vk: Add four unit tests for our lock-free data-structures
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_live_variables.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_cfg.h"
29 #include "brw_vec4_live_variables.h"
30
31 using namespace brw;
32
33 /** @file brw_vec4_live_variables.cpp
34 *
35 * Support for computing at the basic block level which variables
36 * (virtual GRFs in our case) are live at entry and exit.
37 *
38 * See Muchnick's Advanced Compiler Design and Implementation, section
39 * 14.1 (p444).
40 */
41
42 /**
43 * Sets up the use[] and def[] arrays.
44 *
45 * The basic-block-level live variable analysis needs to know which
46 * variables get used before they're completely defined, and which
47 * variables are completely defined before they're used.
48 *
49 * We independently track each channel of a vec4. This is because we need to
50 * be able to recognize a sequence like:
51 *
52 * ...
53 * DP4 tmp.x a b;
54 * DP4 tmp.y c d;
55 * MUL result.xy tmp.xy e.xy
56 * ...
57 *
58 * as having tmp live only across that sequence (assuming it's used nowhere
59 * else), because it's a common pattern. A more conservative approach that
60 * doesn't get tmp marked a deffed in this block will tend to result in
61 * spilling.
62 */
63 void
64 vec4_live_variables::setup_def_use()
65 {
66 int ip = 0;
67
68 foreach_block (block, cfg) {
69 assert(ip == block->start_ip);
70 if (block->num > 0)
71 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
72
73 foreach_inst_in_block(vec4_instruction, inst, block) {
74 struct block_data *bd = &block_data[block->num];
75
76 /* Set use[] for this instruction */
77 for (unsigned int i = 0; i < 3; i++) {
78 if (inst->src[i].file == GRF) {
79 for (unsigned j = 0; j < inst->regs_read(i); j++) {
80 for (int c = 0; c < 4; c++) {
81 const unsigned v =
82 var_from_reg(alloc, offset(inst->src[i], j), c);
83 if (!BITSET_TEST(bd->def, v))
84 BITSET_SET(bd->use, v);
85 }
86 }
87 }
88 }
89 if (inst->reads_flag()) {
90 if (!BITSET_TEST(bd->flag_def, 0)) {
91 BITSET_SET(bd->flag_use, 0);
92 }
93 }
94
95 /* Check for unconditional writes to whole registers. These
96 * are the things that screen off preceding definitions of a
97 * variable, and thus qualify for being in def[].
98 */
99 if (inst->dst.file == GRF && !inst->predicate) {
100 for (unsigned i = 0; i < inst->regs_written; i++) {
101 for (int c = 0; c < 4; c++) {
102 if (inst->dst.writemask & (1 << c)) {
103 const unsigned v =
104 var_from_reg(alloc, offset(inst->dst, i), c);
105 if (!BITSET_TEST(bd->use, v))
106 BITSET_SET(bd->def, v);
107 }
108 }
109 }
110 }
111 if (inst->writes_flag()) {
112 if (!BITSET_TEST(bd->flag_use, 0)) {
113 BITSET_SET(bd->flag_def, 0);
114 }
115 }
116
117 ip++;
118 }
119 }
120 }
121
122 /**
123 * The algorithm incrementally sets bits in liveout and livein,
124 * propagating it through control flow. It will eventually terminate
125 * because it only ever adds bits, and stops when no bits are added in
126 * a pass.
127 */
128 void
129 vec4_live_variables::compute_live_variables()
130 {
131 bool cont = true;
132
133 while (cont) {
134 cont = false;
135
136 foreach_block (block, cfg) {
137 struct block_data *bd = &block_data[block->num];
138
139 /* Update livein */
140 for (int i = 0; i < bitset_words; i++) {
141 BITSET_WORD new_livein = (bd->use[i] |
142 (bd->liveout[i] &
143 ~bd->def[i]));
144 if (new_livein & ~bd->livein[i]) {
145 bd->livein[i] |= new_livein;
146 cont = true;
147 }
148 }
149 BITSET_WORD new_livein = (bd->flag_use[0] |
150 (bd->flag_liveout[0] &
151 ~bd->flag_def[0]));
152 if (new_livein & ~bd->flag_livein[0]) {
153 bd->flag_livein[0] |= new_livein;
154 cont = true;
155 }
156
157 /* Update liveout */
158 foreach_list_typed(bblock_link, child_link, link, &block->children) {
159 struct block_data *child_bd = &block_data[child_link->block->num];
160
161 for (int i = 0; i < bitset_words; i++) {
162 BITSET_WORD new_liveout = (child_bd->livein[i] &
163 ~bd->liveout[i]);
164 if (new_liveout) {
165 bd->liveout[i] |= new_liveout;
166 cont = true;
167 }
168 }
169 BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
170 ~bd->flag_liveout[0]);
171 if (new_liveout) {
172 bd->flag_liveout[0] |= new_liveout;
173 cont = true;
174 }
175 }
176 }
177 }
178 }
179
180 vec4_live_variables::vec4_live_variables(const simple_allocator &alloc,
181 cfg_t *cfg)
182 : alloc(alloc), cfg(cfg)
183 {
184 mem_ctx = ralloc_context(NULL);
185
186 num_vars = alloc.total_size * 4;
187 block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
188
189 bitset_words = BITSET_WORDS(num_vars);
190 for (int i = 0; i < cfg->num_blocks; i++) {
191 block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
192 block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
193 block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
194 block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
195
196 block_data[i].flag_def[0] = 0;
197 block_data[i].flag_use[0] = 0;
198 block_data[i].flag_livein[0] = 0;
199 block_data[i].flag_liveout[0] = 0;
200 }
201
202 setup_def_use();
203 compute_live_variables();
204 }
205
206 vec4_live_variables::~vec4_live_variables()
207 {
208 ralloc_free(mem_ctx);
209 }
210
211 #define MAX_INSTRUCTION (1 << 30)
212
213 /**
214 * Computes a conservative start/end of the live intervals for each virtual GRF.
215 *
216 * We could expose per-channel live intervals to the consumer based on the
217 * information we computed in vec4_live_variables, except that our only
218 * current user is virtual_grf_interferes(). So we instead union the
219 * per-channel ranges into a per-vgrf range for virtual_grf_start[] and
220 * virtual_grf_end[].
221 *
222 * We could potentially have virtual_grf_interferes() do the test per-channel,
223 * which would let some interesting register allocation occur (particularly on
224 * code-generated GLSL sequences from the Cg compiler which does register
225 * allocation at the GLSL level and thus reuses components of the variable
226 * with distinct lifetimes). But right now the complexity of doing so doesn't
227 * seem worth it, since having virtual_grf_interferes() be cheap is important
228 * for register allocation performance.
229 */
230 void
231 vec4_visitor::calculate_live_intervals()
232 {
233 if (this->live_intervals)
234 return;
235
236 int *start = ralloc_array(mem_ctx, int, this->alloc.total_size * 4);
237 int *end = ralloc_array(mem_ctx, int, this->alloc.total_size * 4);
238 ralloc_free(this->virtual_grf_start);
239 ralloc_free(this->virtual_grf_end);
240 this->virtual_grf_start = start;
241 this->virtual_grf_end = end;
242
243 for (unsigned i = 0; i < this->alloc.total_size * 4; i++) {
244 start[i] = MAX_INSTRUCTION;
245 end[i] = -1;
246 }
247
248 /* Start by setting up the intervals with no knowledge of control
249 * flow.
250 */
251 int ip = 0;
252 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
253 for (unsigned int i = 0; i < 3; i++) {
254 if (inst->src[i].file == GRF) {
255 for (unsigned j = 0; j < inst->regs_read(i); j++) {
256 for (int c = 0; c < 4; c++) {
257 const unsigned v =
258 var_from_reg(alloc, offset(inst->src[i], j), c);
259 start[v] = MIN2(start[v], ip);
260 end[v] = ip;
261 }
262 }
263 }
264 }
265
266 if (inst->dst.file == GRF) {
267 for (unsigned i = 0; i < inst->regs_written; i++) {
268 for (int c = 0; c < 4; c++) {
269 if (inst->dst.writemask & (1 << c)) {
270 const unsigned v =
271 var_from_reg(alloc, offset(inst->dst, i), c);
272 start[v] = MIN2(start[v], ip);
273 end[v] = ip;
274 }
275 }
276 }
277 }
278
279 ip++;
280 }
281
282 /* Now, extend those intervals using our analysis of control flow.
283 *
284 * The control flow-aware analysis was done at a channel level, while at
285 * this point we're distilling it down to vgrfs.
286 */
287 this->live_intervals = new(mem_ctx) vec4_live_variables(alloc, cfg);
288
289 foreach_block (block, cfg) {
290 struct block_data *bd = &live_intervals->block_data[block->num];
291
292 for (int i = 0; i < live_intervals->num_vars; i++) {
293 if (BITSET_TEST(bd->livein, i)) {
294 start[i] = MIN2(start[i], block->start_ip);
295 end[i] = MAX2(end[i], block->start_ip);
296 }
297
298 if (BITSET_TEST(bd->liveout, i)) {
299 start[i] = MIN2(start[i], block->end_ip);
300 end[i] = MAX2(end[i], block->end_ip);
301 }
302 }
303 }
304 }
305
306 void
307 vec4_visitor::invalidate_live_intervals()
308 {
309 ralloc_free(live_intervals);
310 live_intervals = NULL;
311 }
312
313 int
314 vec4_visitor::var_range_start(unsigned v, unsigned n) const
315 {
316 int start = INT_MAX;
317
318 for (unsigned i = 0; i < n; i++)
319 start = MIN2(start, virtual_grf_start[v + i]);
320
321 return start;
322 }
323
324 int
325 vec4_visitor::var_range_end(unsigned v, unsigned n) const
326 {
327 int end = INT_MIN;
328
329 for (unsigned i = 0; i < n; i++)
330 end = MAX2(end, virtual_grf_end[v + i]);
331
332 return end;
333 }
334
335 bool
336 vec4_visitor::virtual_grf_interferes(int a, int b)
337 {
338 return !((var_range_end(4 * alloc.offsets[a], 4 * alloc.sizes[a]) <=
339 var_range_start(4 * alloc.offsets[b], 4 * alloc.sizes[b])) ||
340 (var_range_end(4 * alloc.offsets[b], 4 * alloc.sizes[b]) <=
341 var_range_start(4 * alloc.offsets[a], 4 * alloc.sizes[a])));
342 }