->src[i].reg);
1349 break;
1350 case IMM:
1351 switch (inst->src[i].type) {
1352 case BRW_REGISTER_TYPE_F:
1353 fprintf(file, "%fF", inst->src[i].fixed_hw_reg.dw1.f);
1354 break;
1355 case BRW_REGISTER_TYPE_D:
1356 fprintf(file, "%dD", inst->src[i].fixed_hw_reg.dw1.d);
1357 break;
1358 case BRW_REGISTER_TYPE_UD:
1359 fprintf(file, "%uU", inst->src[i].fixed_hw_reg.dw1.ud);
1360 break;
1361 case BRW_REGISTER_TYPE_VF:
1362 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1363 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
1364 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
1365 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
1366 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
1367 break;
1368 default:
1369 fprintf(file, "???");
1370 break;
1371 }
1372 break;
1373 case HW_REG:
1374 if (inst->src[i].fixed_hw_reg.negate)
1375 fprintf(file, "-");
1376 if (inst->src[i].fixed_hw_reg.abs)
1377 fprintf(file, "|");
1378 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1379 switch (inst->src[i].fixed_hw_reg.nr) {
1380 case BRW_ARF_NULL:
1381 fprintf(file, "null");
1382 break;
1383 case BRW_ARF_ADDRESS:
1384 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
1385 break;
1386 case BRW_ARF_ACCUMULATOR:
1387 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
1388 break;
1389 case BRW_ARF_FLAG:
1390 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1391 inst->src[i].fixed_hw_reg.subnr);
1392 break;
1393 default:
1394 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1395 inst->src[i].fixed_hw_reg.subnr);
1396 break;
1397 }
1398 } else {
1399 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
1400 }
1401 if (inst->src[i].fixed_hw_reg.subnr)
1402 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
1403 if (inst->src[i].fixed_hw_reg.abs)
1404 fprintf(file, "|");
1405 break;
1406 case BAD_FILE:
1407 fprintf(file, "(null)");
1408 break;
1409 default:
1410 fprintf(file, "???");
1411 break;
1412 }
1413
1414 /* Don't print .0; and only VGRFs have reg_offsets and sizes */
1415 if (inst->src[i].reg_offset != 0 &&
1416 inst->src[i].file == GRF &&
1417 virtual_grf_sizes[inst->src[i].reg] != 1)
1418 fprintf(file, ".%d", inst->src[i].reg_offset);
1419
1420 if (inst->src[i].file != IMM) {
1421 static const char *chans[4] = {"x", "y", "z", "w"};
1422 fprintf(file, ".");
1423 for (int c = 0; c < 4; c++) {
1424 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1425 }
1426 }
1427
1428 if (inst->src[i].abs)
1429 fprintf(file, "|");
1430
1431 if (inst->src[i].file != IMM) {
1432 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1433 }
1434
1435 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1436 fprintf(file, ", ");
1437 }
1438
1439 fprintf(file, "\n");
1440 }
1441
1442
1443 static inline struct brw_reg
1444 attribute_to_hw_reg(int attr, bool interleaved)
1445 {
1446 if (interleaved)
1447 return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1448 else
1449 return brw_vec8_grf(attr, 0);
1450 }
1451
1452
1453 /**
1454 * Replace each register of type ATTR in this->instructions with a reference
1455 * to a fixed HW register.
1456 *
1457 * If interleaved is true, then each attribute takes up half a register, with
1458 * register N containing attribute 2*N in its first half and attribute 2*N+1
1459 * in its second half (this corresponds to the payload setup used by geometry
1460 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
1461 * false, then each attribute takes up a whole register, with register N
1462 * containing attribute N (this corresponds to the payload setup used by
1463 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1464 */
1465 void
1466 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1467 bool interleaved)
1468 {
1469 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1470 /* We have to support ATTR as a destination for GL_FIXED fixup. */
1471 if (inst->dst.file == ATTR) {
1472 int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
1473
1474 /* All attributes used in the shader need to have been assigned a
1475 * hardware register by the caller
1476 */
1477 assert(grf != 0);
1478
1479 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1480 reg.type = inst->dst.type;
1481 reg.dw1.bits.writemask = inst->dst.writemask;
1482
1483 inst->dst.file = HW_REG;
1484 inst->dst.fixed_hw_reg = reg;
1485 }
1486
1487 for (int i = 0; i < 3; i++) {
1488 if (inst->src[i].file != ATTR)
1489 continue;
1490
1491 int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
1492
1493 /* All attributes used in the shader need to have been assigned a
1494 * hardware register by the caller
1495 */
1496 assert(grf != 0);
1497
1498 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1499 reg.dw1.bits.swizzle = inst->src[i].swizzle;
1500 reg.type = inst->src[i].type;
1501 if (inst->src[i].abs)
1502 reg = brw_abs(reg);
1503 if (inst->src[i].negate)
1504 reg = negate(reg);
1505
1506 inst->src[i].file = HW_REG;
1507 inst->src[i].fixed_hw_reg = reg;
1508 }
1509 }
1510 }
1511
1512 int
1513 vec4_vs_visitor::setup_attributes(int payload_reg)
1514 {
1515 int nr_attributes;
1516 int attribute_map[VERT_ATTRIB_MAX + 1];
1517 memset(attribute_map, 0, sizeof(attribute_map));
1518
1519 nr_attributes = 0;
1520 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1521 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1522 attribute_map[i] = payload_reg + nr_attributes;
1523 nr_attributes++;
1524 }
1525 }
1526
1527 /* VertexID is stored by the VF as the last vertex element, but we
1528 * don't represent it with a flag in inputs_read, so we call it
1529 * VERT_ATTRIB_MAX.
1530 */
1531 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
1532 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1533 nr_attributes++;
1534 }
1535
1536 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1537
1538 /* The BSpec says we always have to read at least one thing from
1539 * the VF, and it appears that the hardware wedges otherwise.
1540 */
1541 if (nr_attributes == 0)
1542 nr_attributes = 1;
1543
1544 prog_data->urb_read_length = (nr_attributes + 1) / 2;
1545
1546 unsigned vue_entries =
1547 MAX2(nr_attributes, prog_data->vue_map.num_slots);
1548
1549 if (brw->gen == 6)
1550 prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
1551 else
1552 prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
1553
1554 return payload_reg + nr_attributes;
1555 }
1556
1557 int
1558 vec4_visitor::setup_uniforms(int reg)
1559 {
1560 prog_data->base.dispatch_grf_start_reg = reg;
1561
1562 /* The pre-gen6 VS requires that some push constants get loaded no
1563 * matter what, or the GPU would hang.
1564 */
1565 if (brw->gen < 6 && this->uniforms == 0) {
1566 assert(this->uniforms < this->uniform_array_size);
1567 this->uniform_vector_size[this->uniforms] = 1;
1568
1569 stage_prog_data->param =
1570 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1571 for (unsigned int i = 0; i < 4; i++) {
1572 unsigned int slot = this->uniforms * 4 + i;
1573 static gl_constant_value zero = { 0.0 };
1574 stage_prog_data->param[slot] = &zero;
1575 }
1576
1577 this->uniforms++;
1578 reg++;
1579 } else {
1580 reg += ALIGN(uniforms, 2) / 2;
1581 }
1582
1583 stage_prog_data->nr_params = this->uniforms * 4;
1584
1585 prog_data->base.curb_read_length =
1586 reg - prog_data->base.dispatch_grf_start_reg;
1587
1588 return reg;
1589 }
1590
1591 void
1592 vec4_vs_visitor::setup_payload(void)
1593 {
1594 int reg = 0;
1595
1596 /* The payload always contains important data in g0, which contains
1597 * the URB handles that are passed on to the URB write at the end
1598 * of the thread. So, we always start push constants at g1.
1599 */
1600 reg++;
1601
1602 reg = setup_uniforms(reg);
1603
1604 reg = setup_attributes(reg);
1605
1606 this->first_non_payload_grf = reg;
1607 }
1608
1609 void
1610 vec4_visitor::assign_binding_table_offsets()
1611 {
1612 assign_common_binding_table_offsets(0);
1613 }
1614
1615 src_reg
1616 vec4_visitor::get_timestamp()
1617 {
1618 assert(brw->gen >= 7);
1619
1620 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1621 BRW_ARF_TIMESTAMP,
1622 0,
1623 0,
1624 0,
1625 BRW_REGISTER_TYPE_UD,
1626 BRW_VERTICAL_STRIDE_0,
1627 BRW_WIDTH_4,
1628 BRW_HORIZONTAL_STRIDE_4,
1629 BRW_SWIZZLE_XYZW,
1630 WRITEMASK_XYZW));
1631
1632 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1633
1634 vec4_instruction *mov = emit(MOV(dst, ts));
1635 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1636 * even if it's not enabled in the dispatch.
1637 */
1638 mov->force_writemask_all = true;
1639
1640 return src_reg(dst);
1641 }
1642
1643 void
1644 vec4_visitor::emit_shader_time_begin()
1645 {
1646 current_annotation = "shader time start";
1647 shader_start_time = get_timestamp();
1648 }
1649
1650 void
1651 vec4_visitor::emit_shader_time_end()
1652 {
1653 current_annotation = "shader time end";
1654 src_reg shader_end_time = get_timestamp();
1655
1656
1657 /* Check that there weren't any timestamp reset events (assuming these
1658 * were the only two timestamp reads that happened).
1659 */
1660 src_reg reset_end = shader_end_time;
1661 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1662 vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
1663 test->conditional_mod = BRW_CONDITIONAL_Z;
1664
1665 emit(IF(BRW_PREDICATE_NORMAL));
1666
1667 /* Take the current timestamp and get the delta. */
1668 shader_start_time.negate = true;
1669 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1670 emit(ADD(diff, shader_start_time, shader_end_time));
1671
1672 /* If there were no instructions between the two timestamp gets, the diff
1673 * is 2 cycles. Remove that overhead, so I can forget about that when
1674 * trying to determine the time taken for single instructions.
1675 */
1676 emit(ADD(diff, src_reg(diff), src_reg(-2u)));
1677
1678 emit_shader_time_write(st_base, src_reg(diff));
1679 emit_shader_time_write(st_written, src_reg(1u));
1680 emit(BRW_OPCODE_ELSE);
1681 emit_shader_time_write(st_reset, src_reg(1u));
1682 emit(BRW_OPCODE_ENDIF);
1683 }
1684
1685 void
1686 vec4_visitor::emit_shader_time_write(enum shader_time_shader_type type,
1687 src_reg value)
1688 {
1689 int shader_time_index =
1690 brw_get_shader_time_index(brw, shader_prog, prog, type);
1691
1692 dst_reg dst =
1693 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1694
1695 dst_reg offset = dst;
1696 dst_reg time = dst;
1697 time.reg_offset++;
1698
1699 offset.type = BRW_REGISTER_TYPE_UD;
1700 emit(MOV(offset, src_reg(shader_time_index * SHADER_TIME_STRIDE)));
1701
1702 time.type = BRW_REGISTER_TYPE_UD;
1703 emit(MOV(time, src_reg(value)));
1704
1705 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1706 }
1707
1708 bool
1709 vec4_visitor::run()
1710 {
1711 sanity_param_count = prog->Parameters->NumParameters;
1712
1713 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1714 emit_shader_time_begin();
1715
1716 assign_binding_table_offsets();
1717
1718 emit_prolog();
1719
1720 /* Generate VS IR for main(). (the visitor only descends into
1721 * functions called "main").
1722 */
1723 if (shader) {
1724 visit_instructions(shader->base.ir);
1725 } else {
1726 emit_program_code();
1727 }
1728 base_ir = NULL;
1729
1730 if (key->userclip_active && !prog->UsesClipDistanceOut)
1731 setup_uniform_clipplane_values();
1732
1733 emit_thread_end();
1734
1735 calculate_cfg();
1736
1737 /* Before any optimization, push array accesses out to scratch
1738 * space where we need them to be. This pass may allocate new
1739 * virtual GRFs, so we want to do it early. It also makes sure
1740 * that we have reladdr computations available for CSE, since we'll
1741 * often do repeated subexpressions for those.
1742 */
1743 if (shader) {
1744 move_grf_array_access_to_scratch();
1745 move_uniform_array_access_to_pull_constants();
1746 } else {
1747 /* The ARB_vertex_program frontend emits pull constant loads directly
1748 * rather than using reladdr, so we don't need to walk through all the
1749 * instructions looking for things to move. There isn't anything.
1750 *
1751 * We do still need to split things to vec4 size.
1752 */
1753 split_uniform_registers();
1754 }
1755 pack_uniform_registers();
1756 move_push_constants_to_pull_constants();
1757 split_virtual_grfs();
1758
1759 const char *stage_name = stage == MESA_SHADER_GEOMETRY ? "gs" : "vs";
1760
1761 #define OPT(pass, args...) ({ \
1762 pass_num++; \
1763 bool this_progress = pass(args); \
1764 \
1765 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
1766 char filename[64]; \
1767 snprintf(filename, 64, "%s-%04d-%02d-%02d-" #pass, \
1768 stage_name, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
1769 \
1770 backend_visitor::dump_instructions(filename); \
1771 } \
1772 \
1773 progress = progress || this_progress; \
1774 this_progress; \
1775 })
1776
1777
1778 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
1779 char filename[64];
1780 snprintf(filename, 64, "%s-%04d-00-start",
1781 stage_name, shader_prog ? shader_prog->Name : 0);
1782
1783 backend_visitor::dump_instructions(filename);
1784 }
1785
1786 bool progress;
1787 int iteration = 0;
1788 int pass_num = 0;
1789 do {
1790 progress = false;
1791 pass_num = 0;
1792 iteration++;
1793
1794 OPT(opt_reduce_swizzle);
1795 OPT(dead_code_eliminate);
1796 OPT(dead_control_flow_eliminate, this);
1797 OPT(opt_copy_propagation);
1798 OPT(opt_cse);
1799 OPT(opt_algebraic);
1800 OPT(opt_register_coalesce);
1801 } while (progress);
1802
1803 pass_num = 0;
1804
1805 if (OPT(opt_vector_float)) {
1806 OPT(opt_cse);
1807 OPT(opt_copy_propagation, false);
1808 OPT(opt_copy_propagation, true);
1809 OPT(dead_code_eliminate);
1810 }
1811
1812 if (failed)
1813 return false;
1814
1815 setup_payload();
1816
1817 if (false) {
1818 /* Debug of register spilling: Go spill everything. */
1819 const int grf_count = virtual_grf_count;
1820 float spill_costs[virtual_grf_count];
1821 bool no_spill[virtual_grf_count];
1822 evaluate_spill_costs(spill_costs, no_spill);
1823 for (int i = 0; i < grf_count; i++) {
1824 if (no_spill[i])
1825 continue;
1826 spill_reg(i);
1827 }
1828 }
1829
1830 while (!reg_allocate()) {
1831 if (failed)
1832 return false;
1833 }
1834
1835 opt_schedule_instructions();
1836
1837 opt_set_dependency_control();
1838
1839 /* If any state parameters were appended, then ParameterValues could have
1840 * been realloced, in which case the driver uniform storage set up by
1841 * _mesa_associate_uniform_storage() would point to freed memory. Make
1842 * sure that didn't happen.
1843 */
1844 assert(sanity_param_count == prog->Parameters->NumParameters);
1845
1846 return !failed;
1847 }
1848
1849 } /* namespace brw */
1850
1851 extern "C" {
1852
1853 /**
1854 * Compile a vertex shader.
1855 *
1856 * Returns the final assembly and the program's size.
1857 */
1858 const unsigned *
1859 brw_vs_emit(struct brw_context *brw,
1860 struct gl_shader_program *prog,
1861 struct brw_vs_compile *c,
1862 struct brw_vs_prog_data *prog_data,
1863 void *mem_ctx,
1864 unsigned *final_assembly_size)
1865 {
1866 bool start_busy = false;
1867 double start_time = 0;
1868 const unsigned *assembly = NULL;
1869
1870 if (unlikely(brw->perf_debug)) {
1871 start_busy = (brw->batch.last_bo &&
1872 drm_intel_bo_busy(brw->batch.last_bo));
1873 start_time = get_time();
1874 }
1875
1876 struct brw_shader *shader = NULL;
1877 if (prog)
1878 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
1879
1880 if (unlikely(INTEL_DEBUG & DEBUG_VS))
1881 brw_dump_ir("vertex", prog, &shader->base, &c->vp->program.Base);
1882
1883 if (prog && brw->gen >= 8 && brw->scalar_vs) {
1884 fs_visitor v(brw, mem_ctx, &c->key, prog_data, prog, &c->vp->program, 8);
1885 if (!v.run_vs()) {
1886 if (prog) {
1887 prog->LinkStatus = false;
1888 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1889 }
1890
1891 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1892 v.fail_msg);
1893
1894 return NULL;
1895 }
1896
1897 fs_generator g(brw, mem_ctx, (void *) &c->key, &prog_data->base.base,
1898 &c->vp->program.Base, v.runtime_check_aads_emit, "VS");
1899 if (INTEL_DEBUG & DEBUG_VS) {
1900 char *name = ralloc_asprintf(mem_ctx, "%s vertex shader %d",
1901 prog->Label ? prog->Label : "unnamed",
1902 prog->Name);
1903 g.enable_debug(name);
1904 }
1905 g.generate_code(v.cfg, 8);
1906 assembly = g.get_assembly(final_assembly_size);
1907
1908 if (assembly)
1909 prog_data->base.simd8 = true;
1910 c->base.last_scratch = v.last_scratch;
1911 }
1912
1913 if (!assembly) {
1914 vec4_vs_visitor v(brw, c, prog_data, prog, mem_ctx);
1915 if (!v.run()) {
1916 if (prog) {
1917 prog->LinkStatus = false;
1918 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1919 }
1920
1921 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1922 v.fail_msg);
1923
1924 return NULL;
1925 }
1926
1927 vec4_generator g(brw, prog, &c->vp->program.Base, &prog_data->base,
1928 mem_ctx, INTEL_DEBUG & DEBUG_VS);
1929 assembly = g.generate_assembly(v.cfg, final_assembly_size);
1930 }
1931
1932 if (unlikely(brw->perf_debug) && shader) {
1933 if (shader->compiled_once) {
1934 brw_vs_debug_recompile(brw, prog, &c->key);
1935 }
1936 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
1937 perf_debug("VS compile took %.03f ms and stalled the GPU\n",
1938 (get_time() - start_time) * 1000);
1939 }
1940 shader->compiled_once = true;
1941 }
1942
1943 return assembly;
1944 }
1945
1946
1947 void
1948 brw_vue_setup_prog_key_for_precompile(struct gl_context *ctx,
1949 struct brw_vue_prog_key *key,
1950 GLuint id, struct gl_program *prog)
1951 {
1952 struct brw_context *brw = brw_context(ctx);
1953 key->program_string_id = id;
1954
1955 const bool has_shader_channel_select = brw->is_haswell || brw->gen >= 8;
1956 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
1957 for (unsigned i = 0; i < sampler_count; i++) {
1958 if (!has_shader_channel_select && (prog->ShadowSamplers & (1 << i))) {
1959 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
1960 key->tex.swizzles[i] =
1961 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
1962 } else {
1963 /* Color sampler: assume no swizzling. */
1964 key->tex.swizzles[i] = SWIZZLE_XYZW;
1965 }
1966 }
1967 }
1968
1969 } /* extern "C" */