i965/vec4: Add constructor of src_reg from a fixed hardware reg.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_gs.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_gs.c
26 *
27 * State atom for client-programmable geometry shaders, and support code.
28 */
29
30 #include "brw_vec4_gs.h"
31 #include "brw_context.h"
32 #include "brw_vec4_gs_visitor.h"
33 #include "brw_state.h"
34
35
36 static bool
37 do_gs_prog(struct brw_context *brw,
38 struct gl_shader_program *prog,
39 struct brw_geometry_program *gp,
40 struct brw_gs_prog_key *key)
41 {
42 struct brw_stage_state *stage_state = &brw->gs.base;
43 struct brw_gs_compile c;
44 memset(&c, 0, sizeof(c));
45 c.key = *key;
46 c.gp = gp;
47
48 c.prog_data.include_primitive_id =
49 (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
50
51 /* Allocate the references to the uniforms that will end up in the
52 * prog_data associated with the compiled program, and which will be freed
53 * by the state cache.
54 *
55 * Note: param_count needs to be num_uniform_components * 4, since we add
56 * padding around uniform values below vec4 size, so the worst case is that
57 * every uniform is a float which gets padded to the size of a vec4.
58 */
59 struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
60 int param_count = gs->num_uniform_components * 4;
61
62 /* We also upload clip plane data as uniforms */
63 param_count += MAX_CLIP_PLANES * 4;
64
65 c.prog_data.base.param = rzalloc_array(NULL, const float *, param_count);
66 c.prog_data.base.pull_param = rzalloc_array(NULL, const float *, param_count);
67
68 if (gp->program.OutputType == GL_POINTS) {
69 /* When the output type is points, the geometry shader may output data
70 * to multiple streams, and EndPrimitive() has no effect. So we
71 * configure the hardware to interpret the control data as stream ID.
72 */
73 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
74
75 /* However, StreamID is not yet supported, so we output zero bits of
76 * control data per vertex.
77 */
78 c.control_data_bits_per_vertex = 0;
79 } else {
80 /* When the output type is triangle_strip or line_strip, EndPrimitive()
81 * may be used to terminate the current strip and start a new one
82 * (similar to primitive restart), and outputting data to multiple
83 * streams is not supported. So we configure the hardware to interpret
84 * the control data as EndPrimitive information (a.k.a. "cut bits").
85 */
86 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
87
88 /* We only need to output control data if the shader actually calls
89 * EndPrimitive().
90 */
91 c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
92 }
93 c.control_data_header_size_bits =
94 gp->program.VerticesOut * c.control_data_bits_per_vertex;
95
96 /* 1 HWORD = 32 bytes = 256 bits */
97 c.prog_data.control_data_header_size_hwords =
98 ALIGN(c.control_data_header_size_bits, 256) / 256;
99
100 GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
101
102 /* In order for legacy clipping to work, we need to populate the clip
103 * distance varying slots whenever clipping is enabled, even if the vertex
104 * shader doesn't write to gl_ClipDistance.
105 */
106 if (c.key.base.userclip_active) {
107 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
108 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
109 }
110
111 brw_compute_vue_map(brw, &c.prog_data.base.vue_map, outputs_written);
112
113 /* Compute the output vertex size.
114 *
115 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
116 * Size (p168):
117 *
118 * [0,62] indicating [1,63] 16B units
119 *
120 * Specifies the size of each vertex stored in the GS output entry
121 * (following any Control Header data) as a number of 128-bit units
122 * (minus one).
123 *
124 * Programming Restrictions: The vertex size must be programmed as a
125 * multiple of 32B units with the following exception: Rendering is
126 * disabled (as per SOL stage state) and the vertex size output by the
127 * GS thread is 16B.
128 *
129 * If rendering is enabled (as per SOL state) the vertex size must be
130 * programmed as a multiple of 32B units. In other words, the only time
131 * software can program a vertex size with an odd number of 16B units
132 * is when rendering is disabled.
133 *
134 * Note: B=bytes in the above text.
135 *
136 * It doesn't seem worth the extra trouble to optimize the case where the
137 * vertex size is 16B (especially since this would require special-casing
138 * the GEN assembly that writes to the URB). So we just set the vertex
139 * size to a multiple of 32B (2 vec4's) in all cases.
140 *
141 * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
142 * budget that as follows:
143 *
144 * 512 bytes for varyings (a varying component is 4 bytes and
145 * gl_MaxGeometryOutputComponents = 128)
146 * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
147 * bytes)
148 * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
149 * even if it's not used)
150 * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
151 * whenever clip planes are enabled, even if the shader doesn't
152 * write to gl_ClipDistance)
153 * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
154 * (see below)--this causes up to 1 VUE slot to be wasted
155 * 400 bytes available for varying packing overhead
156 *
157 * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
158 * per interpolation type, so this is plenty.
159 *
160 */
161 unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
162 assert(output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
163 c.prog_data.output_vertex_size_hwords =
164 ALIGN(output_vertex_size_bytes, 32) / 32;
165
166 /* Compute URB entry size. The maximum allowed URB entry size is 32k.
167 * That divides up as follows:
168 *
169 * 64 bytes for the control data header (cut indices or StreamID bits)
170 * 4096 bytes for varyings (a varying component is 4 bytes and
171 * gl_MaxGeometryTotalOutputComponents = 1024)
172 * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
173 * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
174 * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
175 * even if it's not used)
176 * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
177 * whenever clip planes are enabled, even if the shader doesn't
178 * write to gl_ClipDistance)
179 * 4096 bytes overhead since the VUE size must be a multiple of 32
180 * bytes (see above)--this causes up to 1 VUE slot to be wasted
181 * 8128 bytes available for varying packing overhead
182 *
183 * Worst-case varying packing overhead is 3/4 of a varying slot per
184 * interpolation type, which works out to 3072 bytes, so this would allow
185 * us to accommodate 2 interpolation types without any danger of running
186 * out of URB space.
187 *
188 * In practice, the risk of running out of URB space is very small, since
189 * the above figures are all worst-case, and most of them scale with the
190 * number of output vertices. So we'll just calculate the amount of space
191 * we need, and if it's too large, fail to compile.
192 */
193 unsigned output_size_bytes =
194 c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
195 output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
196
197 /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
198 * which comes before the control header.
199 */
200 if (brw->gen >= 8)
201 output_size_bytes += 32;
202
203 assert(output_size_bytes >= 1);
204 if (output_size_bytes > GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES)
205 return false;
206
207 /* URB entry sizes are stored as a multiple of 64 bytes. */
208 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
209
210 c.prog_data.output_topology = prim_to_hw_prim[gp->program.OutputType];
211
212 brw_compute_vue_map(brw, &c.input_vue_map, c.key.input_varyings);
213
214 /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
215 * need to program a URB read length of ceiling(num_slots / 2).
216 */
217 c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
218
219 void *mem_ctx = ralloc_context(NULL);
220 unsigned program_size;
221 const unsigned *program =
222 brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
223 if (program == NULL) {
224 ralloc_free(mem_ctx);
225 return false;
226 }
227
228 /* Scratch space is used for register spilling */
229 if (c.base.last_scratch) {
230 perf_debug("Geometry shader triggered register spilling. "
231 "Try reducing the number of live vec4 values to "
232 "improve performance.\n");
233
234 c.prog_data.base.total_scratch
235 = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
236
237 brw_get_scratch_bo(brw, &stage_state->scratch_bo,
238 c.prog_data.base.total_scratch * brw->max_gs_threads);
239 }
240
241 brw_upload_cache(&brw->cache, BRW_GS_PROG,
242 &c.key, sizeof(c.key),
243 program, program_size,
244 &c.prog_data, sizeof(c.prog_data),
245 &stage_state->prog_offset, &brw->gs.prog_data);
246 ralloc_free(mem_ctx);
247
248 return true;
249 }
250
251
252 static void
253 brw_upload_gs_prog(struct brw_context *brw)
254 {
255 struct gl_context *ctx = &brw->ctx;
256 struct brw_stage_state *stage_state = &brw->gs.base;
257 struct brw_gs_prog_key key;
258 /* BRW_NEW_GEOMETRY_PROGRAM */
259 struct brw_geometry_program *gp =
260 (struct brw_geometry_program *) brw->geometry_program;
261
262 if (gp == NULL) {
263 /* No geometry shader. Vertex data just passes straight through. */
264 if (brw->state.dirty.brw & BRW_NEW_VUE_MAP_VS) {
265 brw->vue_map_geom_out = brw->vue_map_vs;
266 brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
267 }
268
269 /* Other state atoms had better not try to access prog_data, since
270 * there's no GS program.
271 */
272 brw->gs.prog_data = NULL;
273 brw->gs.base.prog_data = NULL;
274
275 return;
276 }
277
278 struct gl_program *prog = &gp->program.Base;
279
280 memset(&key, 0, sizeof(key));
281
282 key.base.program_string_id = gp->id;
283 brw_setup_vec4_key_clip_info(brw, &key.base,
284 gp->program.Base.UsesClipDistanceOut);
285
286 /* _NEW_LIGHT | _NEW_BUFFERS */
287 key.base.clamp_vertex_color = ctx->Light._ClampVertexColor;
288
289 /* _NEW_TEXTURE */
290 brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
291 &key.base.tex);
292
293 /* BRW_NEW_VUE_MAP_VS */
294 key.input_varyings = brw->vue_map_vs.slots_valid;
295
296 if (!brw_search_cache(&brw->cache, BRW_GS_PROG,
297 &key, sizeof(key),
298 &stage_state->prog_offset, &brw->gs.prog_data)) {
299 bool success =
300 do_gs_prog(brw, ctx->Shader.CurrentProgram[MESA_SHADER_GEOMETRY], gp,
301 &key);
302 assert(success);
303 }
304 brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
305
306 if (memcmp(&brw->vs.prog_data->base.vue_map, &brw->vue_map_geom_out,
307 sizeof(brw->vue_map_geom_out)) != 0) {
308 brw->vue_map_geom_out = brw->gs.prog_data->base.vue_map;
309 brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
310 }
311 }
312
313
314 const struct brw_tracked_state brw_gs_prog = {
315 .dirty = {
316 .mesa = (_NEW_LIGHT | _NEW_BUFFERS | _NEW_TEXTURE),
317 .brw = BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_VUE_MAP_VS,
318 },
319 .emit = brw_upload_gs_prog
320 };
321
322
323 bool
324 brw_gs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
325 {
326 struct brw_context *brw = brw_context(ctx);
327 struct brw_gs_prog_key key;
328 uint32_t old_prog_offset = brw->gs.base.prog_offset;
329 struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
330 bool success;
331
332 if (!prog->_LinkedShaders[MESA_SHADER_GEOMETRY])
333 return true;
334
335 struct gl_geometry_program *gp = (struct gl_geometry_program *)
336 prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->Program;
337 struct brw_geometry_program *bgp = brw_geometry_program(gp);
338
339 memset(&key, 0, sizeof(key));
340
341 brw_vec4_setup_prog_key_for_precompile(ctx, &key.base, bgp->id, &gp->Base);
342
343 /* Assume that the set of varyings coming in from the vertex shader exactly
344 * matches what the geometry shader requires.
345 */
346 key.input_varyings = gp->Base.InputsRead;
347
348 success = do_gs_prog(brw, prog, bgp, &key);
349
350 brw->gs.base.prog_offset = old_prog_offset;
351 brw->gs.prog_data = old_prog_data;
352
353 return success;
354 }
355
356
357 bool
358 brw_gs_prog_data_compare(const void *in_a, const void *in_b)
359 {
360 const struct brw_gs_prog_data *a = in_a;
361 const struct brw_gs_prog_data *b = in_b;
362
363 /* Compare the base vec4 structure. */
364 if (!brw_vec4_prog_data_compare(&a->base, &b->base))
365 return false;
366
367 /* Compare the rest of the struct. */
368 const unsigned offset = sizeof(struct brw_vec4_prog_data);
369 if (memcmp(((char *) a) + offset, ((char *) b) + offset,
370 sizeof(struct brw_gs_prog_data) - offset)) {
371 return false;
372 }
373
374 return true;
375 }
376
377
378 void
379 brw_gs_prog_data_free(const void *in_prog_data)
380 {
381 const struct brw_gs_prog_data *prog_data = in_prog_data;
382
383 brw_vec4_prog_data_free(&prog_data->base);
384 }