1321a94d6581bca1e2ef1323e93431804618075a
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_gs_visitor.cpp
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_gs_visitor.cpp
26 *
27 * Geometry-shader-specific code derived from the vec4_visitor class.
28 */
29
30 #include "brw_vec4_gs_visitor.h"
31
32 const unsigned MAX_GS_INPUT_VERTICES = 6;
33
34 namespace brw {
35
36 vec4_gs_visitor::vec4_gs_visitor(struct brw_context *brw,
37 struct brw_gs_compile *c,
38 struct gl_shader_program *prog,
39 void *mem_ctx,
40 bool no_spills)
41 : vec4_visitor(brw, &c->base, &c->gp->program.Base, &c->key.base,
42 &c->prog_data.base, prog, MESA_SHADER_GEOMETRY, mem_ctx,
43 INTEL_DEBUG & DEBUG_GS, no_spills,
44 ST_GS, ST_GS_WRITTEN, ST_GS_RESET),
45 c(c)
46 {
47 }
48
49
50 dst_reg *
51 vec4_gs_visitor::make_reg_for_system_value(ir_variable *ir)
52 {
53 dst_reg *reg = new(mem_ctx) dst_reg(this, ir->type);
54
55 switch (ir->data.location) {
56 case SYSTEM_VALUE_INVOCATION_ID:
57 this->current_annotation = "initialize gl_InvocationID";
58 emit(GS_OPCODE_GET_INSTANCE_ID, *reg);
59 break;
60 default:
61 assert(!"not reached");
62 break;
63 }
64
65 return reg;
66 }
67
68
69 int
70 vec4_gs_visitor::setup_varying_inputs(int payload_reg, int *attribute_map,
71 int attributes_per_reg)
72 {
73 /* For geometry shaders there are N copies of the input attributes, where N
74 * is the number of input vertices. attribute_map[BRW_VARYING_SLOT_COUNT *
75 * i + j] represents attribute j for vertex i.
76 *
77 * Note that GS inputs are read from the VUE 256 bits (2 vec4's) at a time,
78 * so the total number of input slots that will be delivered to the GS (and
79 * thus the stride of the input arrays) is urb_read_length * 2.
80 */
81 const unsigned num_input_vertices = c->gp->program.VerticesIn;
82 assert(num_input_vertices <= MAX_GS_INPUT_VERTICES);
83 unsigned input_array_stride = c->prog_data.base.urb_read_length * 2;
84
85 for (int slot = 0; slot < c->input_vue_map.num_slots; slot++) {
86 int varying = c->input_vue_map.slot_to_varying[slot];
87 for (unsigned vertex = 0; vertex < num_input_vertices; vertex++) {
88 attribute_map[BRW_VARYING_SLOT_COUNT * vertex + varying] =
89 attributes_per_reg * payload_reg + input_array_stride * vertex +
90 slot;
91 }
92 }
93
94 int regs_used = ALIGN(input_array_stride * num_input_vertices,
95 attributes_per_reg) / attributes_per_reg;
96 return payload_reg + regs_used;
97 }
98
99
100 void
101 vec4_gs_visitor::setup_payload()
102 {
103 int attribute_map[BRW_VARYING_SLOT_COUNT * MAX_GS_INPUT_VERTICES];
104
105 /* If we are in dual instanced mode, then attributes are going to be
106 * interleaved, so one register contains two attribute slots.
107 */
108 int attributes_per_reg = c->prog_data.dual_instanced_dispatch ? 2 : 1;
109
110 /* If a geometry shader tries to read from an input that wasn't written by
111 * the vertex shader, that produces undefined results, but it shouldn't
112 * crash anything. So initialize attribute_map to zeros--that ensures that
113 * these undefined results are read from r0.
114 */
115 memset(attribute_map, 0, sizeof(attribute_map));
116
117 int reg = 0;
118
119 /* The payload always contains important data in r0, which contains
120 * the URB handles that are passed on to the URB write at the end
121 * of the thread.
122 */
123 reg++;
124
125 /* If the shader uses gl_PrimitiveIDIn, that goes in r1. */
126 if (c->prog_data.include_primitive_id)
127 attribute_map[VARYING_SLOT_PRIMITIVE_ID] = attributes_per_reg * reg++;
128
129 reg = setup_uniforms(reg);
130
131 reg = setup_varying_inputs(reg, attribute_map, attributes_per_reg);
132
133 lower_attributes_to_hw_regs(attribute_map,
134 c->prog_data.dual_instanced_dispatch);
135
136 this->first_non_payload_grf = reg;
137 }
138
139
140 void
141 vec4_gs_visitor::emit_prolog()
142 {
143 /* In vertex shaders, r0.2 is guaranteed to be initialized to zero. In
144 * geometry shaders, it isn't (it contains a bunch of information we don't
145 * need, like the input primitive type). We need r0.2 to be zero in order
146 * to build scratch read/write messages correctly (otherwise this value
147 * will be interpreted as a global offset, causing us to do our scratch
148 * reads/writes to garbage memory). So just set it to zero at the top of
149 * the shader.
150 */
151 this->current_annotation = "clear r0.2";
152 dst_reg r0(retype(brw_vec4_grf(0, 0), BRW_REGISTER_TYPE_UD));
153 vec4_instruction *inst = emit(GS_OPCODE_SET_DWORD_2_IMMED, r0, 0u);
154 inst->force_writemask_all = true;
155
156 /* Create a virtual register to hold the vertex count */
157 this->vertex_count = src_reg(this, glsl_type::uint_type);
158
159 /* Initialize the vertex_count register to 0 */
160 this->current_annotation = "initialize vertex_count";
161 inst = emit(MOV(dst_reg(this->vertex_count), 0u));
162 inst->force_writemask_all = true;
163
164 if (c->control_data_header_size_bits > 0) {
165 /* Create a virtual register to hold the current set of control data
166 * bits.
167 */
168 this->control_data_bits = src_reg(this, glsl_type::uint_type);
169
170 /* If we're outputting more than 32 control data bits, then EmitVertex()
171 * will set control_data_bits to 0 after emitting the first vertex.
172 * Otherwise, we need to initialize it to 0 here.
173 */
174 if (c->control_data_header_size_bits <= 32) {
175 this->current_annotation = "initialize control data bits";
176 inst = emit(MOV(dst_reg(this->control_data_bits), 0u));
177 inst->force_writemask_all = true;
178 }
179 }
180
181 /* If the geometry shader uses the gl_PointSize input, we need to fix it up
182 * to account for the fact that the vertex shader stored it in the w
183 * component of VARYING_SLOT_PSIZ.
184 */
185 if (c->gp->program.Base.InputsRead & VARYING_BIT_PSIZ) {
186 this->current_annotation = "swizzle gl_PointSize input";
187 for (int vertex = 0; vertex < c->gp->program.VerticesIn; vertex++) {
188 dst_reg dst(ATTR,
189 BRW_VARYING_SLOT_COUNT * vertex + VARYING_SLOT_PSIZ);
190 dst.type = BRW_REGISTER_TYPE_F;
191 src_reg src(dst);
192 dst.writemask = WRITEMASK_X;
193 src.swizzle = BRW_SWIZZLE_WWWW;
194 inst = emit(MOV(dst, src));
195
196 /* In dual instanced dispatch mode, dst has a width of 4, so we need
197 * to make sure the MOV happens regardless of which channels are
198 * enabled.
199 */
200 inst->force_writemask_all = true;
201 }
202 }
203
204 this->current_annotation = NULL;
205 }
206
207
208 void
209 vec4_gs_visitor::emit_program_code()
210 {
211 /* We don't support NV_geometry_program4. */
212 assert(!"Unreached");
213 }
214
215
216 void
217 vec4_gs_visitor::emit_thread_end()
218 {
219 if (c->control_data_header_size_bits > 0) {
220 /* During shader execution, we only ever call emit_control_data_bits()
221 * just prior to outputting a vertex. Therefore, the control data bits
222 * corresponding to the most recently output vertex still need to be
223 * emitted.
224 */
225 current_annotation = "thread end: emit control data bits";
226 emit_control_data_bits();
227 }
228
229 /* MRF 0 is reserved for the debugger, so start with message header
230 * in MRF 1.
231 */
232 int base_mrf = 1;
233
234 current_annotation = "thread end";
235 dst_reg mrf_reg(MRF, base_mrf);
236 src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
237 vec4_instruction *inst = emit(MOV(mrf_reg, r0));
238 inst->force_writemask_all = true;
239 emit(GS_OPCODE_SET_VERTEX_COUNT, mrf_reg, this->vertex_count);
240 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
241 emit_shader_time_end();
242 inst = emit(GS_OPCODE_THREAD_END);
243 inst->base_mrf = base_mrf;
244 inst->mlen = 1;
245 }
246
247
248 void
249 vec4_gs_visitor::emit_urb_write_header(int mrf)
250 {
251 /* The SEND instruction that writes the vertex data to the VUE will use
252 * per_slot_offset=true, which means that DWORDs 3 and 4 of the message
253 * header specify an offset (in multiples of 256 bits) into the URB entry
254 * at which the write should take place.
255 *
256 * So we have to prepare a message header with the appropriate offset
257 * values.
258 */
259 dst_reg mrf_reg(MRF, mrf);
260 src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
261 this->current_annotation = "URB write header";
262 vec4_instruction *inst = emit(MOV(mrf_reg, r0));
263 inst->force_writemask_all = true;
264 emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, this->vertex_count,
265 (uint32_t) c->prog_data.output_vertex_size_hwords);
266 }
267
268
269 vec4_instruction *
270 vec4_gs_visitor::emit_urb_write_opcode(bool complete)
271 {
272 /* We don't care whether the vertex is complete, because in general
273 * geometry shaders output multiple vertices, and we don't terminate the
274 * thread until all vertices are complete.
275 */
276 (void) complete;
277
278 vec4_instruction *inst = emit(GS_OPCODE_URB_WRITE);
279 inst->offset = c->prog_data.control_data_header_size_hwords;
280
281 /* We need to increment Global Offset by 1 to make room for Broadwell's
282 * extra "Vertex Count" payload at the beginning of the URB entry.
283 */
284 if (brw->gen >= 8)
285 inst->offset++;
286
287 inst->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
288 return inst;
289 }
290
291
292 int
293 vec4_gs_visitor::compute_array_stride(ir_dereference_array *ir)
294 {
295 /* Geometry shader inputs are arrays, but they use an unusual array layout:
296 * instead of all array elements for a given geometry shader input being
297 * stored consecutively, all geometry shader inputs are interleaved into
298 * one giant array. At this stage of compilation, we assume that the
299 * stride of the array is BRW_VARYING_SLOT_COUNT. Later,
300 * setup_attributes() will remap our accesses to the actual input array.
301 */
302 ir_dereference_variable *deref_var = ir->array->as_dereference_variable();
303 if (deref_var && deref_var->var->data.mode == ir_var_shader_in)
304 return BRW_VARYING_SLOT_COUNT;
305 else
306 return vec4_visitor::compute_array_stride(ir);
307 }
308
309
310 /**
311 * Write out a batch of 32 control data bits from the control_data_bits
312 * register to the URB.
313 *
314 * The current value of the vertex_count register determines which DWORD in
315 * the URB receives the control data bits. The control_data_bits register is
316 * assumed to contain the correct data for the vertex that was most recently
317 * output, and all previous vertices that share the same DWORD.
318 *
319 * This function takes care of ensuring that if no vertices have been output
320 * yet, no control bits are emitted.
321 */
322 void
323 vec4_gs_visitor::emit_control_data_bits()
324 {
325 assert(c->control_data_bits_per_vertex != 0);
326
327 /* Since the URB_WRITE_OWORD message operates with 128-bit (vec4 sized)
328 * granularity, we need to use two tricks to ensure that the batch of 32
329 * control data bits is written to the appropriate DWORD in the URB. To
330 * select which vec4 we are writing to, we use the "slot {0,1} offset"
331 * fields of the message header. To select which DWORD in the vec4 we are
332 * writing to, we use the channel mask fields of the message header. To
333 * avoid penalizing geometry shaders that emit a small number of vertices
334 * with extra bookkeeping, we only do each of these tricks when
335 * c->prog_data.control_data_header_size_bits is large enough to make it
336 * necessary.
337 *
338 * Note: this means that if we're outputting just a single DWORD of control
339 * data bits, we'll actually replicate it four times since we won't do any
340 * channel masking. But that's not a problem since in this case the
341 * hardware only pays attention to the first DWORD.
342 */
343 enum brw_urb_write_flags urb_write_flags = BRW_URB_WRITE_OWORD;
344 if (c->control_data_header_size_bits > 32)
345 urb_write_flags = urb_write_flags | BRW_URB_WRITE_USE_CHANNEL_MASKS;
346 if (c->control_data_header_size_bits > 128)
347 urb_write_flags = urb_write_flags | BRW_URB_WRITE_PER_SLOT_OFFSET;
348
349 /* If vertex_count is 0, then no control data bits have been accumulated
350 * yet, so we should do nothing.
351 */
352 emit(CMP(dst_null_d(), this->vertex_count, 0u, BRW_CONDITIONAL_NEQ));
353 emit(IF(BRW_PREDICATE_NORMAL));
354 {
355 /* If we are using either channel masks or a per-slot offset, then we
356 * need to figure out which DWORD we are trying to write to, using the
357 * formula:
358 *
359 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
360 *
361 * Since bits_per_vertex is a power of two, and is known at compile
362 * time, this can be optimized to:
363 *
364 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
365 */
366 src_reg dword_index(this, glsl_type::uint_type);
367 if (urb_write_flags) {
368 src_reg prev_count(this, glsl_type::uint_type);
369 emit(ADD(dst_reg(prev_count), this->vertex_count, 0xffffffffu));
370 unsigned log2_bits_per_vertex =
371 _mesa_fls(c->control_data_bits_per_vertex);
372 emit(SHR(dst_reg(dword_index), prev_count,
373 (uint32_t) (6 - log2_bits_per_vertex)));
374 }
375
376 /* Start building the URB write message. The first MRF gets a copy of
377 * R0.
378 */
379 int base_mrf = 1;
380 dst_reg mrf_reg(MRF, base_mrf);
381 src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
382 vec4_instruction *inst = emit(MOV(mrf_reg, r0));
383 inst->force_writemask_all = true;
384
385 if (urb_write_flags & BRW_URB_WRITE_PER_SLOT_OFFSET) {
386 /* Set the per-slot offset to dword_index / 4, to that we'll write to
387 * the appropriate OWORD within the control data header.
388 */
389 src_reg per_slot_offset(this, glsl_type::uint_type);
390 emit(SHR(dst_reg(per_slot_offset), dword_index, 2u));
391 emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, per_slot_offset, 1u);
392 }
393
394 if (urb_write_flags & BRW_URB_WRITE_USE_CHANNEL_MASKS) {
395 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
396 * write to the appropriate DWORD within the OWORD. We need to do
397 * this computation with force_writemask_all, otherwise garbage data
398 * from invocation 0 might clobber the mask for invocation 1 when
399 * GS_OPCODE_PREPARE_CHANNEL_MASKS tries to OR the two masks
400 * together.
401 */
402 src_reg channel(this, glsl_type::uint_type);
403 inst = emit(AND(dst_reg(channel), dword_index, 3u));
404 inst->force_writemask_all = true;
405 src_reg one(this, glsl_type::uint_type);
406 inst = emit(MOV(dst_reg(one), 1u));
407 inst->force_writemask_all = true;
408 src_reg channel_mask(this, glsl_type::uint_type);
409 inst = emit(SHL(dst_reg(channel_mask), one, channel));
410 inst->force_writemask_all = true;
411 emit(GS_OPCODE_PREPARE_CHANNEL_MASKS, dst_reg(channel_mask),
412 channel_mask);
413 emit(GS_OPCODE_SET_CHANNEL_MASKS, mrf_reg, channel_mask);
414 }
415
416 /* Store the control data bits in the message payload and send it. */
417 dst_reg mrf_reg2(MRF, base_mrf + 1);
418 inst = emit(MOV(mrf_reg2, this->control_data_bits));
419 inst->force_writemask_all = true;
420 inst = emit(GS_OPCODE_URB_WRITE);
421 inst->urb_write_flags = urb_write_flags;
422 /* We need to increment Global Offset by 256-bits to make room for
423 * Broadwell's extra "Vertex Count" payload at the beginning of the
424 * URB entry. Since this is an OWord message, Global Offset is counted
425 * in 128-bit units, so we must set it to 2.
426 */
427 if (brw->gen >= 8)
428 inst->offset = 2;
429 inst->base_mrf = base_mrf;
430 inst->mlen = 2;
431 }
432 emit(BRW_OPCODE_ENDIF);
433 }
434
435
436 void
437 vec4_gs_visitor::visit(ir_emit_vertex *)
438 {
439 this->current_annotation = "emit vertex: safety check";
440
441 /* To ensure that we don't output more vertices than the shader specified
442 * using max_vertices, do the logic inside a conditional of the form "if
443 * (vertex_count < MAX)"
444 */
445 unsigned num_output_vertices = c->gp->program.VerticesOut;
446 emit(CMP(dst_null_d(), this->vertex_count,
447 src_reg(num_output_vertices), BRW_CONDITIONAL_L));
448 emit(IF(BRW_PREDICATE_NORMAL));
449 {
450 /* If we're outputting 32 control data bits or less, then we can wait
451 * until the shader is over to output them all. Otherwise we need to
452 * output them as we go. Now is the time to do it, since we're about to
453 * output the vertex_count'th vertex, so it's guaranteed that the
454 * control data bits associated with the (vertex_count - 1)th vertex are
455 * correct.
456 */
457 if (c->control_data_header_size_bits > 32) {
458 this->current_annotation = "emit vertex: emit control data bits";
459 /* Only emit control data bits if we've finished accumulating a batch
460 * of 32 bits. This is the case when:
461 *
462 * (vertex_count * bits_per_vertex) % 32 == 0
463 *
464 * (in other words, when the last 5 bits of vertex_count *
465 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
466 * integer n (which is always the case, since bits_per_vertex is
467 * always 1 or 2), this is equivalent to requiring that the last 5-n
468 * bits of vertex_count are 0:
469 *
470 * vertex_count & (2^(5-n) - 1) == 0
471 *
472 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
473 * equivalent to:
474 *
475 * vertex_count & (32 / bits_per_vertex - 1) == 0
476 */
477 vec4_instruction *inst =
478 emit(AND(dst_null_d(), this->vertex_count,
479 (uint32_t) (32 / c->control_data_bits_per_vertex - 1)));
480 inst->conditional_mod = BRW_CONDITIONAL_Z;
481 emit(IF(BRW_PREDICATE_NORMAL));
482 {
483 emit_control_data_bits();
484
485 /* Reset control_data_bits to 0 so we can start accumulating a new
486 * batch.
487 *
488 * Note: in the case where vertex_count == 0, this neutralizes the
489 * effect of any call to EndPrimitive() that the shader may have
490 * made before outputting its first vertex.
491 */
492 inst = emit(MOV(dst_reg(this->control_data_bits), 0u));
493 inst->force_writemask_all = true;
494 }
495 emit(BRW_OPCODE_ENDIF);
496 }
497
498 this->current_annotation = "emit vertex: vertex data";
499 emit_vertex();
500
501 this->current_annotation = "emit vertex: increment vertex count";
502 emit(ADD(dst_reg(this->vertex_count), this->vertex_count,
503 src_reg(1u)));
504 }
505 emit(BRW_OPCODE_ENDIF);
506
507 this->current_annotation = NULL;
508 }
509
510 void
511 vec4_gs_visitor::visit(ir_end_primitive *)
512 {
513 /* We can only do EndPrimitive() functionality when the control data
514 * consists of cut bits. Fortunately, the only time it isn't is when the
515 * output type is points, in which case EndPrimitive() is a no-op.
516 */
517 if (c->prog_data.control_data_format !=
518 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
519 return;
520 }
521
522 /* Cut bits use one bit per vertex. */
523 assert(c->control_data_bits_per_vertex == 1);
524
525 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
526 * vertex n, 0 otherwise. So all we need to do here is mark bit
527 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
528 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
529 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
530 *
531 * Note that if EndPrimitve() is called before emitting any vertices, this
532 * will cause us to set bit 31 of the control_data_bits register to 1.
533 * That's fine because:
534 *
535 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
536 * output, so the hardware will ignore cut bit 31.
537 *
538 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
539 * last vertex, so setting cut bit 31 has no effect (since the primitive
540 * is automatically ended when the GS terminates).
541 *
542 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
543 * control_data_bits register to 0 when the first vertex is emitted.
544 */
545
546 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
547 src_reg one(this, glsl_type::uint_type);
548 emit(MOV(dst_reg(one), 1u));
549 src_reg prev_count(this, glsl_type::uint_type);
550 emit(ADD(dst_reg(prev_count), this->vertex_count, 0xffffffffu));
551 src_reg mask(this, glsl_type::uint_type);
552 /* Note: we're relying on the fact that the GEN SHL instruction only pays
553 * attention to the lower 5 bits of its second source argument, so on this
554 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
555 * ((vertex_count - 1) % 32).
556 */
557 emit(SHL(dst_reg(mask), one, prev_count));
558 emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
559 }
560
561 static const unsigned *
562 generate_assembly(struct brw_context *brw,
563 struct gl_shader_program *shader_prog,
564 struct gl_program *prog,
565 struct brw_vec4_prog_data *prog_data,
566 void *mem_ctx,
567 exec_list *instructions,
568 unsigned *final_assembly_size)
569 {
570 if (brw->gen >= 8) {
571 gen8_vec4_generator g(brw, shader_prog, prog, prog_data, mem_ctx,
572 INTEL_DEBUG & DEBUG_GS);
573 return g.generate_assembly(instructions, final_assembly_size);
574 } else {
575 vec4_generator g(brw, shader_prog, prog, prog_data, mem_ctx,
576 INTEL_DEBUG & DEBUG_GS);
577 return g.generate_assembly(instructions, final_assembly_size);
578 }
579 }
580
581 extern "C" const unsigned *
582 brw_gs_emit(struct brw_context *brw,
583 struct gl_shader_program *prog,
584 struct brw_gs_compile *c,
585 void *mem_ctx,
586 unsigned *final_assembly_size)
587 {
588 if (unlikely(INTEL_DEBUG & DEBUG_GS)) {
589 struct brw_shader *shader =
590 (brw_shader *) prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
591
592 brw_dump_ir(brw, "geometry", prog, &shader->base, NULL);
593 }
594
595 /* Compile the geometry shader in DUAL_OBJECT dispatch mode, if we can do
596 * so without spilling. If the GS invocations count > 1, then we can't use
597 * dual object mode.
598 */
599 if (c->prog_data.invocations <= 1 &&
600 likely(!(INTEL_DEBUG & DEBUG_NO_DUAL_OBJECT_GS))) {
601 c->prog_data.dual_instanced_dispatch = false;
602
603 vec4_gs_visitor v(brw, c, prog, mem_ctx, true /* no_spills */);
604 if (v.run()) {
605 return generate_assembly(brw, prog, &c->gp->program.Base,
606 &c->prog_data.base, mem_ctx, &v.instructions,
607 final_assembly_size);
608 }
609 }
610
611 /* Either we failed to compile in DUAL_OBJECT mode (probably because it
612 * would have required spilling) or DUAL_OBJECT mode is disabled. So fall
613 * back to DUAL_INSTANCED mode, which consumes fewer registers.
614 *
615 * FIXME: In an ideal world we'd fall back to SINGLE mode, which would
616 * allow us to interleave general purpose registers (resulting in even less
617 * likelihood of spilling). But at the moment, the vec4 generator and
618 * visitor classes don't have the infrastructure to interleave general
619 * purpose registers, so DUAL_INSTANCED is the best we can do.
620 */
621 c->prog_data.dual_instanced_dispatch = true;
622
623 vec4_gs_visitor v(brw, c, prog, mem_ctx, false /* no_spills */);
624 if (!v.run()) {
625 prog->LinkStatus = false;
626 ralloc_strcat(&prog->InfoLog, v.fail_msg);
627 return NULL;
628 }
629
630 return generate_assembly(brw, prog, &c->gp->program.Base, &c->prog_data.base,
631 mem_ctx, &v.instructions, final_assembly_size);
632 }
633
634
635 } /* namespace brw */