i965/vec4: Don't coalesce regs in Gen6 MATH ops if reswizzle/writemask needed
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_vs.h"
28 #include "brw_nir.h"
29 #include "brw_vec4_live_variables.h"
30 #include "brw_dead_control_flow.h"
31
32 extern "C" {
33 #include "main/macros.h"
34 #include "main/shaderobj.h"
35 #include "program/prog_print.h"
36 #include "program/prog_parameter.h"
37 }
38 #include "main/context.h"
39
40 #define MAX_INSTRUCTION (1 << 30)
41
42 using namespace brw;
43
44 namespace brw {
45
46 void
47 src_reg::init()
48 {
49 memset(this, 0, sizeof(*this));
50
51 this->file = BAD_FILE;
52 }
53
54 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
55 {
56 init();
57
58 this->file = file;
59 this->reg = reg;
60 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
61 this->swizzle = brw_swizzle_for_size(type->vector_elements);
62 else
63 this->swizzle = BRW_SWIZZLE_XYZW;
64 if (type)
65 this->type = brw_type_for_base_type(type);
66 }
67
68 /** Generic unset register constructor. */
69 src_reg::src_reg()
70 {
71 init();
72 }
73
74 src_reg::src_reg(float f)
75 {
76 init();
77
78 this->file = IMM;
79 this->type = BRW_REGISTER_TYPE_F;
80 this->fixed_hw_reg.dw1.f = f;
81 }
82
83 src_reg::src_reg(uint32_t u)
84 {
85 init();
86
87 this->file = IMM;
88 this->type = BRW_REGISTER_TYPE_UD;
89 this->fixed_hw_reg.dw1.ud = u;
90 }
91
92 src_reg::src_reg(int32_t i)
93 {
94 init();
95
96 this->file = IMM;
97 this->type = BRW_REGISTER_TYPE_D;
98 this->fixed_hw_reg.dw1.d = i;
99 }
100
101 src_reg::src_reg(uint8_t vf[4])
102 {
103 init();
104
105 this->file = IMM;
106 this->type = BRW_REGISTER_TYPE_VF;
107 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
108 }
109
110 src_reg::src_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
111 {
112 init();
113
114 this->file = IMM;
115 this->type = BRW_REGISTER_TYPE_VF;
116 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
117 (vf1 << 8) |
118 (vf2 << 16) |
119 (vf3 << 24);
120 }
121
122 src_reg::src_reg(struct brw_reg reg)
123 {
124 init();
125
126 this->file = HW_REG;
127 this->fixed_hw_reg = reg;
128 this->type = reg.type;
129 }
130
131 src_reg::src_reg(const dst_reg &reg)
132 {
133 init();
134
135 this->file = reg.file;
136 this->reg = reg.reg;
137 this->reg_offset = reg.reg_offset;
138 this->type = reg.type;
139 this->reladdr = reg.reladdr;
140 this->fixed_hw_reg = reg.fixed_hw_reg;
141 this->swizzle = brw_swizzle_for_mask(reg.writemask);
142 }
143
144 void
145 dst_reg::init()
146 {
147 memset(this, 0, sizeof(*this));
148 this->file = BAD_FILE;
149 this->writemask = WRITEMASK_XYZW;
150 }
151
152 dst_reg::dst_reg()
153 {
154 init();
155 }
156
157 dst_reg::dst_reg(register_file file, int reg)
158 {
159 init();
160
161 this->file = file;
162 this->reg = reg;
163 }
164
165 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
166 unsigned writemask)
167 {
168 init();
169
170 this->file = file;
171 this->reg = reg;
172 this->type = brw_type_for_base_type(type);
173 this->writemask = writemask;
174 }
175
176 dst_reg::dst_reg(register_file file, int reg, brw_reg_type type,
177 unsigned writemask)
178 {
179 init();
180
181 this->file = file;
182 this->reg = reg;
183 this->type = type;
184 this->writemask = writemask;
185 }
186
187 dst_reg::dst_reg(struct brw_reg reg)
188 {
189 init();
190
191 this->file = HW_REG;
192 this->fixed_hw_reg = reg;
193 this->type = reg.type;
194 }
195
196 dst_reg::dst_reg(const src_reg &reg)
197 {
198 init();
199
200 this->file = reg.file;
201 this->reg = reg.reg;
202 this->reg_offset = reg.reg_offset;
203 this->type = reg.type;
204 this->writemask = brw_mask_for_swizzle(reg.swizzle);
205 this->reladdr = reg.reladdr;
206 this->fixed_hw_reg = reg.fixed_hw_reg;
207 }
208
209 bool
210 dst_reg::equals(const dst_reg &r) const
211 {
212 return (file == r.file &&
213 reg == r.reg &&
214 reg_offset == r.reg_offset &&
215 type == r.type &&
216 negate == r.negate &&
217 abs == r.abs &&
218 writemask == r.writemask &&
219 (reladdr == r.reladdr ||
220 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))) &&
221 ((file != HW_REG && file != IMM) ||
222 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
223 sizeof(fixed_hw_reg)) == 0));
224 }
225
226 bool
227 vec4_instruction::is_send_from_grf()
228 {
229 switch (opcode) {
230 case SHADER_OPCODE_SHADER_TIME_ADD:
231 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
232 case SHADER_OPCODE_UNTYPED_ATOMIC:
233 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
234 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
235 case SHADER_OPCODE_TYPED_ATOMIC:
236 case SHADER_OPCODE_TYPED_SURFACE_READ:
237 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
238 return true;
239 default:
240 return false;
241 }
242 }
243
244 unsigned
245 vec4_instruction::regs_read(unsigned arg) const
246 {
247 if (src[arg].file == BAD_FILE)
248 return 0;
249
250 switch (opcode) {
251 case SHADER_OPCODE_SHADER_TIME_ADD:
252 case SHADER_OPCODE_UNTYPED_ATOMIC:
253 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
254 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
255 case SHADER_OPCODE_TYPED_ATOMIC:
256 case SHADER_OPCODE_TYPED_SURFACE_READ:
257 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
258 return arg == 0 ? mlen : 1;
259
260 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
261 return arg == 1 ? mlen : 1;
262
263 default:
264 return 1;
265 }
266 }
267
268 bool
269 vec4_instruction::can_do_source_mods(const struct brw_device_info *devinfo)
270 {
271 if (devinfo->gen == 6 && is_math())
272 return false;
273
274 if (is_send_from_grf())
275 return false;
276
277 if (!backend_instruction::can_do_source_mods())
278 return false;
279
280 return true;
281 }
282
283 /**
284 * Returns how many MRFs an opcode will write over.
285 *
286 * Note that this is not the 0 or 1 implied writes in an actual gen
287 * instruction -- the generate_* functions generate additional MOVs
288 * for setup.
289 */
290 int
291 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
292 {
293 if (inst->mlen == 0 || inst->is_send_from_grf())
294 return 0;
295
296 switch (inst->opcode) {
297 case SHADER_OPCODE_RCP:
298 case SHADER_OPCODE_RSQ:
299 case SHADER_OPCODE_SQRT:
300 case SHADER_OPCODE_EXP2:
301 case SHADER_OPCODE_LOG2:
302 case SHADER_OPCODE_SIN:
303 case SHADER_OPCODE_COS:
304 return 1;
305 case SHADER_OPCODE_INT_QUOTIENT:
306 case SHADER_OPCODE_INT_REMAINDER:
307 case SHADER_OPCODE_POW:
308 return 2;
309 case VS_OPCODE_URB_WRITE:
310 return 1;
311 case VS_OPCODE_PULL_CONSTANT_LOAD:
312 return 2;
313 case SHADER_OPCODE_GEN4_SCRATCH_READ:
314 return 2;
315 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
316 return 3;
317 case GS_OPCODE_URB_WRITE:
318 case GS_OPCODE_URB_WRITE_ALLOCATE:
319 case GS_OPCODE_THREAD_END:
320 return 0;
321 case GS_OPCODE_FF_SYNC:
322 return 1;
323 case SHADER_OPCODE_SHADER_TIME_ADD:
324 return 0;
325 case SHADER_OPCODE_TEX:
326 case SHADER_OPCODE_TXL:
327 case SHADER_OPCODE_TXD:
328 case SHADER_OPCODE_TXF:
329 case SHADER_OPCODE_TXF_CMS:
330 case SHADER_OPCODE_TXF_MCS:
331 case SHADER_OPCODE_TXS:
332 case SHADER_OPCODE_TG4:
333 case SHADER_OPCODE_TG4_OFFSET:
334 case SHADER_OPCODE_SAMPLEINFO:
335 return inst->header_size;
336 default:
337 unreachable("not reached");
338 }
339 }
340
341 bool
342 src_reg::equals(const src_reg &r) const
343 {
344 return (file == r.file &&
345 reg == r.reg &&
346 reg_offset == r.reg_offset &&
347 type == r.type &&
348 negate == r.negate &&
349 abs == r.abs &&
350 swizzle == r.swizzle &&
351 !reladdr && !r.reladdr &&
352 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
353 sizeof(fixed_hw_reg)) == 0);
354 }
355
356 bool
357 vec4_visitor::opt_vector_float()
358 {
359 bool progress = false;
360
361 int last_reg = -1, last_reg_offset = -1;
362 enum register_file last_reg_file = BAD_FILE;
363
364 int remaining_channels = 0;
365 uint8_t imm[4];
366 int inst_count = 0;
367 vec4_instruction *imm_inst[4];
368
369 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
370 if (last_reg != inst->dst.reg ||
371 last_reg_offset != inst->dst.reg_offset ||
372 last_reg_file != inst->dst.file) {
373 last_reg = inst->dst.reg;
374 last_reg_offset = inst->dst.reg_offset;
375 last_reg_file = inst->dst.file;
376 remaining_channels = WRITEMASK_XYZW;
377
378 inst_count = 0;
379 }
380
381 if (inst->opcode != BRW_OPCODE_MOV ||
382 inst->dst.writemask == WRITEMASK_XYZW ||
383 inst->src[0].file != IMM)
384 continue;
385
386 int vf = brw_float_to_vf(inst->src[0].fixed_hw_reg.dw1.f);
387 if (vf == -1)
388 continue;
389
390 if ((inst->dst.writemask & WRITEMASK_X) != 0)
391 imm[0] = vf;
392 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
393 imm[1] = vf;
394 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
395 imm[2] = vf;
396 if ((inst->dst.writemask & WRITEMASK_W) != 0)
397 imm[3] = vf;
398
399 imm_inst[inst_count++] = inst;
400
401 remaining_channels &= ~inst->dst.writemask;
402 if (remaining_channels == 0) {
403 vec4_instruction *mov = MOV(inst->dst, imm);
404 mov->dst.type = BRW_REGISTER_TYPE_F;
405 mov->dst.writemask = WRITEMASK_XYZW;
406 inst->insert_after(block, mov);
407 last_reg = -1;
408
409 for (int i = 0; i < inst_count; i++) {
410 imm_inst[i]->remove(block);
411 }
412 progress = true;
413 }
414 }
415
416 if (progress)
417 invalidate_live_intervals();
418
419 return progress;
420 }
421
422 /* Replaces unused channels of a swizzle with channels that are used.
423 *
424 * For instance, this pass transforms
425 *
426 * mov vgrf4.yz, vgrf5.wxzy
427 *
428 * into
429 *
430 * mov vgrf4.yz, vgrf5.xxzx
431 *
432 * This eliminates false uses of some channels, letting dead code elimination
433 * remove the instructions that wrote them.
434 */
435 bool
436 vec4_visitor::opt_reduce_swizzle()
437 {
438 bool progress = false;
439
440 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
441 if (inst->dst.file == BAD_FILE || inst->dst.file == HW_REG ||
442 inst->is_send_from_grf())
443 continue;
444
445 unsigned swizzle;
446
447 /* Determine which channels of the sources are read. */
448 switch (inst->opcode) {
449 case VEC4_OPCODE_PACK_BYTES:
450 case BRW_OPCODE_DP4:
451 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
452 * but all four of src1.
453 */
454 swizzle = brw_swizzle_for_size(4);
455 break;
456 case BRW_OPCODE_DP3:
457 swizzle = brw_swizzle_for_size(3);
458 break;
459 case BRW_OPCODE_DP2:
460 swizzle = brw_swizzle_for_size(2);
461 break;
462 default:
463 swizzle = brw_swizzle_for_mask(inst->dst.writemask);
464 break;
465 }
466
467 /* Update sources' swizzles. */
468 for (int i = 0; i < 3; i++) {
469 if (inst->src[i].file != GRF &&
470 inst->src[i].file != ATTR &&
471 inst->src[i].file != UNIFORM)
472 continue;
473
474 const unsigned new_swizzle =
475 brw_compose_swizzle(swizzle, inst->src[i].swizzle);
476 if (inst->src[i].swizzle != new_swizzle) {
477 inst->src[i].swizzle = new_swizzle;
478 progress = true;
479 }
480 }
481 }
482
483 if (progress)
484 invalidate_live_intervals();
485
486 return progress;
487 }
488
489 void
490 vec4_visitor::split_uniform_registers()
491 {
492 /* Prior to this, uniforms have been in an array sized according to
493 * the number of vector uniforms present, sparsely filled (so an
494 * aggregate results in reg indices being skipped over). Now we're
495 * going to cut those aggregates up so each .reg index is one
496 * vector. The goal is to make elimination of unused uniform
497 * components easier later.
498 */
499 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
500 for (int i = 0 ; i < 3; i++) {
501 if (inst->src[i].file != UNIFORM)
502 continue;
503
504 assert(!inst->src[i].reladdr);
505
506 inst->src[i].reg += inst->src[i].reg_offset;
507 inst->src[i].reg_offset = 0;
508 }
509 }
510
511 /* Update that everything is now vector-sized. */
512 for (int i = 0; i < this->uniforms; i++) {
513 this->uniform_size[i] = 1;
514 }
515 }
516
517 void
518 vec4_visitor::pack_uniform_registers()
519 {
520 bool uniform_used[this->uniforms];
521 int new_loc[this->uniforms];
522 int new_chan[this->uniforms];
523
524 memset(uniform_used, 0, sizeof(uniform_used));
525 memset(new_loc, 0, sizeof(new_loc));
526 memset(new_chan, 0, sizeof(new_chan));
527
528 /* Find which uniform vectors are actually used by the program. We
529 * expect unused vector elements when we've moved array access out
530 * to pull constants, and from some GLSL code generators like wine.
531 */
532 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
533 for (int i = 0 ; i < 3; i++) {
534 if (inst->src[i].file != UNIFORM)
535 continue;
536
537 uniform_used[inst->src[i].reg] = true;
538 }
539 }
540
541 int new_uniform_count = 0;
542
543 /* Now, figure out a packing of the live uniform vectors into our
544 * push constants.
545 */
546 for (int src = 0; src < uniforms; src++) {
547 assert(src < uniform_array_size);
548 int size = this->uniform_vector_size[src];
549
550 if (!uniform_used[src]) {
551 this->uniform_vector_size[src] = 0;
552 continue;
553 }
554
555 int dst;
556 /* Find the lowest place we can slot this uniform in. */
557 for (dst = 0; dst < src; dst++) {
558 if (this->uniform_vector_size[dst] + size <= 4)
559 break;
560 }
561
562 if (src == dst) {
563 new_loc[src] = dst;
564 new_chan[src] = 0;
565 } else {
566 new_loc[src] = dst;
567 new_chan[src] = this->uniform_vector_size[dst];
568
569 /* Move the references to the data */
570 for (int j = 0; j < size; j++) {
571 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
572 stage_prog_data->param[src * 4 + j];
573 }
574
575 this->uniform_vector_size[dst] += size;
576 this->uniform_vector_size[src] = 0;
577 }
578
579 new_uniform_count = MAX2(new_uniform_count, dst + 1);
580 }
581
582 this->uniforms = new_uniform_count;
583
584 /* Now, update the instructions for our repacked uniforms. */
585 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
586 for (int i = 0 ; i < 3; i++) {
587 int src = inst->src[i].reg;
588
589 if (inst->src[i].file != UNIFORM)
590 continue;
591
592 inst->src[i].reg = new_loc[src];
593 inst->src[i].swizzle += BRW_SWIZZLE4(new_chan[src], new_chan[src],
594 new_chan[src], new_chan[src]);
595 }
596 }
597 }
598
599 /**
600 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
601 *
602 * While GLSL IR also performs this optimization, we end up with it in
603 * our instruction stream for a couple of reasons. One is that we
604 * sometimes generate silly instructions, for example in array access
605 * where we'll generate "ADD offset, index, base" even if base is 0.
606 * The other is that GLSL IR's constant propagation doesn't track the
607 * components of aggregates, so some VS patterns (initialize matrix to
608 * 0, accumulate in vertex blending factors) end up breaking down to
609 * instructions involving 0.
610 */
611 bool
612 vec4_visitor::opt_algebraic()
613 {
614 bool progress = false;
615
616 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
617 switch (inst->opcode) {
618 case BRW_OPCODE_MOV:
619 if (inst->src[0].file != IMM)
620 break;
621
622 if (inst->saturate) {
623 if (inst->dst.type != inst->src[0].type)
624 assert(!"unimplemented: saturate mixed types");
625
626 if (brw_saturate_immediate(inst->dst.type,
627 &inst->src[0].fixed_hw_reg)) {
628 inst->saturate = false;
629 progress = true;
630 }
631 }
632 break;
633
634 case VEC4_OPCODE_UNPACK_UNIFORM:
635 if (inst->src[0].file != UNIFORM) {
636 inst->opcode = BRW_OPCODE_MOV;
637 progress = true;
638 }
639 break;
640
641 case BRW_OPCODE_ADD:
642 if (inst->src[1].is_zero()) {
643 inst->opcode = BRW_OPCODE_MOV;
644 inst->src[1] = src_reg();
645 progress = true;
646 }
647 break;
648
649 case BRW_OPCODE_MUL:
650 if (inst->src[1].is_zero()) {
651 inst->opcode = BRW_OPCODE_MOV;
652 switch (inst->src[0].type) {
653 case BRW_REGISTER_TYPE_F:
654 inst->src[0] = src_reg(0.0f);
655 break;
656 case BRW_REGISTER_TYPE_D:
657 inst->src[0] = src_reg(0);
658 break;
659 case BRW_REGISTER_TYPE_UD:
660 inst->src[0] = src_reg(0u);
661 break;
662 default:
663 unreachable("not reached");
664 }
665 inst->src[1] = src_reg();
666 progress = true;
667 } else if (inst->src[1].is_one()) {
668 inst->opcode = BRW_OPCODE_MOV;
669 inst->src[1] = src_reg();
670 progress = true;
671 } else if (inst->src[1].is_negative_one()) {
672 inst->opcode = BRW_OPCODE_MOV;
673 inst->src[0].negate = !inst->src[0].negate;
674 inst->src[1] = src_reg();
675 progress = true;
676 }
677 break;
678 case BRW_OPCODE_CMP:
679 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
680 inst->src[0].abs &&
681 inst->src[0].negate &&
682 inst->src[1].is_zero()) {
683 inst->src[0].abs = false;
684 inst->src[0].negate = false;
685 inst->conditional_mod = BRW_CONDITIONAL_Z;
686 progress = true;
687 break;
688 }
689 break;
690 case SHADER_OPCODE_RCP: {
691 vec4_instruction *prev = (vec4_instruction *)inst->prev;
692 if (prev->opcode == SHADER_OPCODE_SQRT) {
693 if (inst->src[0].equals(src_reg(prev->dst))) {
694 inst->opcode = SHADER_OPCODE_RSQ;
695 inst->src[0] = prev->src[0];
696 progress = true;
697 }
698 }
699 break;
700 }
701 case SHADER_OPCODE_BROADCAST:
702 if (is_uniform(inst->src[0]) ||
703 inst->src[1].is_zero()) {
704 inst->opcode = BRW_OPCODE_MOV;
705 inst->src[1] = src_reg();
706 inst->force_writemask_all = true;
707 progress = true;
708 }
709 break;
710
711 default:
712 break;
713 }
714 }
715
716 if (progress)
717 invalidate_live_intervals();
718
719 return progress;
720 }
721
722 /**
723 * Only a limited number of hardware registers may be used for push
724 * constants, so this turns access to the overflowed constants into
725 * pull constants.
726 */
727 void
728 vec4_visitor::move_push_constants_to_pull_constants()
729 {
730 int pull_constant_loc[this->uniforms];
731
732 /* Only allow 32 registers (256 uniform components) as push constants,
733 * which is the limit on gen6.
734 *
735 * If changing this value, note the limitation about total_regs in
736 * brw_curbe.c.
737 */
738 int max_uniform_components = 32 * 8;
739 if (this->uniforms * 4 <= max_uniform_components)
740 return;
741
742 /* Make some sort of choice as to which uniforms get sent to pull
743 * constants. We could potentially do something clever here like
744 * look for the most infrequently used uniform vec4s, but leave
745 * that for later.
746 */
747 for (int i = 0; i < this->uniforms * 4; i += 4) {
748 pull_constant_loc[i / 4] = -1;
749
750 if (i >= max_uniform_components) {
751 const gl_constant_value **values = &stage_prog_data->param[i];
752
753 /* Try to find an existing copy of this uniform in the pull
754 * constants if it was part of an array access already.
755 */
756 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
757 int matches;
758
759 for (matches = 0; matches < 4; matches++) {
760 if (stage_prog_data->pull_param[j + matches] != values[matches])
761 break;
762 }
763
764 if (matches == 4) {
765 pull_constant_loc[i / 4] = j / 4;
766 break;
767 }
768 }
769
770 if (pull_constant_loc[i / 4] == -1) {
771 assert(stage_prog_data->nr_pull_params % 4 == 0);
772 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
773
774 for (int j = 0; j < 4; j++) {
775 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
776 values[j];
777 }
778 }
779 }
780 }
781
782 /* Now actually rewrite usage of the things we've moved to pull
783 * constants.
784 */
785 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
786 for (int i = 0 ; i < 3; i++) {
787 if (inst->src[i].file != UNIFORM ||
788 pull_constant_loc[inst->src[i].reg] == -1)
789 continue;
790
791 int uniform = inst->src[i].reg;
792
793 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
794
795 emit_pull_constant_load(block, inst, temp, inst->src[i],
796 pull_constant_loc[uniform]);
797
798 inst->src[i].file = temp.file;
799 inst->src[i].reg = temp.reg;
800 inst->src[i].reg_offset = temp.reg_offset;
801 inst->src[i].reladdr = NULL;
802 }
803 }
804
805 /* Repack push constants to remove the now-unused ones. */
806 pack_uniform_registers();
807 }
808
809 /* Conditions for which we want to avoid setting the dependency control bits */
810 bool
811 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
812 {
813 #define IS_DWORD(reg) \
814 (reg.type == BRW_REGISTER_TYPE_UD || \
815 reg.type == BRW_REGISTER_TYPE_D)
816
817 /* "When source or destination datatype is 64b or operation is integer DWord
818 * multiply, DepCtrl must not be used."
819 * May apply to future SoCs as well.
820 */
821 if (devinfo->is_cherryview) {
822 if (inst->opcode == BRW_OPCODE_MUL &&
823 IS_DWORD(inst->src[0]) &&
824 IS_DWORD(inst->src[1]))
825 return true;
826 }
827 #undef IS_DWORD
828
829 if (devinfo->gen >= 8) {
830 if (inst->opcode == BRW_OPCODE_F32TO16)
831 return true;
832 }
833
834 /*
835 * mlen:
836 * In the presence of send messages, totally interrupt dependency
837 * control. They're long enough that the chance of dependency
838 * control around them just doesn't matter.
839 *
840 * predicate:
841 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
842 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
843 * completes the scoreboard clear must have a non-zero execution mask. This
844 * means, if any kind of predication can change the execution mask or channel
845 * enable of the last instruction, the optimization must be avoided. This is
846 * to avoid instructions being shot down the pipeline when no writes are
847 * required.
848 *
849 * math:
850 * Dependency control does not work well over math instructions.
851 * NB: Discovered empirically
852 */
853 return (inst->mlen || inst->predicate || inst->is_math());
854 }
855
856 /**
857 * Sets the dependency control fields on instructions after register
858 * allocation and before the generator is run.
859 *
860 * When you have a sequence of instructions like:
861 *
862 * DP4 temp.x vertex uniform[0]
863 * DP4 temp.y vertex uniform[0]
864 * DP4 temp.z vertex uniform[0]
865 * DP4 temp.w vertex uniform[0]
866 *
867 * The hardware doesn't know that it can actually run the later instructions
868 * while the previous ones are in flight, producing stalls. However, we have
869 * manual fields we can set in the instructions that let it do so.
870 */
871 void
872 vec4_visitor::opt_set_dependency_control()
873 {
874 vec4_instruction *last_grf_write[BRW_MAX_GRF];
875 uint8_t grf_channels_written[BRW_MAX_GRF];
876 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
877 uint8_t mrf_channels_written[BRW_MAX_GRF];
878
879 assert(prog_data->total_grf ||
880 !"Must be called after register allocation");
881
882 foreach_block (block, cfg) {
883 memset(last_grf_write, 0, sizeof(last_grf_write));
884 memset(last_mrf_write, 0, sizeof(last_mrf_write));
885
886 foreach_inst_in_block (vec4_instruction, inst, block) {
887 /* If we read from a register that we were doing dependency control
888 * on, don't do dependency control across the read.
889 */
890 for (int i = 0; i < 3; i++) {
891 int reg = inst->src[i].reg + inst->src[i].reg_offset;
892 if (inst->src[i].file == GRF) {
893 last_grf_write[reg] = NULL;
894 } else if (inst->src[i].file == HW_REG) {
895 memset(last_grf_write, 0, sizeof(last_grf_write));
896 break;
897 }
898 assert(inst->src[i].file != MRF);
899 }
900
901 if (is_dep_ctrl_unsafe(inst)) {
902 memset(last_grf_write, 0, sizeof(last_grf_write));
903 memset(last_mrf_write, 0, sizeof(last_mrf_write));
904 continue;
905 }
906
907 /* Now, see if we can do dependency control for this instruction
908 * against a previous one writing to its destination.
909 */
910 int reg = inst->dst.reg + inst->dst.reg_offset;
911 if (inst->dst.file == GRF) {
912 if (last_grf_write[reg] &&
913 !(inst->dst.writemask & grf_channels_written[reg])) {
914 last_grf_write[reg]->no_dd_clear = true;
915 inst->no_dd_check = true;
916 } else {
917 grf_channels_written[reg] = 0;
918 }
919
920 last_grf_write[reg] = inst;
921 grf_channels_written[reg] |= inst->dst.writemask;
922 } else if (inst->dst.file == MRF) {
923 if (last_mrf_write[reg] &&
924 !(inst->dst.writemask & mrf_channels_written[reg])) {
925 last_mrf_write[reg]->no_dd_clear = true;
926 inst->no_dd_check = true;
927 } else {
928 mrf_channels_written[reg] = 0;
929 }
930
931 last_mrf_write[reg] = inst;
932 mrf_channels_written[reg] |= inst->dst.writemask;
933 } else if (inst->dst.reg == HW_REG) {
934 if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
935 memset(last_grf_write, 0, sizeof(last_grf_write));
936 if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
937 memset(last_mrf_write, 0, sizeof(last_mrf_write));
938 }
939 }
940 }
941 }
942
943 bool
944 vec4_instruction::can_reswizzle(const struct brw_device_info *devinfo,
945 int dst_writemask,
946 int swizzle,
947 int swizzle_mask)
948 {
949 /* Gen6 MATH instructions can not execute in align16 mode, so swizzles
950 * or writemasking are not allowed.
951 */
952 if (devinfo->gen == 6 && is_math() &&
953 (swizzle != BRW_SWIZZLE_XYZW || dst_writemask != WRITEMASK_XYZW))
954 return false;
955
956 /* If this instruction sets anything not referenced by swizzle, then we'd
957 * totally break it when we reswizzle.
958 */
959 if (dst.writemask & ~swizzle_mask)
960 return false;
961
962 if (mlen > 0)
963 return false;
964
965 /* We can't use swizzles on the accumulator and that's really the only
966 * HW_REG we would care to reswizzle so just disallow them all.
967 */
968 for (int i = 0; i < 3; i++) {
969 if (src[i].file == HW_REG)
970 return false;
971 }
972
973 return true;
974 }
975
976 /**
977 * For any channels in the swizzle's source that were populated by this
978 * instruction, rewrite the instruction to put the appropriate result directly
979 * in those channels.
980 *
981 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
982 */
983 void
984 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
985 {
986 /* Destination write mask doesn't correspond to source swizzle for the dot
987 * product and pack_bytes instructions.
988 */
989 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
990 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
991 opcode != VEC4_OPCODE_PACK_BYTES) {
992 for (int i = 0; i < 3; i++) {
993 if (src[i].file == BAD_FILE || src[i].file == IMM)
994 continue;
995
996 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
997 }
998 }
999
1000 /* Apply the specified swizzle and writemask to the original mask of
1001 * written components.
1002 */
1003 dst.writemask = dst_writemask &
1004 brw_apply_swizzle_to_mask(swizzle, dst.writemask);
1005 }
1006
1007 /*
1008 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1009 * just written and then MOVed into another reg and making the original write
1010 * of the GRF write directly to the final destination instead.
1011 */
1012 bool
1013 vec4_visitor::opt_register_coalesce()
1014 {
1015 bool progress = false;
1016 int next_ip = 0;
1017
1018 calculate_live_intervals();
1019
1020 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1021 int ip = next_ip;
1022 next_ip++;
1023
1024 if (inst->opcode != BRW_OPCODE_MOV ||
1025 (inst->dst.file != GRF && inst->dst.file != MRF) ||
1026 inst->predicate ||
1027 inst->src[0].file != GRF ||
1028 inst->dst.type != inst->src[0].type ||
1029 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1030 continue;
1031
1032 /* Remove no-op MOVs */
1033 if (inst->dst.file == inst->src[0].file &&
1034 inst->dst.reg == inst->src[0].reg &&
1035 inst->dst.reg_offset == inst->src[0].reg_offset) {
1036 bool is_nop_mov = true;
1037
1038 for (unsigned c = 0; c < 4; c++) {
1039 if ((inst->dst.writemask & (1 << c)) == 0)
1040 continue;
1041
1042 if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
1043 is_nop_mov = false;
1044 break;
1045 }
1046 }
1047
1048 if (is_nop_mov) {
1049 inst->remove(block);
1050 continue;
1051 }
1052 }
1053
1054 bool to_mrf = (inst->dst.file == MRF);
1055
1056 /* Can't coalesce this GRF if someone else was going to
1057 * read it later.
1058 */
1059 if (var_range_end(var_from_reg(alloc, inst->src[0]), 4) > ip)
1060 continue;
1061
1062 /* We need to check interference with the final destination between this
1063 * instruction and the earliest instruction involved in writing the GRF
1064 * we're eliminating. To do that, keep track of which of our source
1065 * channels we've seen initialized.
1066 */
1067 const unsigned chans_needed =
1068 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1069 inst->dst.writemask);
1070 unsigned chans_remaining = chans_needed;
1071
1072 /* Now walk up the instruction stream trying to see if we can rewrite
1073 * everything writing to the temporary to write into the destination
1074 * instead.
1075 */
1076 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1077 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1078 inst, block) {
1079 _scan_inst = scan_inst;
1080
1081 if (inst->src[0].in_range(scan_inst->dst, scan_inst->regs_written)) {
1082 /* Found something writing to the reg we want to coalesce away. */
1083 if (to_mrf) {
1084 /* SEND instructions can't have MRF as a destination. */
1085 if (scan_inst->mlen)
1086 break;
1087
1088 if (devinfo->gen == 6) {
1089 /* gen6 math instructions must have the destination be
1090 * GRF, so no compute-to-MRF for them.
1091 */
1092 if (scan_inst->is_math()) {
1093 break;
1094 }
1095 }
1096 }
1097
1098 /* This doesn't handle saturation on the instruction we
1099 * want to coalesce away if the register types do not match.
1100 * But if scan_inst is a non type-converting 'mov', we can fix
1101 * the types later.
1102 */
1103 if (inst->saturate &&
1104 inst->dst.type != scan_inst->dst.type &&
1105 !(scan_inst->opcode == BRW_OPCODE_MOV &&
1106 scan_inst->dst.type == scan_inst->src[0].type))
1107 break;
1108
1109 /* If we can't handle the swizzle, bail. */
1110 if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
1111 inst->src[0].swizzle,
1112 chans_needed)) {
1113 break;
1114 }
1115
1116 /* This doesn't handle coalescing of multiple registers. */
1117 if (scan_inst->regs_written > 1)
1118 break;
1119
1120 /* Mark which channels we found unconditional writes for. */
1121 if (!scan_inst->predicate)
1122 chans_remaining &= ~scan_inst->dst.writemask;
1123
1124 if (chans_remaining == 0)
1125 break;
1126 }
1127
1128 /* You can't read from an MRF, so if someone else reads our MRF's
1129 * source GRF that we wanted to rewrite, that stops us. If it's a
1130 * GRF we're trying to coalesce to, we don't actually handle
1131 * rewriting sources so bail in that case as well.
1132 */
1133 bool interfered = false;
1134 for (int i = 0; i < 3; i++) {
1135 if (inst->src[0].in_range(scan_inst->src[i],
1136 scan_inst->regs_read(i)))
1137 interfered = true;
1138 }
1139 if (interfered)
1140 break;
1141
1142 /* If somebody else writes the same channels of our destination here,
1143 * we can't coalesce before that.
1144 */
1145 if (inst->dst.in_range(scan_inst->dst, scan_inst->regs_written) &&
1146 (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1147 break;
1148 }
1149
1150 /* Check for reads of the register we're trying to coalesce into. We
1151 * can't go rewriting instructions above that to put some other value
1152 * in the register instead.
1153 */
1154 if (to_mrf && scan_inst->mlen > 0) {
1155 if (inst->dst.reg >= scan_inst->base_mrf &&
1156 inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
1157 break;
1158 }
1159 } else {
1160 for (int i = 0; i < 3; i++) {
1161 if (inst->dst.in_range(scan_inst->src[i],
1162 scan_inst->regs_read(i)))
1163 interfered = true;
1164 }
1165 if (interfered)
1166 break;
1167 }
1168 }
1169
1170 if (chans_remaining == 0) {
1171 /* If we've made it here, we have an MOV we want to coalesce out, and
1172 * a scan_inst pointing to the earliest instruction involved in
1173 * computing the value. Now go rewrite the instruction stream
1174 * between the two.
1175 */
1176 vec4_instruction *scan_inst = _scan_inst;
1177 while (scan_inst != inst) {
1178 if (scan_inst->dst.file == GRF &&
1179 scan_inst->dst.reg == inst->src[0].reg &&
1180 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1181 scan_inst->reswizzle(inst->dst.writemask,
1182 inst->src[0].swizzle);
1183 scan_inst->dst.file = inst->dst.file;
1184 scan_inst->dst.reg = inst->dst.reg;
1185 scan_inst->dst.reg_offset = inst->dst.reg_offset;
1186 if (inst->saturate &&
1187 inst->dst.type != scan_inst->dst.type) {
1188 /* If we have reached this point, scan_inst is a non
1189 * type-converting 'mov' and we can modify its register types
1190 * to match the ones in inst. Otherwise, we could have an
1191 * incorrect saturation result.
1192 */
1193 scan_inst->dst.type = inst->dst.type;
1194 scan_inst->src[0].type = inst->src[0].type;
1195 }
1196 scan_inst->saturate |= inst->saturate;
1197 }
1198 scan_inst = (vec4_instruction *)scan_inst->next;
1199 }
1200 inst->remove(block);
1201 progress = true;
1202 }
1203 }
1204
1205 if (progress)
1206 invalidate_live_intervals();
1207
1208 return progress;
1209 }
1210
1211 /**
1212 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1213 * flow. We could probably do better here with some form of divergence
1214 * analysis.
1215 */
1216 bool
1217 vec4_visitor::eliminate_find_live_channel()
1218 {
1219 bool progress = false;
1220 unsigned depth = 0;
1221
1222 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1223 switch (inst->opcode) {
1224 case BRW_OPCODE_IF:
1225 case BRW_OPCODE_DO:
1226 depth++;
1227 break;
1228
1229 case BRW_OPCODE_ENDIF:
1230 case BRW_OPCODE_WHILE:
1231 depth--;
1232 break;
1233
1234 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1235 if (depth == 0) {
1236 inst->opcode = BRW_OPCODE_MOV;
1237 inst->src[0] = src_reg(0);
1238 inst->force_writemask_all = true;
1239 progress = true;
1240 }
1241 break;
1242
1243 default:
1244 break;
1245 }
1246 }
1247
1248 return progress;
1249 }
1250
1251 /**
1252 * Splits virtual GRFs requesting more than one contiguous physical register.
1253 *
1254 * We initially create large virtual GRFs for temporary structures, arrays,
1255 * and matrices, so that the dereference visitor functions can add reg_offsets
1256 * to work their way down to the actual member being accessed. But when it
1257 * comes to optimization, we'd like to treat each register as individual
1258 * storage if possible.
1259 *
1260 * So far, the only thing that might prevent splitting is a send message from
1261 * a GRF on IVB.
1262 */
1263 void
1264 vec4_visitor::split_virtual_grfs()
1265 {
1266 int num_vars = this->alloc.count;
1267 int new_virtual_grf[num_vars];
1268 bool split_grf[num_vars];
1269
1270 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1271
1272 /* Try to split anything > 0 sized. */
1273 for (int i = 0; i < num_vars; i++) {
1274 split_grf[i] = this->alloc.sizes[i] != 1;
1275 }
1276
1277 /* Check that the instructions are compatible with the registers we're trying
1278 * to split.
1279 */
1280 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1281 if (inst->dst.file == GRF && inst->regs_written > 1)
1282 split_grf[inst->dst.reg] = false;
1283
1284 for (int i = 0; i < 3; i++) {
1285 if (inst->src[i].file == GRF && inst->regs_read(i) > 1)
1286 split_grf[inst->src[i].reg] = false;
1287 }
1288 }
1289
1290 /* Allocate new space for split regs. Note that the virtual
1291 * numbers will be contiguous.
1292 */
1293 for (int i = 0; i < num_vars; i++) {
1294 if (!split_grf[i])
1295 continue;
1296
1297 new_virtual_grf[i] = alloc.allocate(1);
1298 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1299 unsigned reg = alloc.allocate(1);
1300 assert(reg == new_virtual_grf[i] + j - 1);
1301 (void) reg;
1302 }
1303 this->alloc.sizes[i] = 1;
1304 }
1305
1306 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1307 if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
1308 inst->dst.reg_offset != 0) {
1309 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1310 inst->dst.reg_offset - 1);
1311 inst->dst.reg_offset = 0;
1312 }
1313 for (int i = 0; i < 3; i++) {
1314 if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
1315 inst->src[i].reg_offset != 0) {
1316 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1317 inst->src[i].reg_offset - 1);
1318 inst->src[i].reg_offset = 0;
1319 }
1320 }
1321 }
1322 invalidate_live_intervals();
1323 }
1324
1325 void
1326 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1327 {
1328 dump_instruction(be_inst, stderr);
1329 }
1330
1331 void
1332 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1333 {
1334 vec4_instruction *inst = (vec4_instruction *)be_inst;
1335
1336 if (inst->predicate) {
1337 fprintf(file, "(%cf0.%d) ",
1338 inst->predicate_inverse ? '-' : '+',
1339 inst->flag_subreg);
1340 }
1341
1342 fprintf(file, "%s", brw_instruction_name(inst->opcode));
1343 if (inst->saturate)
1344 fprintf(file, ".sat");
1345 if (inst->conditional_mod) {
1346 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1347 if (!inst->predicate &&
1348 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1349 inst->opcode != BRW_OPCODE_IF &&
1350 inst->opcode != BRW_OPCODE_WHILE))) {
1351 fprintf(file, ".f0.%d", inst->flag_subreg);
1352 }
1353 }
1354 fprintf(file, " ");
1355
1356 switch (inst->dst.file) {
1357 case GRF:
1358 fprintf(file, "vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
1359 break;
1360 case MRF:
1361 fprintf(file, "m%d", inst->dst.reg);
1362 break;
1363 case HW_REG:
1364 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1365 switch (inst->dst.fixed_hw_reg.nr) {
1366 case BRW_ARF_NULL:
1367 fprintf(file, "null");
1368 break;
1369 case BRW_ARF_ADDRESS:
1370 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
1371 break;
1372 case BRW_ARF_ACCUMULATOR:
1373 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
1374 break;
1375 case BRW_ARF_FLAG:
1376 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1377 inst->dst.fixed_hw_reg.subnr);
1378 break;
1379 default:
1380 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
1381 inst->dst.fixed_hw_reg.subnr);
1382 break;
1383 }
1384 } else {
1385 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
1386 }
1387 if (inst->dst.fixed_hw_reg.subnr)
1388 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
1389 break;
1390 case BAD_FILE:
1391 fprintf(file, "(null)");
1392 break;
1393 default:
1394 fprintf(file, "???");
1395 break;
1396 }
1397 if (inst->dst.writemask != WRITEMASK_XYZW) {
1398 fprintf(file, ".");
1399 if (inst->dst.writemask & 1)
1400 fprintf(file, "x");
1401 if (inst->dst.writemask & 2)
1402 fprintf(file, "y");
1403 if (inst->dst.writemask & 4)
1404 fprintf(file, "z");
1405 if (inst->dst.writemask & 8)
1406 fprintf(file, "w");
1407 }
1408 fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
1409
1410 if (inst->src[0].file != BAD_FILE)
1411 fprintf(file, ", ");
1412
1413 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1414 if (inst->src[i].negate)
1415 fprintf(file, "-");
1416 if (inst->src[i].abs)
1417 fprintf(file, "|");
1418 switch (inst->src[i].file) {
1419 case GRF:
1420 fprintf(file, "vgrf%d", inst->src[i].reg);
1421 break;
1422 case ATTR:
1423 fprintf(file, "attr%d", inst->src[i].reg);
1424 break;
1425 case UNIFORM:
1426 fprintf(file, "u%d", inst->src[i].reg);
1427 break;
1428 case IMM:
1429 switch (inst->src[i].type) {
1430 case BRW_REGISTER_TYPE_F:
1431 fprintf(file, "%fF", inst->src[i].fixed_hw_reg.dw1.f);
1432 break;
1433 case BRW_REGISTER_TYPE_D:
1434 fprintf(file, "%dD", inst->src[i].fixed_hw_reg.dw1.d);
1435 break;
1436 case BRW_REGISTER_TYPE_UD:
1437 fprintf(file, "%uU", inst->src[i].fixed_hw_reg.dw1.ud);
1438 break;
1439 case BRW_REGISTER_TYPE_VF:
1440 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1441 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
1442 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
1443 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
1444 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
1445 break;
1446 default:
1447 fprintf(file, "???");
1448 break;
1449 }
1450 break;
1451 case HW_REG:
1452 if (inst->src[i].fixed_hw_reg.negate)
1453 fprintf(file, "-");
1454 if (inst->src[i].fixed_hw_reg.abs)
1455 fprintf(file, "|");
1456 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1457 switch (inst->src[i].fixed_hw_reg.nr) {
1458 case BRW_ARF_NULL:
1459 fprintf(file, "null");
1460 break;
1461 case BRW_ARF_ADDRESS:
1462 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
1463 break;
1464 case BRW_ARF_ACCUMULATOR:
1465 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
1466 break;
1467 case BRW_ARF_FLAG:
1468 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1469 inst->src[i].fixed_hw_reg.subnr);
1470 break;
1471 default:
1472 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
1473 inst->src[i].fixed_hw_reg.subnr);
1474 break;
1475 }
1476 } else {
1477 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
1478 }
1479 if (inst->src[i].fixed_hw_reg.subnr)
1480 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
1481 if (inst->src[i].fixed_hw_reg.abs)
1482 fprintf(file, "|");
1483 break;
1484 case BAD_FILE:
1485 fprintf(file, "(null)");
1486 break;
1487 default:
1488 fprintf(file, "???");
1489 break;
1490 }
1491
1492 /* Don't print .0; and only VGRFs have reg_offsets and sizes */
1493 if (inst->src[i].reg_offset != 0 &&
1494 inst->src[i].file == GRF &&
1495 alloc.sizes[inst->src[i].reg] != 1)
1496 fprintf(file, ".%d", inst->src[i].reg_offset);
1497
1498 if (inst->src[i].file != IMM) {
1499 static const char *chans[4] = {"x", "y", "z", "w"};
1500 fprintf(file, ".");
1501 for (int c = 0; c < 4; c++) {
1502 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1503 }
1504 }
1505
1506 if (inst->src[i].abs)
1507 fprintf(file, "|");
1508
1509 if (inst->src[i].file != IMM) {
1510 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
1511 }
1512
1513 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1514 fprintf(file, ", ");
1515 }
1516
1517 fprintf(file, "\n");
1518 }
1519
1520
1521 static inline struct brw_reg
1522 attribute_to_hw_reg(int attr, bool interleaved)
1523 {
1524 if (interleaved)
1525 return stride(brw_vec4_grf(attr / 2, (attr % 2) * 4), 0, 4, 1);
1526 else
1527 return brw_vec8_grf(attr, 0);
1528 }
1529
1530
1531 /**
1532 * Replace each register of type ATTR in this->instructions with a reference
1533 * to a fixed HW register.
1534 *
1535 * If interleaved is true, then each attribute takes up half a register, with
1536 * register N containing attribute 2*N in its first half and attribute 2*N+1
1537 * in its second half (this corresponds to the payload setup used by geometry
1538 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
1539 * false, then each attribute takes up a whole register, with register N
1540 * containing attribute N (this corresponds to the payload setup used by
1541 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
1542 */
1543 void
1544 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
1545 bool interleaved)
1546 {
1547 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1548 /* We have to support ATTR as a destination for GL_FIXED fixup. */
1549 if (inst->dst.file == ATTR) {
1550 int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
1551
1552 /* All attributes used in the shader need to have been assigned a
1553 * hardware register by the caller
1554 */
1555 assert(grf != 0);
1556
1557 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1558 reg.type = inst->dst.type;
1559 reg.dw1.bits.writemask = inst->dst.writemask;
1560
1561 inst->dst.file = HW_REG;
1562 inst->dst.fixed_hw_reg = reg;
1563 }
1564
1565 for (int i = 0; i < 3; i++) {
1566 if (inst->src[i].file != ATTR)
1567 continue;
1568
1569 int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
1570
1571 /* All attributes used in the shader need to have been assigned a
1572 * hardware register by the caller
1573 */
1574 assert(grf != 0);
1575
1576 struct brw_reg reg = attribute_to_hw_reg(grf, interleaved);
1577 reg.dw1.bits.swizzle = inst->src[i].swizzle;
1578 reg.type = inst->src[i].type;
1579 if (inst->src[i].abs)
1580 reg = brw_abs(reg);
1581 if (inst->src[i].negate)
1582 reg = negate(reg);
1583
1584 inst->src[i].file = HW_REG;
1585 inst->src[i].fixed_hw_reg = reg;
1586 }
1587 }
1588 }
1589
1590 int
1591 vec4_vs_visitor::setup_attributes(int payload_reg)
1592 {
1593 int nr_attributes;
1594 int attribute_map[VERT_ATTRIB_MAX + 1];
1595 memset(attribute_map, 0, sizeof(attribute_map));
1596
1597 nr_attributes = 0;
1598 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1599 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1600 attribute_map[i] = payload_reg + nr_attributes;
1601 nr_attributes++;
1602 }
1603 }
1604
1605 /* VertexID is stored by the VF as the last vertex element, but we
1606 * don't represent it with a flag in inputs_read, so we call it
1607 * VERT_ATTRIB_MAX.
1608 */
1609 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
1610 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1611 nr_attributes++;
1612 }
1613
1614 lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
1615
1616 /* The BSpec says we always have to read at least one thing from
1617 * the VF, and it appears that the hardware wedges otherwise.
1618 */
1619 if (nr_attributes == 0)
1620 nr_attributes = 1;
1621
1622 prog_data->urb_read_length = (nr_attributes + 1) / 2;
1623
1624 unsigned vue_entries =
1625 MAX2(nr_attributes, prog_data->vue_map.num_slots);
1626
1627 if (devinfo->gen == 6)
1628 prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
1629 else
1630 prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
1631
1632 return payload_reg + nr_attributes;
1633 }
1634
1635 int
1636 vec4_visitor::setup_uniforms(int reg)
1637 {
1638 prog_data->base.dispatch_grf_start_reg = reg;
1639
1640 /* The pre-gen6 VS requires that some push constants get loaded no
1641 * matter what, or the GPU would hang.
1642 */
1643 if (devinfo->gen < 6 && this->uniforms == 0) {
1644 assert(this->uniforms < this->uniform_array_size);
1645 this->uniform_vector_size[this->uniforms] = 1;
1646
1647 stage_prog_data->param =
1648 reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
1649 for (unsigned int i = 0; i < 4; i++) {
1650 unsigned int slot = this->uniforms * 4 + i;
1651 static gl_constant_value zero = { 0.0 };
1652 stage_prog_data->param[slot] = &zero;
1653 }
1654
1655 this->uniforms++;
1656 reg++;
1657 } else {
1658 reg += ALIGN(uniforms, 2) / 2;
1659 }
1660
1661 stage_prog_data->nr_params = this->uniforms * 4;
1662
1663 prog_data->base.curb_read_length =
1664 reg - prog_data->base.dispatch_grf_start_reg;
1665
1666 return reg;
1667 }
1668
1669 void
1670 vec4_vs_visitor::setup_payload(void)
1671 {
1672 int reg = 0;
1673
1674 /* The payload always contains important data in g0, which contains
1675 * the URB handles that are passed on to the URB write at the end
1676 * of the thread. So, we always start push constants at g1.
1677 */
1678 reg++;
1679
1680 reg = setup_uniforms(reg);
1681
1682 reg = setup_attributes(reg);
1683
1684 this->first_non_payload_grf = reg;
1685 }
1686
1687 void
1688 vec4_visitor::assign_binding_table_offsets()
1689 {
1690 assign_common_binding_table_offsets(0);
1691 }
1692
1693 src_reg
1694 vec4_visitor::get_timestamp()
1695 {
1696 assert(devinfo->gen >= 7);
1697
1698 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1699 BRW_ARF_TIMESTAMP,
1700 0,
1701 0,
1702 0,
1703 BRW_REGISTER_TYPE_UD,
1704 BRW_VERTICAL_STRIDE_0,
1705 BRW_WIDTH_4,
1706 BRW_HORIZONTAL_STRIDE_4,
1707 BRW_SWIZZLE_XYZW,
1708 WRITEMASK_XYZW));
1709
1710 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1711
1712 vec4_instruction *mov = emit(MOV(dst, ts));
1713 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1714 * even if it's not enabled in the dispatch.
1715 */
1716 mov->force_writemask_all = true;
1717
1718 return src_reg(dst);
1719 }
1720
1721 void
1722 vec4_visitor::emit_shader_time_begin()
1723 {
1724 current_annotation = "shader time start";
1725 shader_start_time = get_timestamp();
1726 }
1727
1728 void
1729 vec4_visitor::emit_shader_time_end()
1730 {
1731 current_annotation = "shader time end";
1732 src_reg shader_end_time = get_timestamp();
1733
1734
1735 /* Check that there weren't any timestamp reset events (assuming these
1736 * were the only two timestamp reads that happened).
1737 */
1738 src_reg reset_end = shader_end_time;
1739 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1740 vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
1741 test->conditional_mod = BRW_CONDITIONAL_Z;
1742
1743 emit(IF(BRW_PREDICATE_NORMAL));
1744
1745 /* Take the current timestamp and get the delta. */
1746 shader_start_time.negate = true;
1747 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1748 emit(ADD(diff, shader_start_time, shader_end_time));
1749
1750 /* If there were no instructions between the two timestamp gets, the diff
1751 * is 2 cycles. Remove that overhead, so I can forget about that when
1752 * trying to determine the time taken for single instructions.
1753 */
1754 emit(ADD(diff, src_reg(diff), src_reg(-2u)));
1755
1756 emit_shader_time_write(0, src_reg(diff));
1757 emit_shader_time_write(1, src_reg(1u));
1758 emit(BRW_OPCODE_ELSE);
1759 emit_shader_time_write(2, src_reg(1u));
1760 emit(BRW_OPCODE_ENDIF);
1761 }
1762
1763 void
1764 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
1765 {
1766 dst_reg dst =
1767 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1768
1769 dst_reg offset = dst;
1770 dst_reg time = dst;
1771 time.reg_offset++;
1772
1773 offset.type = BRW_REGISTER_TYPE_UD;
1774 int index = shader_time_index * 3 + shader_time_subindex;
1775 emit(MOV(offset, src_reg(index * SHADER_TIME_STRIDE)));
1776
1777 time.type = BRW_REGISTER_TYPE_UD;
1778 emit(MOV(time, src_reg(value)));
1779
1780 vec4_instruction *inst =
1781 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1782 inst->mlen = 2;
1783 }
1784
1785 bool
1786 vec4_visitor::run()
1787 {
1788 bool use_vec4_nir =
1789 compiler->glsl_compiler_options[stage].NirOptions != NULL;
1790
1791 sanity_param_count = prog->Parameters->NumParameters;
1792
1793 if (shader_time_index >= 0)
1794 emit_shader_time_begin();
1795
1796 assign_binding_table_offsets();
1797
1798 emit_prolog();
1799
1800 if (use_vec4_nir) {
1801 assert(prog->nir != NULL);
1802 emit_nir_code();
1803 if (failed)
1804 return false;
1805 } else if (shader) {
1806 /* Generate VS IR for main(). (the visitor only descends into
1807 * functions called "main").
1808 */
1809 visit_instructions(shader->base.ir);
1810 } else {
1811 emit_program_code();
1812 }
1813 base_ir = NULL;
1814
1815 emit_thread_end();
1816
1817 calculate_cfg();
1818
1819 /* Before any optimization, push array accesses out to scratch
1820 * space where we need them to be. This pass may allocate new
1821 * virtual GRFs, so we want to do it early. It also makes sure
1822 * that we have reladdr computations available for CSE, since we'll
1823 * often do repeated subexpressions for those.
1824 */
1825 if (shader || use_vec4_nir) {
1826 move_grf_array_access_to_scratch();
1827 move_uniform_array_access_to_pull_constants();
1828 } else {
1829 /* The ARB_vertex_program frontend emits pull constant loads directly
1830 * rather than using reladdr, so we don't need to walk through all the
1831 * instructions looking for things to move. There isn't anything.
1832 *
1833 * We do still need to split things to vec4 size.
1834 */
1835 split_uniform_registers();
1836 }
1837 pack_uniform_registers();
1838 move_push_constants_to_pull_constants();
1839 split_virtual_grfs();
1840
1841 #define OPT(pass, args...) ({ \
1842 pass_num++; \
1843 bool this_progress = pass(args); \
1844 \
1845 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
1846 char filename[64]; \
1847 snprintf(filename, 64, "%s-%04d-%02d-%02d-" #pass, \
1848 stage_abbrev, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
1849 \
1850 backend_shader::dump_instructions(filename); \
1851 } \
1852 \
1853 progress = progress || this_progress; \
1854 this_progress; \
1855 })
1856
1857
1858 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
1859 char filename[64];
1860 snprintf(filename, 64, "%s-%04d-00-start",
1861 stage_abbrev, shader_prog ? shader_prog->Name : 0);
1862
1863 backend_shader::dump_instructions(filename);
1864 }
1865
1866 bool progress;
1867 int iteration = 0;
1868 int pass_num = 0;
1869 do {
1870 progress = false;
1871 pass_num = 0;
1872 iteration++;
1873
1874 OPT(opt_reduce_swizzle);
1875 OPT(dead_code_eliminate);
1876 OPT(dead_control_flow_eliminate, this);
1877 OPT(opt_copy_propagation);
1878 OPT(opt_cse);
1879 OPT(opt_algebraic);
1880 OPT(opt_register_coalesce);
1881 OPT(eliminate_find_live_channel);
1882 } while (progress);
1883
1884 pass_num = 0;
1885
1886 if (OPT(opt_vector_float)) {
1887 OPT(opt_cse);
1888 OPT(opt_copy_propagation, false);
1889 OPT(opt_copy_propagation, true);
1890 OPT(dead_code_eliminate);
1891 }
1892
1893 if (failed)
1894 return false;
1895
1896 setup_payload();
1897
1898 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) {
1899 /* Debug of register spilling: Go spill everything. */
1900 const int grf_count = alloc.count;
1901 float spill_costs[alloc.count];
1902 bool no_spill[alloc.count];
1903 evaluate_spill_costs(spill_costs, no_spill);
1904 for (int i = 0; i < grf_count; i++) {
1905 if (no_spill[i])
1906 continue;
1907 spill_reg(i);
1908 }
1909 }
1910
1911 bool allocated_without_spills = reg_allocate();
1912
1913 if (!allocated_without_spills) {
1914 compiler->shader_perf_log(log_data,
1915 "%s shader triggered register spilling. "
1916 "Try reducing the number of live vec4 values "
1917 "to improve performance.\n",
1918 stage_name);
1919
1920 while (!reg_allocate()) {
1921 if (failed)
1922 return false;
1923 }
1924 }
1925
1926 opt_schedule_instructions();
1927
1928 opt_set_dependency_control();
1929
1930 if (last_scratch > 0) {
1931 prog_data->base.total_scratch =
1932 brw_get_scratch_size(last_scratch * REG_SIZE);
1933 }
1934
1935 /* If any state parameters were appended, then ParameterValues could have
1936 * been realloced, in which case the driver uniform storage set up by
1937 * _mesa_associate_uniform_storage() would point to freed memory. Make
1938 * sure that didn't happen.
1939 */
1940 assert(sanity_param_count == prog->Parameters->NumParameters);
1941
1942 return !failed;
1943 }
1944
1945 } /* namespace brw */
1946
1947 extern "C" {
1948
1949 /**
1950 * Compile a vertex shader.
1951 *
1952 * Returns the final assembly and the program's size.
1953 */
1954 const unsigned *
1955 brw_vs_emit(struct brw_context *brw,
1956 void *mem_ctx,
1957 const struct brw_vs_prog_key *key,
1958 struct brw_vs_prog_data *prog_data,
1959 struct gl_vertex_program *vp,
1960 struct gl_shader_program *prog,
1961 unsigned *final_assembly_size)
1962 {
1963 const unsigned *assembly = NULL;
1964
1965 struct brw_shader *shader = NULL;
1966 if (prog)
1967 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
1968
1969 int st_index = -1;
1970 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1971 st_index = brw_get_shader_time_index(brw, prog, &vp->Base, ST_VS);
1972
1973 if (unlikely(INTEL_DEBUG & DEBUG_VS))
1974 brw_dump_ir("vertex", prog, &shader->base, &vp->Base);
1975
1976 if (!vp->Base.nir &&
1977 (brw->intelScreen->compiler->scalar_vs ||
1978 brw->intelScreen->compiler->glsl_compiler_options[MESA_SHADER_VERTEX].NirOptions != NULL)) {
1979 /* Normally we generate NIR in LinkShader() or
1980 * ProgramStringNotify(), but Mesa's fixed-function vertex program
1981 * handling doesn't notify the driver at all. Just do it here, at
1982 * the last minute, even though it's lame.
1983 */
1984 assert(vp->Base.Id == 0 && prog == NULL);
1985 vp->Base.nir =
1986 brw_create_nir(brw, NULL, &vp->Base, MESA_SHADER_VERTEX,
1987 brw->intelScreen->compiler->scalar_vs);
1988 }
1989
1990 if (brw->intelScreen->compiler->scalar_vs) {
1991 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
1992
1993 fs_visitor v(brw->intelScreen->compiler, brw,
1994 mem_ctx, MESA_SHADER_VERTEX, key,
1995 &prog_data->base.base, prog, &vp->Base,
1996 8, st_index);
1997 if (!v.run_vs(brw_select_clip_planes(&brw->ctx))) {
1998 if (prog) {
1999 prog->LinkStatus = false;
2000 ralloc_strcat(&prog->InfoLog, v.fail_msg);
2001 }
2002
2003 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
2004 v.fail_msg);
2005
2006 return NULL;
2007 }
2008
2009 fs_generator g(brw->intelScreen->compiler, brw,
2010 mem_ctx, (void *) key, &prog_data->base.base,
2011 &vp->Base, v.promoted_constants,
2012 v.runtime_check_aads_emit, "VS");
2013 if (INTEL_DEBUG & DEBUG_VS) {
2014 char *name;
2015 if (prog) {
2016 name = ralloc_asprintf(mem_ctx, "%s vertex shader %d",
2017 prog->Label ? prog->Label : "unnamed",
2018 prog->Name);
2019 } else {
2020 name = ralloc_asprintf(mem_ctx, "vertex program %d",
2021 vp->Base.Id);
2022 }
2023 g.enable_debug(name);
2024 }
2025 g.generate_code(v.cfg, 8);
2026 assembly = g.get_assembly(final_assembly_size);
2027 }
2028
2029 if (!assembly) {
2030 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
2031
2032 vec4_vs_visitor v(brw->intelScreen->compiler, brw, key, prog_data,
2033 vp, prog, brw_select_clip_planes(&brw->ctx),
2034 mem_ctx, st_index,
2035 !_mesa_is_gles3(&brw->ctx));
2036 if (!v.run()) {
2037 if (prog) {
2038 prog->LinkStatus = false;
2039 ralloc_strcat(&prog->InfoLog, v.fail_msg);
2040 }
2041
2042 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
2043 v.fail_msg);
2044
2045 return NULL;
2046 }
2047
2048 vec4_generator g(brw->intelScreen->compiler, brw,
2049 prog, &vp->Base, &prog_data->base,
2050 mem_ctx, INTEL_DEBUG & DEBUG_VS, "vertex", "VS");
2051 assembly = g.generate_assembly(v.cfg, final_assembly_size);
2052 }
2053
2054 return assembly;
2055 }
2056
2057 } /* extern "C" */