i965/vec4: Remove dependency of vec4_live_variables on the visitor.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_live_variables.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_cfg.h"
29 #include "brw_vec4_live_variables.h"
30
31 using namespace brw;
32
33 /** @file brw_vec4_live_variables.cpp
34 *
35 * Support for computing at the basic block level which variables
36 * (virtual GRFs in our case) are live at entry and exit.
37 *
38 * See Muchnick's Advanced Compiler Design and Implementation, section
39 * 14.1 (p444).
40 */
41
42 /**
43 * Sets up the use[] and def[] arrays.
44 *
45 * The basic-block-level live variable analysis needs to know which
46 * variables get used before they're completely defined, and which
47 * variables are completely defined before they're used.
48 *
49 * We independently track each channel of a vec4. This is because we need to
50 * be able to recognize a sequence like:
51 *
52 * ...
53 * DP4 tmp.x a b;
54 * DP4 tmp.y c d;
55 * MUL result.xy tmp.xy e.xy
56 * ...
57 *
58 * as having tmp live only across that sequence (assuming it's used nowhere
59 * else), because it's a common pattern. A more conservative approach that
60 * doesn't get tmp marked a deffed in this block will tend to result in
61 * spilling.
62 */
63 void
64 vec4_live_variables::setup_def_use()
65 {
66 int ip = 0;
67
68 foreach_block (block, cfg) {
69 assert(ip == block->start_ip);
70 if (block->num > 0)
71 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
72
73 foreach_inst_in_block(vec4_instruction, inst, block) {
74 struct block_data *bd = &block_data[block->num];
75
76 /* Set use[] for this instruction */
77 for (unsigned int i = 0; i < 3; i++) {
78 if (inst->src[i].file == GRF) {
79 int reg = inst->src[i].reg;
80
81 for (int j = 0; j < 4; j++) {
82 int c = BRW_GET_SWZ(inst->src[i].swizzle, j);
83 if (!BITSET_TEST(bd->def, reg * 4 + c))
84 BITSET_SET(bd->use, reg * 4 + c);
85 }
86 }
87 }
88 if (inst->reads_flag()) {
89 if (!BITSET_TEST(bd->flag_def, 0)) {
90 BITSET_SET(bd->flag_use, 0);
91 }
92 }
93
94 /* Check for unconditional writes to whole registers. These
95 * are the things that screen off preceding definitions of a
96 * variable, and thus qualify for being in def[].
97 */
98 if (inst->dst.file == GRF &&
99 alloc.sizes[inst->dst.reg] == 1 &&
100 !inst->predicate) {
101 for (int c = 0; c < 4; c++) {
102 if (inst->dst.writemask & (1 << c)) {
103 int reg = inst->dst.reg;
104 if (!BITSET_TEST(bd->use, reg * 4 + c))
105 BITSET_SET(bd->def, reg * 4 + c);
106 }
107 }
108 }
109 if (inst->writes_flag()) {
110 if (!BITSET_TEST(bd->flag_use, 0)) {
111 BITSET_SET(bd->flag_def, 0);
112 }
113 }
114
115 ip++;
116 }
117 }
118 }
119
120 /**
121 * The algorithm incrementally sets bits in liveout and livein,
122 * propagating it through control flow. It will eventually terminate
123 * because it only ever adds bits, and stops when no bits are added in
124 * a pass.
125 */
126 void
127 vec4_live_variables::compute_live_variables()
128 {
129 bool cont = true;
130
131 while (cont) {
132 cont = false;
133
134 foreach_block (block, cfg) {
135 struct block_data *bd = &block_data[block->num];
136
137 /* Update livein */
138 for (int i = 0; i < bitset_words; i++) {
139 BITSET_WORD new_livein = (bd->use[i] |
140 (bd->liveout[i] &
141 ~bd->def[i]));
142 if (new_livein & ~bd->livein[i]) {
143 bd->livein[i] |= new_livein;
144 cont = true;
145 }
146 }
147 BITSET_WORD new_livein = (bd->flag_use[0] |
148 (bd->flag_liveout[0] &
149 ~bd->flag_def[0]));
150 if (new_livein & ~bd->flag_livein[0]) {
151 bd->flag_livein[0] |= new_livein;
152 cont = true;
153 }
154
155 /* Update liveout */
156 foreach_list_typed(bblock_link, child_link, link, &block->children) {
157 struct block_data *child_bd = &block_data[child_link->block->num];
158
159 for (int i = 0; i < bitset_words; i++) {
160 BITSET_WORD new_liveout = (child_bd->livein[i] &
161 ~bd->liveout[i]);
162 if (new_liveout) {
163 bd->liveout[i] |= new_liveout;
164 cont = true;
165 }
166 }
167 BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
168 ~bd->flag_liveout[0]);
169 if (new_liveout) {
170 bd->flag_liveout[0] |= new_liveout;
171 cont = true;
172 }
173 }
174 }
175 }
176 }
177
178 vec4_live_variables::vec4_live_variables(const simple_allocator &alloc,
179 cfg_t *cfg)
180 : alloc(alloc), cfg(cfg)
181 {
182 mem_ctx = ralloc_context(NULL);
183
184 num_vars = alloc.count * 4;
185 block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
186
187 bitset_words = BITSET_WORDS(num_vars);
188 for (int i = 0; i < cfg->num_blocks; i++) {
189 block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
190 block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
191 block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
192 block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
193
194 block_data[i].flag_def[0] = 0;
195 block_data[i].flag_use[0] = 0;
196 block_data[i].flag_livein[0] = 0;
197 block_data[i].flag_liveout[0] = 0;
198 }
199
200 setup_def_use();
201 compute_live_variables();
202 }
203
204 vec4_live_variables::~vec4_live_variables()
205 {
206 ralloc_free(mem_ctx);
207 }
208
209 #define MAX_INSTRUCTION (1 << 30)
210
211 /**
212 * Computes a conservative start/end of the live intervals for each virtual GRF.
213 *
214 * We could expose per-channel live intervals to the consumer based on the
215 * information we computed in vec4_live_variables, except that our only
216 * current user is virtual_grf_interferes(). So we instead union the
217 * per-channel ranges into a per-vgrf range for virtual_grf_start[] and
218 * virtual_grf_end[].
219 *
220 * We could potentially have virtual_grf_interferes() do the test per-channel,
221 * which would let some interesting register allocation occur (particularly on
222 * code-generated GLSL sequences from the Cg compiler which does register
223 * allocation at the GLSL level and thus reuses components of the variable
224 * with distinct lifetimes). But right now the complexity of doing so doesn't
225 * seem worth it, since having virtual_grf_interferes() be cheap is important
226 * for register allocation performance.
227 */
228 void
229 vec4_visitor::calculate_live_intervals()
230 {
231 if (this->live_intervals)
232 return;
233
234 int *start = ralloc_array(mem_ctx, int, this->alloc.count * 4);
235 int *end = ralloc_array(mem_ctx, int, this->alloc.count * 4);
236 ralloc_free(this->virtual_grf_start);
237 ralloc_free(this->virtual_grf_end);
238 this->virtual_grf_start = start;
239 this->virtual_grf_end = end;
240
241 for (unsigned i = 0; i < this->alloc.count * 4; i++) {
242 start[i] = MAX_INSTRUCTION;
243 end[i] = -1;
244 }
245
246 /* Start by setting up the intervals with no knowledge of control
247 * flow.
248 */
249 int ip = 0;
250 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
251 for (unsigned int i = 0; i < 3; i++) {
252 if (inst->src[i].file == GRF) {
253 int reg = inst->src[i].reg;
254
255 for (int j = 0; j < 4; j++) {
256 int c = BRW_GET_SWZ(inst->src[i].swizzle, j);
257
258 start[reg * 4 + c] = MIN2(start[reg * 4 + c], ip);
259 end[reg * 4 + c] = ip;
260 }
261 }
262 }
263
264 if (inst->dst.file == GRF) {
265 int reg = inst->dst.reg;
266
267 for (int c = 0; c < 4; c++) {
268 if (inst->dst.writemask & (1 << c)) {
269 start[reg * 4 + c] = MIN2(start[reg * 4 + c], ip);
270 end[reg * 4 + c] = ip;
271 }
272 }
273 }
274
275 ip++;
276 }
277
278 /* Now, extend those intervals using our analysis of control flow.
279 *
280 * The control flow-aware analysis was done at a channel level, while at
281 * this point we're distilling it down to vgrfs.
282 */
283 this->live_intervals = new(mem_ctx) vec4_live_variables(alloc, cfg);
284
285 foreach_block (block, cfg) {
286 struct block_data *bd = &live_intervals->block_data[block->num];
287
288 for (int i = 0; i < live_intervals->num_vars; i++) {
289 if (BITSET_TEST(bd->livein, i)) {
290 start[i] = MIN2(start[i], block->start_ip);
291 end[i] = MAX2(end[i], block->start_ip);
292 }
293
294 if (BITSET_TEST(bd->liveout, i)) {
295 start[i] = MIN2(start[i], block->end_ip);
296 end[i] = MAX2(end[i], block->end_ip);
297 }
298 }
299 }
300 }
301
302 void
303 vec4_visitor::invalidate_live_intervals()
304 {
305 ralloc_free(live_intervals);
306 live_intervals = NULL;
307 }
308
309 bool
310 vec4_visitor::virtual_grf_interferes(int a, int b)
311 {
312 int start_a = MIN2(MIN2(virtual_grf_start[a * 4 + 0],
313 virtual_grf_start[a * 4 + 1]),
314 MIN2(virtual_grf_start[a * 4 + 2],
315 virtual_grf_start[a * 4 + 3]));
316 int start_b = MIN2(MIN2(virtual_grf_start[b * 4 + 0],
317 virtual_grf_start[b * 4 + 1]),
318 MIN2(virtual_grf_start[b * 4 + 2],
319 virtual_grf_start[b * 4 + 3]));
320 int end_a = MAX2(MAX2(virtual_grf_end[a * 4 + 0],
321 virtual_grf_end[a * 4 + 1]),
322 MAX2(virtual_grf_end[a * 4 + 2],
323 virtual_grf_end[a * 4 + 3]));
324 int end_b = MAX2(MAX2(virtual_grf_end[b * 4 + 0],
325 virtual_grf_end[b * 4 + 1]),
326 MAX2(virtual_grf_end[b * 4 + 2],
327 virtual_grf_end[b * 4 + 3]));
328 return !(end_a <= start_b ||
329 end_b <= start_a);
330 }