vk: Add four unit tests for our lock-free data-structures
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_copy_propagation.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /**
25 * @file brw_vec4_copy_propagation.cpp
26 *
27 * Implements tracking of values copied between registers, and
28 * optimizations based on that: copy propagation and constant
29 * propagation.
30 */
31
32 #include "brw_vec4.h"
33 #include "brw_cfg.h"
34 extern "C" {
35 #include "main/macros.h"
36 }
37
38 namespace brw {
39
40 struct copy_entry {
41 src_reg *value[4];
42 int saturatemask;
43 };
44
45 static bool
46 is_direct_copy(vec4_instruction *inst)
47 {
48 return (inst->opcode == BRW_OPCODE_MOV &&
49 !inst->predicate &&
50 inst->dst.file == GRF &&
51 !inst->dst.reladdr &&
52 !inst->src[0].reladdr &&
53 (inst->dst.type == inst->src[0].type ||
54 (inst->dst.type == BRW_REGISTER_TYPE_F &&
55 inst->src[0].type == BRW_REGISTER_TYPE_VF)));
56 }
57
58 static bool
59 is_dominated_by_previous_instruction(vec4_instruction *inst)
60 {
61 return (inst->opcode != BRW_OPCODE_DO &&
62 inst->opcode != BRW_OPCODE_WHILE &&
63 inst->opcode != BRW_OPCODE_ELSE &&
64 inst->opcode != BRW_OPCODE_ENDIF);
65 }
66
67 static bool
68 is_channel_updated(vec4_instruction *inst, src_reg *values[4], int ch)
69 {
70 const src_reg *src = values[ch];
71
72 /* consider GRF only */
73 assert(inst->dst.file == GRF);
74 if (!src || src->file != GRF)
75 return false;
76
77 return (src->in_range(inst->dst, inst->regs_written) &&
78 inst->dst.writemask & (1 << BRW_GET_SWZ(src->swizzle, ch)));
79 }
80
81 static unsigned
82 swizzle_vf_imm(unsigned vf4, unsigned swizzle)
83 {
84 union {
85 unsigned vf4;
86 uint8_t vf[4];
87 } v = { vf4 }, ret;
88
89 ret.vf[0] = v.vf[BRW_GET_SWZ(swizzle, 0)];
90 ret.vf[1] = v.vf[BRW_GET_SWZ(swizzle, 1)];
91 ret.vf[2] = v.vf[BRW_GET_SWZ(swizzle, 2)];
92 ret.vf[3] = v.vf[BRW_GET_SWZ(swizzle, 3)];
93
94 return ret.vf4;
95 }
96
97 static bool
98 is_logic_op(enum opcode opcode)
99 {
100 return (opcode == BRW_OPCODE_AND ||
101 opcode == BRW_OPCODE_OR ||
102 opcode == BRW_OPCODE_XOR ||
103 opcode == BRW_OPCODE_NOT);
104 }
105
106 static bool
107 try_constant_propagate(const struct brw_device_info *devinfo,
108 vec4_instruction *inst,
109 int arg, struct copy_entry *entry)
110 {
111 /* For constant propagation, we only handle the same constant
112 * across all 4 channels. Some day, we should handle the 8-bit
113 * float vector format, which would let us constant propagate
114 * vectors better.
115 */
116 src_reg value = *entry->value[0];
117 for (int i = 1; i < 4; i++) {
118 if (!value.equals(*entry->value[i]))
119 return false;
120 }
121
122 if (value.file != IMM)
123 return false;
124
125 if (value.type == BRW_REGISTER_TYPE_VF) {
126 /* The result of bit-casting the component values of a vector float
127 * cannot in general be represented as an immediate.
128 */
129 if (inst->src[arg].type != BRW_REGISTER_TYPE_F)
130 return false;
131 } else {
132 value.type = inst->src[arg].type;
133 }
134
135 if (inst->src[arg].abs) {
136 if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
137 !brw_abs_immediate(value.type, &value.fixed_hw_reg)) {
138 return false;
139 }
140 }
141
142 if (inst->src[arg].negate) {
143 if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
144 !brw_negate_immediate(value.type, &value.fixed_hw_reg)) {
145 return false;
146 }
147 }
148
149 if (value.type == BRW_REGISTER_TYPE_VF)
150 value.fixed_hw_reg.dw1.ud = swizzle_vf_imm(value.fixed_hw_reg.dw1.ud,
151 inst->src[arg].swizzle);
152
153 switch (inst->opcode) {
154 case BRW_OPCODE_MOV:
155 case SHADER_OPCODE_BROADCAST:
156 inst->src[arg] = value;
157 return true;
158
159 case SHADER_OPCODE_POW:
160 case SHADER_OPCODE_INT_QUOTIENT:
161 case SHADER_OPCODE_INT_REMAINDER:
162 if (devinfo->gen < 8)
163 break;
164 /* fallthrough */
165 case BRW_OPCODE_DP2:
166 case BRW_OPCODE_DP3:
167 case BRW_OPCODE_DP4:
168 case BRW_OPCODE_DPH:
169 case BRW_OPCODE_BFI1:
170 case BRW_OPCODE_ASR:
171 case BRW_OPCODE_SHL:
172 case BRW_OPCODE_SHR:
173 case BRW_OPCODE_SUBB:
174 if (arg == 1) {
175 inst->src[arg] = value;
176 return true;
177 }
178 break;
179
180 case BRW_OPCODE_MACH:
181 case BRW_OPCODE_MUL:
182 case BRW_OPCODE_ADD:
183 case BRW_OPCODE_OR:
184 case BRW_OPCODE_AND:
185 case BRW_OPCODE_XOR:
186 case BRW_OPCODE_ADDC:
187 if (arg == 1) {
188 inst->src[arg] = value;
189 return true;
190 } else if (arg == 0 && inst->src[1].file != IMM) {
191 /* Fit this constant in by commuting the operands. Exception: we
192 * can't do this for 32-bit integer MUL/MACH because it's asymmetric.
193 */
194 if ((inst->opcode == BRW_OPCODE_MUL ||
195 inst->opcode == BRW_OPCODE_MACH) &&
196 (inst->src[1].type == BRW_REGISTER_TYPE_D ||
197 inst->src[1].type == BRW_REGISTER_TYPE_UD))
198 break;
199 inst->src[0] = inst->src[1];
200 inst->src[1] = value;
201 return true;
202 }
203 break;
204
205 case BRW_OPCODE_CMP:
206 if (arg == 1) {
207 inst->src[arg] = value;
208 return true;
209 } else if (arg == 0 && inst->src[1].file != IMM) {
210 enum brw_conditional_mod new_cmod;
211
212 new_cmod = brw_swap_cmod(inst->conditional_mod);
213 if (new_cmod != BRW_CONDITIONAL_NONE) {
214 /* Fit this constant in by swapping the operands and
215 * flipping the test.
216 */
217 inst->src[0] = inst->src[1];
218 inst->src[1] = value;
219 inst->conditional_mod = new_cmod;
220 return true;
221 }
222 }
223 break;
224
225 case BRW_OPCODE_SEL:
226 if (arg == 1) {
227 inst->src[arg] = value;
228 return true;
229 } else if (arg == 0 && inst->src[1].file != IMM) {
230 inst->src[0] = inst->src[1];
231 inst->src[1] = value;
232
233 /* If this was predicated, flipping operands means
234 * we also need to flip the predicate.
235 */
236 if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
237 inst->predicate_inverse = !inst->predicate_inverse;
238 }
239 return true;
240 }
241 break;
242
243 default:
244 break;
245 }
246
247 return false;
248 }
249
250 static bool
251 try_copy_propagate(const struct brw_device_info *devinfo,
252 vec4_instruction *inst,
253 int arg, struct copy_entry *entry)
254 {
255 /* For constant propagation, we only handle the same constant
256 * across all 4 channels. Some day, we should handle the 8-bit
257 * float vector format, which would let us constant propagate
258 * vectors better.
259 */
260 src_reg value = *entry->value[0];
261 for (int i = 1; i < 4; i++) {
262 /* This is equals() except we don't care about the swizzle. */
263 if (value.file != entry->value[i]->file ||
264 value.reg != entry->value[i]->reg ||
265 value.reg_offset != entry->value[i]->reg_offset ||
266 value.type != entry->value[i]->type ||
267 value.negate != entry->value[i]->negate ||
268 value.abs != entry->value[i]->abs) {
269 return false;
270 }
271 }
272
273 /* Compute the swizzle of the original register by swizzling the
274 * component loaded from each value according to the swizzle of
275 * operand we're going to change.
276 */
277 int s[4];
278 for (int i = 0; i < 4; i++) {
279 s[i] = BRW_GET_SWZ(entry->value[i]->swizzle, i);
280 }
281 value.swizzle = brw_compose_swizzle(inst->src[arg].swizzle,
282 BRW_SWIZZLE4(s[0], s[1], s[2], s[3]));
283
284 if (value.file != UNIFORM &&
285 value.file != GRF &&
286 value.file != ATTR)
287 return false;
288
289 if (devinfo->gen >= 8 && (value.negate || value.abs) &&
290 is_logic_op(inst->opcode)) {
291 return false;
292 }
293
294 if (inst->src[arg].abs) {
295 value.negate = false;
296 value.abs = true;
297 }
298 if (inst->src[arg].negate)
299 value.negate = !value.negate;
300
301 bool has_source_modifiers = value.negate || value.abs;
302
303 /* gen6 math and gen7+ SENDs from GRFs ignore source modifiers on
304 * instructions.
305 */
306 if ((has_source_modifiers || value.file == UNIFORM ||
307 value.swizzle != BRW_SWIZZLE_XYZW) && !inst->can_do_source_mods(devinfo))
308 return false;
309
310 if (has_source_modifiers && value.type != inst->src[arg].type)
311 return false;
312
313 if (has_source_modifiers &&
314 inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE)
315 return false;
316
317 if (inst->is_3src() && value.file == UNIFORM)
318 return false;
319
320 if (inst->is_send_from_grf())
321 return false;
322
323 /* we can't generally copy-propagate UD negations becuse we
324 * end up accessing the resulting values as signed integers
325 * instead. See also resolve_ud_negate().
326 */
327 if (value.negate &&
328 value.type == BRW_REGISTER_TYPE_UD)
329 return false;
330
331 /* Don't report progress if this is a noop. */
332 if (value.equals(inst->src[arg]))
333 return false;
334
335 const unsigned dst_saturate_mask = inst->dst.writemask &
336 brw_apply_swizzle_to_mask(inst->src[arg].swizzle, entry->saturatemask);
337
338 if (dst_saturate_mask) {
339 /* We either saturate all or nothing. */
340 if (dst_saturate_mask != inst->dst.writemask)
341 return false;
342
343 /* Limit saturate propagation only to SEL with src1 bounded within 0.0
344 * and 1.0, otherwise skip copy propagate altogether.
345 */
346 switch(inst->opcode) {
347 case BRW_OPCODE_SEL:
348 if (arg != 0 ||
349 inst->src[0].type != BRW_REGISTER_TYPE_F ||
350 inst->src[1].file != IMM ||
351 inst->src[1].type != BRW_REGISTER_TYPE_F ||
352 inst->src[1].fixed_hw_reg.dw1.f < 0.0 ||
353 inst->src[1].fixed_hw_reg.dw1.f > 1.0) {
354 return false;
355 }
356 if (!inst->saturate)
357 inst->saturate = true;
358 break;
359 default:
360 return false;
361 }
362 }
363
364 value.type = inst->src[arg].type;
365 inst->src[arg] = value;
366 return true;
367 }
368
369 bool
370 vec4_visitor::opt_copy_propagation(bool do_constant_prop)
371 {
372 bool progress = false;
373 struct copy_entry entries[alloc.total_size];
374
375 memset(&entries, 0, sizeof(entries));
376
377 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
378 /* This pass only works on basic blocks. If there's flow
379 * control, throw out all our information and start from
380 * scratch.
381 *
382 * This should really be fixed by using a structure like in
383 * src/glsl/opt_copy_propagation.cpp to track available copies.
384 */
385 if (!is_dominated_by_previous_instruction(inst)) {
386 memset(&entries, 0, sizeof(entries));
387 continue;
388 }
389
390 /* For each source arg, see if each component comes from a copy
391 * from the same type file (IMM, GRF, UNIFORM), and try
392 * optimizing out access to the copy result
393 */
394 for (int i = 2; i >= 0; i--) {
395 /* Copied values end up in GRFs, and we don't track reladdr
396 * accesses.
397 */
398 if (inst->src[i].file != GRF ||
399 inst->src[i].reladdr)
400 continue;
401
402 /* We only handle single-register copies. */
403 if (inst->regs_read(i) != 1)
404 continue;
405
406 int reg = (alloc.offsets[inst->src[i].reg] +
407 inst->src[i].reg_offset);
408
409 /* Find the regs that each swizzle component came from.
410 */
411 struct copy_entry entry;
412 memset(&entry, 0, sizeof(copy_entry));
413 int c;
414 for (c = 0; c < 4; c++) {
415 int channel = BRW_GET_SWZ(inst->src[i].swizzle, c);
416 entry.value[c] = entries[reg].value[channel];
417
418 /* If there's no available copy for this channel, bail.
419 * We could be more aggressive here -- some channels might
420 * not get used based on the destination writemask.
421 */
422 if (!entry.value[c])
423 break;
424
425 entry.saturatemask |=
426 (entries[reg].saturatemask & (1 << channel) ? 1 : 0) << c;
427
428 /* We'll only be able to copy propagate if the sources are
429 * all from the same file -- there's no ability to swizzle
430 * 0 or 1 constants in with source registers like in i915.
431 */
432 if (c > 0 && entry.value[c - 1]->file != entry.value[c]->file)
433 break;
434 }
435
436 if (c != 4)
437 continue;
438
439 if (do_constant_prop && try_constant_propagate(devinfo, inst, i, &entry))
440 progress = true;
441
442 if (try_copy_propagate(devinfo, inst, i, &entry))
443 progress = true;
444 }
445
446 /* Track available source registers. */
447 if (inst->dst.file == GRF) {
448 const int reg =
449 alloc.offsets[inst->dst.reg] + inst->dst.reg_offset;
450
451 /* Update our destination's current channel values. For a direct copy,
452 * the value is the newly propagated source. Otherwise, we don't know
453 * the new value, so clear it.
454 */
455 bool direct_copy = is_direct_copy(inst);
456 entries[reg].saturatemask &= ~inst->dst.writemask;
457 for (int i = 0; i < 4; i++) {
458 if (inst->dst.writemask & (1 << i)) {
459 entries[reg].value[i] = direct_copy ? &inst->src[0] : NULL;
460 entries[reg].saturatemask |=
461 inst->saturate && direct_copy ? 1 << i : 0;
462 }
463 }
464
465 /* Clear the records for any registers whose current value came from
466 * our destination's updated channels, as the two are no longer equal.
467 */
468 if (inst->dst.reladdr)
469 memset(&entries, 0, sizeof(entries));
470 else {
471 for (unsigned i = 0; i < alloc.total_size; i++) {
472 for (int j = 0; j < 4; j++) {
473 if (is_channel_updated(inst, entries[i].value, j)) {
474 entries[i].value[j] = NULL;
475 entries[i].saturatemask &= ~(1 << j);
476 }
477 }
478 }
479 }
480 }
481 }
482
483 if (progress)
484 invalidate_live_intervals();
485
486 return progress;
487 }
488
489 } /* namespace brw */