i965: Move pre-draw resolve buffers to dd::UpdateState
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_live_variables.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_cfg.h"
29 #include "brw_vec4_live_variables.h"
30
31 using namespace brw;
32
33 /** @file brw_vec4_live_variables.cpp
34 *
35 * Support for computing at the basic block level which variables
36 * (virtual GRFs in our case) are live at entry and exit.
37 *
38 * See Muchnick's Advanced Compiler Design and Implementation, section
39 * 14.1 (p444).
40 */
41
42 /**
43 * Sets up the use[] and def[] arrays.
44 *
45 * The basic-block-level live variable analysis needs to know which
46 * variables get used before they're completely defined, and which
47 * variables are completely defined before they're used.
48 *
49 * We independently track each channel of a vec4. This is because we need to
50 * be able to recognize a sequence like:
51 *
52 * ...
53 * DP4 tmp.x a b;
54 * DP4 tmp.y c d;
55 * MUL result.xy tmp.xy e.xy
56 * ...
57 *
58 * as having tmp live only across that sequence (assuming it's used nowhere
59 * else), because it's a common pattern. A more conservative approach that
60 * doesn't get tmp marked a deffed in this block will tend to result in
61 * spilling.
62 */
63 void
64 vec4_live_variables::setup_def_use()
65 {
66 int ip = 0;
67
68 for (int b = 0; b < cfg->num_blocks; b++) {
69 bblock_t *block = cfg->blocks[b];
70
71 assert(ip == block->start_ip);
72 if (b > 0)
73 assert(cfg->blocks[b - 1]->end_ip == ip - 1);
74
75 foreach_inst_in_block(vec4_instruction, inst, block) {
76 /* Set use[] for this instruction */
77 for (unsigned int i = 0; i < 3; i++) {
78 if (inst->src[i].file == GRF) {
79 int reg = inst->src[i].reg;
80
81 for (int j = 0; j < 4; j++) {
82 int c = BRW_GET_SWZ(inst->src[i].swizzle, j);
83 if (!BITSET_TEST(bd[b].def, reg * 4 + c))
84 BITSET_SET(bd[b].use, reg * 4 + c);
85 }
86 }
87 }
88
89 /* Check for unconditional writes to whole registers. These
90 * are the things that screen off preceding definitions of a
91 * variable, and thus qualify for being in def[].
92 */
93 if (inst->dst.file == GRF &&
94 v->virtual_grf_sizes[inst->dst.reg] == 1 &&
95 !inst->predicate) {
96 for (int c = 0; c < 4; c++) {
97 if (inst->dst.writemask & (1 << c)) {
98 int reg = inst->dst.reg;
99 if (!BITSET_TEST(bd[b].use, reg * 4 + c))
100 BITSET_SET(bd[b].def, reg * 4 + c);
101 }
102 }
103 }
104
105 ip++;
106 }
107 }
108 }
109
110 /**
111 * The algorithm incrementally sets bits in liveout and livein,
112 * propagating it through control flow. It will eventually terminate
113 * because it only ever adds bits, and stops when no bits are added in
114 * a pass.
115 */
116 void
117 vec4_live_variables::compute_live_variables()
118 {
119 bool cont = true;
120
121 while (cont) {
122 cont = false;
123
124 for (int b = 0; b < cfg->num_blocks; b++) {
125 /* Update livein */
126 for (int i = 0; i < bitset_words; i++) {
127 BITSET_WORD new_livein = (bd[b].use[i] |
128 (bd[b].liveout[i] & ~bd[b].def[i]));
129 if (new_livein & ~bd[b].livein[i]) {
130 bd[b].livein[i] |= new_livein;
131 cont = true;
132 }
133 }
134
135 /* Update liveout */
136 foreach_list_typed(bblock_link, link, link, &cfg->blocks[b]->children) {
137 bblock_t *block = link->block;
138
139 for (int i = 0; i < bitset_words; i++) {
140 BITSET_WORD new_liveout = (bd[block->block_num].livein[i] &
141 ~bd[b].liveout[i]);
142 if (new_liveout) {
143 bd[b].liveout[i] |= new_liveout;
144 cont = true;
145 }
146 }
147 }
148 }
149 }
150 }
151
152 vec4_live_variables::vec4_live_variables(vec4_visitor *v, cfg_t *cfg)
153 : v(v), cfg(cfg)
154 {
155 mem_ctx = ralloc_context(NULL);
156
157 num_vars = v->virtual_grf_count * 4;
158 bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
159
160 bitset_words = BITSET_WORDS(num_vars);
161 for (int i = 0; i < cfg->num_blocks; i++) {
162 bd[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
163 bd[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
164 bd[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
165 bd[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
166 }
167
168 setup_def_use();
169 compute_live_variables();
170 }
171
172 vec4_live_variables::~vec4_live_variables()
173 {
174 ralloc_free(mem_ctx);
175 }
176
177 #define MAX_INSTRUCTION (1 << 30)
178
179 /**
180 * Computes a conservative start/end of the live intervals for each virtual GRF.
181 *
182 * We could expose per-channel live intervals to the consumer based on the
183 * information we computed in vec4_live_variables, except that our only
184 * current user is virtual_grf_interferes(). So we instead union the
185 * per-channel ranges into a per-vgrf range for virtual_grf_start[] and
186 * virtual_grf_end[].
187 *
188 * We could potentially have virtual_grf_interferes() do the test per-channel,
189 * which would let some interesting register allocation occur (particularly on
190 * code-generated GLSL sequences from the Cg compiler which does register
191 * allocation at the GLSL level and thus reuses components of the variable
192 * with distinct lifetimes). But right now the complexity of doing so doesn't
193 * seem worth it, since having virtual_grf_interferes() be cheap is important
194 * for register allocation performance.
195 */
196 void
197 vec4_visitor::calculate_live_intervals()
198 {
199 if (this->live_intervals_valid)
200 return;
201
202 int *start = ralloc_array(mem_ctx, int, this->virtual_grf_count * 4);
203 int *end = ralloc_array(mem_ctx, int, this->virtual_grf_count * 4);
204 ralloc_free(this->virtual_grf_start);
205 ralloc_free(this->virtual_grf_end);
206 this->virtual_grf_start = start;
207 this->virtual_grf_end = end;
208
209 for (int i = 0; i < this->virtual_grf_count * 4; i++) {
210 start[i] = MAX_INSTRUCTION;
211 end[i] = -1;
212 }
213
214 /* Start by setting up the intervals with no knowledge of control
215 * flow.
216 */
217 int ip = 0;
218 foreach_in_list(vec4_instruction, inst, &instructions) {
219 for (unsigned int i = 0; i < 3; i++) {
220 if (inst->src[i].file == GRF) {
221 int reg = inst->src[i].reg;
222
223 for (int j = 0; j < 4; j++) {
224 int c = BRW_GET_SWZ(inst->src[i].swizzle, j);
225
226 start[reg * 4 + c] = MIN2(start[reg * 4 + c], ip);
227 end[reg * 4 + c] = ip;
228 }
229 }
230 }
231
232 if (inst->dst.file == GRF) {
233 int reg = inst->dst.reg;
234
235 for (int c = 0; c < 4; c++) {
236 if (inst->dst.writemask & (1 << c)) {
237 start[reg * 4 + c] = MIN2(start[reg * 4 + c], ip);
238 end[reg * 4 + c] = ip;
239 }
240 }
241 }
242
243 ip++;
244 }
245
246 /* Now, extend those intervals using our analysis of control flow.
247 *
248 * The control flow-aware analysis was done at a channel level, while at
249 * this point we're distilling it down to vgrfs.
250 */
251 calculate_cfg();
252 vec4_live_variables livevars(this, cfg);
253
254 for (int b = 0; b < cfg->num_blocks; b++) {
255 for (int i = 0; i < livevars.num_vars; i++) {
256 if (BITSET_TEST(livevars.bd[b].livein, i)) {
257 start[i] = MIN2(start[i], cfg->blocks[b]->start_ip);
258 end[i] = MAX2(end[i], cfg->blocks[b]->start_ip);
259 }
260
261 if (BITSET_TEST(livevars.bd[b].liveout, i)) {
262 start[i] = MIN2(start[i], cfg->blocks[b]->end_ip);
263 end[i] = MAX2(end[i], cfg->blocks[b]->end_ip);
264 }
265 }
266 }
267
268 this->live_intervals_valid = true;
269 }
270
271 void
272 vec4_visitor::invalidate_live_intervals()
273 {
274 live_intervals_valid = false;
275
276 invalidate_cfg();
277 }
278
279 bool
280 vec4_visitor::virtual_grf_interferes(int a, int b)
281 {
282 int start_a = MIN2(MIN2(virtual_grf_start[a * 4 + 0],
283 virtual_grf_start[a * 4 + 1]),
284 MIN2(virtual_grf_start[a * 4 + 2],
285 virtual_grf_start[a * 4 + 3]));
286 int start_b = MIN2(MIN2(virtual_grf_start[b * 4 + 0],
287 virtual_grf_start[b * 4 + 1]),
288 MIN2(virtual_grf_start[b * 4 + 2],
289 virtual_grf_start[b * 4 + 3]));
290 int end_a = MAX2(MAX2(virtual_grf_end[a * 4 + 0],
291 virtual_grf_end[a * 4 + 1]),
292 MAX2(virtual_grf_end[a * 4 + 2],
293 virtual_grf_end[a * 4 + 3]));
294 int end_b = MAX2(MAX2(virtual_grf_end[b * 4 + 0],
295 virtual_grf_end[b * 4 + 1]),
296 MAX2(virtual_grf_end[b * 4 + 2],
297 virtual_grf_end[b * 4 + 3]));
298 return !(end_a <= start_b ||
299 end_b <= start_a);
300 }