glsl: Move _mesa_shader_stage_to_string/abbrev to shader_enums.c
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_generator.cpp
1 /* Copyright © 2011 Intel Corporation
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a
4 * copy of this software and associated documentation files (the "Software"),
5 * to deal in the Software without restriction, including without limitation
6 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
7 * and/or sell copies of the Software, and to permit persons to whom the
8 * Software is furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice (including the next
11 * paragraph) shall be included in all copies or substantial portions of the
12 * Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
20 * IN THE SOFTWARE.
21 */
22
23 #include "brw_vec4.h"
24 #include "brw_cfg.h"
25 #include "brw_eu.h"
26 #include "brw_program.h"
27
28 using namespace brw;
29
30 static void
31 generate_math1_gen4(struct brw_codegen *p,
32 vec4_instruction *inst,
33 struct brw_reg dst,
34 struct brw_reg src)
35 {
36 gen4_math(p,
37 dst,
38 brw_math_function(inst->opcode),
39 inst->base_mrf,
40 src,
41 BRW_MATH_PRECISION_FULL);
42 }
43
44 static void
45 check_gen6_math_src_arg(struct brw_reg src)
46 {
47 /* Source swizzles are ignored. */
48 assert(!src.abs);
49 assert(!src.negate);
50 assert(src.swizzle == BRW_SWIZZLE_XYZW);
51 }
52
53 static void
54 generate_math_gen6(struct brw_codegen *p,
55 vec4_instruction *inst,
56 struct brw_reg dst,
57 struct brw_reg src0,
58 struct brw_reg src1)
59 {
60 /* Can't do writemask because math can't be align16. */
61 assert(dst.writemask == WRITEMASK_XYZW);
62 /* Source swizzles are ignored. */
63 check_gen6_math_src_arg(src0);
64 if (src1.file == BRW_GENERAL_REGISTER_FILE)
65 check_gen6_math_src_arg(src1);
66
67 brw_set_default_access_mode(p, BRW_ALIGN_1);
68 gen6_math(p, dst, brw_math_function(inst->opcode), src0, src1);
69 brw_set_default_access_mode(p, BRW_ALIGN_16);
70 }
71
72 static void
73 generate_math2_gen4(struct brw_codegen *p,
74 vec4_instruction *inst,
75 struct brw_reg dst,
76 struct brw_reg src0,
77 struct brw_reg src1)
78 {
79 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
80 * "Message Payload":
81 *
82 * "Operand0[7]. For the INT DIV functions, this operand is the
83 * denominator."
84 * ...
85 * "Operand1[7]. For the INT DIV functions, this operand is the
86 * numerator."
87 */
88 bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
89 struct brw_reg &op0 = is_int_div ? src1 : src0;
90 struct brw_reg &op1 = is_int_div ? src0 : src1;
91
92 brw_push_insn_state(p);
93 brw_set_default_saturate(p, false);
94 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
95 brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), op1.type), op1);
96 brw_pop_insn_state(p);
97
98 gen4_math(p,
99 dst,
100 brw_math_function(inst->opcode),
101 inst->base_mrf,
102 op0,
103 BRW_MATH_PRECISION_FULL);
104 }
105
106 static void
107 generate_tex(struct brw_codegen *p,
108 struct brw_vue_prog_data *prog_data,
109 vec4_instruction *inst,
110 struct brw_reg dst,
111 struct brw_reg src,
112 struct brw_reg sampler_index)
113 {
114 const struct brw_device_info *devinfo = p->devinfo;
115 int msg_type = -1;
116
117 if (devinfo->gen >= 5) {
118 switch (inst->opcode) {
119 case SHADER_OPCODE_TEX:
120 case SHADER_OPCODE_TXL:
121 if (inst->shadow_compare) {
122 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
123 } else {
124 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
125 }
126 break;
127 case SHADER_OPCODE_TXD:
128 if (inst->shadow_compare) {
129 /* Gen7.5+. Otherwise, lowered by brw_lower_texture_gradients(). */
130 assert(devinfo->gen >= 8 || devinfo->is_haswell);
131 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
132 } else {
133 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
134 }
135 break;
136 case SHADER_OPCODE_TXF:
137 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
138 break;
139 case SHADER_OPCODE_TXF_CMS_W:
140 assert(devinfo->gen >= 9);
141 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
142 break;
143 case SHADER_OPCODE_TXF_CMS:
144 if (devinfo->gen >= 7)
145 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
146 else
147 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
148 break;
149 case SHADER_OPCODE_TXF_MCS:
150 assert(devinfo->gen >= 7);
151 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
152 break;
153 case SHADER_OPCODE_TXS:
154 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
155 break;
156 case SHADER_OPCODE_TG4:
157 if (inst->shadow_compare) {
158 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
159 } else {
160 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
161 }
162 break;
163 case SHADER_OPCODE_TG4_OFFSET:
164 if (inst->shadow_compare) {
165 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
166 } else {
167 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
168 }
169 break;
170 case SHADER_OPCODE_SAMPLEINFO:
171 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
172 break;
173 default:
174 unreachable("should not get here: invalid vec4 texture opcode");
175 }
176 } else {
177 switch (inst->opcode) {
178 case SHADER_OPCODE_TEX:
179 case SHADER_OPCODE_TXL:
180 if (inst->shadow_compare) {
181 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE;
182 assert(inst->mlen == 3);
183 } else {
184 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD;
185 assert(inst->mlen == 2);
186 }
187 break;
188 case SHADER_OPCODE_TXD:
189 /* There is no sample_d_c message; comparisons are done manually. */
190 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS;
191 assert(inst->mlen == 4);
192 break;
193 case SHADER_OPCODE_TXF:
194 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_LD;
195 assert(inst->mlen == 2);
196 break;
197 case SHADER_OPCODE_TXS:
198 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO;
199 assert(inst->mlen == 2);
200 break;
201 default:
202 unreachable("should not get here: invalid vec4 texture opcode");
203 }
204 }
205
206 assert(msg_type != -1);
207
208 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
209
210 /* Load the message header if present. If there's a texture offset, we need
211 * to set it up explicitly and load the offset bitfield. Otherwise, we can
212 * use an implied move from g0 to the first message register.
213 */
214 if (inst->header_size != 0) {
215 if (devinfo->gen < 6 && !inst->offset) {
216 /* Set up an implied move from g0 to the MRF. */
217 src = brw_vec8_grf(0, 0);
218 } else {
219 struct brw_reg header =
220 retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
221 uint32_t dw2 = 0;
222
223 /* Explicitly set up the message header by copying g0 to the MRF. */
224 brw_push_insn_state(p);
225 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
226 brw_MOV(p, header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
227
228 brw_set_default_access_mode(p, BRW_ALIGN_1);
229
230 if (inst->offset)
231 /* Set the texel offset bits in DWord 2. */
232 dw2 = inst->offset;
233
234 if (devinfo->gen >= 9)
235 /* SKL+ overloads BRW_SAMPLER_SIMD_MODE_SIMD4X2 to also do SIMD8D,
236 * based on bit 22 in the header.
237 */
238 dw2 |= GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2;
239
240 if (dw2)
241 brw_MOV(p, get_element_ud(header, 2), brw_imm_ud(dw2));
242
243 brw_adjust_sampler_state_pointer(p, header, sampler_index);
244 brw_pop_insn_state(p);
245 }
246 }
247
248 uint32_t return_format;
249
250 switch (dst.type) {
251 case BRW_REGISTER_TYPE_D:
252 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
253 break;
254 case BRW_REGISTER_TYPE_UD:
255 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
256 break;
257 default:
258 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
259 break;
260 }
261
262 uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
263 inst->opcode == SHADER_OPCODE_TG4_OFFSET)
264 ? prog_data->base.binding_table.gather_texture_start
265 : prog_data->base.binding_table.texture_start;
266
267 if (sampler_index.file == BRW_IMMEDIATE_VALUE) {
268 uint32_t sampler = sampler_index.ud;
269
270 brw_SAMPLE(p,
271 dst,
272 inst->base_mrf,
273 src,
274 sampler + base_binding_table_index,
275 sampler % 16,
276 msg_type,
277 1, /* response length */
278 inst->mlen,
279 inst->header_size != 0,
280 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
281 return_format);
282
283 brw_mark_surface_used(&prog_data->base, sampler + base_binding_table_index);
284 } else {
285 /* Non-constant sampler index. */
286
287 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
288 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
289
290 brw_push_insn_state(p);
291 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
292 brw_set_default_access_mode(p, BRW_ALIGN_1);
293
294 /* addr = ((sampler * 0x101) + base_binding_table_index) & 0xfff */
295 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
296 if (base_binding_table_index)
297 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
298 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
299
300 brw_pop_insn_state(p);
301
302 if (inst->base_mrf != -1)
303 gen6_resolve_implied_move(p, &src, inst->base_mrf);
304
305 /* dst = send(offset, a0.0 | <descriptor>) */
306 brw_inst *insn = brw_send_indirect_message(
307 p, BRW_SFID_SAMPLER, dst, src, addr);
308 brw_set_sampler_message(p, insn,
309 0 /* surface */,
310 0 /* sampler */,
311 msg_type,
312 1 /* rlen */,
313 inst->mlen /* mlen */,
314 inst->header_size != 0 /* header */,
315 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
316 return_format);
317
318 /* visitor knows more than we do about the surface limit required,
319 * so has already done marking.
320 */
321 }
322 }
323
324 static void
325 generate_vs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
326 {
327 brw_urb_WRITE(p,
328 brw_null_reg(), /* dest */
329 inst->base_mrf, /* starting mrf reg nr */
330 brw_vec8_grf(0, 0), /* src */
331 inst->urb_write_flags,
332 inst->mlen,
333 0, /* response len */
334 inst->offset, /* urb destination offset */
335 BRW_URB_SWIZZLE_INTERLEAVE);
336 }
337
338 static void
339 generate_gs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
340 {
341 struct brw_reg src = brw_message_reg(inst->base_mrf);
342 brw_urb_WRITE(p,
343 brw_null_reg(), /* dest */
344 inst->base_mrf, /* starting mrf reg nr */
345 src,
346 inst->urb_write_flags,
347 inst->mlen,
348 0, /* response len */
349 inst->offset, /* urb destination offset */
350 BRW_URB_SWIZZLE_INTERLEAVE);
351 }
352
353 static void
354 generate_gs_urb_write_allocate(struct brw_codegen *p, vec4_instruction *inst)
355 {
356 struct brw_reg src = brw_message_reg(inst->base_mrf);
357
358 /* We pass the temporary passed in src0 as the writeback register */
359 brw_urb_WRITE(p,
360 inst->src[0].as_brw_reg(), /* dest */
361 inst->base_mrf, /* starting mrf reg nr */
362 src,
363 BRW_URB_WRITE_ALLOCATE_COMPLETE,
364 inst->mlen,
365 1, /* response len */
366 inst->offset, /* urb destination offset */
367 BRW_URB_SWIZZLE_INTERLEAVE);
368
369 /* Now put allocated urb handle in dst.0 */
370 brw_push_insn_state(p);
371 brw_set_default_access_mode(p, BRW_ALIGN_1);
372 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
373 brw_MOV(p, get_element_ud(inst->dst.as_brw_reg(), 0),
374 get_element_ud(inst->src[0].as_brw_reg(), 0));
375 brw_pop_insn_state(p);
376 }
377
378 static void
379 generate_gs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
380 {
381 struct brw_reg src = brw_message_reg(inst->base_mrf);
382 brw_urb_WRITE(p,
383 brw_null_reg(), /* dest */
384 inst->base_mrf, /* starting mrf reg nr */
385 src,
386 BRW_URB_WRITE_EOT | inst->urb_write_flags,
387 inst->mlen,
388 0, /* response len */
389 0, /* urb destination offset */
390 BRW_URB_SWIZZLE_INTERLEAVE);
391 }
392
393 static void
394 generate_gs_set_write_offset(struct brw_codegen *p,
395 struct brw_reg dst,
396 struct brw_reg src0,
397 struct brw_reg src1)
398 {
399 /* From p22 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
400 * Header: M0.3):
401 *
402 * Slot 0 Offset. This field, after adding to the Global Offset field
403 * in the message descriptor, specifies the offset (in 256-bit units)
404 * from the start of the URB entry, as referenced by URB Handle 0, at
405 * which the data will be accessed.
406 *
407 * Similar text describes DWORD M0.4, which is slot 1 offset.
408 *
409 * Therefore, we want to multiply DWORDs 0 and 4 of src0 (the x components
410 * of the register for geometry shader invocations 0 and 1) by the
411 * immediate value in src1, and store the result in DWORDs 3 and 4 of dst.
412 *
413 * We can do this with the following EU instruction:
414 *
415 * mul(2) dst.3<1>UD src0<8;2,4>UD src1<...>UW { Align1 WE_all }
416 */
417 brw_push_insn_state(p);
418 brw_set_default_access_mode(p, BRW_ALIGN_1);
419 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
420 assert(p->devinfo->gen >= 7 &&
421 src1.file == BRW_IMMEDIATE_VALUE &&
422 src1.type == BRW_REGISTER_TYPE_UD &&
423 src1.ud <= USHRT_MAX);
424 if (src0.file == BRW_IMMEDIATE_VALUE) {
425 brw_MOV(p, suboffset(stride(dst, 2, 2, 1), 3),
426 brw_imm_ud(src0.ud * src1.ud));
427 } else {
428 brw_MUL(p, suboffset(stride(dst, 2, 2, 1), 3), stride(src0, 8, 2, 4),
429 retype(src1, BRW_REGISTER_TYPE_UW));
430 }
431 brw_pop_insn_state(p);
432 }
433
434 static void
435 generate_gs_set_vertex_count(struct brw_codegen *p,
436 struct brw_reg dst,
437 struct brw_reg src)
438 {
439 brw_push_insn_state(p);
440 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
441
442 if (p->devinfo->gen >= 8) {
443 /* Move the vertex count into the second MRF for the EOT write. */
444 brw_MOV(p, retype(brw_message_reg(dst.nr + 1), BRW_REGISTER_TYPE_UD),
445 src);
446 } else {
447 /* If we think of the src and dst registers as composed of 8 DWORDs each,
448 * we want to pick up the contents of DWORDs 0 and 4 from src, truncate
449 * them to WORDs, and then pack them into DWORD 2 of dst.
450 *
451 * It's easier to get the EU to do this if we think of the src and dst
452 * registers as composed of 16 WORDS each; then, we want to pick up the
453 * contents of WORDs 0 and 8 from src, and pack them into WORDs 4 and 5
454 * of dst.
455 *
456 * We can do that by the following EU instruction:
457 *
458 * mov (2) dst.4<1>:uw src<8;1,0>:uw { Align1, Q1, NoMask }
459 */
460 brw_set_default_access_mode(p, BRW_ALIGN_1);
461 brw_MOV(p,
462 suboffset(stride(retype(dst, BRW_REGISTER_TYPE_UW), 2, 2, 1), 4),
463 stride(retype(src, BRW_REGISTER_TYPE_UW), 8, 1, 0));
464 }
465 brw_pop_insn_state(p);
466 }
467
468 static void
469 generate_gs_svb_write(struct brw_codegen *p,
470 struct brw_vue_prog_data *prog_data,
471 vec4_instruction *inst,
472 struct brw_reg dst,
473 struct brw_reg src0,
474 struct brw_reg src1)
475 {
476 int binding = inst->sol_binding;
477 bool final_write = inst->sol_final_write;
478
479 brw_push_insn_state(p);
480 /* Copy Vertex data into M0.x */
481 brw_MOV(p, stride(dst, 4, 4, 1),
482 stride(retype(src0, BRW_REGISTER_TYPE_UD), 4, 4, 1));
483
484 /* Send SVB Write */
485 brw_svb_write(p,
486 final_write ? src1 : brw_null_reg(), /* dest == src1 */
487 1, /* msg_reg_nr */
488 dst, /* src0 == previous dst */
489 SURF_INDEX_GEN6_SOL_BINDING(binding), /* binding_table_index */
490 final_write); /* send_commit_msg */
491
492 /* Finally, wait for the write commit to occur so that we can proceed to
493 * other things safely.
494 *
495 * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
496 *
497 * The write commit does not modify the destination register, but
498 * merely clears the dependency associated with the destination
499 * register. Thus, a simple “mov” instruction using the register as a
500 * source is sufficient to wait for the write commit to occur.
501 */
502 if (final_write) {
503 brw_MOV(p, src1, src1);
504 }
505 brw_pop_insn_state(p);
506 }
507
508 static void
509 generate_gs_svb_set_destination_index(struct brw_codegen *p,
510 vec4_instruction *inst,
511 struct brw_reg dst,
512 struct brw_reg src)
513 {
514 int vertex = inst->sol_vertex;
515 brw_push_insn_state(p);
516 brw_set_default_access_mode(p, BRW_ALIGN_1);
517 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
518 brw_MOV(p, get_element_ud(dst, 5), get_element_ud(src, vertex));
519 brw_pop_insn_state(p);
520 }
521
522 static void
523 generate_gs_set_dword_2(struct brw_codegen *p,
524 struct brw_reg dst,
525 struct brw_reg src)
526 {
527 brw_push_insn_state(p);
528 brw_set_default_access_mode(p, BRW_ALIGN_1);
529 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
530 brw_MOV(p, suboffset(vec1(dst), 2), suboffset(vec1(src), 0));
531 brw_pop_insn_state(p);
532 }
533
534 static void
535 generate_gs_prepare_channel_masks(struct brw_codegen *p,
536 struct brw_reg dst)
537 {
538 /* We want to left shift just DWORD 4 (the x component belonging to the
539 * second geometry shader invocation) by 4 bits. So generate the
540 * instruction:
541 *
542 * shl(1) dst.4<1>UD dst.4<0,1,0>UD 4UD { align1 WE_all }
543 */
544 dst = suboffset(vec1(dst), 4);
545 brw_push_insn_state(p);
546 brw_set_default_access_mode(p, BRW_ALIGN_1);
547 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
548 brw_SHL(p, dst, dst, brw_imm_ud(4));
549 brw_pop_insn_state(p);
550 }
551
552 static void
553 generate_gs_set_channel_masks(struct brw_codegen *p,
554 struct brw_reg dst,
555 struct brw_reg src)
556 {
557 /* From p21 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
558 * Header: M0.5):
559 *
560 * 15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask
561 *
562 * When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1
563 * DATA[3], when Swizzle Control = URB_NOSWIZZLE this bit controls
564 * Vertex 0 DATA[7]. This bit is ANDed with the corresponding
565 * channel enable to determine the final channel enable. For the
566 * URB_READ_OWORD & URB_READ_HWORD messages, when final channel
567 * enable is 1 it indicates that Vertex 1 DATA [3] will be included
568 * in the writeback message. For the URB_WRITE_OWORD &
569 * URB_WRITE_HWORD messages, when final channel enable is 1 it
570 * indicates that Vertex 1 DATA [3] will be written to the surface.
571 *
572 * 0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included
573 * 1: Vertex DATA [3] / Vertex 0 DATA[7] channel included
574 *
575 * 14 Vertex 1 DATA [2] Channel Mask
576 * 13 Vertex 1 DATA [1] Channel Mask
577 * 12 Vertex 1 DATA [0] Channel Mask
578 * 11 Vertex 0 DATA [3] Channel Mask
579 * 10 Vertex 0 DATA [2] Channel Mask
580 * 9 Vertex 0 DATA [1] Channel Mask
581 * 8 Vertex 0 DATA [0] Channel Mask
582 *
583 * (This is from a section of the PRM that is agnostic to the particular
584 * type of shader being executed, so "Vertex 0" and "Vertex 1" refer to
585 * geometry shader invocations 0 and 1, respectively). Since we have the
586 * enable flags for geometry shader invocation 0 in bits 3:0 of DWORD 0,
587 * and the enable flags for geometry shader invocation 1 in bits 7:0 of
588 * DWORD 4, we just need to OR them together and store the result in bits
589 * 15:8 of DWORD 5.
590 *
591 * It's easier to get the EU to do this if we think of the src and dst
592 * registers as composed of 32 bytes each; then, we want to pick up the
593 * contents of bytes 0 and 16 from src, OR them together, and store them in
594 * byte 21.
595 *
596 * We can do that by the following EU instruction:
597 *
598 * or(1) dst.21<1>UB src<0,1,0>UB src.16<0,1,0>UB { align1 WE_all }
599 *
600 * Note: this relies on the source register having zeros in (a) bits 7:4 of
601 * DWORD 0 and (b) bits 3:0 of DWORD 4. We can rely on (b) because the
602 * source register was prepared by GS_OPCODE_PREPARE_CHANNEL_MASKS (which
603 * shifts DWORD 4 left by 4 bits), and we can rely on (a) because prior to
604 * the execution of GS_OPCODE_PREPARE_CHANNEL_MASKS, DWORDs 0 and 4 need to
605 * contain valid channel mask values (which are in the range 0x0-0xf).
606 */
607 dst = retype(dst, BRW_REGISTER_TYPE_UB);
608 src = retype(src, BRW_REGISTER_TYPE_UB);
609 brw_push_insn_state(p);
610 brw_set_default_access_mode(p, BRW_ALIGN_1);
611 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
612 brw_OR(p, suboffset(vec1(dst), 21), vec1(src), suboffset(vec1(src), 16));
613 brw_pop_insn_state(p);
614 }
615
616 static void
617 generate_gs_get_instance_id(struct brw_codegen *p,
618 struct brw_reg dst)
619 {
620 /* We want to right shift R0.0 & R0.1 by GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT
621 * and store into dst.0 & dst.4. So generate the instruction:
622 *
623 * shr(8) dst<1> R0<1,4,0> GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT { align1 WE_normal 1Q }
624 */
625 brw_push_insn_state(p);
626 brw_set_default_access_mode(p, BRW_ALIGN_1);
627 dst = retype(dst, BRW_REGISTER_TYPE_UD);
628 struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
629 brw_SHR(p, dst, stride(r0, 1, 4, 0),
630 brw_imm_ud(GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT));
631 brw_pop_insn_state(p);
632 }
633
634 static void
635 generate_gs_ff_sync_set_primitives(struct brw_codegen *p,
636 struct brw_reg dst,
637 struct brw_reg src0,
638 struct brw_reg src1,
639 struct brw_reg src2)
640 {
641 brw_push_insn_state(p);
642 brw_set_default_access_mode(p, BRW_ALIGN_1);
643 /* Save src0 data in 16:31 bits of dst.0 */
644 brw_AND(p, suboffset(vec1(dst), 0), suboffset(vec1(src0), 0),
645 brw_imm_ud(0xffffu));
646 brw_SHL(p, suboffset(vec1(dst), 0), suboffset(vec1(dst), 0), brw_imm_ud(16));
647 /* Save src1 data in 0:15 bits of dst.0 */
648 brw_AND(p, suboffset(vec1(src2), 0), suboffset(vec1(src1), 0),
649 brw_imm_ud(0xffffu));
650 brw_OR(p, suboffset(vec1(dst), 0),
651 suboffset(vec1(dst), 0),
652 suboffset(vec1(src2), 0));
653 brw_pop_insn_state(p);
654 }
655
656 static void
657 generate_gs_ff_sync(struct brw_codegen *p,
658 vec4_instruction *inst,
659 struct brw_reg dst,
660 struct brw_reg src0,
661 struct brw_reg src1)
662 {
663 /* This opcode uses an implied MRF register for:
664 * - the header of the ff_sync message. And as such it is expected to be
665 * initialized to r0 before calling here.
666 * - the destination where we will write the allocated URB handle.
667 */
668 struct brw_reg header =
669 retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
670
671 /* Overwrite dword 0 of the header (SO vertices to write) and
672 * dword 1 (number of primitives written).
673 */
674 brw_push_insn_state(p);
675 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
676 brw_set_default_access_mode(p, BRW_ALIGN_1);
677 brw_MOV(p, get_element_ud(header, 0), get_element_ud(src1, 0));
678 brw_MOV(p, get_element_ud(header, 1), get_element_ud(src0, 0));
679 brw_pop_insn_state(p);
680
681 /* Allocate URB handle in dst */
682 brw_ff_sync(p,
683 dst,
684 0,
685 header,
686 1, /* allocate */
687 1, /* response length */
688 0 /* eot */);
689
690 /* Now put allocated urb handle in header.0 */
691 brw_push_insn_state(p);
692 brw_set_default_access_mode(p, BRW_ALIGN_1);
693 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
694 brw_MOV(p, get_element_ud(header, 0), get_element_ud(dst, 0));
695
696 /* src1 is not an immediate when we use transform feedback */
697 if (src1.file != BRW_IMMEDIATE_VALUE)
698 brw_MOV(p, brw_vec4_grf(src1.nr, 0), brw_vec4_grf(dst.nr, 1));
699
700 brw_pop_insn_state(p);
701 }
702
703 static void
704 generate_gs_set_primitive_id(struct brw_codegen *p, struct brw_reg dst)
705 {
706 /* In gen6, PrimitiveID is delivered in R0.1 of the payload */
707 struct brw_reg src = brw_vec8_grf(0, 0);
708 brw_push_insn_state(p);
709 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
710 brw_set_default_access_mode(p, BRW_ALIGN_1);
711 brw_MOV(p, get_element_ud(dst, 0), get_element_ud(src, 1));
712 brw_pop_insn_state(p);
713 }
714
715 static void
716 generate_tcs_get_instance_id(struct brw_codegen *p, struct brw_reg dst)
717 {
718 const struct brw_device_info *devinfo = p->devinfo;
719 const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
720
721 /* "Instance Count" comes as part of the payload in r0.2 bits 23:17.
722 *
723 * Since we operate in SIMD4x2 mode, we need run half as many threads
724 * as necessary. So we assign (2i + 1, 2i) as the thread counts. We
725 * shift right by one less to accomplish the multiplication by two.
726 */
727 dst = retype(dst, BRW_REGISTER_TYPE_UD);
728 struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
729
730 brw_push_insn_state(p);
731 brw_set_default_access_mode(p, BRW_ALIGN_1);
732
733 const int mask = ivb ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
734 const int shift = ivb ? 16 : 17;
735
736 brw_AND(p, get_element_ud(dst, 0), get_element_ud(r0, 2), brw_imm_ud(mask));
737 brw_SHR(p, get_element_ud(dst, 0), get_element_ud(dst, 0),
738 brw_imm_ud(shift - 1));
739 brw_ADD(p, get_element_ud(dst, 4), get_element_ud(dst, 0), brw_imm_ud(1));
740
741 brw_pop_insn_state(p);
742 }
743
744 static void
745 generate_tcs_urb_write(struct brw_codegen *p,
746 vec4_instruction *inst,
747 struct brw_reg urb_header)
748 {
749 const struct brw_device_info *devinfo = p->devinfo;
750
751 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
752 brw_set_dest(p, send, brw_null_reg());
753 brw_set_src0(p, send, urb_header);
754
755 brw_set_message_descriptor(p, send, BRW_SFID_URB,
756 inst->mlen /* mlen */, 0 /* rlen */,
757 true /* header */, false /* eot */);
758 brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_WRITE_OWORD);
759 brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
760 if (inst->urb_write_flags & BRW_URB_WRITE_EOT) {
761 brw_inst_set_eot(devinfo, send, 1);
762 } else {
763 brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
764 brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
765 }
766
767 /* what happens to swizzles? */
768 }
769
770
771 static void
772 generate_tcs_input_urb_offsets(struct brw_codegen *p,
773 struct brw_reg dst,
774 struct brw_reg vertex,
775 struct brw_reg offset)
776 {
777 /* Generates an URB read/write message header for HS/DS operation.
778 * Inputs are a vertex index, and a byte offset from the beginning of
779 * the vertex. */
780
781 /* If `vertex` is not an immediate, we clobber a0.0 */
782
783 assert(vertex.file == BRW_IMMEDIATE_VALUE || vertex.file == BRW_GENERAL_REGISTER_FILE);
784 assert(vertex.type == BRW_REGISTER_TYPE_UD || vertex.type == BRW_REGISTER_TYPE_D);
785
786 assert(dst.file == BRW_GENERAL_REGISTER_FILE);
787
788 brw_push_insn_state(p);
789 brw_set_default_access_mode(p, BRW_ALIGN_1);
790 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
791 brw_MOV(p, dst, brw_imm_ud(0));
792
793 /* m0.5 bits 8-15 are channel enables */
794 brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
795
796 /* m0.0-0.1: URB handles */
797 if (vertex.file == BRW_IMMEDIATE_VALUE) {
798 uint32_t vertex_index = vertex.ud;
799 struct brw_reg index_reg = brw_vec1_grf(
800 1 + (vertex_index >> 3), vertex_index & 7);
801
802 brw_MOV(p, vec2(get_element_ud(dst, 0)),
803 retype(index_reg, BRW_REGISTER_TYPE_UD));
804 } else {
805 /* Use indirect addressing. ICP Handles are DWords (single channels
806 * of a register) and start at g1.0.
807 *
808 * In order to start our region at g1.0, we add 8 to the vertex index,
809 * effectively skipping over the 8 channels in g0.0. This gives us a
810 * DWord offset to the ICP Handle.
811 *
812 * Indirect addressing works in terms of bytes, so we then multiply
813 * the DWord offset by 4 (by shifting left by 2).
814 */
815 struct brw_reg addr = brw_address_reg(0);
816
817 /* bottom half: m0.0 = g[1.0 + vertex.0]UD */
818 brw_ADD(p, addr, get_element_ud(vertex, 0), brw_imm_uw(0x8));
819 brw_SHL(p, addr, addr, brw_imm_ud(2));
820 brw_MOV(p, get_element_ud(dst, 0), deref_1ud(brw_indirect(0, 0), 0));
821
822 /* top half: m0.1 = g[1.0 + vertex.4]UD */
823 brw_ADD(p, addr, get_element_ud(vertex, 4), brw_imm_uw(0x8));
824 brw_SHL(p, addr, addr, brw_imm_ud(2));
825 brw_MOV(p, get_element_ud(dst, 1), deref_1ud(brw_indirect(0, 0), 0));
826 }
827
828 /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
829 if (offset.file != ARF)
830 brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
831
832 brw_pop_insn_state(p);
833 }
834
835
836 static void
837 generate_tcs_output_urb_offsets(struct brw_codegen *p,
838 struct brw_reg dst,
839 struct brw_reg write_mask,
840 struct brw_reg offset)
841 {
842 /* Generates an URB read/write message header for HS/DS operation, for the patch URB entry. */
843 assert(dst.file == BRW_GENERAL_REGISTER_FILE || dst.file == BRW_MESSAGE_REGISTER_FILE);
844
845 assert(write_mask.file == BRW_IMMEDIATE_VALUE);
846 assert(write_mask.type == BRW_REGISTER_TYPE_UD);
847
848 brw_push_insn_state(p);
849
850 brw_set_default_access_mode(p, BRW_ALIGN_1);
851 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
852 brw_MOV(p, dst, brw_imm_ud(0));
853
854 unsigned mask = write_mask.ud;
855
856 /* m0.5 bits 15:12 and 11:8 are channel enables */
857 brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud((mask << 8) | (mask << 12)));
858
859 /* HS patch URB handle is delivered in r0.0 */
860 struct brw_reg urb_handle = brw_vec1_grf(0, 0);
861
862 /* m0.0-0.1: URB handles */
863 brw_MOV(p, vec2(get_element_ud(dst, 0)),
864 retype(urb_handle, BRW_REGISTER_TYPE_UD));
865
866 /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
867 if (offset.file != ARF)
868 brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
869
870 brw_pop_insn_state(p);
871 }
872
873 static void
874 generate_tes_create_input_read_header(struct brw_codegen *p,
875 struct brw_reg dst)
876 {
877 brw_push_insn_state(p);
878 brw_set_default_access_mode(p, BRW_ALIGN_1);
879 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
880
881 /* Initialize the register to 0 */
882 brw_MOV(p, dst, brw_imm_ud(0));
883
884 /* Enable all the channels in m0.5 bits 15:8 */
885 brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
886
887 /* Copy g1.3 (the patch URB handle) to m0.0 and m0.1. For safety,
888 * mask out irrelevant "Reserved" bits, as they're not marked MBZ.
889 */
890 brw_AND(p, vec2(get_element_ud(dst, 0)),
891 retype(brw_vec1_grf(1, 3), BRW_REGISTER_TYPE_UD),
892 brw_imm_ud(0x1fff));
893 brw_pop_insn_state(p);
894 }
895
896 static void
897 generate_tes_add_indirect_urb_offset(struct brw_codegen *p,
898 struct brw_reg dst,
899 struct brw_reg header,
900 struct brw_reg offset)
901 {
902 brw_push_insn_state(p);
903 brw_set_default_access_mode(p, BRW_ALIGN_1);
904 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
905
906 brw_MOV(p, dst, header);
907 /* m0.3-0.4: 128-bit-granular offsets into the URB from the handles */
908 brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
909
910 brw_pop_insn_state(p);
911 }
912
913 static void
914 generate_vec4_urb_read(struct brw_codegen *p,
915 vec4_instruction *inst,
916 struct brw_reg dst,
917 struct brw_reg header)
918 {
919 const struct brw_device_info *devinfo = p->devinfo;
920
921 assert(header.file == BRW_GENERAL_REGISTER_FILE);
922 assert(header.type == BRW_REGISTER_TYPE_UD);
923
924 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
925 brw_set_dest(p, send, dst);
926 brw_set_src0(p, send, header);
927
928 brw_set_message_descriptor(p, send, BRW_SFID_URB,
929 1 /* mlen */, 1 /* rlen */,
930 true /* header */, false /* eot */);
931 brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
932 brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
933 brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
934
935 brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
936 }
937
938 static void
939 generate_tcs_release_input(struct brw_codegen *p,
940 struct brw_reg header,
941 struct brw_reg vertex,
942 struct brw_reg is_unpaired)
943 {
944 const struct brw_device_info *devinfo = p->devinfo;
945
946 assert(vertex.file == BRW_IMMEDIATE_VALUE);
947 assert(vertex.type == BRW_REGISTER_TYPE_UD);
948
949 /* m0.0-0.1: URB handles */
950 struct brw_reg urb_handles =
951 retype(brw_vec2_grf(1 + (vertex.ud >> 3), vertex.ud & 7),
952 BRW_REGISTER_TYPE_UD);
953
954 brw_push_insn_state(p);
955 brw_set_default_access_mode(p, BRW_ALIGN_1);
956 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
957 brw_MOV(p, header, brw_imm_ud(0));
958 brw_MOV(p, vec2(get_element_ud(header, 0)), urb_handles);
959 brw_pop_insn_state(p);
960
961 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
962 brw_set_dest(p, send, brw_null_reg());
963 brw_set_src0(p, send, header);
964 brw_set_message_descriptor(p, send, BRW_SFID_URB,
965 1 /* mlen */, 0 /* rlen */,
966 true /* header */, false /* eot */);
967 brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
968 brw_inst_set_urb_complete(devinfo, send, 1);
969 brw_inst_set_urb_swizzle_control(devinfo, send, is_unpaired.ud ?
970 BRW_URB_SWIZZLE_NONE :
971 BRW_URB_SWIZZLE_INTERLEAVE);
972 }
973
974 static void
975 generate_tcs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
976 {
977 struct brw_reg header = brw_message_reg(inst->base_mrf);
978
979 brw_push_insn_state(p);
980 brw_set_default_access_mode(p, BRW_ALIGN_1);
981 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
982 brw_MOV(p, header, brw_imm_ud(0));
983 brw_MOV(p, get_element_ud(header, 0),
984 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
985 brw_pop_insn_state(p);
986
987 brw_urb_WRITE(p,
988 brw_null_reg(), /* dest */
989 inst->base_mrf, /* starting mrf reg nr */
990 header,
991 BRW_URB_WRITE_EOT | inst->urb_write_flags,
992 inst->mlen,
993 0, /* response len */
994 0, /* urb destination offset */
995 0);
996 }
997
998 static void
999 generate_tes_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
1000 {
1001 brw_push_insn_state(p);
1002 brw_set_default_access_mode(p, BRW_ALIGN_1);
1003 brw_MOV(p, dst, retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_D));
1004 brw_pop_insn_state(p);
1005 }
1006
1007 static void
1008 generate_tcs_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
1009 {
1010 brw_push_insn_state(p);
1011 brw_set_default_access_mode(p, BRW_ALIGN_1);
1012 brw_MOV(p, dst, retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
1013 brw_pop_insn_state(p);
1014 }
1015
1016 static void
1017 generate_tcs_create_barrier_header(struct brw_codegen *p,
1018 struct brw_vue_prog_data *prog_data,
1019 struct brw_reg dst)
1020 {
1021 const struct brw_device_info *devinfo = p->devinfo;
1022 const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
1023 struct brw_reg m0_2 = get_element_ud(dst, 2);
1024 unsigned instances = ((struct brw_tcs_prog_data *) prog_data)->instances;
1025
1026 brw_push_insn_state(p);
1027 brw_set_default_access_mode(p, BRW_ALIGN_1);
1028 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1029
1030 /* Zero the message header */
1031 brw_MOV(p, retype(dst, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
1032
1033 /* Copy "Barrier ID" from r0.2, bits 16:13 (Gen7.5+) or 15:12 (Gen7) */
1034 brw_AND(p, m0_2,
1035 retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
1036 brw_imm_ud(ivb ? INTEL_MASK(15, 12) : INTEL_MASK(16, 13)));
1037
1038 /* Shift it up to bits 27:24. */
1039 brw_SHL(p, m0_2, get_element_ud(dst, 2), brw_imm_ud(ivb ? 12 : 11));
1040
1041 /* Set the Barrier Count and the enable bit */
1042 brw_OR(p, m0_2, m0_2, brw_imm_ud(instances << 9 | (1 << 15)));
1043
1044 brw_pop_insn_state(p);
1045 }
1046
1047 static void
1048 generate_oword_dual_block_offsets(struct brw_codegen *p,
1049 struct brw_reg m1,
1050 struct brw_reg index)
1051 {
1052 int second_vertex_offset;
1053
1054 if (p->devinfo->gen >= 6)
1055 second_vertex_offset = 1;
1056 else
1057 second_vertex_offset = 16;
1058
1059 m1 = retype(m1, BRW_REGISTER_TYPE_D);
1060
1061 /* Set up M1 (message payload). Only the block offsets in M1.0 and
1062 * M1.4 are used, and the rest are ignored.
1063 */
1064 struct brw_reg m1_0 = suboffset(vec1(m1), 0);
1065 struct brw_reg m1_4 = suboffset(vec1(m1), 4);
1066 struct brw_reg index_0 = suboffset(vec1(index), 0);
1067 struct brw_reg index_4 = suboffset(vec1(index), 4);
1068
1069 brw_push_insn_state(p);
1070 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1071 brw_set_default_access_mode(p, BRW_ALIGN_1);
1072
1073 brw_MOV(p, m1_0, index_0);
1074
1075 if (index.file == BRW_IMMEDIATE_VALUE) {
1076 index_4.ud += second_vertex_offset;
1077 brw_MOV(p, m1_4, index_4);
1078 } else {
1079 brw_ADD(p, m1_4, index_4, brw_imm_d(second_vertex_offset));
1080 }
1081
1082 brw_pop_insn_state(p);
1083 }
1084
1085 static void
1086 generate_unpack_flags(struct brw_codegen *p,
1087 struct brw_reg dst)
1088 {
1089 brw_push_insn_state(p);
1090 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1091 brw_set_default_access_mode(p, BRW_ALIGN_1);
1092
1093 struct brw_reg flags = brw_flag_reg(0, 0);
1094 struct brw_reg dst_0 = suboffset(vec1(dst), 0);
1095 struct brw_reg dst_4 = suboffset(vec1(dst), 4);
1096
1097 brw_AND(p, dst_0, flags, brw_imm_ud(0x0f));
1098 brw_AND(p, dst_4, flags, brw_imm_ud(0xf0));
1099 brw_SHR(p, dst_4, dst_4, brw_imm_ud(4));
1100
1101 brw_pop_insn_state(p);
1102 }
1103
1104 static void
1105 generate_scratch_read(struct brw_codegen *p,
1106 vec4_instruction *inst,
1107 struct brw_reg dst,
1108 struct brw_reg index)
1109 {
1110 const struct brw_device_info *devinfo = p->devinfo;
1111 struct brw_reg header = brw_vec8_grf(0, 0);
1112
1113 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1114
1115 generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
1116 index);
1117
1118 uint32_t msg_type;
1119
1120 if (devinfo->gen >= 6)
1121 msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1122 else if (devinfo->gen == 5 || devinfo->is_g4x)
1123 msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1124 else
1125 msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1126
1127 /* Each of the 8 channel enables is considered for whether each
1128 * dword is written.
1129 */
1130 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1131 brw_set_dest(p, send, dst);
1132 brw_set_src0(p, send, header);
1133 if (devinfo->gen < 6)
1134 brw_inst_set_cond_modifier(devinfo, send, inst->base_mrf);
1135 brw_set_dp_read_message(p, send,
1136 brw_scratch_surface_idx(p),
1137 BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1138 msg_type,
1139 BRW_DATAPORT_READ_TARGET_RENDER_CACHE,
1140 2, /* mlen */
1141 true, /* header_present */
1142 1 /* rlen */);
1143 }
1144
1145 static void
1146 generate_scratch_write(struct brw_codegen *p,
1147 vec4_instruction *inst,
1148 struct brw_reg dst,
1149 struct brw_reg src,
1150 struct brw_reg index)
1151 {
1152 const struct brw_device_info *devinfo = p->devinfo;
1153 struct brw_reg header = brw_vec8_grf(0, 0);
1154 bool write_commit;
1155
1156 /* If the instruction is predicated, we'll predicate the send, not
1157 * the header setup.
1158 */
1159 brw_set_default_predicate_control(p, false);
1160
1161 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1162
1163 generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
1164 index);
1165
1166 brw_MOV(p,
1167 retype(brw_message_reg(inst->base_mrf + 2), BRW_REGISTER_TYPE_D),
1168 retype(src, BRW_REGISTER_TYPE_D));
1169
1170 uint32_t msg_type;
1171
1172 if (devinfo->gen >= 7)
1173 msg_type = GEN7_DATAPORT_DC_OWORD_DUAL_BLOCK_WRITE;
1174 else if (devinfo->gen == 6)
1175 msg_type = GEN6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
1176 else
1177 msg_type = BRW_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
1178
1179 brw_set_default_predicate_control(p, inst->predicate);
1180
1181 /* Pre-gen6, we have to specify write commits to ensure ordering
1182 * between reads and writes within a thread. Afterwards, that's
1183 * guaranteed and write commits only matter for inter-thread
1184 * synchronization.
1185 */
1186 if (devinfo->gen >= 6) {
1187 write_commit = false;
1188 } else {
1189 /* The visitor set up our destination register to be g0. This
1190 * means that when the next read comes along, we will end up
1191 * reading from g0 and causing a block on the write commit. For
1192 * write-after-read, we are relying on the value of the previous
1193 * read being used (and thus blocking on completion) before our
1194 * write is executed. This means we have to be careful in
1195 * instruction scheduling to not violate this assumption.
1196 */
1197 write_commit = true;
1198 }
1199
1200 /* Each of the 8 channel enables is considered for whether each
1201 * dword is written.
1202 */
1203 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1204 brw_set_dest(p, send, dst);
1205 brw_set_src0(p, send, header);
1206 if (devinfo->gen < 6)
1207 brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
1208 brw_set_dp_write_message(p, send,
1209 brw_scratch_surface_idx(p),
1210 BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1211 msg_type,
1212 3, /* mlen */
1213 true, /* header present */
1214 false, /* not a render target write */
1215 write_commit, /* rlen */
1216 false, /* eot */
1217 write_commit);
1218 }
1219
1220 static void
1221 generate_pull_constant_load(struct brw_codegen *p,
1222 struct brw_vue_prog_data *prog_data,
1223 vec4_instruction *inst,
1224 struct brw_reg dst,
1225 struct brw_reg index,
1226 struct brw_reg offset)
1227 {
1228 const struct brw_device_info *devinfo = p->devinfo;
1229 assert(index.file == BRW_IMMEDIATE_VALUE &&
1230 index.type == BRW_REGISTER_TYPE_UD);
1231 uint32_t surf_index = index.ud;
1232
1233 struct brw_reg header = brw_vec8_grf(0, 0);
1234
1235 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1236
1237 if (devinfo->gen >= 6) {
1238 if (offset.file == BRW_IMMEDIATE_VALUE) {
1239 brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
1240 BRW_REGISTER_TYPE_D),
1241 brw_imm_d(offset.ud >> 4));
1242 } else {
1243 brw_SHR(p, retype(brw_message_reg(inst->base_mrf + 1),
1244 BRW_REGISTER_TYPE_D),
1245 offset, brw_imm_d(4));
1246 }
1247 } else {
1248 brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
1249 BRW_REGISTER_TYPE_D),
1250 offset);
1251 }
1252
1253 uint32_t msg_type;
1254
1255 if (devinfo->gen >= 6)
1256 msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1257 else if (devinfo->gen == 5 || devinfo->is_g4x)
1258 msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1259 else
1260 msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1261
1262 /* Each of the 8 channel enables is considered for whether each
1263 * dword is written.
1264 */
1265 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1266 brw_set_dest(p, send, dst);
1267 brw_set_src0(p, send, header);
1268 if (devinfo->gen < 6)
1269 brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
1270 brw_set_dp_read_message(p, send,
1271 surf_index,
1272 BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1273 msg_type,
1274 BRW_DATAPORT_READ_TARGET_DATA_CACHE,
1275 2, /* mlen */
1276 true, /* header_present */
1277 1 /* rlen */);
1278 }
1279
1280 static void
1281 generate_get_buffer_size(struct brw_codegen *p,
1282 struct brw_vue_prog_data *prog_data,
1283 vec4_instruction *inst,
1284 struct brw_reg dst,
1285 struct brw_reg src,
1286 struct brw_reg surf_index)
1287 {
1288 assert(p->devinfo->gen >= 7);
1289 assert(surf_index.type == BRW_REGISTER_TYPE_UD &&
1290 surf_index.file == BRW_IMMEDIATE_VALUE);
1291
1292 brw_SAMPLE(p,
1293 dst,
1294 inst->base_mrf,
1295 src,
1296 surf_index.ud,
1297 0,
1298 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
1299 1, /* response length */
1300 inst->mlen,
1301 inst->header_size > 0,
1302 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1303 BRW_SAMPLER_RETURN_FORMAT_SINT32);
1304
1305 brw_mark_surface_used(&prog_data->base, surf_index.ud);
1306 }
1307
1308 static void
1309 generate_pull_constant_load_gen7(struct brw_codegen *p,
1310 struct brw_vue_prog_data *prog_data,
1311 vec4_instruction *inst,
1312 struct brw_reg dst,
1313 struct brw_reg surf_index,
1314 struct brw_reg offset)
1315 {
1316 assert(surf_index.type == BRW_REGISTER_TYPE_UD);
1317
1318 if (surf_index.file == BRW_IMMEDIATE_VALUE) {
1319
1320 brw_inst *insn = brw_next_insn(p, BRW_OPCODE_SEND);
1321 brw_set_dest(p, insn, dst);
1322 brw_set_src0(p, insn, offset);
1323 brw_set_sampler_message(p, insn,
1324 surf_index.ud,
1325 0, /* LD message ignores sampler unit */
1326 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1327 1, /* rlen */
1328 inst->mlen,
1329 inst->header_size != 0,
1330 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1331 0);
1332
1333 brw_mark_surface_used(&prog_data->base, surf_index.ud);
1334
1335 } else {
1336
1337 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1338
1339 brw_push_insn_state(p);
1340 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1341 brw_set_default_access_mode(p, BRW_ALIGN_1);
1342
1343 /* a0.0 = surf_index & 0xff */
1344 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1345 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1346 brw_set_dest(p, insn_and, addr);
1347 brw_set_src0(p, insn_and, vec1(retype(surf_index, BRW_REGISTER_TYPE_UD)));
1348 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1349
1350 brw_pop_insn_state(p);
1351
1352 /* dst = send(offset, a0.0 | <descriptor>) */
1353 brw_inst *insn = brw_send_indirect_message(
1354 p, BRW_SFID_SAMPLER, dst, offset, addr);
1355 brw_set_sampler_message(p, insn,
1356 0 /* surface */,
1357 0 /* sampler */,
1358 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1359 1 /* rlen */,
1360 inst->mlen,
1361 inst->header_size != 0,
1362 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1363 0);
1364 }
1365 }
1366
1367 static void
1368 generate_set_simd4x2_header_gen9(struct brw_codegen *p,
1369 vec4_instruction *inst,
1370 struct brw_reg dst)
1371 {
1372 brw_push_insn_state(p);
1373 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1374
1375 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1376 brw_MOV(p, vec8(dst), retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
1377
1378 brw_set_default_access_mode(p, BRW_ALIGN_1);
1379 brw_MOV(p, get_element_ud(dst, 2),
1380 brw_imm_ud(GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2));
1381
1382 brw_pop_insn_state(p);
1383 }
1384
1385 static void
1386 generate_code(struct brw_codegen *p,
1387 const struct brw_compiler *compiler,
1388 void *log_data,
1389 const nir_shader *nir,
1390 struct brw_vue_prog_data *prog_data,
1391 const struct cfg_t *cfg)
1392 {
1393 const struct brw_device_info *devinfo = p->devinfo;
1394 const char *stage_abbrev = _mesa_shader_stage_to_abbrev(nir->stage);
1395 bool debug_flag = INTEL_DEBUG &
1396 intel_debug_flag_for_shader_stage(nir->stage);
1397 struct annotation_info annotation;
1398 memset(&annotation, 0, sizeof(annotation));
1399 int loop_count = 0;
1400
1401 foreach_block_and_inst (block, vec4_instruction, inst, cfg) {
1402 struct brw_reg src[3], dst;
1403
1404 if (unlikely(debug_flag))
1405 annotate(p->devinfo, &annotation, cfg, inst, p->next_insn_offset);
1406
1407 for (unsigned int i = 0; i < 3; i++) {
1408 src[i] = inst->src[i].as_brw_reg();
1409 }
1410 dst = inst->dst.as_brw_reg();
1411
1412 brw_set_default_predicate_control(p, inst->predicate);
1413 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1414 brw_set_default_flag_reg(p, 0, inst->flag_subreg);
1415 brw_set_default_saturate(p, inst->saturate);
1416 brw_set_default_mask_control(p, inst->force_writemask_all);
1417 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1418
1419 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1420 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1421
1422 unsigned pre_emit_nr_insn = p->nr_insn;
1423
1424 if (dst.width == BRW_WIDTH_4) {
1425 /* This happens in attribute fixups for "dual instanced" geometry
1426 * shaders, since they use attributes that are vec4's. Since the exec
1427 * width is only 4, it's essential that the caller set
1428 * force_writemask_all in order to make sure the instruction is executed
1429 * regardless of which channels are enabled.
1430 */
1431 assert(inst->force_writemask_all);
1432
1433 /* Fix up any <8;8,1> or <0;4,1> source registers to <4;4,1> to satisfy
1434 * the following register region restrictions (from Graphics BSpec:
1435 * 3D-Media-GPGPU Engine > EU Overview > Registers and Register Regions
1436 * > Register Region Restrictions)
1437 *
1438 * 1. ExecSize must be greater than or equal to Width.
1439 *
1440 * 2. If ExecSize = Width and HorzStride != 0, VertStride must be set
1441 * to Width * HorzStride."
1442 */
1443 for (int i = 0; i < 3; i++) {
1444 if (src[i].file == BRW_GENERAL_REGISTER_FILE)
1445 src[i] = stride(src[i], 4, 4, 1);
1446 }
1447 }
1448
1449 switch (inst->opcode) {
1450 case VEC4_OPCODE_UNPACK_UNIFORM:
1451 case BRW_OPCODE_MOV:
1452 brw_MOV(p, dst, src[0]);
1453 break;
1454 case BRW_OPCODE_ADD:
1455 brw_ADD(p, dst, src[0], src[1]);
1456 break;
1457 case BRW_OPCODE_MUL:
1458 brw_MUL(p, dst, src[0], src[1]);
1459 break;
1460 case BRW_OPCODE_MACH:
1461 brw_MACH(p, dst, src[0], src[1]);
1462 break;
1463
1464 case BRW_OPCODE_MAD:
1465 assert(devinfo->gen >= 6);
1466 brw_MAD(p, dst, src[0], src[1], src[2]);
1467 break;
1468
1469 case BRW_OPCODE_FRC:
1470 brw_FRC(p, dst, src[0]);
1471 break;
1472 case BRW_OPCODE_RNDD:
1473 brw_RNDD(p, dst, src[0]);
1474 break;
1475 case BRW_OPCODE_RNDE:
1476 brw_RNDE(p, dst, src[0]);
1477 break;
1478 case BRW_OPCODE_RNDZ:
1479 brw_RNDZ(p, dst, src[0]);
1480 break;
1481
1482 case BRW_OPCODE_AND:
1483 brw_AND(p, dst, src[0], src[1]);
1484 break;
1485 case BRW_OPCODE_OR:
1486 brw_OR(p, dst, src[0], src[1]);
1487 break;
1488 case BRW_OPCODE_XOR:
1489 brw_XOR(p, dst, src[0], src[1]);
1490 break;
1491 case BRW_OPCODE_NOT:
1492 brw_NOT(p, dst, src[0]);
1493 break;
1494 case BRW_OPCODE_ASR:
1495 brw_ASR(p, dst, src[0], src[1]);
1496 break;
1497 case BRW_OPCODE_SHR:
1498 brw_SHR(p, dst, src[0], src[1]);
1499 break;
1500 case BRW_OPCODE_SHL:
1501 brw_SHL(p, dst, src[0], src[1]);
1502 break;
1503
1504 case BRW_OPCODE_CMP:
1505 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1506 break;
1507 case BRW_OPCODE_SEL:
1508 brw_SEL(p, dst, src[0], src[1]);
1509 break;
1510
1511 case BRW_OPCODE_DPH:
1512 brw_DPH(p, dst, src[0], src[1]);
1513 break;
1514
1515 case BRW_OPCODE_DP4:
1516 brw_DP4(p, dst, src[0], src[1]);
1517 break;
1518
1519 case BRW_OPCODE_DP3:
1520 brw_DP3(p, dst, src[0], src[1]);
1521 break;
1522
1523 case BRW_OPCODE_DP2:
1524 brw_DP2(p, dst, src[0], src[1]);
1525 break;
1526
1527 case BRW_OPCODE_F32TO16:
1528 assert(devinfo->gen >= 7);
1529 brw_F32TO16(p, dst, src[0]);
1530 break;
1531
1532 case BRW_OPCODE_F16TO32:
1533 assert(devinfo->gen >= 7);
1534 brw_F16TO32(p, dst, src[0]);
1535 break;
1536
1537 case BRW_OPCODE_LRP:
1538 assert(devinfo->gen >= 6);
1539 brw_LRP(p, dst, src[0], src[1], src[2]);
1540 break;
1541
1542 case BRW_OPCODE_BFREV:
1543 assert(devinfo->gen >= 7);
1544 /* BFREV only supports UD type for src and dst. */
1545 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1546 retype(src[0], BRW_REGISTER_TYPE_UD));
1547 break;
1548 case BRW_OPCODE_FBH:
1549 assert(devinfo->gen >= 7);
1550 /* FBH only supports UD type for dst. */
1551 brw_FBH(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]);
1552 break;
1553 case BRW_OPCODE_FBL:
1554 assert(devinfo->gen >= 7);
1555 /* FBL only supports UD type for dst. */
1556 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]);
1557 break;
1558 case BRW_OPCODE_CBIT:
1559 assert(devinfo->gen >= 7);
1560 /* CBIT only supports UD type for dst. */
1561 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]);
1562 break;
1563 case BRW_OPCODE_ADDC:
1564 assert(devinfo->gen >= 7);
1565 brw_ADDC(p, dst, src[0], src[1]);
1566 break;
1567 case BRW_OPCODE_SUBB:
1568 assert(devinfo->gen >= 7);
1569 brw_SUBB(p, dst, src[0], src[1]);
1570 break;
1571 case BRW_OPCODE_MAC:
1572 brw_MAC(p, dst, src[0], src[1]);
1573 break;
1574
1575 case BRW_OPCODE_BFE:
1576 assert(devinfo->gen >= 7);
1577 brw_BFE(p, dst, src[0], src[1], src[2]);
1578 break;
1579
1580 case BRW_OPCODE_BFI1:
1581 assert(devinfo->gen >= 7);
1582 brw_BFI1(p, dst, src[0], src[1]);
1583 break;
1584 case BRW_OPCODE_BFI2:
1585 assert(devinfo->gen >= 7);
1586 brw_BFI2(p, dst, src[0], src[1], src[2]);
1587 break;
1588
1589 case BRW_OPCODE_IF:
1590 if (!inst->src[0].is_null()) {
1591 /* The instruction has an embedded compare (only allowed on gen6) */
1592 assert(devinfo->gen == 6);
1593 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1594 } else {
1595 brw_inst *if_inst = brw_IF(p, BRW_EXECUTE_8);
1596 brw_inst_set_pred_control(p->devinfo, if_inst, inst->predicate);
1597 }
1598 break;
1599
1600 case BRW_OPCODE_ELSE:
1601 brw_ELSE(p);
1602 break;
1603 case BRW_OPCODE_ENDIF:
1604 brw_ENDIF(p);
1605 break;
1606
1607 case BRW_OPCODE_DO:
1608 brw_DO(p, BRW_EXECUTE_8);
1609 break;
1610
1611 case BRW_OPCODE_BREAK:
1612 brw_BREAK(p);
1613 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1614 break;
1615 case BRW_OPCODE_CONTINUE:
1616 brw_CONT(p);
1617 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1618 break;
1619
1620 case BRW_OPCODE_WHILE:
1621 brw_WHILE(p);
1622 loop_count++;
1623 break;
1624
1625 case SHADER_OPCODE_RCP:
1626 case SHADER_OPCODE_RSQ:
1627 case SHADER_OPCODE_SQRT:
1628 case SHADER_OPCODE_EXP2:
1629 case SHADER_OPCODE_LOG2:
1630 case SHADER_OPCODE_SIN:
1631 case SHADER_OPCODE_COS:
1632 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1633 if (devinfo->gen >= 7) {
1634 gen6_math(p, dst, brw_math_function(inst->opcode), src[0],
1635 brw_null_reg());
1636 } else if (devinfo->gen == 6) {
1637 generate_math_gen6(p, inst, dst, src[0], brw_null_reg());
1638 } else {
1639 generate_math1_gen4(p, inst, dst, src[0]);
1640 }
1641 break;
1642
1643 case SHADER_OPCODE_POW:
1644 case SHADER_OPCODE_INT_QUOTIENT:
1645 case SHADER_OPCODE_INT_REMAINDER:
1646 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1647 if (devinfo->gen >= 7) {
1648 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1649 } else if (devinfo->gen == 6) {
1650 generate_math_gen6(p, inst, dst, src[0], src[1]);
1651 } else {
1652 generate_math2_gen4(p, inst, dst, src[0], src[1]);
1653 }
1654 break;
1655
1656 case SHADER_OPCODE_TEX:
1657 case SHADER_OPCODE_TXD:
1658 case SHADER_OPCODE_TXF:
1659 case SHADER_OPCODE_TXF_CMS:
1660 case SHADER_OPCODE_TXF_CMS_W:
1661 case SHADER_OPCODE_TXF_MCS:
1662 case SHADER_OPCODE_TXL:
1663 case SHADER_OPCODE_TXS:
1664 case SHADER_OPCODE_TG4:
1665 case SHADER_OPCODE_TG4_OFFSET:
1666 case SHADER_OPCODE_SAMPLEINFO:
1667 generate_tex(p, prog_data, inst, dst, src[0], src[1]);
1668 break;
1669
1670 case VS_OPCODE_URB_WRITE:
1671 generate_vs_urb_write(p, inst);
1672 break;
1673
1674 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1675 generate_scratch_read(p, inst, dst, src[0]);
1676 break;
1677
1678 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1679 generate_scratch_write(p, inst, dst, src[0], src[1]);
1680 break;
1681
1682 case VS_OPCODE_PULL_CONSTANT_LOAD:
1683 generate_pull_constant_load(p, prog_data, inst, dst, src[0], src[1]);
1684 break;
1685
1686 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
1687 generate_pull_constant_load_gen7(p, prog_data, inst, dst, src[0], src[1]);
1688 break;
1689
1690 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
1691 generate_set_simd4x2_header_gen9(p, inst, dst);
1692 break;
1693
1694
1695 case VS_OPCODE_GET_BUFFER_SIZE:
1696 generate_get_buffer_size(p, prog_data, inst, dst, src[0], src[1]);
1697 break;
1698
1699 case GS_OPCODE_URB_WRITE:
1700 generate_gs_urb_write(p, inst);
1701 break;
1702
1703 case GS_OPCODE_URB_WRITE_ALLOCATE:
1704 generate_gs_urb_write_allocate(p, inst);
1705 break;
1706
1707 case GS_OPCODE_SVB_WRITE:
1708 generate_gs_svb_write(p, prog_data, inst, dst, src[0], src[1]);
1709 break;
1710
1711 case GS_OPCODE_SVB_SET_DST_INDEX:
1712 generate_gs_svb_set_destination_index(p, inst, dst, src[0]);
1713 break;
1714
1715 case GS_OPCODE_THREAD_END:
1716 generate_gs_thread_end(p, inst);
1717 break;
1718
1719 case GS_OPCODE_SET_WRITE_OFFSET:
1720 generate_gs_set_write_offset(p, dst, src[0], src[1]);
1721 break;
1722
1723 case GS_OPCODE_SET_VERTEX_COUNT:
1724 generate_gs_set_vertex_count(p, dst, src[0]);
1725 break;
1726
1727 case GS_OPCODE_FF_SYNC:
1728 generate_gs_ff_sync(p, inst, dst, src[0], src[1]);
1729 break;
1730
1731 case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
1732 generate_gs_ff_sync_set_primitives(p, dst, src[0], src[1], src[2]);
1733 break;
1734
1735 case GS_OPCODE_SET_PRIMITIVE_ID:
1736 generate_gs_set_primitive_id(p, dst);
1737 break;
1738
1739 case GS_OPCODE_SET_DWORD_2:
1740 generate_gs_set_dword_2(p, dst, src[0]);
1741 break;
1742
1743 case GS_OPCODE_PREPARE_CHANNEL_MASKS:
1744 generate_gs_prepare_channel_masks(p, dst);
1745 break;
1746
1747 case GS_OPCODE_SET_CHANNEL_MASKS:
1748 generate_gs_set_channel_masks(p, dst, src[0]);
1749 break;
1750
1751 case GS_OPCODE_GET_INSTANCE_ID:
1752 generate_gs_get_instance_id(p, dst);
1753 break;
1754
1755 case SHADER_OPCODE_SHADER_TIME_ADD:
1756 brw_shader_time_add(p, src[0],
1757 prog_data->base.binding_table.shader_time_start);
1758 brw_mark_surface_used(&prog_data->base,
1759 prog_data->base.binding_table.shader_time_start);
1760 break;
1761
1762 case SHADER_OPCODE_UNTYPED_ATOMIC:
1763 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1764 brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen,
1765 !inst->dst.is_null());
1766 break;
1767
1768 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
1769 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1770 brw_untyped_surface_read(p, dst, src[0], src[1], inst->mlen,
1771 src[2].ud);
1772 break;
1773
1774 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
1775 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1776 brw_untyped_surface_write(p, src[0], src[1], inst->mlen,
1777 src[2].ud);
1778 break;
1779
1780 case SHADER_OPCODE_TYPED_ATOMIC:
1781 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1782 brw_typed_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen,
1783 !inst->dst.is_null());
1784 break;
1785
1786 case SHADER_OPCODE_TYPED_SURFACE_READ:
1787 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1788 brw_typed_surface_read(p, dst, src[0], src[1], inst->mlen,
1789 src[2].ud);
1790 break;
1791
1792 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
1793 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1794 brw_typed_surface_write(p, src[0], src[1], inst->mlen,
1795 src[2].ud);
1796 break;
1797
1798 case SHADER_OPCODE_MEMORY_FENCE:
1799 brw_memory_fence(p, dst);
1800 break;
1801
1802 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1803 brw_find_live_channel(p, dst);
1804 break;
1805
1806 case SHADER_OPCODE_BROADCAST:
1807 brw_broadcast(p, dst, src[0], src[1]);
1808 break;
1809
1810 case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
1811 generate_unpack_flags(p, dst);
1812 break;
1813
1814 case VEC4_OPCODE_MOV_BYTES: {
1815 /* Moves the low byte from each channel, using an Align1 access mode
1816 * and a <4,1,0> source region.
1817 */
1818 assert(src[0].type == BRW_REGISTER_TYPE_UB ||
1819 src[0].type == BRW_REGISTER_TYPE_B);
1820
1821 brw_set_default_access_mode(p, BRW_ALIGN_1);
1822 src[0].vstride = BRW_VERTICAL_STRIDE_4;
1823 src[0].width = BRW_WIDTH_1;
1824 src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
1825 brw_MOV(p, dst, src[0]);
1826 brw_set_default_access_mode(p, BRW_ALIGN_16);
1827 break;
1828 }
1829
1830 case VEC4_OPCODE_PACK_BYTES: {
1831 /* Is effectively:
1832 *
1833 * mov(8) dst<16,4,1>:UB src<4,1,0>:UB
1834 *
1835 * but destinations' only regioning is horizontal stride, so instead we
1836 * have to use two instructions:
1837 *
1838 * mov(4) dst<1>:UB src<4,1,0>:UB
1839 * mov(4) dst.16<1>:UB src.16<4,1,0>:UB
1840 *
1841 * where they pack the four bytes from the low and high four DW.
1842 */
1843 assert(_mesa_is_pow_two(dst.writemask) &&
1844 dst.writemask != 0);
1845 unsigned offset = __builtin_ctz(dst.writemask);
1846
1847 dst.type = BRW_REGISTER_TYPE_UB;
1848
1849 brw_set_default_access_mode(p, BRW_ALIGN_1);
1850
1851 src[0].type = BRW_REGISTER_TYPE_UB;
1852 src[0].vstride = BRW_VERTICAL_STRIDE_4;
1853 src[0].width = BRW_WIDTH_1;
1854 src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
1855 dst.subnr = offset * 4;
1856 struct brw_inst *insn = brw_MOV(p, dst, src[0]);
1857 brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
1858 brw_inst_set_no_dd_clear(p->devinfo, insn, true);
1859 brw_inst_set_no_dd_check(p->devinfo, insn, inst->no_dd_check);
1860
1861 src[0].subnr = 16;
1862 dst.subnr = 16 + offset * 4;
1863 insn = brw_MOV(p, dst, src[0]);
1864 brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
1865 brw_inst_set_no_dd_clear(p->devinfo, insn, inst->no_dd_clear);
1866 brw_inst_set_no_dd_check(p->devinfo, insn, true);
1867
1868 brw_set_default_access_mode(p, BRW_ALIGN_16);
1869 break;
1870 }
1871
1872 case TCS_OPCODE_URB_WRITE:
1873 generate_tcs_urb_write(p, inst, src[0]);
1874 break;
1875
1876 case VEC4_OPCODE_URB_READ:
1877 generate_vec4_urb_read(p, inst, dst, src[0]);
1878 break;
1879
1880 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
1881 generate_tcs_input_urb_offsets(p, dst, src[0], src[1]);
1882 break;
1883
1884 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
1885 generate_tcs_output_urb_offsets(p, dst, src[0], src[1]);
1886 break;
1887
1888 case TCS_OPCODE_GET_INSTANCE_ID:
1889 generate_tcs_get_instance_id(p, dst);
1890 break;
1891
1892 case TCS_OPCODE_GET_PRIMITIVE_ID:
1893 generate_tcs_get_primitive_id(p, dst);
1894 break;
1895
1896 case TCS_OPCODE_CREATE_BARRIER_HEADER:
1897 generate_tcs_create_barrier_header(p, prog_data, dst);
1898 break;
1899
1900 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
1901 generate_tes_create_input_read_header(p, dst);
1902 break;
1903
1904 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
1905 generate_tes_add_indirect_urb_offset(p, dst, src[0], src[1]);
1906 break;
1907
1908 case TES_OPCODE_GET_PRIMITIVE_ID:
1909 generate_tes_get_primitive_id(p, dst);
1910 break;
1911
1912 case TCS_OPCODE_SRC0_010_IS_ZERO:
1913 /* If src_reg had stride like fs_reg, we wouldn't need this. */
1914 brw_MOV(p, brw_null_reg(), stride(src[0], 0, 1, 0));
1915 brw_inst_set_cond_modifier(devinfo, brw_last_inst, BRW_CONDITIONAL_Z);
1916 break;
1917
1918 case TCS_OPCODE_RELEASE_INPUT:
1919 generate_tcs_release_input(p, dst, src[0], src[1]);
1920 break;
1921
1922 case TCS_OPCODE_THREAD_END:
1923 generate_tcs_thread_end(p, inst);
1924 break;
1925
1926 case SHADER_OPCODE_BARRIER:
1927 brw_barrier(p, src[0]);
1928 brw_WAIT(p);
1929 break;
1930
1931 default:
1932 unreachable("Unsupported opcode");
1933 }
1934
1935 if (inst->opcode == VEC4_OPCODE_PACK_BYTES) {
1936 /* Handled dependency hints in the generator. */
1937
1938 assert(!inst->conditional_mod);
1939 } else if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
1940 assert(p->nr_insn == pre_emit_nr_insn + 1 ||
1941 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
1942 "emitting more than 1 instruction");
1943
1944 brw_inst *last = &p->store[pre_emit_nr_insn];
1945
1946 if (inst->conditional_mod)
1947 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
1948 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
1949 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
1950 }
1951 }
1952
1953 brw_set_uip_jip(p);
1954 annotation_finalize(&annotation, p->next_insn_offset);
1955
1956 #ifndef NDEBUG
1957 bool validated = brw_validate_instructions(p, 0, &annotation);
1958 #else
1959 if (unlikely(debug_flag))
1960 brw_validate_instructions(p, 0, &annotation);
1961 #endif
1962
1963 int before_size = p->next_insn_offset;
1964 brw_compact_instructions(p, 0, annotation.ann_count, annotation.ann);
1965 int after_size = p->next_insn_offset;
1966
1967 if (unlikely(debug_flag)) {
1968 fprintf(stderr, "Native code for %s %s shader %s:\n",
1969 nir->info.label ? nir->info.label : "unnamed",
1970 _mesa_shader_stage_to_string(nir->stage), nir->info.name);
1971
1972 fprintf(stderr, "%s vec4 shader: %d instructions. %d loops. %u cycles."
1973 "Compacted %d to %d bytes (%.0f%%)\n",
1974 stage_abbrev,
1975 before_size / 16, loop_count, cfg->cycle_count, before_size, after_size,
1976 100.0f * (before_size - after_size) / before_size);
1977
1978 dump_assembly(p->store, annotation.ann_count, annotation.ann,
1979 p->devinfo);
1980 ralloc_free(annotation.mem_ctx);
1981 }
1982 assert(validated);
1983
1984 compiler->shader_debug_log(log_data,
1985 "%s vec4 shader: %d inst, %d loops, %u cycles, "
1986 "compacted %d to %d bytes.\n",
1987 stage_abbrev, before_size / 16,
1988 loop_count, cfg->cycle_count,
1989 before_size, after_size);
1990 }
1991
1992 extern "C" const unsigned *
1993 brw_vec4_generate_assembly(const struct brw_compiler *compiler,
1994 void *log_data,
1995 void *mem_ctx,
1996 const nir_shader *nir,
1997 struct brw_vue_prog_data *prog_data,
1998 const struct cfg_t *cfg,
1999 unsigned *out_assembly_size)
2000 {
2001 struct brw_codegen *p = rzalloc(mem_ctx, struct brw_codegen);
2002 brw_init_codegen(compiler->devinfo, p, mem_ctx);
2003 brw_set_default_access_mode(p, BRW_ALIGN_16);
2004
2005 generate_code(p, compiler, log_data, nir, prog_data, cfg);
2006
2007 return brw_get_program(p, out_assembly_size);
2008 }