i965/fs: Actually free program data on the error path.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_gs.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_gs.c
26 *
27 * State atom for client-programmable geometry shaders, and support code.
28 */
29
30 #include "brw_vec4_gs.h"
31 #include "brw_context.h"
32 #include "brw_vec4_gs_visitor.h"
33 #include "brw_state.h"
34
35
36 static bool
37 do_gs_prog(struct brw_context *brw,
38 struct gl_shader_program *prog,
39 struct brw_geometry_program *gp,
40 struct brw_gs_prog_key *key)
41 {
42 struct brw_stage_state *stage_state = &brw->gs.base;
43 struct brw_gs_compile c;
44 memset(&c, 0, sizeof(c));
45 c.key = *key;
46 c.gp = gp;
47
48 c.prog_data.include_primitive_id =
49 (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
50
51 c.prog_data.invocations = gp->program.Invocations;
52
53 /* Allocate the references to the uniforms that will end up in the
54 * prog_data associated with the compiled program, and which will be freed
55 * by the state cache.
56 *
57 * Note: param_count needs to be num_uniform_components * 4, since we add
58 * padding around uniform values below vec4 size, so the worst case is that
59 * every uniform is a float which gets padded to the size of a vec4.
60 */
61 struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
62 int param_count = gs->num_uniform_components * 4;
63
64 /* We also upload clip plane data as uniforms */
65 param_count += MAX_CLIP_PLANES * 4;
66
67 c.prog_data.base.base.param =
68 rzalloc_array(NULL, const float *, param_count);
69 c.prog_data.base.base.pull_param =
70 rzalloc_array(NULL, const float *, param_count);
71 /* Setting nr_params here NOT to the size of the param and pull_param
72 * arrays, but to the number of uniform components vec4_visitor
73 * needs. vec4_visitor::setup_uniforms() will set it back to a proper value.
74 */
75 c.prog_data.base.base.nr_params = ALIGN(param_count, 4) / 4 + gs->num_samplers;
76
77 if (gp->program.OutputType == GL_POINTS) {
78 /* When the output type is points, the geometry shader may output data
79 * to multiple streams, and EndPrimitive() has no effect. So we
80 * configure the hardware to interpret the control data as stream ID.
81 */
82 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
83
84 /* However, StreamID is not yet supported, so we output zero bits of
85 * control data per vertex.
86 */
87 c.control_data_bits_per_vertex = 0;
88 } else {
89 /* When the output type is triangle_strip or line_strip, EndPrimitive()
90 * may be used to terminate the current strip and start a new one
91 * (similar to primitive restart), and outputting data to multiple
92 * streams is not supported. So we configure the hardware to interpret
93 * the control data as EndPrimitive information (a.k.a. "cut bits").
94 */
95 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
96
97 /* We only need to output control data if the shader actually calls
98 * EndPrimitive().
99 */
100 c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
101 }
102 c.control_data_header_size_bits =
103 gp->program.VerticesOut * c.control_data_bits_per_vertex;
104
105 /* 1 HWORD = 32 bytes = 256 bits */
106 c.prog_data.control_data_header_size_hwords =
107 ALIGN(c.control_data_header_size_bits, 256) / 256;
108
109 GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
110
111 /* In order for legacy clipping to work, we need to populate the clip
112 * distance varying slots whenever clipping is enabled, even if the vertex
113 * shader doesn't write to gl_ClipDistance.
114 */
115 if (c.key.base.userclip_active) {
116 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
117 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
118 }
119
120 brw_compute_vue_map(brw, &c.prog_data.base.vue_map, outputs_written);
121
122 /* Compute the output vertex size.
123 *
124 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
125 * Size (p168):
126 *
127 * [0,62] indicating [1,63] 16B units
128 *
129 * Specifies the size of each vertex stored in the GS output entry
130 * (following any Control Header data) as a number of 128-bit units
131 * (minus one).
132 *
133 * Programming Restrictions: The vertex size must be programmed as a
134 * multiple of 32B units with the following exception: Rendering is
135 * disabled (as per SOL stage state) and the vertex size output by the
136 * GS thread is 16B.
137 *
138 * If rendering is enabled (as per SOL state) the vertex size must be
139 * programmed as a multiple of 32B units. In other words, the only time
140 * software can program a vertex size with an odd number of 16B units
141 * is when rendering is disabled.
142 *
143 * Note: B=bytes in the above text.
144 *
145 * It doesn't seem worth the extra trouble to optimize the case where the
146 * vertex size is 16B (especially since this would require special-casing
147 * the GEN assembly that writes to the URB). So we just set the vertex
148 * size to a multiple of 32B (2 vec4's) in all cases.
149 *
150 * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
151 * budget that as follows:
152 *
153 * 512 bytes for varyings (a varying component is 4 bytes and
154 * gl_MaxGeometryOutputComponents = 128)
155 * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
156 * bytes)
157 * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
158 * even if it's not used)
159 * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
160 * whenever clip planes are enabled, even if the shader doesn't
161 * write to gl_ClipDistance)
162 * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
163 * (see below)--this causes up to 1 VUE slot to be wasted
164 * 400 bytes available for varying packing overhead
165 *
166 * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
167 * per interpolation type, so this is plenty.
168 *
169 */
170 unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
171 assert(output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
172 c.prog_data.output_vertex_size_hwords =
173 ALIGN(output_vertex_size_bytes, 32) / 32;
174
175 /* Compute URB entry size. The maximum allowed URB entry size is 32k.
176 * That divides up as follows:
177 *
178 * 64 bytes for the control data header (cut indices or StreamID bits)
179 * 4096 bytes for varyings (a varying component is 4 bytes and
180 * gl_MaxGeometryTotalOutputComponents = 1024)
181 * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
182 * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
183 * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
184 * even if it's not used)
185 * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
186 * whenever clip planes are enabled, even if the shader doesn't
187 * write to gl_ClipDistance)
188 * 4096 bytes overhead since the VUE size must be a multiple of 32
189 * bytes (see above)--this causes up to 1 VUE slot to be wasted
190 * 8128 bytes available for varying packing overhead
191 *
192 * Worst-case varying packing overhead is 3/4 of a varying slot per
193 * interpolation type, which works out to 3072 bytes, so this would allow
194 * us to accommodate 2 interpolation types without any danger of running
195 * out of URB space.
196 *
197 * In practice, the risk of running out of URB space is very small, since
198 * the above figures are all worst-case, and most of them scale with the
199 * number of output vertices. So we'll just calculate the amount of space
200 * we need, and if it's too large, fail to compile.
201 */
202 unsigned output_size_bytes =
203 c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
204 output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
205
206 /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
207 * which comes before the control header.
208 */
209 if (brw->gen >= 8)
210 output_size_bytes += 32;
211
212 assert(output_size_bytes >= 1);
213 if (output_size_bytes > GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES)
214 return false;
215
216 /* URB entry sizes are stored as a multiple of 64 bytes. */
217 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
218
219 c.prog_data.output_topology = prim_to_hw_prim[gp->program.OutputType];
220
221 brw_compute_vue_map(brw, &c.input_vue_map, c.key.input_varyings);
222
223 /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
224 * need to program a URB read length of ceiling(num_slots / 2).
225 */
226 c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
227
228 void *mem_ctx = ralloc_context(NULL);
229 unsigned program_size;
230 const unsigned *program =
231 brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
232 if (program == NULL) {
233 ralloc_free(mem_ctx);
234 return false;
235 }
236
237 /* Scratch space is used for register spilling */
238 if (c.base.last_scratch) {
239 perf_debug("Geometry shader triggered register spilling. "
240 "Try reducing the number of live vec4 values to "
241 "improve performance.\n");
242
243 c.prog_data.base.total_scratch
244 = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
245
246 brw_get_scratch_bo(brw, &stage_state->scratch_bo,
247 c.prog_data.base.total_scratch * brw->max_gs_threads);
248 }
249
250 brw_upload_cache(&brw->cache, BRW_GS_PROG,
251 &c.key, sizeof(c.key),
252 program, program_size,
253 &c.prog_data, sizeof(c.prog_data),
254 &stage_state->prog_offset, &brw->gs.prog_data);
255 ralloc_free(mem_ctx);
256
257 return true;
258 }
259
260
261 static void
262 brw_upload_gs_prog(struct brw_context *brw)
263 {
264 struct gl_context *ctx = &brw->ctx;
265 struct brw_stage_state *stage_state = &brw->gs.base;
266 struct brw_gs_prog_key key;
267 /* BRW_NEW_GEOMETRY_PROGRAM */
268 struct brw_geometry_program *gp =
269 (struct brw_geometry_program *) brw->geometry_program;
270
271 if (gp == NULL) {
272 /* No geometry shader. Vertex data just passes straight through. */
273 if (brw->state.dirty.brw & BRW_NEW_VUE_MAP_VS) {
274 brw->vue_map_geom_out = brw->vue_map_vs;
275 brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
276 }
277
278 /* Other state atoms had better not try to access prog_data, since
279 * there's no GS program.
280 */
281 brw->gs.prog_data = NULL;
282 brw->gs.base.prog_data = NULL;
283
284 return;
285 }
286
287 struct gl_program *prog = &gp->program.Base;
288
289 memset(&key, 0, sizeof(key));
290
291 key.base.program_string_id = gp->id;
292 brw_setup_vec4_key_clip_info(brw, &key.base,
293 gp->program.Base.UsesClipDistanceOut);
294
295 /* _NEW_LIGHT | _NEW_BUFFERS */
296 key.base.clamp_vertex_color = ctx->Light._ClampVertexColor;
297
298 /* _NEW_TEXTURE */
299 brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
300 &key.base.tex);
301
302 /* BRW_NEW_VUE_MAP_VS */
303 key.input_varyings = brw->vue_map_vs.slots_valid;
304
305 if (!brw_search_cache(&brw->cache, BRW_GS_PROG,
306 &key, sizeof(key),
307 &stage_state->prog_offset, &brw->gs.prog_data)) {
308 bool success =
309 do_gs_prog(brw, ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY], gp,
310 &key);
311 assert(success);
312 }
313 brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
314
315 if (memcmp(&brw->vs.prog_data->base.vue_map, &brw->vue_map_geom_out,
316 sizeof(brw->vue_map_geom_out)) != 0) {
317 brw->vue_map_geom_out = brw->gs.prog_data->base.vue_map;
318 brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
319 }
320 }
321
322
323 const struct brw_tracked_state brw_gs_prog = {
324 .dirty = {
325 .mesa = (_NEW_LIGHT | _NEW_BUFFERS | _NEW_TEXTURE),
326 .brw = BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_VUE_MAP_VS,
327 },
328 .emit = brw_upload_gs_prog
329 };
330
331
332 bool
333 brw_gs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
334 {
335 struct brw_context *brw = brw_context(ctx);
336 struct brw_gs_prog_key key;
337 uint32_t old_prog_offset = brw->gs.base.prog_offset;
338 struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
339 bool success;
340
341 if (!prog->_LinkedShaders[MESA_SHADER_GEOMETRY])
342 return true;
343
344 struct gl_geometry_program *gp = (struct gl_geometry_program *)
345 prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->Program;
346 struct brw_geometry_program *bgp = brw_geometry_program(gp);
347
348 memset(&key, 0, sizeof(key));
349
350 brw_vec4_setup_prog_key_for_precompile(ctx, &key.base, bgp->id, &gp->Base);
351
352 /* Assume that the set of varyings coming in from the vertex shader exactly
353 * matches what the geometry shader requires.
354 */
355 key.input_varyings = gp->Base.InputsRead;
356
357 success = do_gs_prog(brw, prog, bgp, &key);
358
359 brw->gs.base.prog_offset = old_prog_offset;
360 brw->gs.prog_data = old_prog_data;
361
362 return success;
363 }
364
365
366 bool
367 brw_gs_prog_data_compare(const void *in_a, const void *in_b)
368 {
369 const struct brw_gs_prog_data *a = in_a;
370 const struct brw_gs_prog_data *b = in_b;
371
372 /* Compare the base structure. */
373 if (!brw_stage_prog_data_compare(&a->base.base, &b->base.base))
374 return false;
375
376 /* Compare the rest of the struct. */
377 const unsigned offset = sizeof(struct brw_stage_prog_data);
378 if (memcmp(((char *) a) + offset, ((char *) b) + offset,
379 sizeof(struct brw_gs_prog_data) - offset)) {
380 return false;
381 }
382
383 return true;
384 }