db6063c3bcc2aa8fba5eb6162794e6e0ecaa6c15
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_copy_propagation.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /**
25 * @file brw_vec4_copy_propagation.cpp
26 *
27 * Implements tracking of values copied between registers, and
28 * optimizations based on that: copy propagation and constant
29 * propagation.
30 */
31
32 #include "brw_vec4.h"
33 extern "C" {
34 #include "main/macros.h"
35 }
36
37 namespace brw {
38
39 static bool
40 is_direct_copy(vec4_instruction *inst)
41 {
42 return (inst->opcode == BRW_OPCODE_MOV &&
43 !inst->predicate &&
44 inst->dst.file == GRF &&
45 !inst->saturate &&
46 !inst->dst.reladdr &&
47 !inst->src[0].reladdr &&
48 inst->dst.type == inst->src[0].type);
49 }
50
51 static bool
52 is_dominated_by_previous_instruction(vec4_instruction *inst)
53 {
54 return (inst->opcode != BRW_OPCODE_DO &&
55 inst->opcode != BRW_OPCODE_WHILE &&
56 inst->opcode != BRW_OPCODE_ELSE &&
57 inst->opcode != BRW_OPCODE_ENDIF);
58 }
59
60 static bool
61 is_channel_updated(vec4_instruction *inst, src_reg *values[4], int ch)
62 {
63 const src_reg *src = values[ch];
64
65 /* consider GRF only */
66 assert(inst->dst.file == GRF);
67 if (!src || src->file != GRF)
68 return false;
69
70 return (src->reg == inst->dst.reg &&
71 src->reg_offset == inst->dst.reg_offset &&
72 inst->dst.writemask & (1 << BRW_GET_SWZ(src->swizzle, ch)));
73 }
74
75 static bool
76 try_constant_propagate(struct brw_context *brw, vec4_instruction *inst,
77 int arg, src_reg *values[4])
78 {
79 /* For constant propagation, we only handle the same constant
80 * across all 4 channels. Some day, we should handle the 8-bit
81 * float vector format, which would let us constant propagate
82 * vectors better.
83 */
84 src_reg value = *values[0];
85 for (int i = 1; i < 4; i++) {
86 if (!value.equals(*values[i]))
87 return false;
88 }
89
90 if (value.file != IMM)
91 return false;
92
93 if (inst->src[arg].abs) {
94 if (value.type == BRW_REGISTER_TYPE_F) {
95 value.imm.f = fabs(value.imm.f);
96 } else if (value.type == BRW_REGISTER_TYPE_D) {
97 if (value.imm.i < 0)
98 value.imm.i = -value.imm.i;
99 }
100 }
101
102 if (inst->src[arg].negate) {
103 if (value.type == BRW_REGISTER_TYPE_F)
104 value.imm.f = -value.imm.f;
105 else
106 value.imm.u = -value.imm.u;
107 }
108
109 switch (inst->opcode) {
110 case BRW_OPCODE_MOV:
111 inst->src[arg] = value;
112 return true;
113
114 case SHADER_OPCODE_POW:
115 case SHADER_OPCODE_INT_QUOTIENT:
116 case SHADER_OPCODE_INT_REMAINDER:
117 if (brw->gen < 8)
118 break;
119 /* fallthrough */
120 case BRW_OPCODE_DP2:
121 case BRW_OPCODE_DP3:
122 case BRW_OPCODE_DP4:
123 case BRW_OPCODE_DPH:
124 case BRW_OPCODE_BFI1:
125 case BRW_OPCODE_ASR:
126 case BRW_OPCODE_SHL:
127 case BRW_OPCODE_SHR:
128 case BRW_OPCODE_SUBB:
129 if (arg == 1) {
130 inst->src[arg] = value;
131 return true;
132 }
133 break;
134
135 case BRW_OPCODE_MACH:
136 case BRW_OPCODE_MUL:
137 case BRW_OPCODE_ADD:
138 case BRW_OPCODE_OR:
139 case BRW_OPCODE_AND:
140 case BRW_OPCODE_XOR:
141 case BRW_OPCODE_ADDC:
142 if (arg == 1) {
143 inst->src[arg] = value;
144 return true;
145 } else if (arg == 0 && inst->src[1].file != IMM) {
146 /* Fit this constant in by commuting the operands. Exception: we
147 * can't do this for 32-bit integer MUL/MACH because it's asymmetric.
148 */
149 if ((inst->opcode == BRW_OPCODE_MUL ||
150 inst->opcode == BRW_OPCODE_MACH) &&
151 (inst->src[1].type == BRW_REGISTER_TYPE_D ||
152 inst->src[1].type == BRW_REGISTER_TYPE_UD))
153 break;
154 inst->src[0] = inst->src[1];
155 inst->src[1] = value;
156 return true;
157 }
158 break;
159
160 case BRW_OPCODE_CMP:
161 if (arg == 1) {
162 inst->src[arg] = value;
163 return true;
164 } else if (arg == 0 && inst->src[1].file != IMM) {
165 uint32_t new_cmod;
166
167 new_cmod = brw_swap_cmod(inst->conditional_mod);
168 if (new_cmod != ~0u) {
169 /* Fit this constant in by swapping the operands and
170 * flipping the test.
171 */
172 inst->src[0] = inst->src[1];
173 inst->src[1] = value;
174 inst->conditional_mod = new_cmod;
175 return true;
176 }
177 }
178 break;
179
180 case BRW_OPCODE_SEL:
181 if (arg == 1) {
182 inst->src[arg] = value;
183 return true;
184 } else if (arg == 0 && inst->src[1].file != IMM) {
185 inst->src[0] = inst->src[1];
186 inst->src[1] = value;
187
188 /* If this was predicated, flipping operands means
189 * we also need to flip the predicate.
190 */
191 if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
192 inst->predicate_inverse = !inst->predicate_inverse;
193 }
194 return true;
195 }
196 break;
197
198 default:
199 break;
200 }
201
202 return false;
203 }
204
205 static bool
206 is_logic_op(enum opcode opcode)
207 {
208 return (opcode == BRW_OPCODE_AND ||
209 opcode == BRW_OPCODE_OR ||
210 opcode == BRW_OPCODE_XOR ||
211 opcode == BRW_OPCODE_NOT);
212 }
213
214 static bool
215 try_copy_propagate(struct brw_context *brw, vec4_instruction *inst,
216 int arg, src_reg *values[4])
217 {
218 /* For constant propagation, we only handle the same constant
219 * across all 4 channels. Some day, we should handle the 8-bit
220 * float vector format, which would let us constant propagate
221 * vectors better.
222 */
223 src_reg value = *values[0];
224 for (int i = 1; i < 4; i++) {
225 /* This is equals() except we don't care about the swizzle. */
226 if (value.file != values[i]->file ||
227 value.reg != values[i]->reg ||
228 value.reg_offset != values[i]->reg_offset ||
229 value.type != values[i]->type ||
230 value.negate != values[i]->negate ||
231 value.abs != values[i]->abs) {
232 return false;
233 }
234 }
235
236 /* Compute the swizzle of the original register by swizzling the
237 * component loaded from each value according to the swizzle of
238 * operand we're going to change.
239 */
240 int s[4];
241 for (int i = 0; i < 4; i++) {
242 s[i] = BRW_GET_SWZ(values[i]->swizzle,
243 BRW_GET_SWZ(inst->src[arg].swizzle, i));
244 }
245 value.swizzle = BRW_SWIZZLE4(s[0], s[1], s[2], s[3]);
246
247 if (value.file != UNIFORM &&
248 value.file != GRF &&
249 value.file != ATTR)
250 return false;
251
252 if (brw->gen >= 8) {
253 if (value.negate) {
254 if (is_logic_op(inst->opcode)) {
255 return false;
256 }
257 }
258 }
259
260 if (inst->src[arg].abs) {
261 value.negate = false;
262 value.abs = true;
263 }
264 if (inst->src[arg].negate)
265 value.negate = !value.negate;
266
267 bool has_source_modifiers = value.negate || value.abs;
268
269 /* gen6 math and gen7+ SENDs from GRFs ignore source modifiers on
270 * instructions.
271 */
272 if ((has_source_modifiers || value.file == UNIFORM ||
273 value.swizzle != BRW_SWIZZLE_XYZW) && !inst->can_do_source_mods(brw))
274 return false;
275
276 if (has_source_modifiers && value.type != inst->src[arg].type)
277 return false;
278
279 bool is_3src_inst = (inst->opcode == BRW_OPCODE_LRP ||
280 inst->opcode == BRW_OPCODE_MAD ||
281 inst->opcode == BRW_OPCODE_BFE ||
282 inst->opcode == BRW_OPCODE_BFI2);
283 if (is_3src_inst && value.file == UNIFORM)
284 return false;
285
286 if (inst->is_send_from_grf())
287 return false;
288
289 /* We can't copy-propagate a UD negation into a condmod
290 * instruction, because the condmod ends up looking at the 33-bit
291 * signed accumulator value instead of the 32-bit value we wanted
292 */
293 if (inst->conditional_mod &&
294 value.negate &&
295 value.type == BRW_REGISTER_TYPE_UD)
296 return false;
297
298 /* Don't report progress if this is a noop. */
299 if (value.equals(inst->src[arg]))
300 return false;
301
302 value.type = inst->src[arg].type;
303 inst->src[arg] = value;
304 return true;
305 }
306
307 bool
308 vec4_visitor::opt_copy_propagation()
309 {
310 bool progress = false;
311 src_reg *cur_value[virtual_grf_reg_count][4];
312
313 memset(&cur_value, 0, sizeof(cur_value));
314
315 foreach_list(node, &this->instructions) {
316 vec4_instruction *inst = (vec4_instruction *)node;
317
318 /* This pass only works on basic blocks. If there's flow
319 * control, throw out all our information and start from
320 * scratch.
321 *
322 * This should really be fixed by using a structure like in
323 * src/glsl/opt_copy_propagation.cpp to track available copies.
324 */
325 if (!is_dominated_by_previous_instruction(inst)) {
326 memset(cur_value, 0, sizeof(cur_value));
327 continue;
328 }
329
330 /* For each source arg, see if each component comes from a copy
331 * from the same type file (IMM, GRF, UNIFORM), and try
332 * optimizing out access to the copy result
333 */
334 for (int i = 2; i >= 0; i--) {
335 /* Copied values end up in GRFs, and we don't track reladdr
336 * accesses.
337 */
338 if (inst->src[i].file != GRF ||
339 inst->src[i].reladdr)
340 continue;
341
342 int reg = (virtual_grf_reg_map[inst->src[i].reg] +
343 inst->src[i].reg_offset);
344
345 /* Find the regs that each swizzle component came from.
346 */
347 src_reg *values[4];
348 int c;
349 for (c = 0; c < 4; c++) {
350 values[c] = cur_value[reg][BRW_GET_SWZ(inst->src[i].swizzle, c)];
351
352 /* If there's no available copy for this channel, bail.
353 * We could be more aggressive here -- some channels might
354 * not get used based on the destination writemask.
355 */
356 if (!values[c])
357 break;
358
359 /* We'll only be able to copy propagate if the sources are
360 * all from the same file -- there's no ability to swizzle
361 * 0 or 1 constants in with source registers like in i915.
362 */
363 if (c > 0 && values[c - 1]->file != values[c]->file)
364 break;
365 }
366
367 if (c != 4)
368 continue;
369
370 if (try_constant_propagate(brw, inst, i, values))
371 progress = true;
372
373 if (try_copy_propagate(brw, inst, i, values))
374 progress = true;
375 }
376
377 /* Track available source registers. */
378 if (inst->dst.file == GRF) {
379 const int reg =
380 virtual_grf_reg_map[inst->dst.reg] + inst->dst.reg_offset;
381
382 /* Update our destination's current channel values. For a direct copy,
383 * the value is the newly propagated source. Otherwise, we don't know
384 * the new value, so clear it.
385 */
386 bool direct_copy = is_direct_copy(inst);
387 for (int i = 0; i < 4; i++) {
388 if (inst->dst.writemask & (1 << i)) {
389 cur_value[reg][i] = direct_copy ? &inst->src[0] : NULL;
390 }
391 }
392
393 /* Clear the records for any registers whose current value came from
394 * our destination's updated channels, as the two are no longer equal.
395 */
396 if (inst->dst.reladdr)
397 memset(cur_value, 0, sizeof(cur_value));
398 else {
399 for (int i = 0; i < virtual_grf_reg_count; i++) {
400 for (int j = 0; j < 4; j++) {
401 if (is_channel_updated(inst, cur_value[i], j)){
402 cur_value[i][j] = NULL;
403 }
404 }
405 }
406 }
407 }
408 }
409
410 if (progress)
411 invalidate_live_intervals();
412
413 return progress;
414 }
415
416 } /* namespace brw */