Merge ../mesa into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_generator.cpp
1 /* Copyright © 2011 Intel Corporation
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a
4 * copy of this software and associated documentation files (the "Software"),
5 * to deal in the Software without restriction, including without limitation
6 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
7 * and/or sell copies of the Software, and to permit persons to whom the
8 * Software is furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice (including the next
11 * paragraph) shall be included in all copies or substantial portions of the
12 * Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
20 * IN THE SOFTWARE.
21 */
22
23 #include "brw_vec4.h"
24 #include "brw_cfg.h"
25 #include "brw_eu.h"
26 #include "brw_program.h"
27
28 using namespace brw;
29
30 static void
31 generate_math1_gen4(struct brw_codegen *p,
32 vec4_instruction *inst,
33 struct brw_reg dst,
34 struct brw_reg src)
35 {
36 gen4_math(p,
37 dst,
38 brw_math_function(inst->opcode),
39 inst->base_mrf,
40 src,
41 BRW_MATH_PRECISION_FULL);
42 }
43
44 static void
45 check_gen6_math_src_arg(struct brw_reg src)
46 {
47 /* Source swizzles are ignored. */
48 assert(!src.abs);
49 assert(!src.negate);
50 assert(src.swizzle == BRW_SWIZZLE_XYZW);
51 }
52
53 static void
54 generate_math_gen6(struct brw_codegen *p,
55 vec4_instruction *inst,
56 struct brw_reg dst,
57 struct brw_reg src0,
58 struct brw_reg src1)
59 {
60 /* Can't do writemask because math can't be align16. */
61 assert(dst.writemask == WRITEMASK_XYZW);
62 /* Source swizzles are ignored. */
63 check_gen6_math_src_arg(src0);
64 if (src1.file == BRW_GENERAL_REGISTER_FILE)
65 check_gen6_math_src_arg(src1);
66
67 brw_set_default_access_mode(p, BRW_ALIGN_1);
68 gen6_math(p, dst, brw_math_function(inst->opcode), src0, src1);
69 brw_set_default_access_mode(p, BRW_ALIGN_16);
70 }
71
72 static void
73 generate_math2_gen4(struct brw_codegen *p,
74 vec4_instruction *inst,
75 struct brw_reg dst,
76 struct brw_reg src0,
77 struct brw_reg src1)
78 {
79 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
80 * "Message Payload":
81 *
82 * "Operand0[7]. For the INT DIV functions, this operand is the
83 * denominator."
84 * ...
85 * "Operand1[7]. For the INT DIV functions, this operand is the
86 * numerator."
87 */
88 bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
89 struct brw_reg &op0 = is_int_div ? src1 : src0;
90 struct brw_reg &op1 = is_int_div ? src0 : src1;
91
92 brw_push_insn_state(p);
93 brw_set_default_saturate(p, false);
94 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
95 brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), op1.type), op1);
96 brw_pop_insn_state(p);
97
98 gen4_math(p,
99 dst,
100 brw_math_function(inst->opcode),
101 inst->base_mrf,
102 op0,
103 BRW_MATH_PRECISION_FULL);
104 }
105
106 static void
107 generate_tex(struct brw_codegen *p,
108 struct brw_vue_prog_data *prog_data,
109 vec4_instruction *inst,
110 struct brw_reg dst,
111 struct brw_reg src,
112 struct brw_reg surface_index,
113 struct brw_reg sampler_index)
114 {
115 const struct brw_device_info *devinfo = p->devinfo;
116 int msg_type = -1;
117
118 if (devinfo->gen >= 5) {
119 switch (inst->opcode) {
120 case SHADER_OPCODE_TEX:
121 case SHADER_OPCODE_TXL:
122 if (inst->shadow_compare) {
123 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
124 } else {
125 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
126 }
127 break;
128 case SHADER_OPCODE_TXD:
129 if (inst->shadow_compare) {
130 /* Gen7.5+. Otherwise, lowered by brw_lower_texture_gradients(). */
131 assert(devinfo->gen >= 8 || devinfo->is_haswell);
132 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
133 } else {
134 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
135 }
136 break;
137 case SHADER_OPCODE_TXF:
138 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
139 break;
140 case SHADER_OPCODE_TXF_CMS_W:
141 assert(devinfo->gen >= 9);
142 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
143 break;
144 case SHADER_OPCODE_TXF_CMS:
145 if (devinfo->gen >= 7)
146 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
147 else
148 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
149 break;
150 case SHADER_OPCODE_TXF_MCS:
151 assert(devinfo->gen >= 7);
152 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
153 break;
154 case SHADER_OPCODE_TXS:
155 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
156 break;
157 case SHADER_OPCODE_TG4:
158 if (inst->shadow_compare) {
159 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
160 } else {
161 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
162 }
163 break;
164 case SHADER_OPCODE_TG4_OFFSET:
165 if (inst->shadow_compare) {
166 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
167 } else {
168 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
169 }
170 break;
171 case SHADER_OPCODE_SAMPLEINFO:
172 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
173 break;
174 default:
175 unreachable("should not get here: invalid vec4 texture opcode");
176 }
177 } else {
178 switch (inst->opcode) {
179 case SHADER_OPCODE_TEX:
180 case SHADER_OPCODE_TXL:
181 if (inst->shadow_compare) {
182 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE;
183 assert(inst->mlen == 3);
184 } else {
185 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD;
186 assert(inst->mlen == 2);
187 }
188 break;
189 case SHADER_OPCODE_TXD:
190 /* There is no sample_d_c message; comparisons are done manually. */
191 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS;
192 assert(inst->mlen == 4);
193 break;
194 case SHADER_OPCODE_TXF:
195 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_LD;
196 assert(inst->mlen == 2);
197 break;
198 case SHADER_OPCODE_TXS:
199 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO;
200 assert(inst->mlen == 2);
201 break;
202 default:
203 unreachable("should not get here: invalid vec4 texture opcode");
204 }
205 }
206
207 assert(msg_type != -1);
208
209 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
210
211 /* Load the message header if present. If there's a texture offset, we need
212 * to set it up explicitly and load the offset bitfield. Otherwise, we can
213 * use an implied move from g0 to the first message register.
214 */
215 if (inst->header_size != 0) {
216 if (devinfo->gen < 6 && !inst->offset) {
217 /* Set up an implied move from g0 to the MRF. */
218 src = brw_vec8_grf(0, 0);
219 } else {
220 struct brw_reg header =
221 retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
222 uint32_t dw2 = 0;
223
224 /* Explicitly set up the message header by copying g0 to the MRF. */
225 brw_push_insn_state(p);
226 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
227 brw_MOV(p, header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
228
229 brw_set_default_access_mode(p, BRW_ALIGN_1);
230
231 if (inst->offset)
232 /* Set the texel offset bits in DWord 2. */
233 dw2 = inst->offset;
234
235 if (devinfo->gen >= 9)
236 /* SKL+ overloads BRW_SAMPLER_SIMD_MODE_SIMD4X2 to also do SIMD8D,
237 * based on bit 22 in the header.
238 */
239 dw2 |= GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2;
240
241 if (dw2)
242 brw_MOV(p, get_element_ud(header, 2), brw_imm_ud(dw2));
243
244 brw_adjust_sampler_state_pointer(p, header, sampler_index);
245 brw_pop_insn_state(p);
246 }
247 }
248
249 uint32_t return_format;
250
251 switch (dst.type) {
252 case BRW_REGISTER_TYPE_D:
253 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
254 break;
255 case BRW_REGISTER_TYPE_UD:
256 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
257 break;
258 default:
259 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
260 break;
261 }
262
263 uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
264 inst->opcode == SHADER_OPCODE_TG4_OFFSET)
265 ? prog_data->base.binding_table.gather_texture_start
266 : prog_data->base.binding_table.texture_start;
267
268 if (surface_index.file == BRW_IMMEDIATE_VALUE &&
269 sampler_index.file == BRW_IMMEDIATE_VALUE) {
270 uint32_t surface = surface_index.ud;
271 uint32_t sampler = sampler_index.ud;
272
273 brw_SAMPLE(p,
274 dst,
275 inst->base_mrf,
276 src,
277 surface + base_binding_table_index,
278 sampler % 16,
279 msg_type,
280 1, /* response length */
281 inst->mlen,
282 inst->header_size != 0,
283 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
284 return_format);
285
286 brw_mark_surface_used(&prog_data->base, sampler + base_binding_table_index);
287 } else {
288 /* Non-constant sampler index. */
289
290 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
291 struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
292 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
293
294 brw_push_insn_state(p);
295 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
296 brw_set_default_access_mode(p, BRW_ALIGN_1);
297
298 if (memcmp(&surface_reg, &sampler_reg, sizeof(surface_reg)) == 0) {
299 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
300 } else {
301 brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
302 brw_OR(p, addr, addr, surface_reg);
303 }
304 if (base_binding_table_index)
305 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
306 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
307
308 brw_pop_insn_state(p);
309
310 if (inst->base_mrf != -1)
311 gen6_resolve_implied_move(p, &src, inst->base_mrf);
312
313 /* dst = send(offset, a0.0 | <descriptor>) */
314 brw_inst *insn = brw_send_indirect_message(
315 p, BRW_SFID_SAMPLER, dst, src, addr);
316 brw_set_sampler_message(p, insn,
317 0 /* surface */,
318 0 /* sampler */,
319 msg_type,
320 1 /* rlen */,
321 inst->mlen /* mlen */,
322 inst->header_size != 0 /* header */,
323 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
324 return_format);
325
326 /* visitor knows more than we do about the surface limit required,
327 * so has already done marking.
328 */
329 }
330 }
331
332 static void
333 generate_vs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
334 {
335 brw_urb_WRITE(p,
336 brw_null_reg(), /* dest */
337 inst->base_mrf, /* starting mrf reg nr */
338 brw_vec8_grf(0, 0), /* src */
339 inst->urb_write_flags,
340 inst->mlen,
341 0, /* response len */
342 inst->offset, /* urb destination offset */
343 BRW_URB_SWIZZLE_INTERLEAVE);
344 }
345
346 static void
347 generate_gs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
348 {
349 struct brw_reg src = brw_message_reg(inst->base_mrf);
350 brw_urb_WRITE(p,
351 brw_null_reg(), /* dest */
352 inst->base_mrf, /* starting mrf reg nr */
353 src,
354 inst->urb_write_flags,
355 inst->mlen,
356 0, /* response len */
357 inst->offset, /* urb destination offset */
358 BRW_URB_SWIZZLE_INTERLEAVE);
359 }
360
361 static void
362 generate_gs_urb_write_allocate(struct brw_codegen *p, vec4_instruction *inst)
363 {
364 struct brw_reg src = brw_message_reg(inst->base_mrf);
365
366 /* We pass the temporary passed in src0 as the writeback register */
367 brw_urb_WRITE(p,
368 inst->src[0].as_brw_reg(), /* dest */
369 inst->base_mrf, /* starting mrf reg nr */
370 src,
371 BRW_URB_WRITE_ALLOCATE_COMPLETE,
372 inst->mlen,
373 1, /* response len */
374 inst->offset, /* urb destination offset */
375 BRW_URB_SWIZZLE_INTERLEAVE);
376
377 /* Now put allocated urb handle in dst.0 */
378 brw_push_insn_state(p);
379 brw_set_default_access_mode(p, BRW_ALIGN_1);
380 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
381 brw_MOV(p, get_element_ud(inst->dst.as_brw_reg(), 0),
382 get_element_ud(inst->src[0].as_brw_reg(), 0));
383 brw_pop_insn_state(p);
384 }
385
386 static void
387 generate_gs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
388 {
389 struct brw_reg src = brw_message_reg(inst->base_mrf);
390 brw_urb_WRITE(p,
391 brw_null_reg(), /* dest */
392 inst->base_mrf, /* starting mrf reg nr */
393 src,
394 BRW_URB_WRITE_EOT | inst->urb_write_flags,
395 inst->mlen,
396 0, /* response len */
397 0, /* urb destination offset */
398 BRW_URB_SWIZZLE_INTERLEAVE);
399 }
400
401 static void
402 generate_gs_set_write_offset(struct brw_codegen *p,
403 struct brw_reg dst,
404 struct brw_reg src0,
405 struct brw_reg src1)
406 {
407 /* From p22 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
408 * Header: M0.3):
409 *
410 * Slot 0 Offset. This field, after adding to the Global Offset field
411 * in the message descriptor, specifies the offset (in 256-bit units)
412 * from the start of the URB entry, as referenced by URB Handle 0, at
413 * which the data will be accessed.
414 *
415 * Similar text describes DWORD M0.4, which is slot 1 offset.
416 *
417 * Therefore, we want to multiply DWORDs 0 and 4 of src0 (the x components
418 * of the register for geometry shader invocations 0 and 1) by the
419 * immediate value in src1, and store the result in DWORDs 3 and 4 of dst.
420 *
421 * We can do this with the following EU instruction:
422 *
423 * mul(2) dst.3<1>UD src0<8;2,4>UD src1<...>UW { Align1 WE_all }
424 */
425 brw_push_insn_state(p);
426 brw_set_default_access_mode(p, BRW_ALIGN_1);
427 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
428 assert(p->devinfo->gen >= 7 &&
429 src1.file == BRW_IMMEDIATE_VALUE &&
430 src1.type == BRW_REGISTER_TYPE_UD &&
431 src1.ud <= USHRT_MAX);
432 if (src0.file == BRW_IMMEDIATE_VALUE) {
433 brw_MOV(p, suboffset(stride(dst, 2, 2, 1), 3),
434 brw_imm_ud(src0.ud * src1.ud));
435 } else {
436 brw_MUL(p, suboffset(stride(dst, 2, 2, 1), 3), stride(src0, 8, 2, 4),
437 retype(src1, BRW_REGISTER_TYPE_UW));
438 }
439 brw_pop_insn_state(p);
440 }
441
442 static void
443 generate_gs_set_vertex_count(struct brw_codegen *p,
444 struct brw_reg dst,
445 struct brw_reg src)
446 {
447 brw_push_insn_state(p);
448 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
449
450 if (p->devinfo->gen >= 8) {
451 /* Move the vertex count into the second MRF for the EOT write. */
452 brw_MOV(p, retype(brw_message_reg(dst.nr + 1), BRW_REGISTER_TYPE_UD),
453 src);
454 } else {
455 /* If we think of the src and dst registers as composed of 8 DWORDs each,
456 * we want to pick up the contents of DWORDs 0 and 4 from src, truncate
457 * them to WORDs, and then pack them into DWORD 2 of dst.
458 *
459 * It's easier to get the EU to do this if we think of the src and dst
460 * registers as composed of 16 WORDS each; then, we want to pick up the
461 * contents of WORDs 0 and 8 from src, and pack them into WORDs 4 and 5
462 * of dst.
463 *
464 * We can do that by the following EU instruction:
465 *
466 * mov (2) dst.4<1>:uw src<8;1,0>:uw { Align1, Q1, NoMask }
467 */
468 brw_set_default_access_mode(p, BRW_ALIGN_1);
469 brw_MOV(p,
470 suboffset(stride(retype(dst, BRW_REGISTER_TYPE_UW), 2, 2, 1), 4),
471 stride(retype(src, BRW_REGISTER_TYPE_UW), 8, 1, 0));
472 }
473 brw_pop_insn_state(p);
474 }
475
476 static void
477 generate_gs_svb_write(struct brw_codegen *p,
478 struct brw_vue_prog_data *prog_data,
479 vec4_instruction *inst,
480 struct brw_reg dst,
481 struct brw_reg src0,
482 struct brw_reg src1)
483 {
484 int binding = inst->sol_binding;
485 bool final_write = inst->sol_final_write;
486
487 brw_push_insn_state(p);
488 /* Copy Vertex data into M0.x */
489 brw_MOV(p, stride(dst, 4, 4, 1),
490 stride(retype(src0, BRW_REGISTER_TYPE_UD), 4, 4, 1));
491
492 /* Send SVB Write */
493 brw_svb_write(p,
494 final_write ? src1 : brw_null_reg(), /* dest == src1 */
495 1, /* msg_reg_nr */
496 dst, /* src0 == previous dst */
497 SURF_INDEX_GEN6_SOL_BINDING(binding), /* binding_table_index */
498 final_write); /* send_commit_msg */
499
500 /* Finally, wait for the write commit to occur so that we can proceed to
501 * other things safely.
502 *
503 * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
504 *
505 * The write commit does not modify the destination register, but
506 * merely clears the dependency associated with the destination
507 * register. Thus, a simple “mov” instruction using the register as a
508 * source is sufficient to wait for the write commit to occur.
509 */
510 if (final_write) {
511 brw_MOV(p, src1, src1);
512 }
513 brw_pop_insn_state(p);
514 }
515
516 static void
517 generate_gs_svb_set_destination_index(struct brw_codegen *p,
518 vec4_instruction *inst,
519 struct brw_reg dst,
520 struct brw_reg src)
521 {
522 int vertex = inst->sol_vertex;
523 brw_push_insn_state(p);
524 brw_set_default_access_mode(p, BRW_ALIGN_1);
525 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
526 brw_MOV(p, get_element_ud(dst, 5), get_element_ud(src, vertex));
527 brw_pop_insn_state(p);
528 }
529
530 static void
531 generate_gs_set_dword_2(struct brw_codegen *p,
532 struct brw_reg dst,
533 struct brw_reg src)
534 {
535 brw_push_insn_state(p);
536 brw_set_default_access_mode(p, BRW_ALIGN_1);
537 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
538 brw_MOV(p, suboffset(vec1(dst), 2), suboffset(vec1(src), 0));
539 brw_pop_insn_state(p);
540 }
541
542 static void
543 generate_gs_prepare_channel_masks(struct brw_codegen *p,
544 struct brw_reg dst)
545 {
546 /* We want to left shift just DWORD 4 (the x component belonging to the
547 * second geometry shader invocation) by 4 bits. So generate the
548 * instruction:
549 *
550 * shl(1) dst.4<1>UD dst.4<0,1,0>UD 4UD { align1 WE_all }
551 */
552 dst = suboffset(vec1(dst), 4);
553 brw_push_insn_state(p);
554 brw_set_default_access_mode(p, BRW_ALIGN_1);
555 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
556 brw_SHL(p, dst, dst, brw_imm_ud(4));
557 brw_pop_insn_state(p);
558 }
559
560 static void
561 generate_gs_set_channel_masks(struct brw_codegen *p,
562 struct brw_reg dst,
563 struct brw_reg src)
564 {
565 /* From p21 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
566 * Header: M0.5):
567 *
568 * 15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask
569 *
570 * When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1
571 * DATA[3], when Swizzle Control = URB_NOSWIZZLE this bit controls
572 * Vertex 0 DATA[7]. This bit is ANDed with the corresponding
573 * channel enable to determine the final channel enable. For the
574 * URB_READ_OWORD & URB_READ_HWORD messages, when final channel
575 * enable is 1 it indicates that Vertex 1 DATA [3] will be included
576 * in the writeback message. For the URB_WRITE_OWORD &
577 * URB_WRITE_HWORD messages, when final channel enable is 1 it
578 * indicates that Vertex 1 DATA [3] will be written to the surface.
579 *
580 * 0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included
581 * 1: Vertex DATA [3] / Vertex 0 DATA[7] channel included
582 *
583 * 14 Vertex 1 DATA [2] Channel Mask
584 * 13 Vertex 1 DATA [1] Channel Mask
585 * 12 Vertex 1 DATA [0] Channel Mask
586 * 11 Vertex 0 DATA [3] Channel Mask
587 * 10 Vertex 0 DATA [2] Channel Mask
588 * 9 Vertex 0 DATA [1] Channel Mask
589 * 8 Vertex 0 DATA [0] Channel Mask
590 *
591 * (This is from a section of the PRM that is agnostic to the particular
592 * type of shader being executed, so "Vertex 0" and "Vertex 1" refer to
593 * geometry shader invocations 0 and 1, respectively). Since we have the
594 * enable flags for geometry shader invocation 0 in bits 3:0 of DWORD 0,
595 * and the enable flags for geometry shader invocation 1 in bits 7:0 of
596 * DWORD 4, we just need to OR them together and store the result in bits
597 * 15:8 of DWORD 5.
598 *
599 * It's easier to get the EU to do this if we think of the src and dst
600 * registers as composed of 32 bytes each; then, we want to pick up the
601 * contents of bytes 0 and 16 from src, OR them together, and store them in
602 * byte 21.
603 *
604 * We can do that by the following EU instruction:
605 *
606 * or(1) dst.21<1>UB src<0,1,0>UB src.16<0,1,0>UB { align1 WE_all }
607 *
608 * Note: this relies on the source register having zeros in (a) bits 7:4 of
609 * DWORD 0 and (b) bits 3:0 of DWORD 4. We can rely on (b) because the
610 * source register was prepared by GS_OPCODE_PREPARE_CHANNEL_MASKS (which
611 * shifts DWORD 4 left by 4 bits), and we can rely on (a) because prior to
612 * the execution of GS_OPCODE_PREPARE_CHANNEL_MASKS, DWORDs 0 and 4 need to
613 * contain valid channel mask values (which are in the range 0x0-0xf).
614 */
615 dst = retype(dst, BRW_REGISTER_TYPE_UB);
616 src = retype(src, BRW_REGISTER_TYPE_UB);
617 brw_push_insn_state(p);
618 brw_set_default_access_mode(p, BRW_ALIGN_1);
619 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
620 brw_OR(p, suboffset(vec1(dst), 21), vec1(src), suboffset(vec1(src), 16));
621 brw_pop_insn_state(p);
622 }
623
624 static void
625 generate_gs_get_instance_id(struct brw_codegen *p,
626 struct brw_reg dst)
627 {
628 /* We want to right shift R0.0 & R0.1 by GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT
629 * and store into dst.0 & dst.4. So generate the instruction:
630 *
631 * shr(8) dst<1> R0<1,4,0> GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT { align1 WE_normal 1Q }
632 */
633 brw_push_insn_state(p);
634 brw_set_default_access_mode(p, BRW_ALIGN_1);
635 dst = retype(dst, BRW_REGISTER_TYPE_UD);
636 struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
637 brw_SHR(p, dst, stride(r0, 1, 4, 0),
638 brw_imm_ud(GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT));
639 brw_pop_insn_state(p);
640 }
641
642 static void
643 generate_gs_ff_sync_set_primitives(struct brw_codegen *p,
644 struct brw_reg dst,
645 struct brw_reg src0,
646 struct brw_reg src1,
647 struct brw_reg src2)
648 {
649 brw_push_insn_state(p);
650 brw_set_default_access_mode(p, BRW_ALIGN_1);
651 /* Save src0 data in 16:31 bits of dst.0 */
652 brw_AND(p, suboffset(vec1(dst), 0), suboffset(vec1(src0), 0),
653 brw_imm_ud(0xffffu));
654 brw_SHL(p, suboffset(vec1(dst), 0), suboffset(vec1(dst), 0), brw_imm_ud(16));
655 /* Save src1 data in 0:15 bits of dst.0 */
656 brw_AND(p, suboffset(vec1(src2), 0), suboffset(vec1(src1), 0),
657 brw_imm_ud(0xffffu));
658 brw_OR(p, suboffset(vec1(dst), 0),
659 suboffset(vec1(dst), 0),
660 suboffset(vec1(src2), 0));
661 brw_pop_insn_state(p);
662 }
663
664 static void
665 generate_gs_ff_sync(struct brw_codegen *p,
666 vec4_instruction *inst,
667 struct brw_reg dst,
668 struct brw_reg src0,
669 struct brw_reg src1)
670 {
671 /* This opcode uses an implied MRF register for:
672 * - the header of the ff_sync message. And as such it is expected to be
673 * initialized to r0 before calling here.
674 * - the destination where we will write the allocated URB handle.
675 */
676 struct brw_reg header =
677 retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
678
679 /* Overwrite dword 0 of the header (SO vertices to write) and
680 * dword 1 (number of primitives written).
681 */
682 brw_push_insn_state(p);
683 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
684 brw_set_default_access_mode(p, BRW_ALIGN_1);
685 brw_MOV(p, get_element_ud(header, 0), get_element_ud(src1, 0));
686 brw_MOV(p, get_element_ud(header, 1), get_element_ud(src0, 0));
687 brw_pop_insn_state(p);
688
689 /* Allocate URB handle in dst */
690 brw_ff_sync(p,
691 dst,
692 0,
693 header,
694 1, /* allocate */
695 1, /* response length */
696 0 /* eot */);
697
698 /* Now put allocated urb handle in header.0 */
699 brw_push_insn_state(p);
700 brw_set_default_access_mode(p, BRW_ALIGN_1);
701 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
702 brw_MOV(p, get_element_ud(header, 0), get_element_ud(dst, 0));
703
704 /* src1 is not an immediate when we use transform feedback */
705 if (src1.file != BRW_IMMEDIATE_VALUE)
706 brw_MOV(p, brw_vec4_grf(src1.nr, 0), brw_vec4_grf(dst.nr, 1));
707
708 brw_pop_insn_state(p);
709 }
710
711 static void
712 generate_gs_set_primitive_id(struct brw_codegen *p, struct brw_reg dst)
713 {
714 /* In gen6, PrimitiveID is delivered in R0.1 of the payload */
715 struct brw_reg src = brw_vec8_grf(0, 0);
716 brw_push_insn_state(p);
717 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
718 brw_set_default_access_mode(p, BRW_ALIGN_1);
719 brw_MOV(p, get_element_ud(dst, 0), get_element_ud(src, 1));
720 brw_pop_insn_state(p);
721 }
722
723 static void
724 generate_tcs_get_instance_id(struct brw_codegen *p, struct brw_reg dst)
725 {
726 const struct brw_device_info *devinfo = p->devinfo;
727 const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
728
729 /* "Instance Count" comes as part of the payload in r0.2 bits 23:17.
730 *
731 * Since we operate in SIMD4x2 mode, we need run half as many threads
732 * as necessary. So we assign (2i + 1, 2i) as the thread counts. We
733 * shift right by one less to accomplish the multiplication by two.
734 */
735 dst = retype(dst, BRW_REGISTER_TYPE_UD);
736 struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
737
738 brw_push_insn_state(p);
739 brw_set_default_access_mode(p, BRW_ALIGN_1);
740
741 const int mask = ivb ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
742 const int shift = ivb ? 16 : 17;
743
744 brw_AND(p, get_element_ud(dst, 0), get_element_ud(r0, 2), brw_imm_ud(mask));
745 brw_SHR(p, get_element_ud(dst, 0), get_element_ud(dst, 0),
746 brw_imm_ud(shift - 1));
747 brw_ADD(p, get_element_ud(dst, 4), get_element_ud(dst, 0), brw_imm_ud(1));
748
749 brw_pop_insn_state(p);
750 }
751
752 static void
753 generate_tcs_urb_write(struct brw_codegen *p,
754 vec4_instruction *inst,
755 struct brw_reg urb_header)
756 {
757 const struct brw_device_info *devinfo = p->devinfo;
758
759 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
760 brw_set_dest(p, send, brw_null_reg());
761 brw_set_src0(p, send, urb_header);
762
763 brw_set_message_descriptor(p, send, BRW_SFID_URB,
764 inst->mlen /* mlen */, 0 /* rlen */,
765 true /* header */, false /* eot */);
766 brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_WRITE_OWORD);
767 brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
768 if (inst->urb_write_flags & BRW_URB_WRITE_EOT) {
769 brw_inst_set_eot(devinfo, send, 1);
770 } else {
771 brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
772 brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
773 }
774
775 /* what happens to swizzles? */
776 }
777
778
779 static void
780 generate_tcs_input_urb_offsets(struct brw_codegen *p,
781 struct brw_reg dst,
782 struct brw_reg vertex,
783 struct brw_reg offset)
784 {
785 /* Generates an URB read/write message header for HS/DS operation.
786 * Inputs are a vertex index, and a byte offset from the beginning of
787 * the vertex. */
788
789 /* If `vertex` is not an immediate, we clobber a0.0 */
790
791 assert(vertex.file == BRW_IMMEDIATE_VALUE || vertex.file == BRW_GENERAL_REGISTER_FILE);
792 assert(vertex.type == BRW_REGISTER_TYPE_UD || vertex.type == BRW_REGISTER_TYPE_D);
793
794 assert(dst.file == BRW_GENERAL_REGISTER_FILE);
795
796 brw_push_insn_state(p);
797 brw_set_default_access_mode(p, BRW_ALIGN_1);
798 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
799 brw_MOV(p, dst, brw_imm_ud(0));
800
801 /* m0.5 bits 8-15 are channel enables */
802 brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
803
804 /* m0.0-0.1: URB handles */
805 if (vertex.file == BRW_IMMEDIATE_VALUE) {
806 uint32_t vertex_index = vertex.ud;
807 struct brw_reg index_reg = brw_vec1_grf(
808 1 + (vertex_index >> 3), vertex_index & 7);
809
810 brw_MOV(p, vec2(get_element_ud(dst, 0)),
811 retype(index_reg, BRW_REGISTER_TYPE_UD));
812 } else {
813 /* Use indirect addressing. ICP Handles are DWords (single channels
814 * of a register) and start at g1.0.
815 *
816 * In order to start our region at g1.0, we add 8 to the vertex index,
817 * effectively skipping over the 8 channels in g0.0. This gives us a
818 * DWord offset to the ICP Handle.
819 *
820 * Indirect addressing works in terms of bytes, so we then multiply
821 * the DWord offset by 4 (by shifting left by 2).
822 */
823 struct brw_reg addr = brw_address_reg(0);
824
825 /* bottom half: m0.0 = g[1.0 + vertex.0]UD */
826 brw_ADD(p, addr, get_element_ud(vertex, 0), brw_imm_uw(0x8));
827 brw_SHL(p, addr, addr, brw_imm_ud(2));
828 brw_MOV(p, get_element_ud(dst, 0), deref_1ud(brw_indirect(0, 0), 0));
829
830 /* top half: m0.1 = g[1.0 + vertex.4]UD */
831 brw_ADD(p, addr, get_element_ud(vertex, 4), brw_imm_uw(0x8));
832 brw_SHL(p, addr, addr, brw_imm_ud(2));
833 brw_MOV(p, get_element_ud(dst, 1), deref_1ud(brw_indirect(0, 0), 0));
834 }
835
836 /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
837 if (offset.file != ARF)
838 brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
839
840 brw_pop_insn_state(p);
841 }
842
843
844 static void
845 generate_tcs_output_urb_offsets(struct brw_codegen *p,
846 struct brw_reg dst,
847 struct brw_reg write_mask,
848 struct brw_reg offset)
849 {
850 /* Generates an URB read/write message header for HS/DS operation, for the patch URB entry. */
851 assert(dst.file == BRW_GENERAL_REGISTER_FILE || dst.file == BRW_MESSAGE_REGISTER_FILE);
852
853 assert(write_mask.file == BRW_IMMEDIATE_VALUE);
854 assert(write_mask.type == BRW_REGISTER_TYPE_UD);
855
856 brw_push_insn_state(p);
857
858 brw_set_default_access_mode(p, BRW_ALIGN_1);
859 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
860 brw_MOV(p, dst, brw_imm_ud(0));
861
862 unsigned mask = write_mask.ud;
863
864 /* m0.5 bits 15:12 and 11:8 are channel enables */
865 brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud((mask << 8) | (mask << 12)));
866
867 /* HS patch URB handle is delivered in r0.0 */
868 struct brw_reg urb_handle = brw_vec1_grf(0, 0);
869
870 /* m0.0-0.1: URB handles */
871 brw_MOV(p, vec2(get_element_ud(dst, 0)),
872 retype(urb_handle, BRW_REGISTER_TYPE_UD));
873
874 /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
875 if (offset.file != ARF)
876 brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
877
878 brw_pop_insn_state(p);
879 }
880
881 static void
882 generate_tes_create_input_read_header(struct brw_codegen *p,
883 struct brw_reg dst)
884 {
885 brw_push_insn_state(p);
886 brw_set_default_access_mode(p, BRW_ALIGN_1);
887 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
888
889 /* Initialize the register to 0 */
890 brw_MOV(p, dst, brw_imm_ud(0));
891
892 /* Enable all the channels in m0.5 bits 15:8 */
893 brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
894
895 /* Copy g1.3 (the patch URB handle) to m0.0 and m0.1. For safety,
896 * mask out irrelevant "Reserved" bits, as they're not marked MBZ.
897 */
898 brw_AND(p, vec2(get_element_ud(dst, 0)),
899 retype(brw_vec1_grf(1, 3), BRW_REGISTER_TYPE_UD),
900 brw_imm_ud(0x1fff));
901 brw_pop_insn_state(p);
902 }
903
904 static void
905 generate_tes_add_indirect_urb_offset(struct brw_codegen *p,
906 struct brw_reg dst,
907 struct brw_reg header,
908 struct brw_reg offset)
909 {
910 brw_push_insn_state(p);
911 brw_set_default_access_mode(p, BRW_ALIGN_1);
912 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
913
914 brw_MOV(p, dst, header);
915 /* m0.3-0.4: 128-bit-granular offsets into the URB from the handles */
916 brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
917
918 brw_pop_insn_state(p);
919 }
920
921 static void
922 generate_vec4_urb_read(struct brw_codegen *p,
923 vec4_instruction *inst,
924 struct brw_reg dst,
925 struct brw_reg header)
926 {
927 const struct brw_device_info *devinfo = p->devinfo;
928
929 assert(header.file == BRW_GENERAL_REGISTER_FILE);
930 assert(header.type == BRW_REGISTER_TYPE_UD);
931
932 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
933 brw_set_dest(p, send, dst);
934 brw_set_src0(p, send, header);
935
936 brw_set_message_descriptor(p, send, BRW_SFID_URB,
937 1 /* mlen */, 1 /* rlen */,
938 true /* header */, false /* eot */);
939 brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
940 brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
941 brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
942
943 brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
944 }
945
946 static void
947 generate_tcs_release_input(struct brw_codegen *p,
948 struct brw_reg header,
949 struct brw_reg vertex,
950 struct brw_reg is_unpaired)
951 {
952 const struct brw_device_info *devinfo = p->devinfo;
953
954 assert(vertex.file == BRW_IMMEDIATE_VALUE);
955 assert(vertex.type == BRW_REGISTER_TYPE_UD);
956
957 /* m0.0-0.1: URB handles */
958 struct brw_reg urb_handles =
959 retype(brw_vec2_grf(1 + (vertex.ud >> 3), vertex.ud & 7),
960 BRW_REGISTER_TYPE_UD);
961
962 brw_push_insn_state(p);
963 brw_set_default_access_mode(p, BRW_ALIGN_1);
964 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
965 brw_MOV(p, header, brw_imm_ud(0));
966 brw_MOV(p, vec2(get_element_ud(header, 0)), urb_handles);
967 brw_pop_insn_state(p);
968
969 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
970 brw_set_dest(p, send, brw_null_reg());
971 brw_set_src0(p, send, header);
972 brw_set_message_descriptor(p, send, BRW_SFID_URB,
973 1 /* mlen */, 0 /* rlen */,
974 true /* header */, false /* eot */);
975 brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
976 brw_inst_set_urb_complete(devinfo, send, 1);
977 brw_inst_set_urb_swizzle_control(devinfo, send, is_unpaired.ud ?
978 BRW_URB_SWIZZLE_NONE :
979 BRW_URB_SWIZZLE_INTERLEAVE);
980 }
981
982 static void
983 generate_tcs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
984 {
985 struct brw_reg header = brw_message_reg(inst->base_mrf);
986
987 brw_push_insn_state(p);
988 brw_set_default_access_mode(p, BRW_ALIGN_1);
989 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
990 brw_MOV(p, header, brw_imm_ud(0));
991 brw_MOV(p, get_element_ud(header, 0),
992 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
993 brw_pop_insn_state(p);
994
995 brw_urb_WRITE(p,
996 brw_null_reg(), /* dest */
997 inst->base_mrf, /* starting mrf reg nr */
998 header,
999 BRW_URB_WRITE_EOT | inst->urb_write_flags,
1000 inst->mlen,
1001 0, /* response len */
1002 0, /* urb destination offset */
1003 0);
1004 }
1005
1006 static void
1007 generate_tes_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
1008 {
1009 brw_push_insn_state(p);
1010 brw_set_default_access_mode(p, BRW_ALIGN_1);
1011 brw_MOV(p, dst, retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_D));
1012 brw_pop_insn_state(p);
1013 }
1014
1015 static void
1016 generate_tcs_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
1017 {
1018 brw_push_insn_state(p);
1019 brw_set_default_access_mode(p, BRW_ALIGN_1);
1020 brw_MOV(p, dst, retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
1021 brw_pop_insn_state(p);
1022 }
1023
1024 static void
1025 generate_tcs_create_barrier_header(struct brw_codegen *p,
1026 struct brw_vue_prog_data *prog_data,
1027 struct brw_reg dst)
1028 {
1029 const struct brw_device_info *devinfo = p->devinfo;
1030 const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
1031 struct brw_reg m0_2 = get_element_ud(dst, 2);
1032 unsigned instances = ((struct brw_tcs_prog_data *) prog_data)->instances;
1033
1034 brw_push_insn_state(p);
1035 brw_set_default_access_mode(p, BRW_ALIGN_1);
1036 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1037
1038 /* Zero the message header */
1039 brw_MOV(p, retype(dst, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
1040
1041 /* Copy "Barrier ID" from r0.2, bits 16:13 (Gen7.5+) or 15:12 (Gen7) */
1042 brw_AND(p, m0_2,
1043 retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
1044 brw_imm_ud(ivb ? INTEL_MASK(15, 12) : INTEL_MASK(16, 13)));
1045
1046 /* Shift it up to bits 27:24. */
1047 brw_SHL(p, m0_2, get_element_ud(dst, 2), brw_imm_ud(ivb ? 12 : 11));
1048
1049 /* Set the Barrier Count and the enable bit */
1050 brw_OR(p, m0_2, m0_2, brw_imm_ud(instances << 9 | (1 << 15)));
1051
1052 brw_pop_insn_state(p);
1053 }
1054
1055 static void
1056 generate_oword_dual_block_offsets(struct brw_codegen *p,
1057 struct brw_reg m1,
1058 struct brw_reg index)
1059 {
1060 int second_vertex_offset;
1061
1062 if (p->devinfo->gen >= 6)
1063 second_vertex_offset = 1;
1064 else
1065 second_vertex_offset = 16;
1066
1067 m1 = retype(m1, BRW_REGISTER_TYPE_D);
1068
1069 /* Set up M1 (message payload). Only the block offsets in M1.0 and
1070 * M1.4 are used, and the rest are ignored.
1071 */
1072 struct brw_reg m1_0 = suboffset(vec1(m1), 0);
1073 struct brw_reg m1_4 = suboffset(vec1(m1), 4);
1074 struct brw_reg index_0 = suboffset(vec1(index), 0);
1075 struct brw_reg index_4 = suboffset(vec1(index), 4);
1076
1077 brw_push_insn_state(p);
1078 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1079 brw_set_default_access_mode(p, BRW_ALIGN_1);
1080
1081 brw_MOV(p, m1_0, index_0);
1082
1083 if (index.file == BRW_IMMEDIATE_VALUE) {
1084 index_4.ud += second_vertex_offset;
1085 brw_MOV(p, m1_4, index_4);
1086 } else {
1087 brw_ADD(p, m1_4, index_4, brw_imm_d(second_vertex_offset));
1088 }
1089
1090 brw_pop_insn_state(p);
1091 }
1092
1093 static void
1094 generate_unpack_flags(struct brw_codegen *p,
1095 struct brw_reg dst)
1096 {
1097 brw_push_insn_state(p);
1098 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1099 brw_set_default_access_mode(p, BRW_ALIGN_1);
1100
1101 struct brw_reg flags = brw_flag_reg(0, 0);
1102 struct brw_reg dst_0 = suboffset(vec1(dst), 0);
1103 struct brw_reg dst_4 = suboffset(vec1(dst), 4);
1104
1105 brw_AND(p, dst_0, flags, brw_imm_ud(0x0f));
1106 brw_AND(p, dst_4, flags, brw_imm_ud(0xf0));
1107 brw_SHR(p, dst_4, dst_4, brw_imm_ud(4));
1108
1109 brw_pop_insn_state(p);
1110 }
1111
1112 static void
1113 generate_scratch_read(struct brw_codegen *p,
1114 vec4_instruction *inst,
1115 struct brw_reg dst,
1116 struct brw_reg index)
1117 {
1118 const struct brw_device_info *devinfo = p->devinfo;
1119 struct brw_reg header = brw_vec8_grf(0, 0);
1120
1121 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1122
1123 generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
1124 index);
1125
1126 uint32_t msg_type;
1127
1128 if (devinfo->gen >= 6)
1129 msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1130 else if (devinfo->gen == 5 || devinfo->is_g4x)
1131 msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1132 else
1133 msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1134
1135 /* Each of the 8 channel enables is considered for whether each
1136 * dword is written.
1137 */
1138 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1139 brw_set_dest(p, send, dst);
1140 brw_set_src0(p, send, header);
1141 if (devinfo->gen < 6)
1142 brw_inst_set_cond_modifier(devinfo, send, inst->base_mrf);
1143 brw_set_dp_read_message(p, send,
1144 brw_scratch_surface_idx(p),
1145 BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1146 msg_type,
1147 BRW_DATAPORT_READ_TARGET_RENDER_CACHE,
1148 2, /* mlen */
1149 true, /* header_present */
1150 1 /* rlen */);
1151 }
1152
1153 static void
1154 generate_scratch_write(struct brw_codegen *p,
1155 vec4_instruction *inst,
1156 struct brw_reg dst,
1157 struct brw_reg src,
1158 struct brw_reg index)
1159 {
1160 const struct brw_device_info *devinfo = p->devinfo;
1161 struct brw_reg header = brw_vec8_grf(0, 0);
1162 bool write_commit;
1163
1164 /* If the instruction is predicated, we'll predicate the send, not
1165 * the header setup.
1166 */
1167 brw_set_default_predicate_control(p, false);
1168
1169 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1170
1171 generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
1172 index);
1173
1174 brw_MOV(p,
1175 retype(brw_message_reg(inst->base_mrf + 2), BRW_REGISTER_TYPE_D),
1176 retype(src, BRW_REGISTER_TYPE_D));
1177
1178 uint32_t msg_type;
1179
1180 if (devinfo->gen >= 7)
1181 msg_type = GEN7_DATAPORT_DC_OWORD_DUAL_BLOCK_WRITE;
1182 else if (devinfo->gen == 6)
1183 msg_type = GEN6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
1184 else
1185 msg_type = BRW_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
1186
1187 brw_set_default_predicate_control(p, inst->predicate);
1188
1189 /* Pre-gen6, we have to specify write commits to ensure ordering
1190 * between reads and writes within a thread. Afterwards, that's
1191 * guaranteed and write commits only matter for inter-thread
1192 * synchronization.
1193 */
1194 if (devinfo->gen >= 6) {
1195 write_commit = false;
1196 } else {
1197 /* The visitor set up our destination register to be g0. This
1198 * means that when the next read comes along, we will end up
1199 * reading from g0 and causing a block on the write commit. For
1200 * write-after-read, we are relying on the value of the previous
1201 * read being used (and thus blocking on completion) before our
1202 * write is executed. This means we have to be careful in
1203 * instruction scheduling to not violate this assumption.
1204 */
1205 write_commit = true;
1206 }
1207
1208 /* Each of the 8 channel enables is considered for whether each
1209 * dword is written.
1210 */
1211 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1212 brw_set_dest(p, send, dst);
1213 brw_set_src0(p, send, header);
1214 if (devinfo->gen < 6)
1215 brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
1216 brw_set_dp_write_message(p, send,
1217 brw_scratch_surface_idx(p),
1218 BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1219 msg_type,
1220 3, /* mlen */
1221 true, /* header present */
1222 false, /* not a render target write */
1223 write_commit, /* rlen */
1224 false, /* eot */
1225 write_commit);
1226 }
1227
1228 static void
1229 generate_pull_constant_load(struct brw_codegen *p,
1230 struct brw_vue_prog_data *prog_data,
1231 vec4_instruction *inst,
1232 struct brw_reg dst,
1233 struct brw_reg index,
1234 struct brw_reg offset)
1235 {
1236 const struct brw_device_info *devinfo = p->devinfo;
1237 assert(index.file == BRW_IMMEDIATE_VALUE &&
1238 index.type == BRW_REGISTER_TYPE_UD);
1239 uint32_t surf_index = index.ud;
1240
1241 struct brw_reg header = brw_vec8_grf(0, 0);
1242
1243 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1244
1245 if (devinfo->gen >= 6) {
1246 if (offset.file == BRW_IMMEDIATE_VALUE) {
1247 brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
1248 BRW_REGISTER_TYPE_D),
1249 brw_imm_d(offset.ud >> 4));
1250 } else {
1251 brw_SHR(p, retype(brw_message_reg(inst->base_mrf + 1),
1252 BRW_REGISTER_TYPE_D),
1253 offset, brw_imm_d(4));
1254 }
1255 } else {
1256 brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
1257 BRW_REGISTER_TYPE_D),
1258 offset);
1259 }
1260
1261 uint32_t msg_type;
1262
1263 if (devinfo->gen >= 6)
1264 msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1265 else if (devinfo->gen == 5 || devinfo->is_g4x)
1266 msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1267 else
1268 msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1269
1270 /* Each of the 8 channel enables is considered for whether each
1271 * dword is written.
1272 */
1273 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1274 brw_set_dest(p, send, dst);
1275 brw_set_src0(p, send, header);
1276 if (devinfo->gen < 6)
1277 brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
1278 brw_set_dp_read_message(p, send,
1279 surf_index,
1280 BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1281 msg_type,
1282 BRW_DATAPORT_READ_TARGET_DATA_CACHE,
1283 2, /* mlen */
1284 true, /* header_present */
1285 1 /* rlen */);
1286 }
1287
1288 static void
1289 generate_get_buffer_size(struct brw_codegen *p,
1290 struct brw_vue_prog_data *prog_data,
1291 vec4_instruction *inst,
1292 struct brw_reg dst,
1293 struct brw_reg src,
1294 struct brw_reg surf_index)
1295 {
1296 assert(p->devinfo->gen >= 7);
1297 assert(surf_index.type == BRW_REGISTER_TYPE_UD &&
1298 surf_index.file == BRW_IMMEDIATE_VALUE);
1299
1300 brw_SAMPLE(p,
1301 dst,
1302 inst->base_mrf,
1303 src,
1304 surf_index.ud,
1305 0,
1306 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
1307 1, /* response length */
1308 inst->mlen,
1309 inst->header_size > 0,
1310 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1311 BRW_SAMPLER_RETURN_FORMAT_SINT32);
1312
1313 brw_mark_surface_used(&prog_data->base, surf_index.ud);
1314 }
1315
1316 static void
1317 generate_pull_constant_load_gen7(struct brw_codegen *p,
1318 struct brw_vue_prog_data *prog_data,
1319 vec4_instruction *inst,
1320 struct brw_reg dst,
1321 struct brw_reg surf_index,
1322 struct brw_reg offset)
1323 {
1324 assert(surf_index.type == BRW_REGISTER_TYPE_UD);
1325
1326 if (surf_index.file == BRW_IMMEDIATE_VALUE) {
1327
1328 brw_inst *insn = brw_next_insn(p, BRW_OPCODE_SEND);
1329 brw_set_dest(p, insn, dst);
1330 brw_set_src0(p, insn, offset);
1331 brw_set_sampler_message(p, insn,
1332 surf_index.ud,
1333 0, /* LD message ignores sampler unit */
1334 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1335 1, /* rlen */
1336 inst->mlen,
1337 inst->header_size != 0,
1338 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1339 0);
1340
1341 brw_mark_surface_used(&prog_data->base, surf_index.ud);
1342
1343 } else {
1344
1345 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1346
1347 brw_push_insn_state(p);
1348 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1349 brw_set_default_access_mode(p, BRW_ALIGN_1);
1350
1351 /* a0.0 = surf_index & 0xff */
1352 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1353 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1354 brw_set_dest(p, insn_and, addr);
1355 brw_set_src0(p, insn_and, vec1(retype(surf_index, BRW_REGISTER_TYPE_UD)));
1356 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1357
1358 brw_pop_insn_state(p);
1359
1360 /* dst = send(offset, a0.0 | <descriptor>) */
1361 brw_inst *insn = brw_send_indirect_message(
1362 p, BRW_SFID_SAMPLER, dst, offset, addr);
1363 brw_set_sampler_message(p, insn,
1364 0 /* surface */,
1365 0 /* sampler */,
1366 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1367 1 /* rlen */,
1368 inst->mlen,
1369 inst->header_size != 0,
1370 BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1371 0);
1372 }
1373 }
1374
1375 static void
1376 generate_set_simd4x2_header_gen9(struct brw_codegen *p,
1377 vec4_instruction *inst,
1378 struct brw_reg dst)
1379 {
1380 brw_push_insn_state(p);
1381 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1382
1383 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1384 brw_MOV(p, vec8(dst), retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
1385
1386 brw_set_default_access_mode(p, BRW_ALIGN_1);
1387 brw_MOV(p, get_element_ud(dst, 2),
1388 brw_imm_ud(GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2));
1389
1390 brw_pop_insn_state(p);
1391 }
1392
1393 static void
1394 generate_code(struct brw_codegen *p,
1395 const struct brw_compiler *compiler,
1396 void *log_data,
1397 const nir_shader *nir,
1398 struct brw_vue_prog_data *prog_data,
1399 const struct cfg_t *cfg)
1400 {
1401 const struct brw_device_info *devinfo = p->devinfo;
1402 const char *stage_abbrev = _mesa_shader_stage_to_abbrev(nir->stage);
1403 bool debug_flag = INTEL_DEBUG &
1404 intel_debug_flag_for_shader_stage(nir->stage);
1405 struct annotation_info annotation;
1406 memset(&annotation, 0, sizeof(annotation));
1407 int loop_count = 0;
1408
1409 foreach_block_and_inst (block, vec4_instruction, inst, cfg) {
1410 struct brw_reg src[3], dst;
1411
1412 if (unlikely(debug_flag))
1413 annotate(p->devinfo, &annotation, cfg, inst, p->next_insn_offset);
1414
1415 for (unsigned int i = 0; i < 3; i++) {
1416 src[i] = inst->src[i].as_brw_reg();
1417 }
1418 dst = inst->dst.as_brw_reg();
1419
1420 brw_set_default_predicate_control(p, inst->predicate);
1421 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1422 brw_set_default_flag_reg(p, 0, inst->flag_subreg);
1423 brw_set_default_saturate(p, inst->saturate);
1424 brw_set_default_mask_control(p, inst->force_writemask_all);
1425 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1426
1427 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1428 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1429
1430 unsigned pre_emit_nr_insn = p->nr_insn;
1431
1432 if (dst.width == BRW_WIDTH_4) {
1433 /* This happens in attribute fixups for "dual instanced" geometry
1434 * shaders, since they use attributes that are vec4's. Since the exec
1435 * width is only 4, it's essential that the caller set
1436 * force_writemask_all in order to make sure the instruction is executed
1437 * regardless of which channels are enabled.
1438 */
1439 assert(inst->force_writemask_all);
1440
1441 /* Fix up any <8;8,1> or <0;4,1> source registers to <4;4,1> to satisfy
1442 * the following register region restrictions (from Graphics BSpec:
1443 * 3D-Media-GPGPU Engine > EU Overview > Registers and Register Regions
1444 * > Register Region Restrictions)
1445 *
1446 * 1. ExecSize must be greater than or equal to Width.
1447 *
1448 * 2. If ExecSize = Width and HorzStride != 0, VertStride must be set
1449 * to Width * HorzStride."
1450 */
1451 for (int i = 0; i < 3; i++) {
1452 if (src[i].file == BRW_GENERAL_REGISTER_FILE)
1453 src[i] = stride(src[i], 4, 4, 1);
1454 }
1455 }
1456
1457 switch (inst->opcode) {
1458 case VEC4_OPCODE_UNPACK_UNIFORM:
1459 case BRW_OPCODE_MOV:
1460 brw_MOV(p, dst, src[0]);
1461 break;
1462 case BRW_OPCODE_ADD:
1463 brw_ADD(p, dst, src[0], src[1]);
1464 break;
1465 case BRW_OPCODE_MUL:
1466 brw_MUL(p, dst, src[0], src[1]);
1467 break;
1468 case BRW_OPCODE_MACH:
1469 brw_MACH(p, dst, src[0], src[1]);
1470 break;
1471
1472 case BRW_OPCODE_MAD:
1473 assert(devinfo->gen >= 6);
1474 brw_MAD(p, dst, src[0], src[1], src[2]);
1475 break;
1476
1477 case BRW_OPCODE_FRC:
1478 brw_FRC(p, dst, src[0]);
1479 break;
1480 case BRW_OPCODE_RNDD:
1481 brw_RNDD(p, dst, src[0]);
1482 break;
1483 case BRW_OPCODE_RNDE:
1484 brw_RNDE(p, dst, src[0]);
1485 break;
1486 case BRW_OPCODE_RNDZ:
1487 brw_RNDZ(p, dst, src[0]);
1488 break;
1489
1490 case BRW_OPCODE_AND:
1491 brw_AND(p, dst, src[0], src[1]);
1492 break;
1493 case BRW_OPCODE_OR:
1494 brw_OR(p, dst, src[0], src[1]);
1495 break;
1496 case BRW_OPCODE_XOR:
1497 brw_XOR(p, dst, src[0], src[1]);
1498 break;
1499 case BRW_OPCODE_NOT:
1500 brw_NOT(p, dst, src[0]);
1501 break;
1502 case BRW_OPCODE_ASR:
1503 brw_ASR(p, dst, src[0], src[1]);
1504 break;
1505 case BRW_OPCODE_SHR:
1506 brw_SHR(p, dst, src[0], src[1]);
1507 break;
1508 case BRW_OPCODE_SHL:
1509 brw_SHL(p, dst, src[0], src[1]);
1510 break;
1511
1512 case BRW_OPCODE_CMP:
1513 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1514 break;
1515 case BRW_OPCODE_SEL:
1516 brw_SEL(p, dst, src[0], src[1]);
1517 break;
1518
1519 case BRW_OPCODE_DPH:
1520 brw_DPH(p, dst, src[0], src[1]);
1521 break;
1522
1523 case BRW_OPCODE_DP4:
1524 brw_DP4(p, dst, src[0], src[1]);
1525 break;
1526
1527 case BRW_OPCODE_DP3:
1528 brw_DP3(p, dst, src[0], src[1]);
1529 break;
1530
1531 case BRW_OPCODE_DP2:
1532 brw_DP2(p, dst, src[0], src[1]);
1533 break;
1534
1535 case BRW_OPCODE_F32TO16:
1536 assert(devinfo->gen >= 7);
1537 brw_F32TO16(p, dst, src[0]);
1538 break;
1539
1540 case BRW_OPCODE_F16TO32:
1541 assert(devinfo->gen >= 7);
1542 brw_F16TO32(p, dst, src[0]);
1543 break;
1544
1545 case BRW_OPCODE_LRP:
1546 assert(devinfo->gen >= 6);
1547 brw_LRP(p, dst, src[0], src[1], src[2]);
1548 break;
1549
1550 case BRW_OPCODE_BFREV:
1551 assert(devinfo->gen >= 7);
1552 /* BFREV only supports UD type for src and dst. */
1553 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1554 retype(src[0], BRW_REGISTER_TYPE_UD));
1555 break;
1556 case BRW_OPCODE_FBH:
1557 assert(devinfo->gen >= 7);
1558 /* FBH only supports UD type for dst. */
1559 brw_FBH(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]);
1560 break;
1561 case BRW_OPCODE_FBL:
1562 assert(devinfo->gen >= 7);
1563 /* FBL only supports UD type for dst. */
1564 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]);
1565 break;
1566 case BRW_OPCODE_CBIT:
1567 assert(devinfo->gen >= 7);
1568 /* CBIT only supports UD type for dst. */
1569 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD), src[0]);
1570 break;
1571 case BRW_OPCODE_ADDC:
1572 assert(devinfo->gen >= 7);
1573 brw_ADDC(p, dst, src[0], src[1]);
1574 break;
1575 case BRW_OPCODE_SUBB:
1576 assert(devinfo->gen >= 7);
1577 brw_SUBB(p, dst, src[0], src[1]);
1578 break;
1579 case BRW_OPCODE_MAC:
1580 brw_MAC(p, dst, src[0], src[1]);
1581 break;
1582
1583 case BRW_OPCODE_BFE:
1584 assert(devinfo->gen >= 7);
1585 brw_BFE(p, dst, src[0], src[1], src[2]);
1586 break;
1587
1588 case BRW_OPCODE_BFI1:
1589 assert(devinfo->gen >= 7);
1590 brw_BFI1(p, dst, src[0], src[1]);
1591 break;
1592 case BRW_OPCODE_BFI2:
1593 assert(devinfo->gen >= 7);
1594 brw_BFI2(p, dst, src[0], src[1], src[2]);
1595 break;
1596
1597 case BRW_OPCODE_IF:
1598 if (!inst->src[0].is_null()) {
1599 /* The instruction has an embedded compare (only allowed on gen6) */
1600 assert(devinfo->gen == 6);
1601 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1602 } else {
1603 brw_inst *if_inst = brw_IF(p, BRW_EXECUTE_8);
1604 brw_inst_set_pred_control(p->devinfo, if_inst, inst->predicate);
1605 }
1606 break;
1607
1608 case BRW_OPCODE_ELSE:
1609 brw_ELSE(p);
1610 break;
1611 case BRW_OPCODE_ENDIF:
1612 brw_ENDIF(p);
1613 break;
1614
1615 case BRW_OPCODE_DO:
1616 brw_DO(p, BRW_EXECUTE_8);
1617 break;
1618
1619 case BRW_OPCODE_BREAK:
1620 brw_BREAK(p);
1621 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1622 break;
1623 case BRW_OPCODE_CONTINUE:
1624 brw_CONT(p);
1625 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1626 break;
1627
1628 case BRW_OPCODE_WHILE:
1629 brw_WHILE(p);
1630 loop_count++;
1631 break;
1632
1633 case SHADER_OPCODE_RCP:
1634 case SHADER_OPCODE_RSQ:
1635 case SHADER_OPCODE_SQRT:
1636 case SHADER_OPCODE_EXP2:
1637 case SHADER_OPCODE_LOG2:
1638 case SHADER_OPCODE_SIN:
1639 case SHADER_OPCODE_COS:
1640 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1641 if (devinfo->gen >= 7) {
1642 gen6_math(p, dst, brw_math_function(inst->opcode), src[0],
1643 brw_null_reg());
1644 } else if (devinfo->gen == 6) {
1645 generate_math_gen6(p, inst, dst, src[0], brw_null_reg());
1646 } else {
1647 generate_math1_gen4(p, inst, dst, src[0]);
1648 }
1649 break;
1650
1651 case SHADER_OPCODE_POW:
1652 case SHADER_OPCODE_INT_QUOTIENT:
1653 case SHADER_OPCODE_INT_REMAINDER:
1654 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1655 if (devinfo->gen >= 7) {
1656 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1657 } else if (devinfo->gen == 6) {
1658 generate_math_gen6(p, inst, dst, src[0], src[1]);
1659 } else {
1660 generate_math2_gen4(p, inst, dst, src[0], src[1]);
1661 }
1662 break;
1663
1664 case SHADER_OPCODE_TEX:
1665 case SHADER_OPCODE_TXD:
1666 case SHADER_OPCODE_TXF:
1667 case SHADER_OPCODE_TXF_CMS:
1668 case SHADER_OPCODE_TXF_CMS_W:
1669 case SHADER_OPCODE_TXF_MCS:
1670 case SHADER_OPCODE_TXL:
1671 case SHADER_OPCODE_TXS:
1672 case SHADER_OPCODE_TG4:
1673 case SHADER_OPCODE_TG4_OFFSET:
1674 case SHADER_OPCODE_SAMPLEINFO:
1675 generate_tex(p, prog_data, inst, dst, src[0], src[1], src[2]);
1676 break;
1677
1678 case VS_OPCODE_URB_WRITE:
1679 generate_vs_urb_write(p, inst);
1680 break;
1681
1682 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1683 generate_scratch_read(p, inst, dst, src[0]);
1684 break;
1685
1686 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1687 generate_scratch_write(p, inst, dst, src[0], src[1]);
1688 break;
1689
1690 case VS_OPCODE_PULL_CONSTANT_LOAD:
1691 generate_pull_constant_load(p, prog_data, inst, dst, src[0], src[1]);
1692 break;
1693
1694 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
1695 generate_pull_constant_load_gen7(p, prog_data, inst, dst, src[0], src[1]);
1696 break;
1697
1698 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
1699 generate_set_simd4x2_header_gen9(p, inst, dst);
1700 break;
1701
1702
1703 case VS_OPCODE_GET_BUFFER_SIZE:
1704 generate_get_buffer_size(p, prog_data, inst, dst, src[0], src[1]);
1705 break;
1706
1707 case GS_OPCODE_URB_WRITE:
1708 generate_gs_urb_write(p, inst);
1709 break;
1710
1711 case GS_OPCODE_URB_WRITE_ALLOCATE:
1712 generate_gs_urb_write_allocate(p, inst);
1713 break;
1714
1715 case GS_OPCODE_SVB_WRITE:
1716 generate_gs_svb_write(p, prog_data, inst, dst, src[0], src[1]);
1717 break;
1718
1719 case GS_OPCODE_SVB_SET_DST_INDEX:
1720 generate_gs_svb_set_destination_index(p, inst, dst, src[0]);
1721 break;
1722
1723 case GS_OPCODE_THREAD_END:
1724 generate_gs_thread_end(p, inst);
1725 break;
1726
1727 case GS_OPCODE_SET_WRITE_OFFSET:
1728 generate_gs_set_write_offset(p, dst, src[0], src[1]);
1729 break;
1730
1731 case GS_OPCODE_SET_VERTEX_COUNT:
1732 generate_gs_set_vertex_count(p, dst, src[0]);
1733 break;
1734
1735 case GS_OPCODE_FF_SYNC:
1736 generate_gs_ff_sync(p, inst, dst, src[0], src[1]);
1737 break;
1738
1739 case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
1740 generate_gs_ff_sync_set_primitives(p, dst, src[0], src[1], src[2]);
1741 break;
1742
1743 case GS_OPCODE_SET_PRIMITIVE_ID:
1744 generate_gs_set_primitive_id(p, dst);
1745 break;
1746
1747 case GS_OPCODE_SET_DWORD_2:
1748 generate_gs_set_dword_2(p, dst, src[0]);
1749 break;
1750
1751 case GS_OPCODE_PREPARE_CHANNEL_MASKS:
1752 generate_gs_prepare_channel_masks(p, dst);
1753 break;
1754
1755 case GS_OPCODE_SET_CHANNEL_MASKS:
1756 generate_gs_set_channel_masks(p, dst, src[0]);
1757 break;
1758
1759 case GS_OPCODE_GET_INSTANCE_ID:
1760 generate_gs_get_instance_id(p, dst);
1761 break;
1762
1763 case SHADER_OPCODE_SHADER_TIME_ADD:
1764 brw_shader_time_add(p, src[0],
1765 prog_data->base.binding_table.shader_time_start);
1766 brw_mark_surface_used(&prog_data->base,
1767 prog_data->base.binding_table.shader_time_start);
1768 break;
1769
1770 case SHADER_OPCODE_UNTYPED_ATOMIC:
1771 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1772 brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen,
1773 !inst->dst.is_null());
1774 break;
1775
1776 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
1777 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1778 brw_untyped_surface_read(p, dst, src[0], src[1], inst->mlen,
1779 src[2].ud);
1780 break;
1781
1782 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
1783 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1784 brw_untyped_surface_write(p, src[0], src[1], inst->mlen,
1785 src[2].ud);
1786 break;
1787
1788 case SHADER_OPCODE_TYPED_ATOMIC:
1789 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1790 brw_typed_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen,
1791 !inst->dst.is_null());
1792 break;
1793
1794 case SHADER_OPCODE_TYPED_SURFACE_READ:
1795 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1796 brw_typed_surface_read(p, dst, src[0], src[1], inst->mlen,
1797 src[2].ud);
1798 break;
1799
1800 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
1801 assert(src[2].file == BRW_IMMEDIATE_VALUE);
1802 brw_typed_surface_write(p, src[0], src[1], inst->mlen,
1803 src[2].ud);
1804 break;
1805
1806 case SHADER_OPCODE_MEMORY_FENCE:
1807 brw_memory_fence(p, dst);
1808 break;
1809
1810 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1811 brw_find_live_channel(p, dst);
1812 break;
1813
1814 case SHADER_OPCODE_BROADCAST:
1815 brw_broadcast(p, dst, src[0], src[1]);
1816 break;
1817
1818 case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
1819 generate_unpack_flags(p, dst);
1820 break;
1821
1822 case VEC4_OPCODE_MOV_BYTES: {
1823 /* Moves the low byte from each channel, using an Align1 access mode
1824 * and a <4,1,0> source region.
1825 */
1826 assert(src[0].type == BRW_REGISTER_TYPE_UB ||
1827 src[0].type == BRW_REGISTER_TYPE_B);
1828
1829 brw_set_default_access_mode(p, BRW_ALIGN_1);
1830 src[0].vstride = BRW_VERTICAL_STRIDE_4;
1831 src[0].width = BRW_WIDTH_1;
1832 src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
1833 brw_MOV(p, dst, src[0]);
1834 brw_set_default_access_mode(p, BRW_ALIGN_16);
1835 break;
1836 }
1837
1838 case VEC4_OPCODE_PACK_BYTES: {
1839 /* Is effectively:
1840 *
1841 * mov(8) dst<16,4,1>:UB src<4,1,0>:UB
1842 *
1843 * but destinations' only regioning is horizontal stride, so instead we
1844 * have to use two instructions:
1845 *
1846 * mov(4) dst<1>:UB src<4,1,0>:UB
1847 * mov(4) dst.16<1>:UB src.16<4,1,0>:UB
1848 *
1849 * where they pack the four bytes from the low and high four DW.
1850 */
1851 assert(_mesa_is_pow_two(dst.writemask) &&
1852 dst.writemask != 0);
1853 unsigned offset = __builtin_ctz(dst.writemask);
1854
1855 dst.type = BRW_REGISTER_TYPE_UB;
1856
1857 brw_set_default_access_mode(p, BRW_ALIGN_1);
1858
1859 src[0].type = BRW_REGISTER_TYPE_UB;
1860 src[0].vstride = BRW_VERTICAL_STRIDE_4;
1861 src[0].width = BRW_WIDTH_1;
1862 src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
1863 dst.subnr = offset * 4;
1864 struct brw_inst *insn = brw_MOV(p, dst, src[0]);
1865 brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
1866 brw_inst_set_no_dd_clear(p->devinfo, insn, true);
1867 brw_inst_set_no_dd_check(p->devinfo, insn, inst->no_dd_check);
1868
1869 src[0].subnr = 16;
1870 dst.subnr = 16 + offset * 4;
1871 insn = brw_MOV(p, dst, src[0]);
1872 brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
1873 brw_inst_set_no_dd_clear(p->devinfo, insn, inst->no_dd_clear);
1874 brw_inst_set_no_dd_check(p->devinfo, insn, true);
1875
1876 brw_set_default_access_mode(p, BRW_ALIGN_16);
1877 break;
1878 }
1879
1880 case TCS_OPCODE_URB_WRITE:
1881 generate_tcs_urb_write(p, inst, src[0]);
1882 break;
1883
1884 case VEC4_OPCODE_URB_READ:
1885 generate_vec4_urb_read(p, inst, dst, src[0]);
1886 break;
1887
1888 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
1889 generate_tcs_input_urb_offsets(p, dst, src[0], src[1]);
1890 break;
1891
1892 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
1893 generate_tcs_output_urb_offsets(p, dst, src[0], src[1]);
1894 break;
1895
1896 case TCS_OPCODE_GET_INSTANCE_ID:
1897 generate_tcs_get_instance_id(p, dst);
1898 break;
1899
1900 case TCS_OPCODE_GET_PRIMITIVE_ID:
1901 generate_tcs_get_primitive_id(p, dst);
1902 break;
1903
1904 case TCS_OPCODE_CREATE_BARRIER_HEADER:
1905 generate_tcs_create_barrier_header(p, prog_data, dst);
1906 break;
1907
1908 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
1909 generate_tes_create_input_read_header(p, dst);
1910 break;
1911
1912 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
1913 generate_tes_add_indirect_urb_offset(p, dst, src[0], src[1]);
1914 break;
1915
1916 case TES_OPCODE_GET_PRIMITIVE_ID:
1917 generate_tes_get_primitive_id(p, dst);
1918 break;
1919
1920 case TCS_OPCODE_SRC0_010_IS_ZERO:
1921 /* If src_reg had stride like fs_reg, we wouldn't need this. */
1922 brw_MOV(p, brw_null_reg(), stride(src[0], 0, 1, 0));
1923 brw_inst_set_cond_modifier(devinfo, brw_last_inst, BRW_CONDITIONAL_Z);
1924 break;
1925
1926 case TCS_OPCODE_RELEASE_INPUT:
1927 generate_tcs_release_input(p, dst, src[0], src[1]);
1928 break;
1929
1930 case TCS_OPCODE_THREAD_END:
1931 generate_tcs_thread_end(p, inst);
1932 break;
1933
1934 case SHADER_OPCODE_BARRIER:
1935 brw_barrier(p, src[0]);
1936 brw_WAIT(p);
1937 break;
1938
1939 default:
1940 unreachable("Unsupported opcode");
1941 }
1942
1943 if (inst->opcode == VEC4_OPCODE_PACK_BYTES) {
1944 /* Handled dependency hints in the generator. */
1945
1946 assert(!inst->conditional_mod);
1947 } else if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
1948 assert(p->nr_insn == pre_emit_nr_insn + 1 ||
1949 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
1950 "emitting more than 1 instruction");
1951
1952 brw_inst *last = &p->store[pre_emit_nr_insn];
1953
1954 if (inst->conditional_mod)
1955 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
1956 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
1957 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
1958 }
1959 }
1960
1961 brw_set_uip_jip(p);
1962 annotation_finalize(&annotation, p->next_insn_offset);
1963
1964 #ifndef NDEBUG
1965 bool validated = brw_validate_instructions(p, 0, &annotation);
1966 #else
1967 if (unlikely(debug_flag))
1968 brw_validate_instructions(p, 0, &annotation);
1969 #endif
1970
1971 int before_size = p->next_insn_offset;
1972 brw_compact_instructions(p, 0, annotation.ann_count, annotation.ann);
1973 int after_size = p->next_insn_offset;
1974
1975 if (unlikely(debug_flag)) {
1976 fprintf(stderr, "Native code for %s %s shader %s:\n",
1977 nir->info.label ? nir->info.label : "unnamed",
1978 _mesa_shader_stage_to_string(nir->stage), nir->info.name);
1979
1980 fprintf(stderr, "%s vec4 shader: %d instructions. %d loops. %u cycles."
1981 "Compacted %d to %d bytes (%.0f%%)\n",
1982 stage_abbrev,
1983 before_size / 16, loop_count, cfg->cycle_count, before_size, after_size,
1984 100.0f * (before_size - after_size) / before_size);
1985
1986 dump_assembly(p->store, annotation.ann_count, annotation.ann,
1987 p->devinfo);
1988 ralloc_free(annotation.mem_ctx);
1989 }
1990 assert(validated);
1991
1992 compiler->shader_debug_log(log_data,
1993 "%s vec4 shader: %d inst, %d loops, %u cycles, "
1994 "compacted %d to %d bytes.\n",
1995 stage_abbrev, before_size / 16,
1996 loop_count, cfg->cycle_count,
1997 before_size, after_size);
1998 }
1999
2000 extern "C" const unsigned *
2001 brw_vec4_generate_assembly(const struct brw_compiler *compiler,
2002 void *log_data,
2003 void *mem_ctx,
2004 const nir_shader *nir,
2005 struct brw_vue_prog_data *prog_data,
2006 const struct cfg_t *cfg,
2007 unsigned *out_assembly_size)
2008 {
2009 struct brw_codegen *p = rzalloc(mem_ctx, struct brw_codegen);
2010 brw_init_codegen(compiler->devinfo, p, mem_ctx);
2011 brw_set_default_access_mode(p, BRW_ALIGN_16);
2012
2013 generate_code(p, compiler, log_data, nir, prog_data, cfg);
2014
2015 return brw_get_program(p, out_assembly_size);
2016 }