i965/fs: Make emit_spill/unspill static functions taking builder as argument.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_live_variables.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_cfg.h"
29 #include "brw_vec4_live_variables.h"
30
31 using namespace brw;
32
33 /** @file brw_vec4_live_variables.cpp
34 *
35 * Support for computing at the basic block level which variables
36 * (virtual GRFs in our case) are live at entry and exit.
37 *
38 * See Muchnick's Advanced Compiler Design and Implementation, section
39 * 14.1 (p444).
40 */
41
42 /**
43 * Sets up the use[] and def[] arrays.
44 *
45 * The basic-block-level live variable analysis needs to know which
46 * variables get used before they're completely defined, and which
47 * variables are completely defined before they're used.
48 *
49 * We independently track each channel of a vec4. This is because we need to
50 * be able to recognize a sequence like:
51 *
52 * ...
53 * DP4 tmp.x a b;
54 * DP4 tmp.y c d;
55 * MUL result.xy tmp.xy e.xy
56 * ...
57 *
58 * as having tmp live only across that sequence (assuming it's used nowhere
59 * else), because it's a common pattern. A more conservative approach that
60 * doesn't get tmp marked a deffed in this block will tend to result in
61 * spilling.
62 */
63 void
64 vec4_live_variables::setup_def_use()
65 {
66 int ip = 0;
67
68 foreach_block (block, cfg) {
69 assert(ip == block->start_ip);
70 if (block->num > 0)
71 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
72
73 foreach_inst_in_block(vec4_instruction, inst, block) {
74 struct block_data *bd = &block_data[block->num];
75
76 /* Set use[] for this instruction */
77 for (unsigned int i = 0; i < 3; i++) {
78 if (inst->src[i].file == VGRF) {
79 for (unsigned j = 0; j < inst->regs_read(i); j++) {
80 for (int c = 0; c < 4; c++) {
81 const unsigned v =
82 var_from_reg(alloc, offset(inst->src[i], j), c);
83 if (!BITSET_TEST(bd->def, v))
84 BITSET_SET(bd->use, v);
85 }
86 }
87 }
88 }
89 for (unsigned c = 0; c < 4; c++) {
90 if (inst->reads_flag(c) &&
91 !BITSET_TEST(bd->flag_def, c)) {
92 BITSET_SET(bd->flag_use, c);
93 }
94 }
95
96 /* Check for unconditional writes to whole registers. These
97 * are the things that screen off preceding definitions of a
98 * variable, and thus qualify for being in def[].
99 */
100 if (inst->dst.file == VGRF &&
101 (!inst->predicate || inst->opcode == BRW_OPCODE_SEL)) {
102 for (unsigned i = 0; i < inst->regs_written; i++) {
103 for (int c = 0; c < 4; c++) {
104 if (inst->dst.writemask & (1 << c)) {
105 const unsigned v =
106 var_from_reg(alloc, offset(inst->dst, i), c);
107 if (!BITSET_TEST(bd->use, v))
108 BITSET_SET(bd->def, v);
109 }
110 }
111 }
112 }
113 if (inst->writes_flag()) {
114 for (unsigned c = 0; c < 4; c++) {
115 if ((inst->dst.writemask & (1 << c)) &&
116 !BITSET_TEST(bd->flag_use, c)) {
117 BITSET_SET(bd->flag_def, c);
118 }
119 }
120 }
121
122 ip++;
123 }
124 }
125 }
126
127 /**
128 * The algorithm incrementally sets bits in liveout and livein,
129 * propagating it through control flow. It will eventually terminate
130 * because it only ever adds bits, and stops when no bits are added in
131 * a pass.
132 */
133 void
134 vec4_live_variables::compute_live_variables()
135 {
136 bool cont = true;
137
138 while (cont) {
139 cont = false;
140
141 foreach_block_reverse (block, cfg) {
142 struct block_data *bd = &block_data[block->num];
143
144 /* Update liveout */
145 foreach_list_typed(bblock_link, child_link, link, &block->children) {
146 struct block_data *child_bd = &block_data[child_link->block->num];
147
148 for (int i = 0; i < bitset_words; i++) {
149 BITSET_WORD new_liveout = (child_bd->livein[i] &
150 ~bd->liveout[i]);
151 if (new_liveout) {
152 bd->liveout[i] |= new_liveout;
153 cont = true;
154 }
155 }
156 BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
157 ~bd->flag_liveout[0]);
158 if (new_liveout) {
159 bd->flag_liveout[0] |= new_liveout;
160 cont = true;
161 }
162 }
163
164 /* Update livein */
165 for (int i = 0; i < bitset_words; i++) {
166 BITSET_WORD new_livein = (bd->use[i] |
167 (bd->liveout[i] &
168 ~bd->def[i]));
169 if (new_livein & ~bd->livein[i]) {
170 bd->livein[i] |= new_livein;
171 cont = true;
172 }
173 }
174 BITSET_WORD new_livein = (bd->flag_use[0] |
175 (bd->flag_liveout[0] &
176 ~bd->flag_def[0]));
177 if (new_livein & ~bd->flag_livein[0]) {
178 bd->flag_livein[0] |= new_livein;
179 cont = true;
180 }
181 }
182 }
183 }
184
185 vec4_live_variables::vec4_live_variables(const simple_allocator &alloc,
186 cfg_t *cfg)
187 : alloc(alloc), cfg(cfg)
188 {
189 mem_ctx = ralloc_context(NULL);
190
191 num_vars = alloc.total_size * 4;
192 block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
193
194 bitset_words = BITSET_WORDS(num_vars);
195 for (int i = 0; i < cfg->num_blocks; i++) {
196 block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
197 block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
198 block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
199 block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
200
201 block_data[i].flag_def[0] = 0;
202 block_data[i].flag_use[0] = 0;
203 block_data[i].flag_livein[0] = 0;
204 block_data[i].flag_liveout[0] = 0;
205 }
206
207 setup_def_use();
208 compute_live_variables();
209 }
210
211 vec4_live_variables::~vec4_live_variables()
212 {
213 ralloc_free(mem_ctx);
214 }
215
216 #define MAX_INSTRUCTION (1 << 30)
217
218 /**
219 * Computes a conservative start/end of the live intervals for each virtual GRF.
220 *
221 * We could expose per-channel live intervals to the consumer based on the
222 * information we computed in vec4_live_variables, except that our only
223 * current user is virtual_grf_interferes(). So we instead union the
224 * per-channel ranges into a per-vgrf range for virtual_grf_start[] and
225 * virtual_grf_end[].
226 *
227 * We could potentially have virtual_grf_interferes() do the test per-channel,
228 * which would let some interesting register allocation occur (particularly on
229 * code-generated GLSL sequences from the Cg compiler which does register
230 * allocation at the GLSL level and thus reuses components of the variable
231 * with distinct lifetimes). But right now the complexity of doing so doesn't
232 * seem worth it, since having virtual_grf_interferes() be cheap is important
233 * for register allocation performance.
234 */
235 void
236 vec4_visitor::calculate_live_intervals()
237 {
238 if (this->live_intervals)
239 return;
240
241 int *start = ralloc_array(mem_ctx, int, this->alloc.total_size * 4);
242 int *end = ralloc_array(mem_ctx, int, this->alloc.total_size * 4);
243 ralloc_free(this->virtual_grf_start);
244 ralloc_free(this->virtual_grf_end);
245 this->virtual_grf_start = start;
246 this->virtual_grf_end = end;
247
248 for (unsigned i = 0; i < this->alloc.total_size * 4; i++) {
249 start[i] = MAX_INSTRUCTION;
250 end[i] = -1;
251 }
252
253 /* Start by setting up the intervals with no knowledge of control
254 * flow.
255 */
256 int ip = 0;
257 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
258 for (unsigned int i = 0; i < 3; i++) {
259 if (inst->src[i].file == VGRF) {
260 for (unsigned j = 0; j < inst->regs_read(i); j++) {
261 for (int c = 0; c < 4; c++) {
262 const unsigned v =
263 var_from_reg(alloc, offset(inst->src[i], j), c);
264 start[v] = MIN2(start[v], ip);
265 end[v] = ip;
266 }
267 }
268 }
269 }
270
271 if (inst->dst.file == VGRF) {
272 for (unsigned i = 0; i < inst->regs_written; i++) {
273 for (int c = 0; c < 4; c++) {
274 if (inst->dst.writemask & (1 << c)) {
275 const unsigned v =
276 var_from_reg(alloc, offset(inst->dst, i), c);
277 start[v] = MIN2(start[v], ip);
278 end[v] = ip;
279 }
280 }
281 }
282 }
283
284 ip++;
285 }
286
287 /* Now, extend those intervals using our analysis of control flow.
288 *
289 * The control flow-aware analysis was done at a channel level, while at
290 * this point we're distilling it down to vgrfs.
291 */
292 this->live_intervals = new(mem_ctx) vec4_live_variables(alloc, cfg);
293
294 foreach_block (block, cfg) {
295 struct block_data *bd = &live_intervals->block_data[block->num];
296
297 for (int i = 0; i < live_intervals->num_vars; i++) {
298 if (BITSET_TEST(bd->livein, i)) {
299 start[i] = MIN2(start[i], block->start_ip);
300 end[i] = MAX2(end[i], block->start_ip);
301 }
302
303 if (BITSET_TEST(bd->liveout, i)) {
304 start[i] = MIN2(start[i], block->end_ip);
305 end[i] = MAX2(end[i], block->end_ip);
306 }
307 }
308 }
309 }
310
311 void
312 vec4_visitor::invalidate_live_intervals()
313 {
314 ralloc_free(live_intervals);
315 live_intervals = NULL;
316 }
317
318 int
319 vec4_visitor::var_range_start(unsigned v, unsigned n) const
320 {
321 int start = INT_MAX;
322
323 for (unsigned i = 0; i < n; i++)
324 start = MIN2(start, virtual_grf_start[v + i]);
325
326 return start;
327 }
328
329 int
330 vec4_visitor::var_range_end(unsigned v, unsigned n) const
331 {
332 int end = INT_MIN;
333
334 for (unsigned i = 0; i < n; i++)
335 end = MAX2(end, virtual_grf_end[v + i]);
336
337 return end;
338 }
339
340 bool
341 vec4_visitor::virtual_grf_interferes(int a, int b)
342 {
343 return !((var_range_end(4 * alloc.offsets[a], 4 * alloc.sizes[a]) <=
344 var_range_start(4 * alloc.offsets[b], 4 * alloc.sizes[b])) ||
345 (var_range_end(4 * alloc.offsets[b], 4 * alloc.sizes[b]) <=
346 var_range_start(4 * alloc.offsets[a], 4 * alloc.sizes[a])));
347 }