i965/vec4: Fix saturation errors when coalescing registers
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_vs.h"
28 #include "brw_nir.h"
29 #include "brw_vec4_live_variables.h"
30 #include "brw_dead_control_flow.h"
31
32 extern "C" {
33 #include "main/macros.h"
34 #include "main/shaderobj.h"
35 #include "program/prog_print.h"
36 #include "program/prog_parameter.h"
37 }
38 #include "main/context.h"
39
40 #define MAX_INSTRUCTION (1 << 30)
41
42 using namespace brw;
43
44 namespace brw {
45
46 void
47 src_reg::init()
48 {
49 memset(this, 0, sizeof(*this));
50
51 this->file = BAD_FILE;
52 }
53
54 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
55 {
56 init();
57
58 this->file = file;
59 this->reg = reg;
60 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
61 this->swizzle = brw_swizzle_for_size(type->vector_elements);
62 else
63 this->swizzle = BRW_SWIZZLE_XYZW;
64 if (type)
65 this->type = brw_type_for_base_type(type);
66 }
67
68 /** Generic unset register constructor. */
69 src_reg::src_reg()
70 {
71 init();
72 }
73
74 src_reg::src_reg(float f)
75 {
76 init();
77
78 this->file = IMM;
79 this->type = BRW_REGISTER_TYPE_F;
80 this->fixed_hw_reg.dw1.f = f;
81 }
82
83 src_reg::src_reg(uint32_t u)
84 {
85 init();
86
87 this->file = IMM;
88 this->type = BRW_REGISTER_TYPE_UD;
89 this->fixed_hw_reg.dw1.ud = u;
90 }
91
92 src_reg::src_reg(int32_t i)
93 {
94 init();
95
96 this->file = IMM;
97 this->type = BRW_REGISTER_TYPE_D;
98 this->fixed_hw_reg.dw1.d = i;
99 }
100
101 src_reg::src_reg(uint8_t vf[4])
102 {
103 init();
104
105 this->file = IMM;
106 this->type = BRW_REGISTER_TYPE_VF;
107 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
108 }
109
110 src_reg::src_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
111 {
112 init();
113
114 this->file = IMM;
115 this->type = BRW_REGISTER_TYPE_VF;
116 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
117 (vf1 << 8) |
118 (vf2 << 16) |
119 (vf3 << 24);
120 }
121
122 src_reg::src_reg(struct brw_reg reg)
123 {
124 init();
125
126 this->file = HW_REG;
127 this->fixed_hw_reg = reg;
128 this->type = reg.type;
129 }
130
131 src_reg::src_reg(const dst_reg &reg)
132 {
133 init();
134
135 this->file = reg.file;
136 this->reg = reg.reg;
137 this->reg_offset = reg.reg_offset;
138 this->type = reg.type;
139 this->reladdr = reg.reladdr;
140 this->fixed_hw_reg = reg.fixed_hw_reg;
141 this->swizzle = brw_swizzle_for_mask(reg.writemask);
142 }
143
144 void
145 dst_reg::init()
146 {
147 memset(this, 0, sizeof(*this));
148 this->file = BAD_FILE;
149 this->writemask = WRITEMASK_XYZW;
150 }
151
152 dst_reg::dst_reg()
153 {
154 init();
155 }
156
157 dst_reg::dst_reg(register_file file, int reg)
158 {
159 init();
160
161 this->file = file;
162 this->reg = reg;
163 }
164
165 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
166 unsigned writemask)
167 {
168 init();
169
170 this->file = file;
171 this->reg = reg;
172 this->type = brw_type_for_base_type(type);
173 this->writemask = writemask;
174 }
175
176 dst_reg::dst_reg(register_file file, int reg, brw_reg_type type,
177 unsigned writemask)
178 {
179 init();
180
181 this->file = file;
182 this->reg = reg;
183 this->type = type;
184 this->writemask = writemask;
185 }
186
187 dst_reg::dst_reg(struct brw_reg reg)
188 {
189 init();
190
191 this->file = HW_REG;
192 this->fixed_hw_reg = reg;
193 this->type = reg.type;
194 }
195
196 dst_reg::dst_reg(const src_reg &reg)
197 {
198 init();
199
200 this->file = reg.file;
201 this->reg = reg.reg;
202 this->reg_offset = reg.reg_offset;
203 this->type = reg.type;
204 this->writemask = brw_mask_for_swizzle(reg.swizzle);
205 this->reladdr = reg.reladdr;
206 this->fixed_hw_reg = reg.fixed_hw_reg;
207 }
208
209 bool
210 dst_reg::equals(const dst_reg &r) const
211 {
212 return (file == r.file &&
213 reg == r.reg &&
214 reg_offset == r.reg_offset &&
215 type == r.type &&
216 negate == r.negate &&
217 abs == r.abs &&
218 writemask == r.writemask &&
219 (reladdr == r.reladdr ||
220 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))) &&
221 ((file != HW_REG && file != IMM) ||
222 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
223 sizeof(fixed_hw_reg)) == 0));
224 }
225
226 bool
227 vec4_instruction::is_send_from_grf()
228 {
229 switch (opcode) {
230 case SHADER_OPCODE_SHADER_TIME_ADD:
231 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
232 case SHADER_OPCODE_UNTYPED_ATOMIC:
233 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
234 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
235 case SHADER_OPCODE_TYPED_ATOMIC:
236 case SHADER_OPCODE_TYPED_SURFACE_READ:
237 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
238 return true;
239 default:
240 return false;
241 }
242 }
243
244 unsigned
245 vec4_instruction::regs_read(unsigned arg) const
246 {
247 if (src[arg].file == BAD_FILE)
248 return 0;
249
250 switch (opcode) {
251 case SHADER_OPCODE_SHADER_TIME_ADD:
252 case SHADER_OPCODE_UNTYPED_ATOMIC:
253 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
254 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
255 case SHADER_OPCODE_TYPED_ATOMIC:
256 case SHADER_OPCODE_TYPED_SURFACE_READ:
257 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
258 return arg == 0 ? mlen : 1;
259
260 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
261 return arg == 1 ? mlen : 1;
262
263 default:
264 return 1;
265 }
266 }
267
268 bool
269 vec4_instruction::can_do_source_mods(const struct brw_device_info *devinfo)
270 {
271 if (devinfo->gen == 6 && is_math())
272 return false;
273
274 if (is_send_from_grf())
275 return false;
276
277 if (!backend_instruction::can_do_source_mods())
278 return false;
279
280 return true;
281 }
282
283 /**
284 * Returns how many MRFs an opcode will write over.
285 *
286 * Note that this is not the 0 or 1 implied writes in an actual gen
287 * instruction -- the generate_* functions generate additional MOVs
288 * for setup.
289 */
290 int
291 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
292 {
293 if (inst->mlen == 0 || inst->is_send_from_grf())
294 return 0;
295
296 switch (inst->opcode) {
297 case SHADER_OPCODE_RCP:
298 case SHADER_OPCODE_RSQ:
299 case SHADER_OPCODE_SQRT:
300 case SHADER_OPCODE_EXP2:
301 case SHADER_OPCODE_LOG2:
302 case SHADER_OPCODE_SIN:
303 case SHADER_OPCODE_COS:
304 return 1;
305 case SHADER_OPCODE_INT_QUOTIENT:
306 case SHADER_OPCODE_INT_REMAINDER:
307 case SHADER_OPCODE_POW:
308 return 2;
309 case VS_OPCODE_URB_WRITE:
310 return 1;
311 case VS_OPCODE_PULL_CONSTANT_LOAD:
312 return 2;
313 case SHADER_OPCODE_GEN4_SCRATCH_READ:
314 return 2;
315 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
316 return 3;
317 case GS_OPCODE_URB_WRITE:
318 case GS_OPCODE_URB_WRITE_ALLOCATE:
319 case GS_OPCODE_THREAD_END:
320 return 0;
321 case GS_OPCODE_FF_SYNC:
322 return 1;
323 case SHADER_OPCODE_SHADER_TIME_ADD:
324 return 0;
325 case SHADER_OPCODE_TEX:
326 case SHADER_OPCODE_TXL:
327 case SHADER_OPCODE_TXD:
328 case SHADER_OPCODE_TXF:
329 case SHADER_OPCODE_TXF_CMS:
330 case SHADER_OPCODE_TXF_MCS:
331 case SHADER_OPCODE_TXS:
332 case SHADER_OPCODE_TG4:
333 case SHADER_OPCODE_TG4_OFFSET:
334 case SHADER_OPCODE_SAMPLEINFO:
335 return inst->header_size;
336 default:
337 unreachable("not reached");
338 }
339 }
340
341 bool
342 src_reg::equals(const src_reg &r) const
343 {
344 return (file == r.file &&
345 reg == r.reg &&
346 reg_offset == r.reg_offset &&
347 type == r.type &&
348 negate == r.negate &&
349 abs == r.abs &&
350 swizzle == r.swizzle &&
351 !reladdr && !r.reladdr &&
352 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
353 sizeof(fixed_hw_reg)) == 0);
354 }
355
356 bool
357 vec4_visitor::opt_vector_float()
358 {
359 bool progress = false;
360
361 int last_reg = -1, last_reg_offset = -1;
362 enum register_file last_reg_file = BAD_FILE;
363
364 int remaining_channels = 0;
365 uint8_t imm[4];
366 int inst_count = 0;
367 vec4_instruction *imm_inst[4];
368
369 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
370 if (last_reg != inst->dst.reg ||
371 last_reg_offset != inst->dst.reg_offset ||
372 last_reg_file != inst->dst.file) {
373 last_reg = inst->dst.reg;
374 last_reg_offset = inst->dst.reg_offset;
375 last_reg_file = inst->dst.file;
376 remaining_channels = WRITEMASK_XYZW;
377
378 inst_count = 0;
379 }
380
381 if (inst->opcode != BRW_OPCODE_MOV ||
382 inst->dst.writemask == WRITEMASK_XYZW ||
383 inst->src[0].file != IMM)
384 continue;
385
386 int vf = brw_float_to_vf(inst->src[0].fixed_hw_reg.dw1.f);
387 if (vf == -1)
388 continue;
389
390 if ((inst->dst.writemask & WRITEMASK_X) != 0)
391 imm[0] = vf;
392 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
393 imm[1] = vf;
394 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
395 imm[2] = vf;
396 if ((inst->dst.writemask & WRITEMASK_W) != 0)
397 imm[3] = vf;
398
399 imm_inst[inst_count++] = inst;
400
401 remaining_channels &= ~inst->dst.writemask;
402 if (remaining_channels == 0) {
403 vec4_instruction *mov = MOV(inst->dst, imm);
404 mov->dst.type = BRW_REGISTER_TYPE_F;
405 mov->dst.writemask = WRITEMASK_XYZW;
406 inst->insert_after(block, mov);
407 last_reg = -1;
408
409 for (int i = 0; i < inst_count; i++) {
410 imm_inst[i]->remove(block);
411 }
412 progress = true;
413 }
414 }
415
416 if (progress)
417 invalidate_live_intervals();
418
419 return progress;
420 }
421
422 /* Replaces unused channels of a swizzle with channels that are used.
423 *
424 * For instance, this pass transforms
425 *
426 * mov vgrf4.yz, vgrf5.wxzy
427 *
428 * into
429 *
430 * mov vgrf4.yz, vgrf5.xxzx
431 *
432 * This eliminates false uses of some channels, letting dead code elimination
433 * remove the instructions that wrote them.
434 */
435 bool
436 vec4_visitor::opt_reduce_swizzle()
437 {
438 bool progress = false;
439
440 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
441 if (inst->dst.file == BAD_FILE || inst->dst.file == HW_REG ||
442 inst->is_send_from_grf())
443 continue;
444
445 unsigned swizzle;
446
447 /* Determine which channels of the sources are read. */
448 switch (inst->opcode) {
449 case VEC4_OPCODE_PACK_BYTES:
450 case BRW_OPCODE_DP4:
451 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
452 * but all four of src1.
453 */
454 swizzle = brw_swizzle_for_size(4);
455 break;
456 case BRW_OPCODE_DP3:
457 swizzle = brw_swizzle_for_size(3);
458 break;
459 case BRW_OPCODE_DP2:
460 swizzle = brw_swizzle_for_size(2);
461 break;
462 default:
463 swizzle = brw_swizzle_for_mask(inst->dst.writemask);
464 break;
465 }
466
467 /* Update sources' swizzles. */
468 for (int i = 0; i < 3; i++) {
469 if (inst->src[i].file != GRF &&
470 inst->src[i].file != ATTR &&
471 inst->src[i].file != UNIFORM)
472 continue;
473
474 const unsigned new_swizzle =
475 brw_compose_swizzle(swizzle, inst->src[i].swizzle);
476 if (inst->src[i].swizzle != new_swizzle) {
477 inst->src[i].swizzle = new_swizzle;
478 progress = true;
479 }
480 }
481 }
482
483 if (progress)
484 invalidate_live_intervals();
485
486 return progress;
487 }
488
489 void
490 vec4_visitor::split_uniform_registers()
491 {
492 /* Prior to this, uniforms have been in an array sized according to
493 * the number of vector uniforms present, sparsely filled (so an
494 * aggregate results in reg indices being skipped over). Now we're
495 * going to cut those aggregates up so each .reg index is one
496 * vector. The goal is to make elimination of unused uniform
497 * components easier later.
498 */
499 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
500 for (int i = 0 ; i < 3; i++) {
501 if (inst->src[i].file != UNIFORM)
502 continue;
503
504 assert(!inst->src[i].reladdr);
505
506 inst->src[i].reg += inst->src[i].reg_offset;
507 inst->src[i].reg_offset = 0;
508 }
509 }
510
511 /* Update that everything is now vector-sized. */
512 for (int i = 0; i < this->uniforms; i++) {
513 this->uniform_size[i] = 1;
514 }
515 }
516
517 void
518 vec4_visitor::pack_uniform_registers()
519 {
520 bool uniform_used[this->uniforms];
521 int new_loc[this->uniforms];
522 int new_chan[this->uniforms];
523
524 memset(uniform_used, 0, sizeof(uniform_used));
525 memset(new_loc, 0, sizeof(new_loc));
526 memset(new_chan, 0, sizeof(new_chan));
527
528 /* Find which uniform vectors are actually used by the program. We
529 * expect unused vector elements when we've moved array access out
530 * to pull constants, and from some GLSL code generators like wine.
531 */
532 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
533 for (int i = 0 ; i < 3; i++) {
534 if (inst->src[i].file != UNIFORM)
535 continue;
536
537 uniform_used[inst->src[i].reg] = true;
538 }
539 }
540
541 int new_uniform_count = 0;
542
543 /* Now, figure out a packing of the live uniform vectors into our
544 * push constants.
545 */
546 for (int src = 0; src < uniforms; src++) {
547 assert(src < uniform_array_size);
548 int size = this->uniform_vector_size[src];
549
550 if (!uniform_used[src]) {
551 this->uniform_vector_size[src] = 0;
552 continue;
553 }
554
555 int dst;
556 /* Find the lowest place we can slot this uniform in. */
557 for (dst = 0; dst < src; dst++) {
558 if (this->uniform_vector_size[dst] + size <= 4)
559 break;
560 }
561
562 if (src == dst) {
563 new_loc[src] = dst;
564 new_chan[src] = 0;
565 } else {
566 new_loc[src] = dst;
567 new_chan[src] = this->uniform_vector_size[dst];
568
569 /* Move the references to the data */
570 for (int j = 0; j < size; j++) {
571 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
572 stage_prog_data->param[src * 4 + j];
573 }
574
575 this->uniform_vector_size[dst] += size;
576 this->uniform_vector_size[src] = 0;
577 }
578
579 new_uniform_count = MAX2(new_uniform_count, dst + 1);
580 }
581
582 this->uniforms = new_uniform_count;
583
584 /* Now, update the instructions for our repacked uniforms. */
585 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
586 for (int i = 0 ; i < 3; i++) {
587 int src = inst->src[i].reg;
588
589 if (inst->src[i].file != UNIFORM)
590 continue;
591
592 inst->src[i].reg = new_loc[src];
593 inst->src[i].swizzle += BRW_SWIZZLE4(new_chan[src], new_chan[src],
594 new_chan[src], new_chan[src]);
595 }
596 }
597 }
598
599 /**
600 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
601 *
602 * While GLSL IR also performs this optimization, we end up with it in
603 * our instruction stream for a couple of reasons. One is that we
604 * sometimes generate silly instructions, for example in array access
605 * where we'll generate "ADD offset, index, base" even if base is 0.
606 * The other is that GLSL IR's constant propagation doesn't track the
607 * components of aggregates, so some VS patterns (initialize matrix to
608 * 0, accumulate in vertex blending factors) end up breaking down to
609 * instructions involving 0.
610 */
611 bool
612 vec4_visitor::opt_algebraic()
613 {
614 bool progress = false;
615
616 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
617 switch (inst->opcode) {
618 case BRW_OPCODE_MOV:
619 if (inst->src[0].file != IMM)
620 break;
621
622 if (inst->saturate) {
623 if (inst->dst.type != inst->src[0].type)
624 assert(!"unimplemented: saturate mixed types");
625
626 if (brw_saturate_immediate(inst->dst.type,
627 &inst->src[0].fixed_hw_reg)) {
628 inst->saturate = false;
629 progress = true;
630 }
631 }
632 break;
633
634 case VEC4_OPCODE_UNPACK_UNIFORM:
635 if (inst->src[0].file != UNIFORM) {
636 inst->opcode = BRW_OPCODE_MOV;
637 progress = true;
638 }
639 break;
640
641 case BRW_OPCODE_ADD:
642 if (inst->src[1].is_zero()) {
643 inst->opcode = BRW_OPCODE_MOV;
644 inst->src[1] = src_reg();
645 progress = true;
646 }
647 break;
648
649 case BRW_OPCODE_MUL:
650 if (inst->src[1].is_zero()) {
651 inst->opcode = BRW_OPCODE_MOV;
652 switch (inst->src[0].type) {
653 case BRW_REGISTER_TYPE_F:
654 inst->src[0] = src_reg(0.0f);
655 break;
656 case BRW_REGISTER_TYPE_D:
657 inst->src[0] = src_reg(0);
658 break;
659 case BRW_REGISTER_TYPE_UD:
660 inst->src[0] = src_reg(0u);
661 break;
662 default:
663 unreachable("not reached");
664 }
665 inst->src[1] = src_reg();
666 progress = true;
667 } else if (inst->src[1].is_one()) {
668 inst->opcode = BRW_OPCODE_MOV;
669 inst->src[1] = src_reg();
670 progress = true;
671 } else if (inst->src[1].is_negative_one()) {
672 inst->opcode = BRW_OPCODE_MOV;
673 inst->src[0].negate = !inst->src[0].negate;
674 inst->src[1] = src_reg();
675 progress = true;
676 }
677 break;
678 case BRW_OPCODE_CMP:
679 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
680 inst->src[0].abs &&
681 inst->src[0].negate &&
682 inst->src[1].is_zero()) {
683 inst->src[0].abs = false;
684 inst->src[0].negate = false;
685 inst->conditional_mod = BRW_CONDITIONAL_Z;
686 progress = true;
687 break;
688 }
689 break;
690 case SHADER_OPCODE_RCP: {
691 vec4_instruction *prev = (vec4_instruction *)inst->prev;
692 if (prev->opcode == SHADER_OPCODE_SQRT) {
693 if (inst->src[0].equals(src_reg(prev->dst))) {
694 inst->opcode = SHADER_OPCODE_RSQ;
695 inst->src[0] = prev->src[0];
696 progress = true;
697 }
698 }
699 break;
700 }
701 case SHADER_OPCODE_BROADCAST:
702 if (is_uniform(inst->src[0]) ||
703 inst->src[1].is_zero()) {
704 inst->opcode = BRW_OPCODE_MOV;
705 inst->src[1] = src_reg();
706 inst->force_writemask_all = true;
707 progress = true;
708 }
709 break;
710
711 default:
712 break;
713 }
714 }
715
716 if (progress)
717 invalidate_live_intervals();
718
719 return progress;
720 }
721
722 /**
723 * Only a limited number of hardware registers may be used for push
724 * constants, so this turns access to the overflowed constants into
725 * pull constants.
726 */
727 void
728 vec4_visitor::move_push_constants_to_pull_constants()
729 {
730 int pull_constant_loc[this->uniforms];
731
732 /* Only allow 32 registers (256 uniform components) as push constants,
733 * which is the limit on gen6.
734 *
735 * If changing this value, note the limitation about total_regs in
736 * brw_curbe.c.
737 */
738 int max_uniform_components = 32 * 8;
739 if (this->uniforms * 4 <= max_uniform_components)
740 return;
741
742 /* Make some sort of choice as to which uniforms get sent to pull
743 * constants. We could potentially do something clever here like
744 * look for the most infrequently used uniform vec4s, but leave
745 * that for later.
746 */
747 for (int i = 0; i < this->uniforms * 4; i += 4) {
748 pull_constant_loc[i / 4] = -1;
749
750 if (i >= max_uniform_components) {
751 const gl_constant_value **values = &stage_prog_data->param[i];
752
753 /* Try to find an existing copy of this uniform in the pull
754 * constants if it was part of an array access already.
755 */
756 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
757 int matches;
758
759 for (matches = 0; matches < 4; matches++) {
760 if (stage_prog_data->pull_param[j + matches] != values[matches])
761 break;
762 }
763
764 if (matches == 4) {
765 pull_constant_loc[i / 4] = j / 4;
766 break;
767 }
768 }
769
770 if (pull_constant_loc[i / 4] == -1) {
771 assert(stage_prog_data->nr_pull_params % 4 == 0);
772 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
773
774 for (int j = 0; j < 4; j++) {
775 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
776 values[j];
777 }
778 }
779 }
780 }
781
782 /* Now actually rewrite usage of the things we've moved to pull
783 * constants.
784 */
785 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
786 for (int i = 0 ; i < 3; i++) {
787 if (inst->src[i].file != UNIFORM ||
788 pull_constant_loc[inst->src[i].reg] == -1)
789 continue;
790
791 int uniform = inst->src[i].reg;
792
793 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
794
795 emit_pull_constant_load(block, inst, temp, inst->src[i],
796 pull_constant_loc[uniform]);
797
798 inst->src[i].file = temp.file;
799 inst->src[i].reg = temp.reg;
800 inst->src[i].reg_offset = temp.reg_offset;
801 inst->src[i].reladdr = NULL;
802 }
803 }
804
805 /* Repack push constants to remove the now-unused ones. */
806 pack_uniform_registers();
807 }
808
809 /* Conditions for which we want to avoid setting the dependency control bits */
810 bool
811 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
812 {
813 #define IS_DWORD(reg) \
814 (reg.type == BRW_REGISTER_TYPE_UD || \
815 reg.type == BRW_REGISTER_TYPE_D)
816
817 /* "When source or destination datatype is 64b or operation is integer DWord
818 * multiply, DepCtrl must not be used."
819 * May apply to future SoCs as well.
820 */
821 if (devinfo->is_cherryview) {
822 if (inst->opcode == BRW_OPCODE_MUL &&
823 IS_DWORD(inst->src[0]) &&
824 IS_DWORD(inst->src[1]))
825 return true;
826 }
827 #undef IS_DWORD
828
829 if (devinfo->gen >= 8) {
830 if (inst->opcode == BRW_OPCODE_F32TO16)
831 return true;
832 }
833
834 /*
835 * mlen:
836 * In the presence of send messages, totally interrupt dependency
837 * control. They're long enough that the chance of dependency
838 * control around them just doesn't matter.
839 *
840 * predicate:
841 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
842 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
843 * completes the scoreboard clear must have a non-zero execution mask. This
844 * means, if any kind of predication can change the execution mask or channel
845 * enable of the last instruction, the optimization must be avoided. This is
846 * to avoid instructions being shot down the pipeline when no writes are
847 * required.
848 *
849 * math:
850 * Dependency control does not work well over math instructions.
851 * NB: Discovered empirically
852 */
853 return (inst->mlen || inst->predicate || inst->is_math());
854 }
855
856 /**
857 * Sets the dependency control fields on instructions after register
858 * allocation and before the generator is run.
859 *
860 * When you have a sequence of instructions like:
861 *
862 * DP4 temp.x vertex uniform[0]
863 * DP4 temp.y vertex uniform[0]
864 * DP4 temp.z vertex uniform[0]
865 * DP4 temp.w vertex uniform[0]
866 *
867 * The hardware doesn't know that it can actually run the later instructions
868 * while the previous ones are in flight, producing stalls. However, we have
869 * manual fields we can set in the instructions that let it do so.
870 */
871 void
872 vec4_visitor::opt_set_dependency_control()
873 {
874 vec4_instruction *last_grf_write[BRW_MAX_GRF];
875 uint8_t grf_channels_written[BRW_MAX_GRF];
876 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
877 uint8_t mrf_channels_written[BRW_MAX_GRF];
878
879 assert(prog_data->total_grf ||
880 !"Must be called after register allocation");
881
882 foreach_block (block, cfg) {
883 memset(last_grf_write, 0, sizeof(last_grf_write));
884 memset(last_mrf_write, 0, sizeof(last_mrf_write));
885
886 foreach_inst_in_block (vec4_instruction, inst, block) {
887 /* If we read from a register that we were doing dependency control
888 * on, don't do dependency control across the read.
889 */
890 for (int i = 0; i < 3; i++) {
891 int reg = inst->src[i].reg + inst->src[i].reg_offset;
892 if (inst->src[i].file == GRF) {
893 last_grf_write[reg] = NULL;
894 } else if (inst->src[i].file == HW_REG) {
895 memset(last_grf_write, 0, sizeof(last_grf_write));
896 break;
897 }
898 assert(inst->src[i].file != MRF);
899 }
900
901 if (is_dep_ctrl_unsafe(inst)) {
902 memset(last_grf_write, 0, sizeof(last_grf_write));
903 memset(last_mrf_write, 0, sizeof(last_mrf_write));
904 continue;
905 }
906
907 /* Now, see if we can do dependency control for this instruction
908 * against a previous one writing to its destination.
909 */
910 int reg = inst->dst.reg + inst->dst.reg_offset;
911 if (inst->dst.file == GRF) {
912 if (last_grf_write[reg] &&
913 !(inst->dst.writemask & grf_channels_written[reg])) {
914 last_grf_write[reg]->no_dd_clear = true;
915 inst->no_dd_check = true;
916 } else {
917 grf_channels_written[reg] = 0;
918 }
919
920 last_grf_write[reg] = inst;
921 grf_channels_written[reg] |= inst->dst.writemask;
922 } else if (inst->dst.file == MRF) {
923 if (last_mrf_write[reg] &&
924 !(inst->dst.writemask & mrf_channels_written[reg])) {
925 last_mrf_write[reg]->no_dd_clear = true;
926 inst->no_dd_check = true;
927 } else {
928 mrf_channels_written[reg] = 0;
929 }
930
931 last_mrf_write[reg] = inst;
932 mrf_channels_written[reg] |= inst->dst.writemask;
933 } else if (inst->dst.reg == HW_REG) {
934 if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
935 memset(last_grf_write, 0, sizeof(last_grf_write));
936 if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
937 memset(last_mrf_write, 0, sizeof(last_mrf_write));
938 }
939 }
940 }
941 }
942
943 bool
944 vec4_instruction::can_reswizzle(int dst_writemask,
945 int swizzle,
946 int swizzle_mask)
947 {
948 /* If this instruction sets anything not referenced by swizzle, then we'd
949 * totally break it when we reswizzle.
950 */
951 if (dst.writemask & ~swizzle_mask)
952 return false;
953
954 if (mlen > 0)
955 return false;
956
957 /* We can't use swizzles on the accumulator and that's really the only
958 * HW_REG we would care to reswizzle so just disallow them all.
959 */
960 for (int i = 0; i < 3; i++) {
961 if (src[i].file == HW_REG)
962 return false;
963 }
964
965 return true;
966 }
967
968 /**
969 * For any channels in the swizzle's source that were populated by this
970 * instruction, rewrite the instruction to put the appropriate result directly
971 * in those channels.
972 *
973 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
974 */
975 void
976 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
977 {
978 /* Destination write mask doesn't correspond to source swizzle for the dot
979 * product and pack_bytes instructions.
980 */
981 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
982 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
983 opcode != VEC4_OPCODE_PACK_BYTES) {
984 for (int i = 0; i < 3; i++) {
985 if (src[i].file == BAD_FILE || src[i].file == IMM)
986 continue;
987
988 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
989 }
990 }
991
992 /* Apply the specified swizzle and writemask to the original mask of
993 * written components.
994 */
995 dst.writemask = dst_writemask &
996 brw_apply_swizzle_to_mask(swizzle, dst.writemask);
997 }
998
999 /*
1000 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1001 * just written and then MOVed into another reg and making the original write
1002 * of the GRF write directly to the final destination instead.
1003 */
1004 bool
1005 vec4_visitor::opt_register_coalesce()
1006 {
1007 bool progress = false;
1008 int next_ip = 0;
1009
1010 calculate_live_intervals();
1011
1012 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1013 int ip = next_ip;
1014 next_ip++;
1015
1016 if (inst->opcode != BRW_OPCODE_MOV ||
1017 (inst->dst.file != GRF && inst->dst.file != MRF) ||
1018 inst->predicate ||
1019 inst->src[0].file != GRF ||
1020 inst->dst.type != inst->src[0].type ||
1021 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1022 continue;
1023
1024 bool to_mrf = (inst->dst.file == MRF);
1025
1026 /* Can't coalesce this GRF if someone else was going to
1027 * read it later.
1028 */
1029 if (var_range_end(var_from_reg(alloc, inst->src[0]), 4) > ip)
1030 continue;
1031
1032 /* We need to check interference with the final destination between this
1033 * instruction and the earliest instruction involved in writing the GRF
1034 * we're eliminating. To do that, keep track of which of our source
1035 * channels we've seen initialized.
1036 */
1037 const unsigned chans_needed =
1038 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1039 inst->dst.writemask);
1040 unsigned chans_remaining = chans_needed;
1041
1042 /* Now walk up the instruction stream trying to see if we can rewrite
1043 * everything writing to the temporary to write into the destination
1044 * instead.
1045 */
1046 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1047 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1048 inst, block) {
1049 _scan_inst = scan_inst;
1050
1051 if (inst->src[0].in_range(scan_inst->dst, scan_inst->regs_written)) {
1052 /* Found something writing to the reg we want to coalesce away. */
1053 if (to_mrf) {
1054 /* SEND instructions can't have MRF as a destination. */
1055 if (scan_inst->mlen)
1056 break;
1057
1058 if (devinfo->gen == 6) {
1059 /* gen6 math instructions must have the destination be
1060 * GRF, so no compute-to-MRF for them.
1061 */
1062 if (scan_inst->is_math()) {
1063 break;
1064 }
1065 }
1066 }
1067
1068 /* This doesn't handle saturation on the instruction we
1069 * want to coalesce away if the register types do not match.
1070 * But if scan_inst is a non type-converting 'mov', we can fix
1071 * the types later.
1072 */
1073 if (inst->saturate &&
1074 inst->dst.type != scan_inst->dst.type &&
1075 !(scan_inst->opcode == BRW_OPCODE_MOV &&
1076 scan_inst->dst.type == scan_inst->src[0].type))
1077 break;
1078
1079 /* If we can't handle the swizzle, bail. */
1080 if (!scan_inst->can_reswizzle(inst->dst.writemask,
1081 inst->src[0].swizzle,
1082 chans_needed)) {
1083 break;
1084 }
1085
1086 /* This doesn't handle coalescing of multiple registers. */
1087 if (scan_inst->regs_written > 1)
1088 break;
1089
1090 /* Mark which channels we found unconditional writes for. */
1091 if (!scan_inst->predicate)
1092 chans_remaining &= ~scan_inst->dst.writemask;
1093
1094 if (chans_remaining == 0)
1095 break;
1096 }
1097
1098 /* You can't read from an MRF, so if someone else reads our MRF's
1099 * source GRF that we wanted to rewrite, that stops us. If it's a
1100 * GRF we're trying to coalesce to, we don't actually handle
1101 * rewriting sources so bail in that case as well.
1102 */
1103 bool interfered = false;
1104 for (int i = 0; i < 3; i++) {
1105 if (inst->src[0].in_range(scan_inst->src[i],
1106 scan_inst->regs_read(i)))
1107 interfered = true;
1108 }
1109 if (interfered)
1110 break;
1111
1112 /* If somebody else writes the same channels of our destination here,
1113 * we can't coalesce before that.
1114 */
1115 if (inst->dst.in_range(scan_inst->dst, scan_inst->regs_written) &&
1116 (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1117 break;
1118 }
1119
1120 /* Check for reads of the register we're trying to coalesce into. We
1121 * can't go rewriting instructions above that to put some other value
1122 * in the register instead.
1123 */
1124 if (to_mrf && scan_inst->mlen > 0) {
1125 if (inst->dst.reg >= scan_inst->base_mrf &&
1126 inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
1127 break;
1128 }
1129 } else {
1130 for (int i = 0; i < 3; i++) {
1131 if (inst->dst.in_range(scan_inst->src[i],
1132 scan_inst->regs_read(i)))
1133 interfered = true;
1134 }
1135 if (interfered)
1136 break;
1137 }
1138 }
1139
1140 if (chans_remaining == 0) {
1141 /* If we've made it here, we have an MOV we want to coalesce out, and
1142 * a scan_inst pointing to the earliest instruction involved in
1143 * computing the value. Now go rewrite the instruction stream
1144 * between the two.
1145 */
1146 vec4_instruction *scan_inst = _scan_inst;
1147 while (scan_inst != inst) {
1148 if (scan_inst->dst.file == GRF &&
1149 scan_inst->dst.reg == inst->src[0].reg &&
1150 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1151 scan_inst->reswizzle(inst->dst.writemask,
1152 inst->src[0].swizzle);
1153 scan_inst->dst.file = inst->dst.file;
1154 scan_inst->dst.reg = inst->dst.reg;
1155 scan_inst->dst.reg_offset = inst->dst.reg_offset;
1156 if (inst->saturate &&
1157 inst->dst.type != scan_inst->dst.type) {
1158 /* If we have reached this point, scan_inst is a non
1159 * type-converting 'mov' and we can modify its register types
1160 * to match the ones in inst. Otherwise, we could have an
1161 * incorrect saturation result.
1162 */
1163 scan_inst->dst.type = inst->dst.type;
1164 scan_inst->src[0].type = inst->src[0].type;
1165 }
1166 scan_inst->saturate |= inst->saturate;
1167 }
1168 scan_inst = (vec4_instruction *)scan_inst->next;
1169 }
1170 inst->remove(block);
1171 progress = true;
1172 }
1173 }
1174
1175 if (progress)
1176 invalidate_live_intervals();
1177
1178 return progress;
1179 }
1180
1181 /**
1182 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1183 * flow. We could probably do better here with some form of divergence
1184 * analysis.
1185 */
1186 bool
1187 vec4_visitor::eliminate_find_live_channel()
1188 {
1189 bool progress = false;
1190 unsigned depth = 0;
1191
1192 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1193 switch (inst->opcode) {
1194 case BRW_OPCODE_IF:
1195 case BRW_OPCODE_DO:
1196 depth++;
1197 break;
1198
1199 case BRW_OPCODE_ENDIF:
1200 case BRW_OPCODE_WHILE:
1201 depth--;
1202 break;
1203
1204 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1205 if (depth == 0) {
1206 inst->opcode = BRW_OPCODE_MOV;
1207 inst->src[0] = src_reg(0);
1208 inst->force_writemask_all = true;
1209 progress = true;
1210 }
1211 break;
1212
1213 default:
1214 break;
1215 }
1216 }
1217
1218 return progress;
1219 }
1220
1221 /**
1222 * Splits virtual GRFs requesting more than one contiguous physical register.
1223 *
1224 * We initially create large virtual GRFs for temporary structures, arrays,
1225 * and matrices, so that the dereference visitor functions can add reg_offsets
1226 * to work their way down to the actual member being accessed. But when it
1227 * comes to optimization, we'd like to treat each register as individual
1228 * storage if possible.
1229 *
1230 * So far, the only thing that might prevent splitting is a send message from
1231 * a GRF on IVB.
1232 */
1233 void
1234 vec4_visitor::split_virtual_grfs()
1235 {
1236 int num_vars = this->alloc.count;
1237 int new_virtual_grf[num_vars];
1238 bool split_grf[num_vars];
1239
1240 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1241
1242 /* Try to split anything > 0 sized. */
1243 for (int i = 0; i < num_vars; i++) {
1244 split_grf[i] = this->alloc.sizes[i] != 1;
1245 }
1246
1247 /* Check that the instructions are compatible with the registers we're trying
1248 * to split.
1249 */
1250 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1251 if (inst->dst.file == GRF && inst->regs_written > 1)
1252 split_grf[inst->dst.reg] = false;
1253
1254 for (int i = 0; i < 3; i++) {
1255 if (inst->src[i].file == GRF && inst->regs_read(i) > 1)
1256 split_grf[inst->src[i].reg] = false;
1257 }
1258 }
1259
1260 /* Allocate new space for split regs. Note that the virtual
1261 * numbers will be contiguous.
1262 */
1263 for (int i = 0; i < num_vars; i++) {
1264 if (!split_grf[i])
1265 continue;
1266
1267 new_virtual_grf[i] = alloc.allocate(1);
1268 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1269 unsigned reg = alloc.allocate(1);
1270 assert(reg == new_virtual_grf[i] + j - 1);
1271 (void) reg;
1272 }
1273 this->alloc.sizes[i] = 1;
1274 }
1275
1276 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1277 if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
1278 inst->dst.reg_offset != 0) {
1279 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1280 inst->dst.reg_offset - 1);
1281 inst->dst.reg_offset = 0;
1282 }
1283 for (int i = 0; i < 3; i++) {
1284 if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
1285 inst->src[i].reg_offset != 0) {
1286 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1287 inst->src[i].reg_offset - 1);
1288 inst->src[i].reg_offset = 0;
1289 }
1290 }
1291 }
1292 invalidate_live_intervals();
1293 }
1294
1295 void
1296 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1297 {
1298 dump_instruction(be_inst, stderr);
1299 }
1300
1301 void
1302 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1303 {
1304 vec4_instruction *inst = (vec4_instruction *)be_inst;
1305
1306 if (inst->predicate) {
1307 fprintf(file, "(%cf0.%d) ",
1308 inst->predicate_inverse ? '-' : '+',
1309 inst->flag_subreg);
1310 }
1311
1312 fprintf(file, "%s", brw_instruction_name(inst->opcode));
1313 if (inst->saturate)
1314 fprintf(file, ".sat");
1315 if (inst->conditional_mod) {
1316 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1317 if (!inst->predicate &&
1318 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1319 inst->opcode != BRW_OPCODE_IF &&
1320 inst->opcode != BRW_OPCODE_WHILE))) {
1321 fprintf(file, ".f0.%d", inst->flag_subreg);
1322 }
1323 }
1324 fprintf(file, " ");
1325
1326 switch (inst->dst.file) {
1327 case GRF:
1328 fprintf(file, "vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
1329 break;
1330 case MRF:
1331 fprintf(file, "m%d", inst->dst.reg);
1332 break;
1333 case HW_REG:
1334 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1335 switch (inst->dst.fixed_hw_reg.nr) {
1336 case BRW_ARF_NULL:
1337 fprintf(file, "null");
1338 break;
1339 case BRW_ARF_ADDRESS:
1340 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
1341 break;
1342 case BRW_ARF_ACCUMULATOR:
1343 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
1344 break;
1345 case BRW_ARF_FLAG:
1346 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1347 inst->dst.fixed_hw_reg.subnr);
1348 break;
1349 default:
1350 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1351 inst->dst.fixed_hw_reg.subnr);
1352 break;
1353 }
1354 } else {
1355 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
1356 }
1357 if (inst->dst.fixed_hw_reg.subnr)
1358 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
1359 break;
1360 case BAD_FILE:
1361 fprintf(file, "(null)");
1362 break;
1363 default:
1364 fprintf(file, "???");
1365 break;
1366 }
1367 if (inst->dst.writemask != WRITEMASK_XYZW) {
1368 fprintf(file, ".");
1369 if (inst->dst.writemask & 1)
1370 fprintf(file, "x");
1371 if (inst->dst.writemask & 2)
1372 fprintf(file, "y");
1373 if (inst->dst.writemask & 4)
1374 fprintf(file, "z");
1375 if (inst->dst.writemask & 8)
1376 fprintf(file, "w");
1377 }
1378 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
1379
1380 if (inst->src[0].file != BAD_FILE)
1381 fprintf(file, ", ");
1382
1383 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1384 if (inst->src[i].negate)
1385 fprintf(file, "-");
1386 if (inst->src[i].abs)
1387 fprintf(file, "|");
1388 switch (inst->src[i].file) {
1389 case GRF:
1390 fprintf(file, "vgrf%d", inst->src[i].reg);
1391 break;
1392 case ATTR:
1393 fprintf(file, "attr%d", inst->src[i].reg);
1394 break;
1395 case UNIFORM:
1396 fprintf(file, "u%d", inst->src[i].reg);
1397 break;
1398 case IMM:
1399 switch (inst->src[i].type) {
1400 case BRW_REGISTER_TYPE_F:
1401 fprintf(file, "%fF", inst->src[i].fixed_hw_reg.dw1.f);
1402 break;
1403 case BRW_REGISTER_TYPE_D:
1404 fprintf(file, "%dD", inst->src[i].fixed_hw_reg.dw1.d);
1405 break;
1406 case BRW_REGISTER_TYPE_UD:
1407 fprintf(file, "%uU", inst->src[i].fixed_hw_reg.dw1.ud);
1408 break;
1409 case BRW_REGISTER_TYPE_VF:
1410 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1411 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
1412 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
1413 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
1414 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
1415 break;
1416 default:
1417 fprintf(file, "???");
1418 break;
1419 }
1420 break;
1421 case HW_REG:
1422 if (inst->src[i].fixed_hw_reg.negate)
1423 fprintf(file, "-");
1424 if (inst->src[i].fixed_hw_reg.abs)
1425 fprintf(file, "|");
1426 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1427 switch (inst->src[i].fixed_hw_reg.nr) {
1428 case BRW_ARF_NULL:
1429 fprintf(file, "null");
1430 break;
1431 case BRW_ARF_ADDRESS:
1432 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
1433 break;
1434 case BRW_ARF_ACCUMULATOR:
1435 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
1436 break;
1437 case BRW_ARF_FLAG:
1438 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1439 inst->src[i].fixed_hw_reg.subnr);
1440 break;
1441 default:
1442 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1443 inst->src[i].fixed_hw_reg.subnr);
1444 break;
1445 }
1446 } else {
1447 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
1448 }
1449 if (inst->src[i].fixed_hw_reg.subnr)
1450 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
1451 if (inst->src[i].fixed_hw_reg.abs)
1452 fprintf(file, "|");
1453 break;
1454 case BAD_FILE:
1455 fprintf(file, "(null)");
1456 break;
1457 default:
1458 fprintf(file, "???");
1459 break;
1460 }
1461
1462 /* Don't print .0; and only VGRFs have reg_offsets and sizes */
1463 if (inst->src[i].reg_offset != 0 &&
1464 inst->src[i].file == GRF &&
1465 alloc.sizes[inst->src[i].reg] != 1)
1466 fprintf(file, ".%d", inst->src[i].reg_offset);
1467
1468 if (inst->src[i].file != IMM) {
1469 static const char *chans[4] = {"x", "y", "z", "w"};
1470 fprintf(file, ".");
1471 for (int c = 0; c < 4; c++) {
1472 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1473 }
1474 }
1475
1476 if (inst->src[i].abs)
1477 fprintf(file, "|");
1478
1479 if (inst->src[i].file != IMM) {
1480 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1481 }
1482
1483 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1484 fprintf(file, ", ");
1485 }
1486
1487 fprintf(file, "\n");
1488 }
1489
1490
1491 static inline struct brw_reg
1492 attribute_to_hw_reg(int attr, bool interleaved)
1493 {
1494 if (interleaved)
1495 return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1496 else
1497 return brw_vec8_grf(attr, 0);
1498 }
1499
1500
1501 /**
1502 * Replace each register of type ATTR in this->instructions with a reference
1503 * to a fixed HW register.
1504 *
1505 * If interleaved is true, then each attribute takes up half a register, with
1506 * register N containing attribute 2*N in its first half and attribute 2*N+1
1507 * in its second half (this corresponds to the payload setup used by geometry
1508 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
1509 * false, then each attribute takes up a whole register, with register N
1510 * containing attribute N (this corresponds to the payload setup used by
1511 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1512 */
1513 void
1514 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1515 bool interleaved)
1516 {
1517 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1518 /* We have to support ATTR as a destination for GL_FIXED fixup. */
1519 if (inst->dst.file == ATTR) {
1520 int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
1521
1522 /* All attributes used in the shader need to have been assigned a
1523 * hardware register by the caller
1524 */
1525 assert(grf != 0);
1526
1527 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1528 reg.type = inst->dst.type;
1529 reg.dw1.bits.writemask = inst->dst.writemask;
1530
1531 inst->dst.file = HW_REG;
1532 inst->dst.fixed_hw_reg = reg;
1533 }
1534
1535 for (int i = 0; i < 3; i++) {
1536 if (inst->src[i].file != ATTR)
1537 continue;
1538
1539 int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
1540
1541 /* All attributes used in the shader need to have been assigned a
1542 * hardware register by the caller
1543 */
1544 assert(grf != 0);
1545
1546 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1547 reg.dw1.bits.swizzle = inst->src[i].swizzle;
1548 reg.type = inst->src[i].type;
1549 if (inst->src[i].abs)
1550 reg = brw_abs(reg);
1551 if (inst->src[i].negate)
1552 reg = negate(reg);
1553
1554 inst->src[i].file = HW_REG;
1555 inst->src[i].fixed_hw_reg = reg;
1556 }
1557 }
1558 }
1559
1560 int
1561 vec4_vs_visitor::setup_attributes(int payload_reg)
1562 {
1563 int nr_attributes;
1564 int attribute_map[VERT_ATTRIB_MAX + 1];
1565 memset(attribute_map, 0, sizeof(attribute_map));
1566
1567 nr_attributes = 0;
1568 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1569 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1570 attribute_map[i] = payload_reg + nr_attributes;
1571 nr_attributes++;
1572 }
1573 }
1574
1575 /* VertexID is stored by the VF as the last vertex element, but we
1576 * don't represent it with a flag in inputs_read, so we call it
1577 * VERT_ATTRIB_MAX.
1578 */
1579 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
1580 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1581 nr_attributes++;
1582 }
1583
1584 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1585
1586 /* The BSpec says we always have to read at least one thing from
1587 * the VF, and it appears that the hardware wedges otherwise.
1588 */
1589 if (nr_attributes == 0)
1590 nr_attributes = 1;
1591
1592 prog_data->urb_read_length = (nr_attributes + 1) / 2;
1593
1594 unsigned vue_entries =
1595 MAX2(nr_attributes, prog_data->vue_map.num_slots);
1596
1597 if (devinfo->gen == 6)
1598 prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
1599 else
1600 prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
1601
1602 return payload_reg + nr_attributes;
1603 }
1604
1605 int
1606 vec4_visitor::setup_uniforms(int reg)
1607 {
1608 prog_data->base.dispatch_grf_start_reg = reg;
1609
1610 /* The pre-gen6 VS requires that some push constants get loaded no
1611 * matter what, or the GPU would hang.
1612 */
1613 if (devinfo->gen < 6 && this->uniforms == 0) {
1614 assert(this->uniforms < this->uniform_array_size);
1615 this->uniform_vector_size[this->uniforms] = 1;
1616
1617 stage_prog_data->param =
1618 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1619 for (unsigned int i = 0; i < 4; i++) {
1620 unsigned int slot = this->uniforms * 4 + i;
1621 static gl_constant_value zero = { 0.0 };
1622 stage_prog_data->param[slot] = &zero;
1623 }
1624
1625 this->uniforms++;
1626 reg++;
1627 } else {
1628 reg += ALIGN(uniforms, 2) / 2;
1629 }
1630
1631 stage_prog_data->nr_params = this->uniforms * 4;
1632
1633 prog_data->base.curb_read_length =
1634 reg - prog_data->base.dispatch_grf_start_reg;
1635
1636 return reg;
1637 }
1638
1639 void
1640 vec4_vs_visitor::setup_payload(void)
1641 {
1642 int reg = 0;
1643
1644 /* The payload always contains important data in g0, which contains
1645 * the URB handles that are passed on to the URB write at the end
1646 * of the thread. So, we always start push constants at g1.
1647 */
1648 reg++;
1649
1650 reg = setup_uniforms(reg);
1651
1652 reg = setup_attributes(reg);
1653
1654 this->first_non_payload_grf = reg;
1655 }
1656
1657 void
1658 vec4_visitor::assign_binding_table_offsets()
1659 {
1660 assign_common_binding_table_offsets(0);
1661 }
1662
1663 src_reg
1664 vec4_visitor::get_timestamp()
1665 {
1666 assert(devinfo->gen >= 7);
1667
1668 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1669 BRW_ARF_TIMESTAMP,
1670 0,
1671 0,
1672 0,
1673 BRW_REGISTER_TYPE_UD,
1674 BRW_VERTICAL_STRIDE_0,
1675 BRW_WIDTH_4,
1676 BRW_HORIZONTAL_STRIDE_4,
1677 BRW_SWIZZLE_XYZW,
1678 WRITEMASK_XYZW));
1679
1680 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1681
1682 vec4_instruction *mov = emit(MOV(dst, ts));
1683 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1684 * even if it's not enabled in the dispatch.
1685 */
1686 mov->force_writemask_all = true;
1687
1688 return src_reg(dst);
1689 }
1690
1691 void
1692 vec4_visitor::emit_shader_time_begin()
1693 {
1694 current_annotation = "shader time start";
1695 shader_start_time = get_timestamp();
1696 }
1697
1698 void
1699 vec4_visitor::emit_shader_time_end()
1700 {
1701 current_annotation = "shader time end";
1702 src_reg shader_end_time = get_timestamp();
1703
1704
1705 /* Check that there weren't any timestamp reset events (assuming these
1706 * were the only two timestamp reads that happened).
1707 */
1708 src_reg reset_end = shader_end_time;
1709 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1710 vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
1711 test->conditional_mod = BRW_CONDITIONAL_Z;
1712
1713 emit(IF(BRW_PREDICATE_NORMAL));
1714
1715 /* Take the current timestamp and get the delta. */
1716 shader_start_time.negate = true;
1717 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1718 emit(ADD(diff, shader_start_time, shader_end_time));
1719
1720 /* If there were no instructions between the two timestamp gets, the diff
1721 * is 2 cycles. Remove that overhead, so I can forget about that when
1722 * trying to determine the time taken for single instructions.
1723 */
1724 emit(ADD(diff, src_reg(diff), src_reg(-2u)));
1725
1726 emit_shader_time_write(0, src_reg(diff));
1727 emit_shader_time_write(1, src_reg(1u));
1728 emit(BRW_OPCODE_ELSE);
1729 emit_shader_time_write(2, src_reg(1u));
1730 emit(BRW_OPCODE_ENDIF);
1731 }
1732
1733 void
1734 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
1735 {
1736 dst_reg dst =
1737 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1738
1739 dst_reg offset = dst;
1740 dst_reg time = dst;
1741 time.reg_offset++;
1742
1743 offset.type = BRW_REGISTER_TYPE_UD;
1744 int index = shader_time_index * 3 + shader_time_subindex;
1745 emit(MOV(offset, src_reg(index * SHADER_TIME_STRIDE)));
1746
1747 time.type = BRW_REGISTER_TYPE_UD;
1748 emit(MOV(time, src_reg(value)));
1749
1750 vec4_instruction *inst =
1751 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1752 inst->mlen = 2;
1753 }
1754
1755 bool
1756 vec4_visitor::run()
1757 {
1758 bool use_vec4_nir =
1759 compiler->glsl_compiler_options[stage].NirOptions != NULL;
1760
1761 sanity_param_count = prog->Parameters->NumParameters;
1762
1763 if (shader_time_index >= 0)
1764 emit_shader_time_begin();
1765
1766 assign_binding_table_offsets();
1767
1768 emit_prolog();
1769
1770 if (use_vec4_nir) {
1771 assert(prog->nir != NULL);
1772 emit_nir_code();
1773 if (failed)
1774 return false;
1775 } else if (shader) {
1776 /* Generate VS IR for main(). (the visitor only descends into
1777 * functions called "main").
1778 */
1779 visit_instructions(shader->base.ir);
1780 } else {
1781 emit_program_code();
1782 }
1783 base_ir = NULL;
1784
1785 emit_thread_end();
1786
1787 calculate_cfg();
1788
1789 /* Before any optimization, push array accesses out to scratch
1790 * space where we need them to be. This pass may allocate new
1791 * virtual GRFs, so we want to do it early. It also makes sure
1792 * that we have reladdr computations available for CSE, since we'll
1793 * often do repeated subexpressions for those.
1794 */
1795 if (shader || use_vec4_nir) {
1796 move_grf_array_access_to_scratch();
1797 move_uniform_array_access_to_pull_constants();
1798 } else {
1799 /* The ARB_vertex_program frontend emits pull constant loads directly
1800 * rather than using reladdr, so we don't need to walk through all the
1801 * instructions looking for things to move. There isn't anything.
1802 *
1803 * We do still need to split things to vec4 size.
1804 */
1805 split_uniform_registers();
1806 }
1807 pack_uniform_registers();
1808 move_push_constants_to_pull_constants();
1809 split_virtual_grfs();
1810
1811 #define OPT(pass, args...) ({ \
1812 pass_num++; \
1813 bool this_progress = pass(args); \
1814 \
1815 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
1816 char filename[64]; \
1817 snprintf(filename, 64, "%s-%04d-%02d-%02d-" #pass, \
1818 stage_abbrev, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
1819 \
1820 backend_shader::dump_instructions(filename); \
1821 } \
1822 \
1823 progress = progress || this_progress; \
1824 this_progress; \
1825 })
1826
1827
1828 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
1829 char filename[64];
1830 snprintf(filename, 64, "%s-%04d-00-start",
1831 stage_abbrev, shader_prog ? shader_prog->Name : 0);
1832
1833 backend_shader::dump_instructions(filename);
1834 }
1835
1836 bool progress;
1837 int iteration = 0;
1838 int pass_num = 0;
1839 do {
1840 progress = false;
1841 pass_num = 0;
1842 iteration++;
1843
1844 OPT(opt_reduce_swizzle);
1845 OPT(dead_code_eliminate);
1846 OPT(dead_control_flow_eliminate, this);
1847 OPT(opt_copy_propagation);
1848 OPT(opt_cse);
1849 OPT(opt_algebraic);
1850 OPT(opt_register_coalesce);
1851 OPT(eliminate_find_live_channel);
1852 } while (progress);
1853
1854 pass_num = 0;
1855
1856 if (OPT(opt_vector_float)) {
1857 OPT(opt_cse);
1858 OPT(opt_copy_propagation, false);
1859 OPT(opt_copy_propagation, true);
1860 OPT(dead_code_eliminate);
1861 }
1862
1863 if (failed)
1864 return false;
1865
1866 setup_payload();
1867
1868 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) {
1869 /* Debug of register spilling: Go spill everything. */
1870 const int grf_count = alloc.count;
1871 float spill_costs[alloc.count];
1872 bool no_spill[alloc.count];
1873 evaluate_spill_costs(spill_costs, no_spill);
1874 for (int i = 0; i < grf_count; i++) {
1875 if (no_spill[i])
1876 continue;
1877 spill_reg(i);
1878 }
1879 }
1880
1881 bool allocated_without_spills = reg_allocate();
1882
1883 if (!allocated_without_spills) {
1884 compiler->shader_perf_log(log_data,
1885 "%s shader triggered register spilling. "
1886 "Try reducing the number of live vec4 values "
1887 "to improve performance.\n",
1888 stage_name);
1889
1890 while (!reg_allocate()) {
1891 if (failed)
1892 return false;
1893 }
1894 }
1895
1896 opt_schedule_instructions();
1897
1898 opt_set_dependency_control();
1899
1900 if (last_scratch > 0) {
1901 prog_data->base.total_scratch =
1902 brw_get_scratch_size(last_scratch * REG_SIZE);
1903 }
1904
1905 /* If any state parameters were appended, then ParameterValues could have
1906 * been realloced, in which case the driver uniform storage set up by
1907 * _mesa_associate_uniform_storage() would point to freed memory. Make
1908 * sure that didn't happen.
1909 */
1910 assert(sanity_param_count == prog->Parameters->NumParameters);
1911
1912 return !failed;
1913 }
1914
1915 } /* namespace brw */
1916
1917 extern "C" {
1918
1919 /**
1920 * Compile a vertex shader.
1921 *
1922 * Returns the final assembly and the program's size.
1923 */
1924 const unsigned *
1925 brw_vs_emit(struct brw_context *brw,
1926 void *mem_ctx,
1927 const struct brw_vs_prog_key *key,
1928 struct brw_vs_prog_data *prog_data,
1929 struct gl_vertex_program *vp,
1930 struct gl_shader_program *prog,
1931 unsigned *final_assembly_size)
1932 {
1933 bool start_busy = false;
1934 double start_time = 0;
1935 const unsigned *assembly = NULL;
1936
1937 if (unlikely(brw->perf_debug)) {
1938 start_busy = (brw->batch.last_bo &&
1939 drm_intel_bo_busy(brw->batch.last_bo));
1940 start_time = get_time();
1941 }
1942
1943 struct brw_shader *shader = NULL;
1944 if (prog)
1945 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
1946
1947 int st_index = -1;
1948 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1949 st_index = brw_get_shader_time_index(brw, prog, &vp->Base, ST_VS);
1950
1951 if (unlikely(INTEL_DEBUG & DEBUG_VS))
1952 brw_dump_ir("vertex", prog, &shader->base, &vp->Base);
1953
1954 if (!vp->Base.nir &&
1955 (brw->intelScreen->compiler->scalar_vs ||
1956 brw->intelScreen->compiler->glsl_compiler_options[MESA_SHADER_VERTEX].NirOptions != NULL)) {
1957 /* Normally we generate NIR in LinkShader() or
1958 * ProgramStringNotify(), but Mesa's fixed-function vertex program
1959 * handling doesn't notify the driver at all. Just do it here, at
1960 * the last minute, even though it's lame.
1961 */
1962 assert(vp->Base.Id == 0 && prog == NULL);
1963 vp->Base.nir =
1964 brw_create_nir(brw, NULL, &vp->Base, MESA_SHADER_VERTEX,
1965 brw->intelScreen->compiler->scalar_vs);
1966 }
1967
1968 if (brw->intelScreen->compiler->scalar_vs) {
1969 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
1970
1971 fs_visitor v(brw->intelScreen->compiler, brw,
1972 mem_ctx, MESA_SHADER_VERTEX, key,
1973 &prog_data->base.base, prog, &vp->Base,
1974 8, st_index);
1975 if (!v.run_vs(brw_select_clip_planes(&brw->ctx))) {
1976 if (prog) {
1977 prog->LinkStatus = false;
1978 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1979 }
1980
1981 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1982 v.fail_msg);
1983
1984 return NULL;
1985 }
1986
1987 fs_generator g(brw->intelScreen->compiler, brw,
1988 mem_ctx, (void *) key, &prog_data->base.base,
1989 &vp->Base, v.promoted_constants,
1990 v.runtime_check_aads_emit, "VS");
1991 if (INTEL_DEBUG & DEBUG_VS) {
1992 char *name;
1993 if (prog) {
1994 name = ralloc_asprintf(mem_ctx, "%s vertex shader %d",
1995 prog->Label ? prog->Label : "unnamed",
1996 prog->Name);
1997 } else {
1998 name = ralloc_asprintf(mem_ctx, "vertex program %d",
1999 vp->Base.Id);
2000 }
2001 g.enable_debug(name);
2002 }
2003 g.generate_code(v.cfg, 8);
2004 assembly = g.get_assembly(final_assembly_size);
2005 }
2006
2007 if (!assembly) {
2008 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
2009
2010 vec4_vs_visitor v(brw->intelScreen->compiler, brw, key, prog_data,
2011 vp, prog, brw_select_clip_planes(&brw->ctx),
2012 mem_ctx, st_index,
2013 !_mesa_is_gles3(&brw->ctx));
2014 if (!v.run()) {
2015 if (prog) {
2016 prog->LinkStatus = false;
2017 ralloc_strcat(&prog->InfoLog, v.fail_msg);
2018 }
2019
2020 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
2021 v.fail_msg);
2022
2023 return NULL;
2024 }
2025
2026 vec4_generator g(brw->intelScreen->compiler, brw,
2027 prog, &vp->Base, &prog_data->base,
2028 mem_ctx, INTEL_DEBUG & DEBUG_VS, "vertex", "VS");
2029 assembly = g.generate_assembly(v.cfg, final_assembly_size);
2030 }
2031
2032 if (unlikely(brw->perf_debug) && shader) {
2033 if (shader->compiled_once) {
2034 brw_vs_debug_recompile(brw, prog, key);
2035 }
2036 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
2037 perf_debug("VS compile took %.03f ms and stalled the GPU\n",
2038 (get_time() - start_time) * 1000);
2039 }
2040 shader->compiled_once = true;
2041 }
2042
2043 return assembly;
2044 }
2045
2046 } /* extern "C" */