i965/vec4: Fix the scheduler to take into account reads and writes of multiple registers.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_vs.h"
28 #include "brw_dead_control_flow.h"
29
30 extern "C" {
31 #include "main/macros.h"
32 #include "main/shaderobj.h"
33 #include "program/prog_print.h"
34 #include "program/prog_parameter.h"
35 }
36
37 #define MAX_INSTRUCTION (1 << 30)
38
39 using namespace brw;
40
41 namespace brw {
42
43 /**
44 * Common helper for constructing swizzles. When only a subset of
45 * channels of a vec4 are used, we don't want to reference the other
46 * channels, as that will tell optimization passes that those other
47 * channels are used.
48 */
49 unsigned
50 swizzle_for_size(int size)
51 {
52 static const unsigned size_swizzles[4] = {
53 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
54 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
55 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
56 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
57 };
58
59 assert((size >= 1) && (size <= 4));
60 return size_swizzles[size - 1];
61 }
62
63 void
64 src_reg::init()
65 {
66 memset(this, 0, sizeof(*this));
67
68 this->file = BAD_FILE;
69 }
70
71 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
72 {
73 init();
74
75 this->file = file;
76 this->reg = reg;
77 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
78 this->swizzle = swizzle_for_size(type->vector_elements);
79 else
80 this->swizzle = BRW_SWIZZLE_XYZW;
81 }
82
83 /** Generic unset register constructor. */
84 src_reg::src_reg()
85 {
86 init();
87 }
88
89 src_reg::src_reg(float f)
90 {
91 init();
92
93 this->file = IMM;
94 this->type = BRW_REGISTER_TYPE_F;
95 this->fixed_hw_reg.dw1.f = f;
96 }
97
98 src_reg::src_reg(uint32_t u)
99 {
100 init();
101
102 this->file = IMM;
103 this->type = BRW_REGISTER_TYPE_UD;
104 this->fixed_hw_reg.dw1.ud = u;
105 }
106
107 src_reg::src_reg(int32_t i)
108 {
109 init();
110
111 this->file = IMM;
112 this->type = BRW_REGISTER_TYPE_D;
113 this->fixed_hw_reg.dw1.d = i;
114 }
115
116 src_reg::src_reg(uint8_t vf[4])
117 {
118 init();
119
120 this->file = IMM;
121 this->type = BRW_REGISTER_TYPE_VF;
122 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
123 }
124
125 src_reg::src_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
126 {
127 init();
128
129 this->file = IMM;
130 this->type = BRW_REGISTER_TYPE_VF;
131 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
132 (vf1 << 8) |
133 (vf2 << 16) |
134 (vf3 << 24);
135 }
136
137 src_reg::src_reg(struct brw_reg reg)
138 {
139 init();
140
141 this->file = HW_REG;
142 this->fixed_hw_reg = reg;
143 this->type = reg.type;
144 }
145
146 src_reg::src_reg(dst_reg reg)
147 {
148 init();
149
150 this->file = reg.file;
151 this->reg = reg.reg;
152 this->reg_offset = reg.reg_offset;
153 this->type = reg.type;
154 this->reladdr = reg.reladdr;
155 this->fixed_hw_reg = reg.fixed_hw_reg;
156
157 int swizzles[4];
158 int next_chan = 0;
159 int last = 0;
160
161 for (int i = 0; i < 4; i++) {
162 if (!(reg.writemask & (1 << i)))
163 continue;
164
165 swizzles[next_chan++] = last = i;
166 }
167
168 for (; next_chan < 4; next_chan++) {
169 swizzles[next_chan] = last;
170 }
171
172 this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
173 swizzles[2], swizzles[3]);
174 }
175
176 void
177 dst_reg::init()
178 {
179 memset(this, 0, sizeof(*this));
180 this->file = BAD_FILE;
181 this->writemask = WRITEMASK_XYZW;
182 }
183
184 dst_reg::dst_reg()
185 {
186 init();
187 }
188
189 dst_reg::dst_reg(register_file file, int reg)
190 {
191 init();
192
193 this->file = file;
194 this->reg = reg;
195 }
196
197 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
198 int writemask)
199 {
200 init();
201
202 this->file = file;
203 this->reg = reg;
204 this->type = brw_type_for_base_type(type);
205 this->writemask = writemask;
206 }
207
208 dst_reg::dst_reg(struct brw_reg reg)
209 {
210 init();
211
212 this->file = HW_REG;
213 this->fixed_hw_reg = reg;
214 this->type = reg.type;
215 }
216
217 dst_reg::dst_reg(src_reg reg)
218 {
219 init();
220
221 this->file = reg.file;
222 this->reg = reg.reg;
223 this->reg_offset = reg.reg_offset;
224 this->type = reg.type;
225 /* How should we do writemasking when converting from a src_reg? It seems
226 * pretty obvious that for src.xxxx the caller wants to write to src.x, but
227 * what about for src.wx? Just special-case src.xxxx for now.
228 */
229 if (reg.swizzle == BRW_SWIZZLE_XXXX)
230 this->writemask = WRITEMASK_X;
231 else
232 this->writemask = WRITEMASK_XYZW;
233 this->reladdr = reg.reladdr;
234 this->fixed_hw_reg = reg.fixed_hw_reg;
235 }
236
237 bool
238 dst_reg::equals(const dst_reg &r) const
239 {
240 return (file == r.file &&
241 reg == r.reg &&
242 reg_offset == r.reg_offset &&
243 type == r.type &&
244 negate == r.negate &&
245 abs == r.abs &&
246 writemask == r.writemask &&
247 (reladdr == r.reladdr ||
248 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))) &&
249 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
250 sizeof(fixed_hw_reg)) == 0);
251 }
252
253 bool
254 vec4_instruction::is_send_from_grf()
255 {
256 switch (opcode) {
257 case SHADER_OPCODE_SHADER_TIME_ADD:
258 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
259 return true;
260 default:
261 return false;
262 }
263 }
264
265 unsigned
266 vec4_instruction::regs_read(unsigned arg) const
267 {
268 if (src[arg].file == BAD_FILE)
269 return 0;
270
271 switch (opcode) {
272 case SHADER_OPCODE_SHADER_TIME_ADD:
273 return arg == 0 ? mlen : 1;
274
275 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
276 return arg == 1 ? mlen : 1;
277
278 default:
279 return 1;
280 }
281 }
282
283 bool
284 vec4_instruction::can_do_source_mods(struct brw_context *brw)
285 {
286 if (brw->gen == 6 && is_math())
287 return false;
288
289 if (is_send_from_grf())
290 return false;
291
292 if (!backend_instruction::can_do_source_mods())
293 return false;
294
295 return true;
296 }
297
298 /**
299 * Returns how many MRFs an opcode will write over.
300 *
301 * Note that this is not the 0 or 1 implied writes in an actual gen
302 * instruction -- the generate_* functions generate additional MOVs
303 * for setup.
304 */
305 int
306 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
307 {
308 if (inst->mlen == 0 || inst->is_send_from_grf())
309 return 0;
310
311 switch (inst->opcode) {
312 case SHADER_OPCODE_RCP:
313 case SHADER_OPCODE_RSQ:
314 case SHADER_OPCODE_SQRT:
315 case SHADER_OPCODE_EXP2:
316 case SHADER_OPCODE_LOG2:
317 case SHADER_OPCODE_SIN:
318 case SHADER_OPCODE_COS:
319 return 1;
320 case SHADER_OPCODE_INT_QUOTIENT:
321 case SHADER_OPCODE_INT_REMAINDER:
322 case SHADER_OPCODE_POW:
323 return 2;
324 case VS_OPCODE_URB_WRITE:
325 return 1;
326 case VS_OPCODE_PULL_CONSTANT_LOAD:
327 return 2;
328 case SHADER_OPCODE_GEN4_SCRATCH_READ:
329 return 2;
330 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
331 return 3;
332 case GS_OPCODE_URB_WRITE:
333 case GS_OPCODE_URB_WRITE_ALLOCATE:
334 case GS_OPCODE_THREAD_END:
335 return 0;
336 case GS_OPCODE_FF_SYNC:
337 return 1;
338 case SHADER_OPCODE_SHADER_TIME_ADD:
339 return 0;
340 case SHADER_OPCODE_TEX:
341 case SHADER_OPCODE_TXL:
342 case SHADER_OPCODE_TXD:
343 case SHADER_OPCODE_TXF:
344 case SHADER_OPCODE_TXF_CMS:
345 case SHADER_OPCODE_TXF_MCS:
346 case SHADER_OPCODE_TXS:
347 case SHADER_OPCODE_TG4:
348 case SHADER_OPCODE_TG4_OFFSET:
349 return inst->header_present ? 1 : 0;
350 case SHADER_OPCODE_UNTYPED_ATOMIC:
351 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
352 return 0;
353 default:
354 unreachable("not reached");
355 }
356 }
357
358 bool
359 src_reg::equals(const src_reg &r) const
360 {
361 return (file == r.file &&
362 reg == r.reg &&
363 reg_offset == r.reg_offset &&
364 type == r.type &&
365 negate == r.negate &&
366 abs == r.abs &&
367 swizzle == r.swizzle &&
368 !reladdr && !r.reladdr &&
369 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
370 sizeof(fixed_hw_reg)) == 0);
371 }
372
373 bool
374 vec4_visitor::opt_vector_float()
375 {
376 bool progress = false;
377
378 int last_reg = -1, last_reg_offset = -1;
379 enum register_file last_reg_file = BAD_FILE;
380
381 int remaining_channels;
382 uint8_t imm[4];
383 int inst_count;
384 vec4_instruction *imm_inst[4];
385
386 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
387 if (last_reg != inst->dst.reg ||
388 last_reg_offset != inst->dst.reg_offset ||
389 last_reg_file != inst->dst.file) {
390 last_reg = inst->dst.reg;
391 last_reg_offset = inst->dst.reg_offset;
392 last_reg_file = inst->dst.file;
393 remaining_channels = WRITEMASK_XYZW;
394
395 inst_count = 0;
396 }
397
398 if (inst->opcode != BRW_OPCODE_MOV ||
399 inst->dst.writemask == WRITEMASK_XYZW ||
400 inst->src[0].file != IMM)
401 continue;
402
403 int vf = brw_float_to_vf(inst->src[0].fixed_hw_reg.dw1.f);
404 if (vf == -1)
405 continue;
406
407 if ((inst->dst.writemask & WRITEMASK_X) != 0)
408 imm[0] = vf;
409 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
410 imm[1] = vf;
411 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
412 imm[2] = vf;
413 if ((inst->dst.writemask & WRITEMASK_W) != 0)
414 imm[3] = vf;
415
416 imm_inst[inst_count++] = inst;
417
418 remaining_channels &= ~inst->dst.writemask;
419 if (remaining_channels == 0) {
420 vec4_instruction *mov = MOV(inst->dst, imm);
421 mov->dst.type = BRW_REGISTER_TYPE_F;
422 mov->dst.writemask = WRITEMASK_XYZW;
423 inst->insert_after(block, mov);
424 last_reg = -1;
425
426 for (int i = 0; i < inst_count; i++) {
427 imm_inst[i]->remove(block);
428 }
429 progress = true;
430 }
431 }
432
433 if (progress)
434 invalidate_live_intervals();
435
436 return progress;
437 }
438
439 /* Replaces unused channels of a swizzle with channels that are used.
440 *
441 * For instance, this pass transforms
442 *
443 * mov vgrf4.yz, vgrf5.wxzy
444 *
445 * into
446 *
447 * mov vgrf4.yz, vgrf5.xxzx
448 *
449 * This eliminates false uses of some channels, letting dead code elimination
450 * remove the instructions that wrote them.
451 */
452 bool
453 vec4_visitor::opt_reduce_swizzle()
454 {
455 bool progress = false;
456
457 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
458 if (inst->dst.file == BAD_FILE || inst->dst.file == HW_REG)
459 continue;
460
461 int swizzle[4];
462
463 /* Determine which channels of the sources are read. */
464 switch (inst->opcode) {
465 case VEC4_OPCODE_PACK_BYTES:
466 swizzle[0] = 0;
467 swizzle[1] = 1;
468 swizzle[2] = 2;
469 swizzle[3] = 3;
470 break;
471 case BRW_OPCODE_DP4:
472 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
473 * but all four of src1.
474 */
475 swizzle[0] = 0;
476 swizzle[1] = 1;
477 swizzle[2] = 2;
478 swizzle[3] = 3;
479 break;
480 case BRW_OPCODE_DP3:
481 swizzle[0] = 0;
482 swizzle[1] = 1;
483 swizzle[2] = 2;
484 swizzle[3] = -1;
485 break;
486 case BRW_OPCODE_DP2:
487 swizzle[0] = 0;
488 swizzle[1] = 1;
489 swizzle[2] = -1;
490 swizzle[3] = -1;
491 break;
492 default:
493 swizzle[0] = inst->dst.writemask & WRITEMASK_X ? 0 : -1;
494 swizzle[1] = inst->dst.writemask & WRITEMASK_Y ? 1 : -1;
495 swizzle[2] = inst->dst.writemask & WRITEMASK_Z ? 2 : -1;
496 swizzle[3] = inst->dst.writemask & WRITEMASK_W ? 3 : -1;
497 break;
498 }
499
500 /* Resolve unread channels (-1) by assigning them the swizzle of the
501 * first channel that is used.
502 */
503 int first_used_channel = 0;
504 for (int i = 0; i < 4; i++) {
505 if (swizzle[i] != -1) {
506 first_used_channel = swizzle[i];
507 break;
508 }
509 }
510 for (int i = 0; i < 4; i++) {
511 if (swizzle[i] == -1) {
512 swizzle[i] = first_used_channel;
513 }
514 }
515
516 /* Update sources' swizzles. */
517 for (int i = 0; i < 3; i++) {
518 if (inst->src[i].file != GRF &&
519 inst->src[i].file != ATTR &&
520 inst->src[i].file != UNIFORM)
521 continue;
522
523 int swiz[4];
524 for (int j = 0; j < 4; j++) {
525 swiz[j] = BRW_GET_SWZ(inst->src[i].swizzle, swizzle[j]);
526 }
527
528 unsigned new_swizzle = BRW_SWIZZLE4(swiz[0], swiz[1], swiz[2], swiz[3]);
529 if (inst->src[i].swizzle != new_swizzle) {
530 inst->src[i].swizzle = new_swizzle;
531 progress = true;
532 }
533 }
534 }
535
536 if (progress)
537 invalidate_live_intervals();
538
539 return progress;
540 }
541
542 void
543 vec4_visitor::split_uniform_registers()
544 {
545 /* Prior to this, uniforms have been in an array sized according to
546 * the number of vector uniforms present, sparsely filled (so an
547 * aggregate results in reg indices being skipped over). Now we're
548 * going to cut those aggregates up so each .reg index is one
549 * vector. The goal is to make elimination of unused uniform
550 * components easier later.
551 */
552 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
553 for (int i = 0 ; i < 3; i++) {
554 if (inst->src[i].file != UNIFORM)
555 continue;
556
557 assert(!inst->src[i].reladdr);
558
559 inst->src[i].reg += inst->src[i].reg_offset;
560 inst->src[i].reg_offset = 0;
561 }
562 }
563
564 /* Update that everything is now vector-sized. */
565 for (int i = 0; i < this->uniforms; i++) {
566 this->uniform_size[i] = 1;
567 }
568 }
569
570 void
571 vec4_visitor::pack_uniform_registers()
572 {
573 bool uniform_used[this->uniforms];
574 int new_loc[this->uniforms];
575 int new_chan[this->uniforms];
576
577 memset(uniform_used, 0, sizeof(uniform_used));
578 memset(new_loc, 0, sizeof(new_loc));
579 memset(new_chan, 0, sizeof(new_chan));
580
581 /* Find which uniform vectors are actually used by the program. We
582 * expect unused vector elements when we've moved array access out
583 * to pull constants, and from some GLSL code generators like wine.
584 */
585 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
586 for (int i = 0 ; i < 3; i++) {
587 if (inst->src[i].file != UNIFORM)
588 continue;
589
590 uniform_used[inst->src[i].reg] = true;
591 }
592 }
593
594 int new_uniform_count = 0;
595
596 /* Now, figure out a packing of the live uniform vectors into our
597 * push constants.
598 */
599 for (int src = 0; src < uniforms; src++) {
600 assert(src < uniform_array_size);
601 int size = this->uniform_vector_size[src];
602
603 if (!uniform_used[src]) {
604 this->uniform_vector_size[src] = 0;
605 continue;
606 }
607
608 int dst;
609 /* Find the lowest place we can slot this uniform in. */
610 for (dst = 0; dst < src; dst++) {
611 if (this->uniform_vector_size[dst] + size <= 4)
612 break;
613 }
614
615 if (src == dst) {
616 new_loc[src] = dst;
617 new_chan[src] = 0;
618 } else {
619 new_loc[src] = dst;
620 new_chan[src] = this->uniform_vector_size[dst];
621
622 /* Move the references to the data */
623 for (int j = 0; j < size; j++) {
624 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
625 stage_prog_data->param[src * 4 + j];
626 }
627
628 this->uniform_vector_size[dst] += size;
629 this->uniform_vector_size[src] = 0;
630 }
631
632 new_uniform_count = MAX2(new_uniform_count, dst + 1);
633 }
634
635 this->uniforms = new_uniform_count;
636
637 /* Now, update the instructions for our repacked uniforms. */
638 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
639 for (int i = 0 ; i < 3; i++) {
640 int src = inst->src[i].reg;
641
642 if (inst->src[i].file != UNIFORM)
643 continue;
644
645 inst->src[i].reg = new_loc[src];
646
647 int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
648 int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
649 int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
650 int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
651 inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
652 }
653 }
654 }
655
656 /**
657 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
658 *
659 * While GLSL IR also performs this optimization, we end up with it in
660 * our instruction stream for a couple of reasons. One is that we
661 * sometimes generate silly instructions, for example in array access
662 * where we'll generate "ADD offset, index, base" even if base is 0.
663 * The other is that GLSL IR's constant propagation doesn't track the
664 * components of aggregates, so some VS patterns (initialize matrix to
665 * 0, accumulate in vertex blending factors) end up breaking down to
666 * instructions involving 0.
667 */
668 bool
669 vec4_visitor::opt_algebraic()
670 {
671 bool progress = false;
672
673 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
674 switch (inst->opcode) {
675 case BRW_OPCODE_MOV:
676 if (inst->src[0].file != IMM)
677 break;
678
679 if (inst->saturate) {
680 if (inst->dst.type != inst->src[0].type)
681 assert(!"unimplemented: saturate mixed types");
682
683 if (brw_saturate_immediate(inst->dst.type,
684 &inst->src[0].fixed_hw_reg)) {
685 inst->saturate = false;
686 progress = true;
687 }
688 }
689 break;
690
691 case VEC4_OPCODE_UNPACK_UNIFORM:
692 if (inst->src[0].file != UNIFORM) {
693 inst->opcode = BRW_OPCODE_MOV;
694 progress = true;
695 }
696 break;
697
698 case BRW_OPCODE_ADD:
699 if (inst->src[1].is_zero()) {
700 inst->opcode = BRW_OPCODE_MOV;
701 inst->src[1] = src_reg();
702 progress = true;
703 }
704 break;
705
706 case BRW_OPCODE_MUL:
707 if (inst->src[1].is_zero()) {
708 inst->opcode = BRW_OPCODE_MOV;
709 switch (inst->src[0].type) {
710 case BRW_REGISTER_TYPE_F:
711 inst->src[0] = src_reg(0.0f);
712 break;
713 case BRW_REGISTER_TYPE_D:
714 inst->src[0] = src_reg(0);
715 break;
716 case BRW_REGISTER_TYPE_UD:
717 inst->src[0] = src_reg(0u);
718 break;
719 default:
720 unreachable("not reached");
721 }
722 inst->src[1] = src_reg();
723 progress = true;
724 } else if (inst->src[1].is_one()) {
725 inst->opcode = BRW_OPCODE_MOV;
726 inst->src[1] = src_reg();
727 progress = true;
728 }
729 break;
730 case BRW_OPCODE_CMP:
731 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
732 inst->src[0].abs &&
733 inst->src[0].negate &&
734 inst->src[1].is_zero()) {
735 inst->src[0].abs = false;
736 inst->src[0].negate = false;
737 inst->conditional_mod = BRW_CONDITIONAL_Z;
738 progress = true;
739 break;
740 }
741 break;
742 case SHADER_OPCODE_RCP: {
743 vec4_instruction *prev = (vec4_instruction *)inst->prev;
744 if (prev->opcode == SHADER_OPCODE_SQRT) {
745 if (inst->src[0].equals(src_reg(prev->dst))) {
746 inst->opcode = SHADER_OPCODE_RSQ;
747 inst->src[0] = prev->src[0];
748 progress = true;
749 }
750 }
751 break;
752 }
753 default:
754 break;
755 }
756 }
757
758 if (progress)
759 invalidate_live_intervals();
760
761 return progress;
762 }
763
764 /**
765 * Only a limited number of hardware registers may be used for push
766 * constants, so this turns access to the overflowed constants into
767 * pull constants.
768 */
769 void
770 vec4_visitor::move_push_constants_to_pull_constants()
771 {
772 int pull_constant_loc[this->uniforms];
773
774 /* Only allow 32 registers (256 uniform components) as push constants,
775 * which is the limit on gen6.
776 *
777 * If changing this value, note the limitation about total_regs in
778 * brw_curbe.c.
779 */
780 int max_uniform_components = 32 * 8;
781 if (this->uniforms * 4 <= max_uniform_components)
782 return;
783
784 /* Make some sort of choice as to which uniforms get sent to pull
785 * constants. We could potentially do something clever here like
786 * look for the most infrequently used uniform vec4s, but leave
787 * that for later.
788 */
789 for (int i = 0; i < this->uniforms * 4; i += 4) {
790 pull_constant_loc[i / 4] = -1;
791
792 if (i >= max_uniform_components) {
793 const gl_constant_value **values = &stage_prog_data->param[i];
794
795 /* Try to find an existing copy of this uniform in the pull
796 * constants if it was part of an array access already.
797 */
798 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
799 int matches;
800
801 for (matches = 0; matches < 4; matches++) {
802 if (stage_prog_data->pull_param[j + matches] != values[matches])
803 break;
804 }
805
806 if (matches == 4) {
807 pull_constant_loc[i / 4] = j / 4;
808 break;
809 }
810 }
811
812 if (pull_constant_loc[i / 4] == -1) {
813 assert(stage_prog_data->nr_pull_params % 4 == 0);
814 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
815
816 for (int j = 0; j < 4; j++) {
817 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
818 values[j];
819 }
820 }
821 }
822 }
823
824 /* Now actually rewrite usage of the things we've moved to pull
825 * constants.
826 */
827 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
828 for (int i = 0 ; i < 3; i++) {
829 if (inst->src[i].file != UNIFORM ||
830 pull_constant_loc[inst->src[i].reg] == -1)
831 continue;
832
833 int uniform = inst->src[i].reg;
834
835 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
836
837 emit_pull_constant_load(block, inst, temp, inst->src[i],
838 pull_constant_loc[uniform]);
839
840 inst->src[i].file = temp.file;
841 inst->src[i].reg = temp.reg;
842 inst->src[i].reg_offset = temp.reg_offset;
843 inst->src[i].reladdr = NULL;
844 }
845 }
846
847 /* Repack push constants to remove the now-unused ones. */
848 pack_uniform_registers();
849 }
850
851 /* Conditions for which we want to avoid setting the dependency control bits */
852 bool
853 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
854 {
855 #define IS_DWORD(reg) \
856 (reg.type == BRW_REGISTER_TYPE_UD || \
857 reg.type == BRW_REGISTER_TYPE_D)
858
859 /* "When source or destination datatype is 64b or operation is integer DWord
860 * multiply, DepCtrl must not be used."
861 * May apply to future SoCs as well.
862 */
863 if (brw->is_cherryview) {
864 if (inst->opcode == BRW_OPCODE_MUL &&
865 IS_DWORD(inst->src[0]) &&
866 IS_DWORD(inst->src[1]))
867 return true;
868 }
869 #undef IS_DWORD
870
871 /*
872 * mlen:
873 * In the presence of send messages, totally interrupt dependency
874 * control. They're long enough that the chance of dependency
875 * control around them just doesn't matter.
876 *
877 * predicate:
878 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
879 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
880 * completes the scoreboard clear must have a non-zero execution mask. This
881 * means, if any kind of predication can change the execution mask or channel
882 * enable of the last instruction, the optimization must be avoided. This is
883 * to avoid instructions being shot down the pipeline when no writes are
884 * required.
885 *
886 * math:
887 * Dependency control does not work well over math instructions.
888 * NB: Discovered empirically
889 */
890 return (inst->mlen || inst->predicate || inst->is_math());
891 }
892
893 /**
894 * Sets the dependency control fields on instructions after register
895 * allocation and before the generator is run.
896 *
897 * When you have a sequence of instructions like:
898 *
899 * DP4 temp.x vertex uniform[0]
900 * DP4 temp.y vertex uniform[0]
901 * DP4 temp.z vertex uniform[0]
902 * DP4 temp.w vertex uniform[0]
903 *
904 * The hardware doesn't know that it can actually run the later instructions
905 * while the previous ones are in flight, producing stalls. However, we have
906 * manual fields we can set in the instructions that let it do so.
907 */
908 void
909 vec4_visitor::opt_set_dependency_control()
910 {
911 vec4_instruction *last_grf_write[BRW_MAX_GRF];
912 uint8_t grf_channels_written[BRW_MAX_GRF];
913 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
914 uint8_t mrf_channels_written[BRW_MAX_GRF];
915
916 assert(prog_data->total_grf ||
917 !"Must be called after register allocation");
918
919 foreach_block (block, cfg) {
920 memset(last_grf_write, 0, sizeof(last_grf_write));
921 memset(last_mrf_write, 0, sizeof(last_mrf_write));
922
923 foreach_inst_in_block (vec4_instruction, inst, block) {
924 /* If we read from a register that we were doing dependency control
925 * on, don't do dependency control across the read.
926 */
927 for (int i = 0; i < 3; i++) {
928 int reg = inst->src[i].reg + inst->src[i].reg_offset;
929 if (inst->src[i].file == GRF) {
930 last_grf_write[reg] = NULL;
931 } else if (inst->src[i].file == HW_REG) {
932 memset(last_grf_write, 0, sizeof(last_grf_write));
933 break;
934 }
935 assert(inst->src[i].file != MRF);
936 }
937
938 if (is_dep_ctrl_unsafe(inst)) {
939 memset(last_grf_write, 0, sizeof(last_grf_write));
940 memset(last_mrf_write, 0, sizeof(last_mrf_write));
941 continue;
942 }
943
944 /* Now, see if we can do dependency control for this instruction
945 * against a previous one writing to its destination.
946 */
947 int reg = inst->dst.reg + inst->dst.reg_offset;
948 if (inst->dst.file == GRF) {
949 if (last_grf_write[reg] &&
950 !(inst->dst.writemask & grf_channels_written[reg])) {
951 last_grf_write[reg]->no_dd_clear = true;
952 inst->no_dd_check = true;
953 } else {
954 grf_channels_written[reg] = 0;
955 }
956
957 last_grf_write[reg] = inst;
958 grf_channels_written[reg] |= inst->dst.writemask;
959 } else if (inst->dst.file == MRF) {
960 if (last_mrf_write[reg] &&
961 !(inst->dst.writemask & mrf_channels_written[reg])) {
962 last_mrf_write[reg]->no_dd_clear = true;
963 inst->no_dd_check = true;
964 } else {
965 mrf_channels_written[reg] = 0;
966 }
967
968 last_mrf_write[reg] = inst;
969 mrf_channels_written[reg] |= inst->dst.writemask;
970 } else if (inst->dst.reg == HW_REG) {
971 if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
972 memset(last_grf_write, 0, sizeof(last_grf_write));
973 if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
974 memset(last_mrf_write, 0, sizeof(last_mrf_write));
975 }
976 }
977 }
978 }
979
980 bool
981 vec4_instruction::can_reswizzle(int dst_writemask,
982 int swizzle,
983 int swizzle_mask)
984 {
985 /* If this instruction sets anything not referenced by swizzle, then we'd
986 * totally break it when we reswizzle.
987 */
988 if (dst.writemask & ~swizzle_mask)
989 return false;
990
991 if (mlen > 0)
992 return false;
993
994 return true;
995 }
996
997 /**
998 * For any channels in the swizzle's source that were populated by this
999 * instruction, rewrite the instruction to put the appropriate result directly
1000 * in those channels.
1001 *
1002 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
1003 */
1004 void
1005 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
1006 {
1007 int new_writemask = 0;
1008 int new_swizzle[4] = { 0 };
1009
1010 /* Dot product instructions write a single result into all channels. */
1011 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
1012 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2) {
1013 for (int i = 0; i < 3; i++) {
1014 if (src[i].file == BAD_FILE || src[i].file == IMM)
1015 continue;
1016
1017 /* Destination write mask doesn't correspond to source swizzle for the
1018 * pack_bytes instruction.
1019 */
1020 if (opcode == VEC4_OPCODE_PACK_BYTES)
1021 continue;
1022
1023 for (int c = 0; c < 4; c++) {
1024 new_swizzle[c] = BRW_GET_SWZ(src[i].swizzle, BRW_GET_SWZ(swizzle, c));
1025 }
1026
1027 src[i].swizzle = BRW_SWIZZLE4(new_swizzle[0], new_swizzle[1],
1028 new_swizzle[2], new_swizzle[3]);
1029 }
1030 }
1031
1032 for (int c = 0; c < 4; c++) {
1033 int bit = 1 << BRW_GET_SWZ(swizzle, c);
1034 /* Skip components of the swizzle not used by the dst. */
1035 if (!(dst_writemask & (1 << c)))
1036 continue;
1037 /* If we were populating this component, then populate the
1038 * corresponding channel of the new dst.
1039 */
1040 if (dst.writemask & bit)
1041 new_writemask |= (1 << c);
1042 }
1043 dst.writemask = new_writemask;
1044 }
1045
1046 /*
1047 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1048 * just written and then MOVed into another reg and making the original write
1049 * of the GRF write directly to the final destination instead.
1050 */
1051 bool
1052 vec4_visitor::opt_register_coalesce()
1053 {
1054 bool progress = false;
1055 int next_ip = 0;
1056
1057 calculate_live_intervals();
1058
1059 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1060 int ip = next_ip;
1061 next_ip++;
1062
1063 if (inst->opcode != BRW_OPCODE_MOV ||
1064 (inst->dst.file != GRF && inst->dst.file != MRF) ||
1065 inst->predicate ||
1066 inst->src[0].file != GRF ||
1067 inst->dst.type != inst->src[0].type ||
1068 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1069 continue;
1070
1071 bool to_mrf = (inst->dst.file == MRF);
1072
1073 /* Can't coalesce this GRF if someone else was going to
1074 * read it later.
1075 */
1076 if (this->virtual_grf_end[inst->src[0].reg * 4 + 0] > ip ||
1077 this->virtual_grf_end[inst->src[0].reg * 4 + 1] > ip ||
1078 this->virtual_grf_end[inst->src[0].reg * 4 + 2] > ip ||
1079 this->virtual_grf_end[inst->src[0].reg * 4 + 3] > ip)
1080 continue;
1081
1082 /* We need to check interference with the final destination between this
1083 * instruction and the earliest instruction involved in writing the GRF
1084 * we're eliminating. To do that, keep track of which of our source
1085 * channels we've seen initialized.
1086 */
1087 bool chans_needed[4] = {false, false, false, false};
1088 int chans_remaining = 0;
1089 int swizzle_mask = 0;
1090 for (int i = 0; i < 4; i++) {
1091 int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
1092
1093 if (!(inst->dst.writemask & (1 << i)))
1094 continue;
1095
1096 swizzle_mask |= (1 << chan);
1097
1098 if (!chans_needed[chan]) {
1099 chans_needed[chan] = true;
1100 chans_remaining++;
1101 }
1102 }
1103
1104 /* Now walk up the instruction stream trying to see if we can rewrite
1105 * everything writing to the temporary to write into the destination
1106 * instead.
1107 */
1108 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1109 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1110 inst, block) {
1111 _scan_inst = scan_inst;
1112
1113 if (scan_inst->dst.file == GRF &&
1114 scan_inst->dst.reg == inst->src[0].reg &&
1115 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1116 /* Found something writing to the reg we want to coalesce away. */
1117 if (to_mrf) {
1118 /* SEND instructions can't have MRF as a destination. */
1119 if (scan_inst->mlen)
1120 break;
1121
1122 if (brw->gen == 6) {
1123 /* gen6 math instructions must have the destination be
1124 * GRF, so no compute-to-MRF for them.
1125 */
1126 if (scan_inst->is_math()) {
1127 break;
1128 }
1129 }
1130 }
1131
1132 /* If we can't handle the swizzle, bail. */
1133 if (!scan_inst->can_reswizzle(inst->dst.writemask,
1134 inst->src[0].swizzle,
1135 swizzle_mask)) {
1136 break;
1137 }
1138
1139 /* Mark which channels we found unconditional writes for. */
1140 if (!scan_inst->predicate) {
1141 for (int i = 0; i < 4; i++) {
1142 if (scan_inst->dst.writemask & (1 << i) &&
1143 chans_needed[i]) {
1144 chans_needed[i] = false;
1145 chans_remaining--;
1146 }
1147 }
1148 }
1149
1150 if (chans_remaining == 0)
1151 break;
1152 }
1153
1154 /* You can't read from an MRF, so if someone else reads our MRF's
1155 * source GRF that we wanted to rewrite, that stops us. If it's a
1156 * GRF we're trying to coalesce to, we don't actually handle
1157 * rewriting sources so bail in that case as well.
1158 */
1159 bool interfered = false;
1160 for (int i = 0; i < 3; i++) {
1161 if (scan_inst->src[i].file == GRF &&
1162 scan_inst->src[i].reg == inst->src[0].reg &&
1163 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1164 interfered = true;
1165 }
1166 }
1167 if (interfered)
1168 break;
1169
1170 /* If somebody else writes our destination here, we can't coalesce
1171 * before that.
1172 */
1173 if (scan_inst->dst.file == inst->dst.file &&
1174 scan_inst->dst.reg == inst->dst.reg) {
1175 break;
1176 }
1177
1178 /* Check for reads of the register we're trying to coalesce into. We
1179 * can't go rewriting instructions above that to put some other value
1180 * in the register instead.
1181 */
1182 if (to_mrf && scan_inst->mlen > 0) {
1183 if (inst->dst.reg >= scan_inst->base_mrf &&
1184 inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
1185 break;
1186 }
1187 } else {
1188 for (int i = 0; i < 3; i++) {
1189 if (scan_inst->src[i].file == inst->dst.file &&
1190 scan_inst->src[i].reg == inst->dst.reg &&
1191 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1192 interfered = true;
1193 }
1194 }
1195 if (interfered)
1196 break;
1197 }
1198 }
1199
1200 if (chans_remaining == 0) {
1201 /* If we've made it here, we have an MOV we want to coalesce out, and
1202 * a scan_inst pointing to the earliest instruction involved in
1203 * computing the value. Now go rewrite the instruction stream
1204 * between the two.
1205 */
1206 vec4_instruction *scan_inst = _scan_inst;
1207 while (scan_inst != inst) {
1208 if (scan_inst->dst.file == GRF &&
1209 scan_inst->dst.reg == inst->src[0].reg &&
1210 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1211 scan_inst->reswizzle(inst->dst.writemask,
1212 inst->src[0].swizzle);
1213 scan_inst->dst.file = inst->dst.file;
1214 scan_inst->dst.reg = inst->dst.reg;
1215 scan_inst->dst.reg_offset = inst->dst.reg_offset;
1216 scan_inst->saturate |= inst->saturate;
1217 }
1218 scan_inst = (vec4_instruction *)scan_inst->next;
1219 }
1220 inst->remove(block);
1221 progress = true;
1222 }
1223 }
1224
1225 if (progress)
1226 invalidate_live_intervals();
1227
1228 return progress;
1229 }
1230
1231 /**
1232 * Splits virtual GRFs requesting more than one contiguous physical register.
1233 *
1234 * We initially create large virtual GRFs for temporary structures, arrays,
1235 * and matrices, so that the dereference visitor functions can add reg_offsets
1236 * to work their way down to the actual member being accessed. But when it
1237 * comes to optimization, we'd like to treat each register as individual
1238 * storage if possible.
1239 *
1240 * So far, the only thing that might prevent splitting is a send message from
1241 * a GRF on IVB.
1242 */
1243 void
1244 vec4_visitor::split_virtual_grfs()
1245 {
1246 int num_vars = this->alloc.count;
1247 int new_virtual_grf[num_vars];
1248 bool split_grf[num_vars];
1249
1250 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1251
1252 /* Try to split anything > 0 sized. */
1253 for (int i = 0; i < num_vars; i++) {
1254 split_grf[i] = this->alloc.sizes[i] != 1;
1255 }
1256
1257 /* Check that the instructions are compatible with the registers we're trying
1258 * to split.
1259 */
1260 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1261 /* If there's a SEND message loading from a GRF on gen7+, it needs to be
1262 * contiguous.
1263 */
1264 if (inst->is_send_from_grf()) {
1265 for (int i = 0; i < 3; i++) {
1266 if (inst->src[i].file == GRF) {
1267 split_grf[inst->src[i].reg] = false;
1268 }
1269 }
1270 }
1271 }
1272
1273 /* Allocate new space for split regs. Note that the virtual
1274 * numbers will be contiguous.
1275 */
1276 for (int i = 0; i < num_vars; i++) {
1277 if (!split_grf[i])
1278 continue;
1279
1280 new_virtual_grf[i] = alloc.allocate(1);
1281 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1282 unsigned reg = alloc.allocate(1);
1283 assert(reg == new_virtual_grf[i] + j - 1);
1284 (void) reg;
1285 }
1286 this->alloc.sizes[i] = 1;
1287 }
1288
1289 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1290 if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
1291 inst->dst.reg_offset != 0) {
1292 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1293 inst->dst.reg_offset - 1);
1294 inst->dst.reg_offset = 0;
1295 }
1296 for (int i = 0; i < 3; i++) {
1297 if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
1298 inst->src[i].reg_offset != 0) {
1299 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1300 inst->src[i].reg_offset - 1);
1301 inst->src[i].reg_offset = 0;
1302 }
1303 }
1304 }
1305 invalidate_live_intervals();
1306 }
1307
1308 void
1309 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1310 {
1311 dump_instruction(be_inst, stderr);
1312 }
1313
1314 void
1315 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1316 {
1317 vec4_instruction *inst = (vec4_instruction *)be_inst;
1318
1319 if (inst->predicate) {
1320 fprintf(file, "(%cf0.%d) ",
1321 inst->predicate_inverse ? '-' : '+',
1322 inst->flag_subreg);
1323 }
1324
1325 fprintf(file, "%s", brw_instruction_name(inst->opcode));
1326 if (inst->conditional_mod) {
1327 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1328 if (!inst->predicate &&
1329 (brw->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1330 inst->opcode != BRW_OPCODE_IF &&
1331 inst->opcode != BRW_OPCODE_WHILE))) {
1332 fprintf(file, ".f0.%d", inst->flag_subreg);
1333 }
1334 }
1335 fprintf(file, " ");
1336
1337 switch (inst->dst.file) {
1338 case GRF:
1339 fprintf(file, "vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
1340 break;
1341 case MRF:
1342 fprintf(file, "m%d", inst->dst.reg);
1343 break;
1344 case HW_REG:
1345 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1346 switch (inst->dst.fixed_hw_reg.nr) {
1347 case BRW_ARF_NULL:
1348 fprintf(file, "null");
1349 break;
1350 case BRW_ARF_ADDRESS:
1351 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
1352 break;
1353 case BRW_ARF_ACCUMULATOR:
1354 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
1355 break;
1356 case BRW_ARF_FLAG:
1357 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1358 inst->dst.fixed_hw_reg.subnr);
1359 break;
1360 default:
1361 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1362 inst->dst.fixed_hw_reg.subnr);
1363 break;
1364 }
1365 } else {
1366 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
1367 }
1368 if (inst->dst.fixed_hw_reg.subnr)
1369 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
1370 break;
1371 case BAD_FILE:
1372 fprintf(file, "(null)");
1373 break;
1374 default:
1375 fprintf(file, "???");
1376 break;
1377 }
1378 if (inst->dst.writemask != WRITEMASK_XYZW) {
1379 fprintf(file, ".");
1380 if (inst->dst.writemask & 1)
1381 fprintf(file, "x");
1382 if (inst->dst.writemask & 2)
1383 fprintf(file, "y");
1384 if (inst->dst.writemask & 4)
1385 fprintf(file, "z");
1386 if (inst->dst.writemask & 8)
1387 fprintf(file, "w");
1388 }
1389 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
1390
1391 if (inst->src[0].file != BAD_FILE)
1392 fprintf(file, ", ");
1393
1394 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1395 if (inst->src[i].negate)
1396 fprintf(file, "-");
1397 if (inst->src[i].abs)
1398 fprintf(file, "|");
1399 switch (inst->src[i].file) {
1400 case GRF:
1401 fprintf(file, "vgrf%d", inst->src[i].reg);
1402 break;
1403 case ATTR:
1404 fprintf(file, "attr%d", inst->src[i].reg);
1405 break;
1406 case UNIFORM:
1407 fprintf(file, "u%d", inst->src[i].reg);
1408 break;
1409 case IMM:
1410 switch (inst->src[i].type) {
1411 case BRW_REGISTER_TYPE_F:
1412 fprintf(file, "%fF", inst->src[i].fixed_hw_reg.dw1.f);
1413 break;
1414 case BRW_REGISTER_TYPE_D:
1415 fprintf(file, "%dD", inst->src[i].fixed_hw_reg.dw1.d);
1416 break;
1417 case BRW_REGISTER_TYPE_UD:
1418 fprintf(file, "%uU", inst->src[i].fixed_hw_reg.dw1.ud);
1419 break;
1420 case BRW_REGISTER_TYPE_VF:
1421 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1422 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
1423 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
1424 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
1425 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
1426 break;
1427 default:
1428 fprintf(file, "???");
1429 break;
1430 }
1431 break;
1432 case HW_REG:
1433 if (inst->src[i].fixed_hw_reg.negate)
1434 fprintf(file, "-");
1435 if (inst->src[i].fixed_hw_reg.abs)
1436 fprintf(file, "|");
1437 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1438 switch (inst->src[i].fixed_hw_reg.nr) {
1439 case BRW_ARF_NULL:
1440 fprintf(file, "null");
1441 break;
1442 case BRW_ARF_ADDRESS:
1443 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
1444 break;
1445 case BRW_ARF_ACCUMULATOR:
1446 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
1447 break;
1448 case BRW_ARF_FLAG:
1449 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1450 inst->src[i].fixed_hw_reg.subnr);
1451 break;
1452 default:
1453 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1454 inst->src[i].fixed_hw_reg.subnr);
1455 break;
1456 }
1457 } else {
1458 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
1459 }
1460 if (inst->src[i].fixed_hw_reg.subnr)
1461 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
1462 if (inst->src[i].fixed_hw_reg.abs)
1463 fprintf(file, "|");
1464 break;
1465 case BAD_FILE:
1466 fprintf(file, "(null)");
1467 break;
1468 default:
1469 fprintf(file, "???");
1470 break;
1471 }
1472
1473 /* Don't print .0; and only VGRFs have reg_offsets and sizes */
1474 if (inst->src[i].reg_offset != 0 &&
1475 inst->src[i].file == GRF &&
1476 alloc.sizes[inst->src[i].reg] != 1)
1477 fprintf(file, ".%d", inst->src[i].reg_offset);
1478
1479 if (inst->src[i].file != IMM) {
1480 static const char *chans[4] = {"x", "y", "z", "w"};
1481 fprintf(file, ".");
1482 for (int c = 0; c < 4; c++) {
1483 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1484 }
1485 }
1486
1487 if (inst->src[i].abs)
1488 fprintf(file, "|");
1489
1490 if (inst->src[i].file != IMM) {
1491 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1492 }
1493
1494 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1495 fprintf(file, ", ");
1496 }
1497
1498 fprintf(file, "\n");
1499 }
1500
1501
1502 static inline struct brw_reg
1503 attribute_to_hw_reg(int attr, bool interleaved)
1504 {
1505 if (interleaved)
1506 return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1507 else
1508 return brw_vec8_grf(attr, 0);
1509 }
1510
1511
1512 /**
1513 * Replace each register of type ATTR in this->instructions with a reference
1514 * to a fixed HW register.
1515 *
1516 * If interleaved is true, then each attribute takes up half a register, with
1517 * register N containing attribute 2*N in its first half and attribute 2*N+1
1518 * in its second half (this corresponds to the payload setup used by geometry
1519 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
1520 * false, then each attribute takes up a whole register, with register N
1521 * containing attribute N (this corresponds to the payload setup used by
1522 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1523 */
1524 void
1525 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1526 bool interleaved)
1527 {
1528 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1529 /* We have to support ATTR as a destination for GL_FIXED fixup. */
1530 if (inst->dst.file == ATTR) {
1531 int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
1532
1533 /* All attributes used in the shader need to have been assigned a
1534 * hardware register by the caller
1535 */
1536 assert(grf != 0);
1537
1538 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1539 reg.type = inst->dst.type;
1540 reg.dw1.bits.writemask = inst->dst.writemask;
1541
1542 inst->dst.file = HW_REG;
1543 inst->dst.fixed_hw_reg = reg;
1544 }
1545
1546 for (int i = 0; i < 3; i++) {
1547 if (inst->src[i].file != ATTR)
1548 continue;
1549
1550 int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
1551
1552 /* All attributes used in the shader need to have been assigned a
1553 * hardware register by the caller
1554 */
1555 assert(grf != 0);
1556
1557 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1558 reg.dw1.bits.swizzle = inst->src[i].swizzle;
1559 reg.type = inst->src[i].type;
1560 if (inst->src[i].abs)
1561 reg = brw_abs(reg);
1562 if (inst->src[i].negate)
1563 reg = negate(reg);
1564
1565 inst->src[i].file = HW_REG;
1566 inst->src[i].fixed_hw_reg = reg;
1567 }
1568 }
1569 }
1570
1571 int
1572 vec4_vs_visitor::setup_attributes(int payload_reg)
1573 {
1574 int nr_attributes;
1575 int attribute_map[VERT_ATTRIB_MAX + 1];
1576 memset(attribute_map, 0, sizeof(attribute_map));
1577
1578 nr_attributes = 0;
1579 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1580 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1581 attribute_map[i] = payload_reg + nr_attributes;
1582 nr_attributes++;
1583 }
1584 }
1585
1586 /* VertexID is stored by the VF as the last vertex element, but we
1587 * don't represent it with a flag in inputs_read, so we call it
1588 * VERT_ATTRIB_MAX.
1589 */
1590 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
1591 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1592 nr_attributes++;
1593 }
1594
1595 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1596
1597 /* The BSpec says we always have to read at least one thing from
1598 * the VF, and it appears that the hardware wedges otherwise.
1599 */
1600 if (nr_attributes == 0)
1601 nr_attributes = 1;
1602
1603 prog_data->urb_read_length = (nr_attributes + 1) / 2;
1604
1605 unsigned vue_entries =
1606 MAX2(nr_attributes, prog_data->vue_map.num_slots);
1607
1608 if (brw->gen == 6)
1609 prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
1610 else
1611 prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
1612
1613 return payload_reg + nr_attributes;
1614 }
1615
1616 int
1617 vec4_visitor::setup_uniforms(int reg)
1618 {
1619 prog_data->base.dispatch_grf_start_reg = reg;
1620
1621 /* The pre-gen6 VS requires that some push constants get loaded no
1622 * matter what, or the GPU would hang.
1623 */
1624 if (brw->gen < 6 && this->uniforms == 0) {
1625 assert(this->uniforms < this->uniform_array_size);
1626 this->uniform_vector_size[this->uniforms] = 1;
1627
1628 stage_prog_data->param =
1629 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1630 for (unsigned int i = 0; i < 4; i++) {
1631 unsigned int slot = this->uniforms * 4 + i;
1632 static gl_constant_value zero = { 0.0 };
1633 stage_prog_data->param[slot] = &zero;
1634 }
1635
1636 this->uniforms++;
1637 reg++;
1638 } else {
1639 reg += ALIGN(uniforms, 2) / 2;
1640 }
1641
1642 stage_prog_data->nr_params = this->uniforms * 4;
1643
1644 prog_data->base.curb_read_length =
1645 reg - prog_data->base.dispatch_grf_start_reg;
1646
1647 return reg;
1648 }
1649
1650 void
1651 vec4_vs_visitor::setup_payload(void)
1652 {
1653 int reg = 0;
1654
1655 /* The payload always contains important data in g0, which contains
1656 * the URB handles that are passed on to the URB write at the end
1657 * of the thread. So, we always start push constants at g1.
1658 */
1659 reg++;
1660
1661 reg = setup_uniforms(reg);
1662
1663 reg = setup_attributes(reg);
1664
1665 this->first_non_payload_grf = reg;
1666 }
1667
1668 void
1669 vec4_visitor::assign_binding_table_offsets()
1670 {
1671 assign_common_binding_table_offsets(0);
1672 }
1673
1674 src_reg
1675 vec4_visitor::get_timestamp()
1676 {
1677 assert(brw->gen >= 7);
1678
1679 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1680 BRW_ARF_TIMESTAMP,
1681 0,
1682 0,
1683 0,
1684 BRW_REGISTER_TYPE_UD,
1685 BRW_VERTICAL_STRIDE_0,
1686 BRW_WIDTH_4,
1687 BRW_HORIZONTAL_STRIDE_4,
1688 BRW_SWIZZLE_XYZW,
1689 WRITEMASK_XYZW));
1690
1691 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1692
1693 vec4_instruction *mov = emit(MOV(dst, ts));
1694 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1695 * even if it's not enabled in the dispatch.
1696 */
1697 mov->force_writemask_all = true;
1698
1699 return src_reg(dst);
1700 }
1701
1702 void
1703 vec4_visitor::emit_shader_time_begin()
1704 {
1705 current_annotation = "shader time start";
1706 shader_start_time = get_timestamp();
1707 }
1708
1709 void
1710 vec4_visitor::emit_shader_time_end()
1711 {
1712 current_annotation = "shader time end";
1713 src_reg shader_end_time = get_timestamp();
1714
1715
1716 /* Check that there weren't any timestamp reset events (assuming these
1717 * were the only two timestamp reads that happened).
1718 */
1719 src_reg reset_end = shader_end_time;
1720 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1721 vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
1722 test->conditional_mod = BRW_CONDITIONAL_Z;
1723
1724 emit(IF(BRW_PREDICATE_NORMAL));
1725
1726 /* Take the current timestamp and get the delta. */
1727 shader_start_time.negate = true;
1728 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1729 emit(ADD(diff, shader_start_time, shader_end_time));
1730
1731 /* If there were no instructions between the two timestamp gets, the diff
1732 * is 2 cycles. Remove that overhead, so I can forget about that when
1733 * trying to determine the time taken for single instructions.
1734 */
1735 emit(ADD(diff, src_reg(diff), src_reg(-2u)));
1736
1737 emit_shader_time_write(st_base, src_reg(diff));
1738 emit_shader_time_write(st_written, src_reg(1u));
1739 emit(BRW_OPCODE_ELSE);
1740 emit_shader_time_write(st_reset, src_reg(1u));
1741 emit(BRW_OPCODE_ENDIF);
1742 }
1743
1744 void
1745 vec4_visitor::emit_shader_time_write(enum shader_time_shader_type type,
1746 src_reg value)
1747 {
1748 int shader_time_index =
1749 brw_get_shader_time_index(brw, shader_prog, prog, type);
1750
1751 dst_reg dst =
1752 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1753
1754 dst_reg offset = dst;
1755 dst_reg time = dst;
1756 time.reg_offset++;
1757
1758 offset.type = BRW_REGISTER_TYPE_UD;
1759 emit(MOV(offset, src_reg(shader_time_index * SHADER_TIME_STRIDE)));
1760
1761 time.type = BRW_REGISTER_TYPE_UD;
1762 emit(MOV(time, src_reg(value)));
1763
1764 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1765 }
1766
1767 bool
1768 vec4_visitor::run()
1769 {
1770 sanity_param_count = prog->Parameters->NumParameters;
1771
1772 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1773 emit_shader_time_begin();
1774
1775 assign_binding_table_offsets();
1776
1777 emit_prolog();
1778
1779 /* Generate VS IR for main(). (the visitor only descends into
1780 * functions called "main").
1781 */
1782 if (shader) {
1783 visit_instructions(shader->base.ir);
1784 } else {
1785 emit_program_code();
1786 }
1787 base_ir = NULL;
1788
1789 if (key->userclip_active && !prog->UsesClipDistanceOut)
1790 setup_uniform_clipplane_values();
1791
1792 emit_thread_end();
1793
1794 calculate_cfg();
1795
1796 /* Before any optimization, push array accesses out to scratch
1797 * space where we need them to be. This pass may allocate new
1798 * virtual GRFs, so we want to do it early. It also makes sure
1799 * that we have reladdr computations available for CSE, since we'll
1800 * often do repeated subexpressions for those.
1801 */
1802 if (shader) {
1803 move_grf_array_access_to_scratch();
1804 move_uniform_array_access_to_pull_constants();
1805 } else {
1806 /* The ARB_vertex_program frontend emits pull constant loads directly
1807 * rather than using reladdr, so we don't need to walk through all the
1808 * instructions looking for things to move. There isn't anything.
1809 *
1810 * We do still need to split things to vec4 size.
1811 */
1812 split_uniform_registers();
1813 }
1814 pack_uniform_registers();
1815 move_push_constants_to_pull_constants();
1816 split_virtual_grfs();
1817
1818 const char *stage_name = stage == MESA_SHADER_GEOMETRY ? "gs" : "vs";
1819
1820 #define OPT(pass, args...) ({ \
1821 pass_num++; \
1822 bool this_progress = pass(args); \
1823 \
1824 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
1825 char filename[64]; \
1826 snprintf(filename, 64, "%s-%04d-%02d-%02d-" #pass, \
1827 stage_name, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
1828 \
1829 backend_visitor::dump_instructions(filename); \
1830 } \
1831 \
1832 progress = progress || this_progress; \
1833 this_progress; \
1834 })
1835
1836
1837 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
1838 char filename[64];
1839 snprintf(filename, 64, "%s-%04d-00-start",
1840 stage_name, shader_prog ? shader_prog->Name : 0);
1841
1842 backend_visitor::dump_instructions(filename);
1843 }
1844
1845 bool progress;
1846 int iteration = 0;
1847 int pass_num = 0;
1848 do {
1849 progress = false;
1850 pass_num = 0;
1851 iteration++;
1852
1853 OPT(opt_reduce_swizzle);
1854 OPT(dead_code_eliminate);
1855 OPT(dead_control_flow_eliminate, this);
1856 OPT(opt_copy_propagation);
1857 OPT(opt_cse);
1858 OPT(opt_algebraic);
1859 OPT(opt_register_coalesce);
1860 } while (progress);
1861
1862 pass_num = 0;
1863
1864 if (OPT(opt_vector_float)) {
1865 OPT(opt_cse);
1866 OPT(opt_copy_propagation, false);
1867 OPT(opt_copy_propagation, true);
1868 OPT(dead_code_eliminate);
1869 }
1870
1871 if (failed)
1872 return false;
1873
1874 setup_payload();
1875
1876 if (false) {
1877 /* Debug of register spilling: Go spill everything. */
1878 const int grf_count = alloc.count;
1879 float spill_costs[alloc.count];
1880 bool no_spill[alloc.count];
1881 evaluate_spill_costs(spill_costs, no_spill);
1882 for (int i = 0; i < grf_count; i++) {
1883 if (no_spill[i])
1884 continue;
1885 spill_reg(i);
1886 }
1887 }
1888
1889 while (!reg_allocate()) {
1890 if (failed)
1891 return false;
1892 }
1893
1894 opt_schedule_instructions();
1895
1896 opt_set_dependency_control();
1897
1898 /* If any state parameters were appended, then ParameterValues could have
1899 * been realloced, in which case the driver uniform storage set up by
1900 * _mesa_associate_uniform_storage() would point to freed memory. Make
1901 * sure that didn't happen.
1902 */
1903 assert(sanity_param_count == prog->Parameters->NumParameters);
1904
1905 return !failed;
1906 }
1907
1908 } /* namespace brw */
1909
1910 extern "C" {
1911
1912 /**
1913 * Compile a vertex shader.
1914 *
1915 * Returns the final assembly and the program's size.
1916 */
1917 const unsigned *
1918 brw_vs_emit(struct brw_context *brw,
1919 struct gl_shader_program *prog,
1920 struct brw_vs_compile *c,
1921 struct brw_vs_prog_data *prog_data,
1922 void *mem_ctx,
1923 unsigned *final_assembly_size)
1924 {
1925 bool start_busy = false;
1926 double start_time = 0;
1927 const unsigned *assembly = NULL;
1928
1929 if (unlikely(brw->perf_debug)) {
1930 start_busy = (brw->batch.last_bo &&
1931 drm_intel_bo_busy(brw->batch.last_bo));
1932 start_time = get_time();
1933 }
1934
1935 struct brw_shader *shader = NULL;
1936 if (prog)
1937 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
1938
1939 if (unlikely(INTEL_DEBUG & DEBUG_VS))
1940 brw_dump_ir("vertex", prog, &shader->base, &c->vp->program.Base);
1941
1942 if (prog && brw->gen >= 8 && brw->scalar_vs) {
1943 fs_visitor v(brw, mem_ctx, &c->key, prog_data, prog, &c->vp->program, 8);
1944 if (!v.run_vs()) {
1945 if (prog) {
1946 prog->LinkStatus = false;
1947 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1948 }
1949
1950 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1951 v.fail_msg);
1952
1953 return NULL;
1954 }
1955
1956 fs_generator g(brw, mem_ctx, (void *) &c->key, &prog_data->base.base,
1957 &c->vp->program.Base, v.runtime_check_aads_emit, "VS");
1958 if (INTEL_DEBUG & DEBUG_VS) {
1959 char *name = ralloc_asprintf(mem_ctx, "%s vertex shader %d",
1960 prog->Label ? prog->Label : "unnamed",
1961 prog->Name);
1962 g.enable_debug(name);
1963 }
1964 g.generate_code(v.cfg, 8);
1965 assembly = g.get_assembly(final_assembly_size);
1966
1967 if (assembly)
1968 prog_data->base.simd8 = true;
1969 c->base.last_scratch = v.last_scratch;
1970 }
1971
1972 if (!assembly) {
1973 vec4_vs_visitor v(brw, c, prog_data, prog, mem_ctx);
1974 if (!v.run()) {
1975 if (prog) {
1976 prog->LinkStatus = false;
1977 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1978 }
1979
1980 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1981 v.fail_msg);
1982
1983 return NULL;
1984 }
1985
1986 vec4_generator g(brw, prog, &c->vp->program.Base, &prog_data->base,
1987 mem_ctx, INTEL_DEBUG & DEBUG_VS, "vertex", "VS");
1988 assembly = g.generate_assembly(v.cfg, final_assembly_size);
1989 }
1990
1991 if (unlikely(brw->perf_debug) && shader) {
1992 if (shader->compiled_once) {
1993 brw_vs_debug_recompile(brw, prog, &c->key);
1994 }
1995 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
1996 perf_debug("VS compile took %.03f ms and stalled the GPU\n",
1997 (get_time() - start_time) * 1000);
1998 }
1999 shader->compiled_once = true;
2000 }
2001
2002 return assembly;
2003 }
2004
2005
2006 void
2007 brw_vue_setup_prog_key_for_precompile(struct gl_context *ctx,
2008 struct brw_vue_prog_key *key,
2009 GLuint id, struct gl_program *prog)
2010 {
2011 struct brw_context *brw = brw_context(ctx);
2012 key->program_string_id = id;
2013
2014 const bool has_shader_channel_select = brw->is_haswell || brw->gen >= 8;
2015 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
2016 for (unsigned i = 0; i < sampler_count; i++) {
2017 if (!has_shader_channel_select && (prog->ShadowSamplers & (1 << i))) {
2018 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
2019 key->tex.swizzles[i] =
2020 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
2021 } else {
2022 /* Color sampler: assume no swizzling. */
2023 key->tex.swizzles[i] = SWIZZLE_XYZW;
2024 }
2025 }
2026 }
2027
2028 } /* extern "C" */