46cbbfaa590211297f149cc0e25efa604038b6d9
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_nir.cpp
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28 #include "brw_program.h"
29
30 using namespace brw;
31 using namespace brw::surface_access;
32
33 namespace brw {
34
35 void
36 vec4_visitor::emit_nir_code()
37 {
38 if (nir->num_uniforms > 0)
39 nir_setup_uniforms();
40
41 nir_setup_system_values();
42
43 /* get the main function and emit it */
44 nir_foreach_function(nir, function) {
45 assert(strcmp(function->name, "main") == 0);
46 assert(function->impl);
47 nir_emit_impl(function->impl);
48 }
49 }
50
51 void
52 vec4_visitor::nir_setup_system_value_intrinsic(nir_intrinsic_instr *instr)
53 {
54 dst_reg *reg;
55
56 switch (instr->intrinsic) {
57 case nir_intrinsic_load_vertex_id:
58 unreachable("should be lowered by lower_vertex_id().");
59
60 case nir_intrinsic_load_vertex_id_zero_base:
61 reg = &nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
62 if (reg->file == BAD_FILE)
63 *reg = *make_reg_for_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE,
64 glsl_type::int_type);
65 break;
66
67 case nir_intrinsic_load_base_vertex:
68 reg = &nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
69 if (reg->file == BAD_FILE)
70 *reg = *make_reg_for_system_value(SYSTEM_VALUE_BASE_VERTEX,
71 glsl_type::int_type);
72 break;
73
74 case nir_intrinsic_load_instance_id:
75 reg = &nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
76 if (reg->file == BAD_FILE)
77 *reg = *make_reg_for_system_value(SYSTEM_VALUE_INSTANCE_ID,
78 glsl_type::int_type);
79 break;
80
81 case nir_intrinsic_load_base_instance:
82 reg = &nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
83 if (reg->file == BAD_FILE)
84 *reg = *make_reg_for_system_value(SYSTEM_VALUE_BASE_INSTANCE,
85 glsl_type::int_type);
86 break;
87
88 case nir_intrinsic_load_draw_id:
89 reg = &nir_system_values[SYSTEM_VALUE_DRAW_ID];
90 if (reg->file == BAD_FILE)
91 *reg = *make_reg_for_system_value(SYSTEM_VALUE_DRAW_ID,
92 glsl_type::int_type);
93 break;
94
95 default:
96 break;
97 }
98 }
99
100 static bool
101 setup_system_values_block(nir_block *block, void *void_visitor)
102 {
103 vec4_visitor *v = (vec4_visitor *)void_visitor;
104
105 nir_foreach_instr(block, instr) {
106 if (instr->type != nir_instr_type_intrinsic)
107 continue;
108
109 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
110 v->nir_setup_system_value_intrinsic(intrin);
111 }
112
113 return true;
114 }
115
116 void
117 vec4_visitor::nir_setup_system_values()
118 {
119 nir_system_values = ralloc_array(mem_ctx, dst_reg, SYSTEM_VALUE_MAX);
120 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
121 nir_system_values[i] = dst_reg();
122 }
123
124 nir_foreach_function(nir, function) {
125 assert(strcmp(function->name, "main") == 0);
126 assert(function->impl);
127 nir_foreach_block(function->impl, setup_system_values_block, this);
128 }
129 }
130
131 void
132 vec4_visitor::nir_setup_uniforms()
133 {
134 uniforms = nir->num_uniforms / 16;
135 }
136
137 void
138 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
139 {
140 nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
141 for (unsigned i = 0; i < impl->reg_alloc; i++) {
142 nir_locals[i] = dst_reg();
143 }
144
145 foreach_list_typed(nir_register, reg, node, &impl->registers) {
146 unsigned array_elems =
147 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
148
149 nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(array_elems));
150 }
151
152 nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
153
154 nir_emit_cf_list(&impl->body);
155 }
156
157 void
158 vec4_visitor::nir_emit_cf_list(exec_list *list)
159 {
160 exec_list_validate(list);
161 foreach_list_typed(nir_cf_node, node, node, list) {
162 switch (node->type) {
163 case nir_cf_node_if:
164 nir_emit_if(nir_cf_node_as_if(node));
165 break;
166
167 case nir_cf_node_loop:
168 nir_emit_loop(nir_cf_node_as_loop(node));
169 break;
170
171 case nir_cf_node_block:
172 nir_emit_block(nir_cf_node_as_block(node));
173 break;
174
175 default:
176 unreachable("Invalid CFG node block");
177 }
178 }
179 }
180
181 void
182 vec4_visitor::nir_emit_if(nir_if *if_stmt)
183 {
184 /* First, put the condition in f0 */
185 src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
186 vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
187 inst->conditional_mod = BRW_CONDITIONAL_NZ;
188
189 /* We can just predicate based on the X channel, as the condition only
190 * goes on its own line */
191 emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
192
193 nir_emit_cf_list(&if_stmt->then_list);
194
195 /* note: if the else is empty, dead CF elimination will remove it */
196 emit(BRW_OPCODE_ELSE);
197
198 nir_emit_cf_list(&if_stmt->else_list);
199
200 emit(BRW_OPCODE_ENDIF);
201 }
202
203 void
204 vec4_visitor::nir_emit_loop(nir_loop *loop)
205 {
206 emit(BRW_OPCODE_DO);
207
208 nir_emit_cf_list(&loop->body);
209
210 emit(BRW_OPCODE_WHILE);
211 }
212
213 void
214 vec4_visitor::nir_emit_block(nir_block *block)
215 {
216 nir_foreach_instr(block, instr) {
217 nir_emit_instr(instr);
218 }
219 }
220
221 void
222 vec4_visitor::nir_emit_instr(nir_instr *instr)
223 {
224 base_ir = instr;
225
226 switch (instr->type) {
227 case nir_instr_type_load_const:
228 nir_emit_load_const(nir_instr_as_load_const(instr));
229 break;
230
231 case nir_instr_type_intrinsic:
232 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
233 break;
234
235 case nir_instr_type_alu:
236 nir_emit_alu(nir_instr_as_alu(instr));
237 break;
238
239 case nir_instr_type_jump:
240 nir_emit_jump(nir_instr_as_jump(instr));
241 break;
242
243 case nir_instr_type_tex:
244 nir_emit_texture(nir_instr_as_tex(instr));
245 break;
246
247 case nir_instr_type_ssa_undef:
248 nir_emit_undef(nir_instr_as_ssa_undef(instr));
249 break;
250
251 default:
252 fprintf(stderr, "VS instruction not yet implemented by NIR->vec4\n");
253 break;
254 }
255 }
256
257 static dst_reg
258 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
259 unsigned base_offset, nir_src *indirect)
260 {
261 dst_reg reg;
262
263 reg = v->nir_locals[nir_reg->index];
264 reg = offset(reg, base_offset);
265 if (indirect) {
266 reg.reladdr =
267 new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
268 BRW_REGISTER_TYPE_D,
269 1));
270 }
271 return reg;
272 }
273
274 dst_reg
275 vec4_visitor::get_nir_dest(nir_dest dest)
276 {
277 if (dest.is_ssa) {
278 dst_reg dst = dst_reg(VGRF, alloc.allocate(1));
279 nir_ssa_values[dest.ssa.index] = dst;
280 return dst;
281 } else {
282 return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
283 dest.reg.indirect);
284 }
285 }
286
287 dst_reg
288 vec4_visitor::get_nir_dest(nir_dest dest, enum brw_reg_type type)
289 {
290 return retype(get_nir_dest(dest), type);
291 }
292
293 dst_reg
294 vec4_visitor::get_nir_dest(nir_dest dest, nir_alu_type type)
295 {
296 return get_nir_dest(dest, brw_type_for_nir_type(type));
297 }
298
299 src_reg
300 vec4_visitor::get_nir_src(nir_src src, enum brw_reg_type type,
301 unsigned num_components)
302 {
303 dst_reg reg;
304
305 if (src.is_ssa) {
306 assert(src.ssa != NULL);
307 reg = nir_ssa_values[src.ssa->index];
308 }
309 else {
310 reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
311 src.reg.indirect);
312 }
313
314 reg = retype(reg, type);
315
316 src_reg reg_as_src = src_reg(reg);
317 reg_as_src.swizzle = brw_swizzle_for_size(num_components);
318 return reg_as_src;
319 }
320
321 src_reg
322 vec4_visitor::get_nir_src(nir_src src, nir_alu_type type,
323 unsigned num_components)
324 {
325 return get_nir_src(src, brw_type_for_nir_type(type), num_components);
326 }
327
328 src_reg
329 vec4_visitor::get_nir_src(nir_src src, unsigned num_components)
330 {
331 /* if type is not specified, default to signed int */
332 return get_nir_src(src, nir_type_int, num_components);
333 }
334
335 src_reg
336 vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
337 {
338 nir_src *offset_src = nir_get_io_offset_src(instr);
339 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
340
341 if (const_value) {
342 /* The only constant offset we should find is 0. brw_nir.c's
343 * add_const_offset_to_base() will fold other constant offsets
344 * into instr->const_index[0].
345 */
346 assert(const_value->u[0] == 0);
347 return src_reg();
348 }
349
350 return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
351 }
352
353 void
354 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
355 {
356 dst_reg reg = dst_reg(VGRF, alloc.allocate(1));
357 reg.type = BRW_REGISTER_TYPE_D;
358
359 unsigned remaining = brw_writemask_for_size(instr->def.num_components);
360
361 /* @FIXME: consider emitting vector operations to save some MOVs in
362 * cases where the components are representable in 8 bits.
363 * For now, we emit a MOV for each distinct value.
364 */
365 for (unsigned i = 0; i < instr->def.num_components; i++) {
366 unsigned writemask = 1 << i;
367
368 if ((remaining & writemask) == 0)
369 continue;
370
371 for (unsigned j = i; j < instr->def.num_components; j++) {
372 if (instr->value.u[i] == instr->value.u[j]) {
373 writemask |= 1 << j;
374 }
375 }
376
377 reg.writemask = writemask;
378 emit(MOV(reg, brw_imm_d(instr->value.i[i])));
379
380 remaining &= ~writemask;
381 }
382
383 /* Set final writemask */
384 reg.writemask = brw_writemask_for_size(instr->def.num_components);
385
386 nir_ssa_values[instr->def.index] = reg;
387 }
388
389 void
390 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
391 {
392 dst_reg dest;
393 src_reg src;
394
395 switch (instr->intrinsic) {
396
397 case nir_intrinsic_load_input: {
398 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
399
400 /* We set EmitNoIndirectInput for VS */
401 assert(const_offset);
402
403 src = src_reg(ATTR, instr->const_index[0] + const_offset->u[0],
404 glsl_type::uvec4_type);
405
406 dest = get_nir_dest(instr->dest, src.type);
407 dest.writemask = brw_writemask_for_size(instr->num_components);
408
409 emit(MOV(dest, src));
410 break;
411 }
412
413 case nir_intrinsic_store_output: {
414 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
415 assert(const_offset);
416
417 int varying = instr->const_index[0] + const_offset->u[0];
418
419 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
420 instr->num_components);
421
422 output_reg[varying] = dst_reg(src);
423 break;
424 }
425
426 case nir_intrinsic_get_buffer_size: {
427 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
428 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u[0] : 0;
429
430 const unsigned index =
431 prog_data->base.binding_table.ssbo_start + ssbo_index;
432 dst_reg result_dst = get_nir_dest(instr->dest);
433 vec4_instruction *inst = new(mem_ctx)
434 vec4_instruction(VS_OPCODE_GET_BUFFER_SIZE, result_dst);
435
436 inst->base_mrf = 2;
437 inst->mlen = 1; /* always at least one */
438 inst->src[1] = brw_imm_ud(index);
439
440 /* MRF for the first parameter */
441 src_reg lod = brw_imm_d(0);
442 int param_base = inst->base_mrf;
443 int writemask = WRITEMASK_X;
444 emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
445
446 emit(inst);
447
448 brw_mark_surface_used(&prog_data->base, index);
449 break;
450 }
451
452 case nir_intrinsic_store_ssbo: {
453 assert(devinfo->gen >= 7);
454
455 /* Block index */
456 src_reg surf_index;
457 nir_const_value *const_uniform_block =
458 nir_src_as_const_value(instr->src[1]);
459 if (const_uniform_block) {
460 unsigned index = prog_data->base.binding_table.ssbo_start +
461 const_uniform_block->u[0];
462 surf_index = brw_imm_ud(index);
463 brw_mark_surface_used(&prog_data->base, index);
464 } else {
465 surf_index = src_reg(this, glsl_type::uint_type);
466 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[1], 1),
467 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
468 surf_index = emit_uniformize(surf_index);
469
470 brw_mark_surface_used(&prog_data->base,
471 prog_data->base.binding_table.ssbo_start +
472 nir->info.num_ssbos - 1);
473 }
474
475 /* Offset */
476 src_reg offset_reg;
477 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
478 if (const_offset) {
479 offset_reg = brw_imm_ud(const_offset->u[0]);
480 } else {
481 offset_reg = get_nir_src(instr->src[2], 1);
482 }
483
484 /* Value */
485 src_reg val_reg = get_nir_src(instr->src[0], 4);
486
487 /* Writemask */
488 unsigned write_mask = instr->const_index[0];
489
490 /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
491 * writes will use SIMD8 mode. In order to hide this and keep symmetry across
492 * typed and untyped messages and across hardware platforms, the
493 * current implementation of the untyped messages will transparently convert
494 * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
495 * and enabling only channel X on the SEND instruction.
496 *
497 * The above, works well for full vector writes, but not for partial writes
498 * where we want to write some channels and not others, like when we have
499 * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
500 * quite restrictive with regards to the channel enables we can configure in
501 * the message descriptor (not all combinations are allowed) we cannot simply
502 * implement these scenarios with a single message while keeping the
503 * aforementioned symmetry in the implementation. For now we de decided that
504 * it is better to keep the symmetry to reduce complexity, so in situations
505 * such as the one described we end up emitting two untyped write messages
506 * (one for xy and another for w).
507 *
508 * The code below packs consecutive channels into a single write message,
509 * detects gaps in the vector write and if needed, sends a second message
510 * with the remaining channels. If in the future we decide that we want to
511 * emit a single message at the expense of losing the symmetry in the
512 * implementation we can:
513 *
514 * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
515 * message payload. In this mode we can write up to 8 offsets and dwords
516 * to the red channel only (for the two vec4s in the SIMD4x2 execution)
517 * and select which of the 8 channels carry data to write by setting the
518 * appropriate writemask in the dst register of the SEND instruction.
519 * It would require to write a new generator opcode specifically for
520 * IvyBridge since we would need to prepare a SIMD8 payload that could
521 * use any channel, not just X.
522 *
523 * 2) For Haswell+: Simply send a single write message but set the writemask
524 * on the dst of the SEND instruction to select the channels we want to
525 * write. It would require to modify the current messages to receive
526 * and honor the writemask provided.
527 */
528 const vec4_builder bld = vec4_builder(this).at_end()
529 .annotate(current_annotation, base_ir);
530
531 int swizzle[4] = { 0, 0, 0, 0};
532 int num_channels = 0;
533 unsigned skipped_channels = 0;
534 int num_components = instr->num_components;
535 for (int i = 0; i < num_components; i++) {
536 /* Check if this channel needs to be written. If so, record the
537 * channel we need to take the data from in the swizzle array
538 */
539 int component_mask = 1 << i;
540 int write_test = write_mask & component_mask;
541 if (write_test)
542 swizzle[num_channels++] = i;
543
544 /* If we don't have to write this channel it means we have a gap in the
545 * vector, so write the channels we accumulated until now, if any. Do
546 * the same if this was the last component in the vector.
547 */
548 if (!write_test || i == num_components - 1) {
549 if (num_channels > 0) {
550 /* We have channels to write, so update the offset we need to
551 * write at to skip the channels we skipped, if any.
552 */
553 if (skipped_channels > 0) {
554 if (offset_reg.file == IMM) {
555 offset_reg.ud += 4 * skipped_channels;
556 } else {
557 emit(ADD(dst_reg(offset_reg), offset_reg,
558 brw_imm_ud(4 * skipped_channels)));
559 }
560 }
561
562 /* Swizzle the data register so we take the data from the channels
563 * we need to write and send the write message. This will write
564 * num_channels consecutive dwords starting at offset.
565 */
566 val_reg.swizzle =
567 BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
568 emit_untyped_write(bld, surf_index, offset_reg, val_reg,
569 1 /* dims */, num_channels /* size */,
570 BRW_PREDICATE_NONE);
571
572 /* If we have to do a second write we will have to update the
573 * offset so that we jump over the channels we have just written
574 * now.
575 */
576 skipped_channels = num_channels;
577
578 /* Restart the count for the next write message */
579 num_channels = 0;
580 }
581
582 /* We did not write the current channel, so increase skipped count */
583 skipped_channels++;
584 }
585 }
586
587 break;
588 }
589
590 case nir_intrinsic_load_ssbo: {
591 assert(devinfo->gen >= 7);
592
593 nir_const_value *const_uniform_block =
594 nir_src_as_const_value(instr->src[0]);
595
596 src_reg surf_index;
597 if (const_uniform_block) {
598 unsigned index = prog_data->base.binding_table.ssbo_start +
599 const_uniform_block->u[0];
600 surf_index = brw_imm_ud(index);
601
602 brw_mark_surface_used(&prog_data->base, index);
603 } else {
604 surf_index = src_reg(this, glsl_type::uint_type);
605 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], 1),
606 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
607 surf_index = emit_uniformize(surf_index);
608
609 /* Assume this may touch any UBO. It would be nice to provide
610 * a tighter bound, but the array information is already lowered away.
611 */
612 brw_mark_surface_used(&prog_data->base,
613 prog_data->base.binding_table.ssbo_start +
614 nir->info.num_ssbos - 1);
615 }
616
617 src_reg offset_reg;
618 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
619 if (const_offset) {
620 offset_reg = brw_imm_ud(const_offset->u[0]);
621 } else {
622 offset_reg = get_nir_src(instr->src[1], 1);
623 }
624
625 /* Read the vector */
626 const vec4_builder bld = vec4_builder(this).at_end()
627 .annotate(current_annotation, base_ir);
628
629 src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
630 1 /* dims */, 4 /* size*/,
631 BRW_PREDICATE_NONE);
632 dst_reg dest = get_nir_dest(instr->dest);
633 read_result.type = dest.type;
634 read_result.swizzle = brw_swizzle_for_size(instr->num_components);
635 emit(MOV(dest, read_result));
636
637 break;
638 }
639
640 case nir_intrinsic_ssbo_atomic_add:
641 nir_emit_ssbo_atomic(BRW_AOP_ADD, instr);
642 break;
643 case nir_intrinsic_ssbo_atomic_imin:
644 nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
645 break;
646 case nir_intrinsic_ssbo_atomic_umin:
647 nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
648 break;
649 case nir_intrinsic_ssbo_atomic_imax:
650 nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
651 break;
652 case nir_intrinsic_ssbo_atomic_umax:
653 nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
654 break;
655 case nir_intrinsic_ssbo_atomic_and:
656 nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
657 break;
658 case nir_intrinsic_ssbo_atomic_or:
659 nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
660 break;
661 case nir_intrinsic_ssbo_atomic_xor:
662 nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
663 break;
664 case nir_intrinsic_ssbo_atomic_exchange:
665 nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
666 break;
667 case nir_intrinsic_ssbo_atomic_comp_swap:
668 nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
669 break;
670
671 case nir_intrinsic_load_vertex_id:
672 unreachable("should be lowered by lower_vertex_id()");
673
674 case nir_intrinsic_load_vertex_id_zero_base:
675 case nir_intrinsic_load_base_vertex:
676 case nir_intrinsic_load_instance_id:
677 case nir_intrinsic_load_base_instance:
678 case nir_intrinsic_load_draw_id:
679 case nir_intrinsic_load_invocation_id:
680 case nir_intrinsic_load_tess_level_inner:
681 case nir_intrinsic_load_tess_level_outer: {
682 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
683 src_reg val = src_reg(nir_system_values[sv]);
684 assert(val.file != BAD_FILE);
685 dest = get_nir_dest(instr->dest, val.type);
686 emit(MOV(dest, val));
687 break;
688 }
689
690 case nir_intrinsic_load_uniform: {
691 /* Offsets are in bytes but they should always be multiples of 16 */
692 assert(instr->const_index[0] % 16 == 0);
693
694 dest = get_nir_dest(instr->dest);
695
696 src = src_reg(dst_reg(UNIFORM, instr->const_index[0] / 16));
697 src.type = dest.type;
698
699 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
700 if (const_offset) {
701 /* Offsets are in bytes but they should always be multiples of 16 */
702 assert(const_offset->u[0] % 16 == 0);
703 src.reg_offset = const_offset->u[0] / 16;
704
705 emit(MOV(dest, src));
706 } else {
707 src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
708
709 emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
710 indirect, brw_imm_ud(instr->const_index[1]));
711 }
712 break;
713 }
714
715 case nir_intrinsic_atomic_counter_read:
716 case nir_intrinsic_atomic_counter_inc:
717 case nir_intrinsic_atomic_counter_dec: {
718 unsigned surf_index = prog_data->base.binding_table.abo_start +
719 (unsigned) instr->const_index[0];
720 src_reg offset = get_nir_src(instr->src[0], nir_type_int,
721 instr->num_components);
722 dest = get_nir_dest(instr->dest);
723
724 switch (instr->intrinsic) {
725 case nir_intrinsic_atomic_counter_inc:
726 emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
727 src_reg(), src_reg());
728 break;
729 case nir_intrinsic_atomic_counter_dec:
730 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
731 src_reg(), src_reg());
732 break;
733 case nir_intrinsic_atomic_counter_read:
734 emit_untyped_surface_read(surf_index, dest, offset);
735 break;
736 default:
737 unreachable("Unreachable");
738 }
739
740 brw_mark_surface_used(stage_prog_data, surf_index);
741 break;
742 }
743
744 case nir_intrinsic_load_ubo: {
745 nir_const_value *const_block_index = nir_src_as_const_value(instr->src[0]);
746 src_reg surf_index;
747
748 dest = get_nir_dest(instr->dest);
749
750 if (const_block_index) {
751 /* The block index is a constant, so just emit the binding table entry
752 * as an immediate.
753 */
754 const unsigned index = prog_data->base.binding_table.ubo_start +
755 const_block_index->u[0];
756 surf_index = brw_imm_ud(index);
757 brw_mark_surface_used(&prog_data->base, index);
758 } else {
759 /* The block index is not a constant. Evaluate the index expression
760 * per-channel and add the base UBO index; we have to select a value
761 * from any live channel.
762 */
763 surf_index = src_reg(this, glsl_type::uint_type);
764 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int,
765 instr->num_components),
766 brw_imm_ud(prog_data->base.binding_table.ubo_start)));
767 surf_index = emit_uniformize(surf_index);
768
769 /* Assume this may touch any UBO. It would be nice to provide
770 * a tighter bound, but the array information is already lowered away.
771 */
772 brw_mark_surface_used(&prog_data->base,
773 prog_data->base.binding_table.ubo_start +
774 nir->info.num_ubos - 1);
775 }
776
777 src_reg offset;
778 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
779 if (const_offset) {
780 offset = brw_imm_ud(const_offset->u[0] & ~15);
781 } else {
782 offset = get_nir_src(instr->src[1], nir_type_int, 1);
783 }
784
785 src_reg packed_consts = src_reg(this, glsl_type::vec4_type);
786 packed_consts.type = dest.type;
787
788 emit_pull_constant_load_reg(dst_reg(packed_consts),
789 surf_index,
790 offset,
791 NULL, NULL /* before_block/inst */);
792
793 packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
794 if (const_offset) {
795 packed_consts.swizzle += BRW_SWIZZLE4(const_offset->u[0] % 16 / 4,
796 const_offset->u[0] % 16 / 4,
797 const_offset->u[0] % 16 / 4,
798 const_offset->u[0] % 16 / 4);
799 }
800
801 emit(MOV(dest, packed_consts));
802 break;
803 }
804
805 case nir_intrinsic_memory_barrier: {
806 const vec4_builder bld =
807 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
808 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
809 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
810 ->regs_written = 2;
811 break;
812 }
813
814 case nir_intrinsic_shader_clock: {
815 /* We cannot do anything if there is an event, so ignore it for now */
816 const src_reg shader_clock = get_timestamp();
817 const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
818
819 dest = get_nir_dest(instr->dest, type);
820 emit(MOV(dest, shader_clock));
821 break;
822 }
823
824 default:
825 unreachable("Unknown intrinsic");
826 }
827 }
828
829 void
830 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
831 {
832 dst_reg dest;
833 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
834 dest = get_nir_dest(instr->dest);
835
836 src_reg surface;
837 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
838 if (const_surface) {
839 unsigned surf_index = prog_data->base.binding_table.ssbo_start +
840 const_surface->u[0];
841 surface = brw_imm_ud(surf_index);
842 brw_mark_surface_used(&prog_data->base, surf_index);
843 } else {
844 surface = src_reg(this, glsl_type::uint_type);
845 emit(ADD(dst_reg(surface), get_nir_src(instr->src[0]),
846 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
847
848 /* Assume this may touch any UBO. This is the same we do for other
849 * UBO/SSBO accesses with non-constant surface.
850 */
851 brw_mark_surface_used(&prog_data->base,
852 prog_data->base.binding_table.ssbo_start +
853 nir->info.num_ssbos - 1);
854 }
855
856 src_reg offset = get_nir_src(instr->src[1], 1);
857 src_reg data1 = get_nir_src(instr->src[2], 1);
858 src_reg data2;
859 if (op == BRW_AOP_CMPWR)
860 data2 = get_nir_src(instr->src[3], 1);
861
862 /* Emit the actual atomic operation operation */
863 const vec4_builder bld =
864 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
865
866 src_reg atomic_result =
867 surface_access::emit_untyped_atomic(bld, surface, offset,
868 data1, data2,
869 1 /* dims */, 1 /* rsize */,
870 op,
871 BRW_PREDICATE_NONE);
872 dest.type = atomic_result.type;
873 bld.MOV(dest, atomic_result);
874 }
875
876 static unsigned
877 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
878 {
879 return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
880 }
881
882 static enum brw_conditional_mod
883 brw_conditional_for_nir_comparison(nir_op op)
884 {
885 switch (op) {
886 case nir_op_flt:
887 case nir_op_ilt:
888 case nir_op_ult:
889 return BRW_CONDITIONAL_L;
890
891 case nir_op_fge:
892 case nir_op_ige:
893 case nir_op_uge:
894 return BRW_CONDITIONAL_GE;
895
896 case nir_op_feq:
897 case nir_op_ieq:
898 case nir_op_ball_fequal2:
899 case nir_op_ball_iequal2:
900 case nir_op_ball_fequal3:
901 case nir_op_ball_iequal3:
902 case nir_op_ball_fequal4:
903 case nir_op_ball_iequal4:
904 return BRW_CONDITIONAL_Z;
905
906 case nir_op_fne:
907 case nir_op_ine:
908 case nir_op_bany_fnequal2:
909 case nir_op_bany_inequal2:
910 case nir_op_bany_fnequal3:
911 case nir_op_bany_inequal3:
912 case nir_op_bany_fnequal4:
913 case nir_op_bany_inequal4:
914 return BRW_CONDITIONAL_NZ;
915
916 default:
917 unreachable("not reached: bad operation for comparison");
918 }
919 }
920
921 bool
922 vec4_visitor::optimize_predicate(nir_alu_instr *instr,
923 enum brw_predicate *predicate)
924 {
925 if (!instr->src[0].src.is_ssa ||
926 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
927 return false;
928
929 nir_alu_instr *cmp_instr =
930 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
931
932 switch (cmp_instr->op) {
933 case nir_op_bany_fnequal2:
934 case nir_op_bany_inequal2:
935 case nir_op_bany_fnequal3:
936 case nir_op_bany_inequal3:
937 case nir_op_bany_fnequal4:
938 case nir_op_bany_inequal4:
939 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
940 break;
941 case nir_op_ball_fequal2:
942 case nir_op_ball_iequal2:
943 case nir_op_ball_fequal3:
944 case nir_op_ball_iequal3:
945 case nir_op_ball_fequal4:
946 case nir_op_ball_iequal4:
947 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
948 break;
949 default:
950 return false;
951 }
952
953 unsigned size_swizzle =
954 brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
955
956 src_reg op[2];
957 assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
958 for (unsigned i = 0; i < 2; i++) {
959 op[i] = get_nir_src(cmp_instr->src[i].src,
960 nir_op_infos[cmp_instr->op].input_types[i], 4);
961 unsigned base_swizzle =
962 brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
963 op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
964 op[i].abs = cmp_instr->src[i].abs;
965 op[i].negate = cmp_instr->src[i].negate;
966 }
967
968 emit(CMP(dst_null_d(), op[0], op[1],
969 brw_conditional_for_nir_comparison(cmp_instr->op)));
970
971 return true;
972 }
973
974 void
975 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
976 {
977 vec4_instruction *inst;
978
979 dst_reg dst = get_nir_dest(instr->dest.dest,
980 nir_op_infos[instr->op].output_type);
981 dst.writemask = instr->dest.write_mask;
982
983 src_reg op[4];
984 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
985 op[i] = get_nir_src(instr->src[i].src,
986 nir_op_infos[instr->op].input_types[i], 4);
987 op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
988 op[i].abs = instr->src[i].abs;
989 op[i].negate = instr->src[i].negate;
990 }
991
992 switch (instr->op) {
993 case nir_op_imov:
994 case nir_op_fmov:
995 inst = emit(MOV(dst, op[0]));
996 inst->saturate = instr->dest.saturate;
997 break;
998
999 case nir_op_vec2:
1000 case nir_op_vec3:
1001 case nir_op_vec4:
1002 unreachable("not reached: should be handled by lower_vec_to_movs()");
1003
1004 case nir_op_i2f:
1005 case nir_op_u2f:
1006 inst = emit(MOV(dst, op[0]));
1007 inst->saturate = instr->dest.saturate;
1008 break;
1009
1010 case nir_op_f2i:
1011 case nir_op_f2u:
1012 inst = emit(MOV(dst, op[0]));
1013 break;
1014
1015 case nir_op_fadd:
1016 /* fall through */
1017 case nir_op_iadd:
1018 inst = emit(ADD(dst, op[0], op[1]));
1019 inst->saturate = instr->dest.saturate;
1020 break;
1021
1022 case nir_op_fmul:
1023 inst = emit(MUL(dst, op[0], op[1]));
1024 inst->saturate = instr->dest.saturate;
1025 break;
1026
1027 case nir_op_imul: {
1028 if (devinfo->gen < 8) {
1029 nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
1030 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
1031
1032 /* For integer multiplication, the MUL uses the low 16 bits of one of
1033 * the operands (src0 through SNB, src1 on IVB and later). The MACH
1034 * accumulates in the contribution of the upper 16 bits of that
1035 * operand. If we can determine that one of the args is in the low
1036 * 16 bits, though, we can just emit a single MUL.
1037 */
1038 if (value0 && value0->u[0] < (1 << 16)) {
1039 if (devinfo->gen < 7)
1040 emit(MUL(dst, op[0], op[1]));
1041 else
1042 emit(MUL(dst, op[1], op[0]));
1043 } else if (value1 && value1->u[0] < (1 << 16)) {
1044 if (devinfo->gen < 7)
1045 emit(MUL(dst, op[1], op[0]));
1046 else
1047 emit(MUL(dst, op[0], op[1]));
1048 } else {
1049 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1050
1051 emit(MUL(acc, op[0], op[1]));
1052 emit(MACH(dst_null_d(), op[0], op[1]));
1053 emit(MOV(dst, src_reg(acc)));
1054 }
1055 } else {
1056 emit(MUL(dst, op[0], op[1]));
1057 }
1058 break;
1059 }
1060
1061 case nir_op_imul_high:
1062 case nir_op_umul_high: {
1063 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1064
1065 if (devinfo->gen >=8)
1066 emit(MUL(acc, op[0], retype(op[1], BRW_REGISTER_TYPE_UW)));
1067 else
1068 emit(MUL(acc, op[0], op[1]));
1069
1070 emit(MACH(dst, op[0], op[1]));
1071 break;
1072 }
1073
1074 case nir_op_frcp:
1075 inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1076 inst->saturate = instr->dest.saturate;
1077 break;
1078
1079 case nir_op_fexp2:
1080 inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1081 inst->saturate = instr->dest.saturate;
1082 break;
1083
1084 case nir_op_flog2:
1085 inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1086 inst->saturate = instr->dest.saturate;
1087 break;
1088
1089 case nir_op_fsin:
1090 inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1091 inst->saturate = instr->dest.saturate;
1092 break;
1093
1094 case nir_op_fcos:
1095 inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1096 inst->saturate = instr->dest.saturate;
1097 break;
1098
1099 case nir_op_idiv:
1100 case nir_op_udiv:
1101 emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1102 break;
1103
1104 case nir_op_umod:
1105 case nir_op_irem:
1106 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1107 * appears that our hardware just does the right thing for signed
1108 * remainder.
1109 */
1110 emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1111 break;
1112
1113 case nir_op_imod: {
1114 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1115 inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1116
1117 /* Math instructions don't support conditional mod */
1118 inst = emit(MOV(dst_null_d(), src_reg(dst)));
1119 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1120
1121 /* Now, we need to determine if signs of the sources are different.
1122 * When we XOR the sources, the top bit is 0 if they are the same and 1
1123 * if they are different. We can then use a conditional modifier to
1124 * turn that into a predicate. This leads us to an XOR.l instruction.
1125 */
1126 src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1127 inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1128 inst->predicate = BRW_PREDICATE_NORMAL;
1129 inst->conditional_mod = BRW_CONDITIONAL_L;
1130
1131 /* If the result of the initial remainder operation is non-zero and the
1132 * two sources have different signs, add in a copy of op[1] to get the
1133 * final integer modulus value.
1134 */
1135 inst = emit(ADD(dst, src_reg(dst), op[1]));
1136 inst->predicate = BRW_PREDICATE_NORMAL;
1137 break;
1138 }
1139
1140 case nir_op_ldexp:
1141 unreachable("not reached: should be handled by ldexp_to_arith()");
1142
1143 case nir_op_fsqrt:
1144 inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1145 inst->saturate = instr->dest.saturate;
1146 break;
1147
1148 case nir_op_frsq:
1149 inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1150 inst->saturate = instr->dest.saturate;
1151 break;
1152
1153 case nir_op_fpow:
1154 inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1155 inst->saturate = instr->dest.saturate;
1156 break;
1157
1158 case nir_op_uadd_carry: {
1159 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1160
1161 emit(ADDC(dst_null_ud(), op[0], op[1]));
1162 emit(MOV(dst, src_reg(acc)));
1163 break;
1164 }
1165
1166 case nir_op_usub_borrow: {
1167 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1168
1169 emit(SUBB(dst_null_ud(), op[0], op[1]));
1170 emit(MOV(dst, src_reg(acc)));
1171 break;
1172 }
1173
1174 case nir_op_ftrunc:
1175 inst = emit(RNDZ(dst, op[0]));
1176 inst->saturate = instr->dest.saturate;
1177 break;
1178
1179 case nir_op_fceil: {
1180 src_reg tmp = src_reg(this, glsl_type::float_type);
1181 tmp.swizzle =
1182 brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1183 instr->src[0].src.ssa->num_components :
1184 instr->src[0].src.reg.reg->num_components);
1185
1186 op[0].negate = !op[0].negate;
1187 emit(RNDD(dst_reg(tmp), op[0]));
1188 tmp.negate = true;
1189 inst = emit(MOV(dst, tmp));
1190 inst->saturate = instr->dest.saturate;
1191 break;
1192 }
1193
1194 case nir_op_ffloor:
1195 inst = emit(RNDD(dst, op[0]));
1196 inst->saturate = instr->dest.saturate;
1197 break;
1198
1199 case nir_op_ffract:
1200 inst = emit(FRC(dst, op[0]));
1201 inst->saturate = instr->dest.saturate;
1202 break;
1203
1204 case nir_op_fround_even:
1205 inst = emit(RNDE(dst, op[0]));
1206 inst->saturate = instr->dest.saturate;
1207 break;
1208
1209 case nir_op_fquantize2f16: {
1210 /* See also vec4_visitor::emit_pack_half_2x16() */
1211 src_reg tmp = src_reg(this, glsl_type::uvec4_type);
1212
1213 emit(F32TO16(dst_reg(tmp), op[0]));
1214 inst = emit(F16TO32(dst, tmp));
1215 inst->saturate = instr->dest.saturate;
1216 break;
1217 }
1218
1219 case nir_op_fmin:
1220 case nir_op_imin:
1221 case nir_op_umin:
1222 inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1223 inst->saturate = instr->dest.saturate;
1224 break;
1225
1226 case nir_op_fmax:
1227 case nir_op_imax:
1228 case nir_op_umax:
1229 inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1230 inst->saturate = instr->dest.saturate;
1231 break;
1232
1233 case nir_op_fddx:
1234 case nir_op_fddx_coarse:
1235 case nir_op_fddx_fine:
1236 case nir_op_fddy:
1237 case nir_op_fddy_coarse:
1238 case nir_op_fddy_fine:
1239 unreachable("derivatives are not valid in vertex shaders");
1240
1241 case nir_op_flt:
1242 case nir_op_ilt:
1243 case nir_op_ult:
1244 case nir_op_fge:
1245 case nir_op_ige:
1246 case nir_op_uge:
1247 case nir_op_feq:
1248 case nir_op_ieq:
1249 case nir_op_fne:
1250 case nir_op_ine:
1251 emit(CMP(dst, op[0], op[1],
1252 brw_conditional_for_nir_comparison(instr->op)));
1253 break;
1254
1255 case nir_op_ball_fequal2:
1256 case nir_op_ball_iequal2:
1257 case nir_op_ball_fequal3:
1258 case nir_op_ball_iequal3:
1259 case nir_op_ball_fequal4:
1260 case nir_op_ball_iequal4: {
1261 unsigned swiz =
1262 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1263
1264 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1265 brw_conditional_for_nir_comparison(instr->op)));
1266 emit(MOV(dst, brw_imm_d(0)));
1267 inst = emit(MOV(dst, brw_imm_d(~0)));
1268 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1269 break;
1270 }
1271
1272 case nir_op_bany_fnequal2:
1273 case nir_op_bany_inequal2:
1274 case nir_op_bany_fnequal3:
1275 case nir_op_bany_inequal3:
1276 case nir_op_bany_fnequal4:
1277 case nir_op_bany_inequal4: {
1278 unsigned swiz =
1279 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1280
1281 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1282 brw_conditional_for_nir_comparison(instr->op)));
1283
1284 emit(MOV(dst, brw_imm_d(0)));
1285 inst = emit(MOV(dst, brw_imm_d(~0)));
1286 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1287 break;
1288 }
1289
1290 case nir_op_inot:
1291 if (devinfo->gen >= 8) {
1292 op[0] = resolve_source_modifiers(op[0]);
1293 }
1294 emit(NOT(dst, op[0]));
1295 break;
1296
1297 case nir_op_ixor:
1298 if (devinfo->gen >= 8) {
1299 op[0] = resolve_source_modifiers(op[0]);
1300 op[1] = resolve_source_modifiers(op[1]);
1301 }
1302 emit(XOR(dst, op[0], op[1]));
1303 break;
1304
1305 case nir_op_ior:
1306 if (devinfo->gen >= 8) {
1307 op[0] = resolve_source_modifiers(op[0]);
1308 op[1] = resolve_source_modifiers(op[1]);
1309 }
1310 emit(OR(dst, op[0], op[1]));
1311 break;
1312
1313 case nir_op_iand:
1314 if (devinfo->gen >= 8) {
1315 op[0] = resolve_source_modifiers(op[0]);
1316 op[1] = resolve_source_modifiers(op[1]);
1317 }
1318 emit(AND(dst, op[0], op[1]));
1319 break;
1320
1321 case nir_op_b2i:
1322 case nir_op_b2f:
1323 emit(MOV(dst, negate(op[0])));
1324 break;
1325
1326 case nir_op_f2b:
1327 emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1328 break;
1329
1330 case nir_op_i2b:
1331 emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1332 break;
1333
1334 case nir_op_fnoise1_1:
1335 case nir_op_fnoise1_2:
1336 case nir_op_fnoise1_3:
1337 case nir_op_fnoise1_4:
1338 case nir_op_fnoise2_1:
1339 case nir_op_fnoise2_2:
1340 case nir_op_fnoise2_3:
1341 case nir_op_fnoise2_4:
1342 case nir_op_fnoise3_1:
1343 case nir_op_fnoise3_2:
1344 case nir_op_fnoise3_3:
1345 case nir_op_fnoise3_4:
1346 case nir_op_fnoise4_1:
1347 case nir_op_fnoise4_2:
1348 case nir_op_fnoise4_3:
1349 case nir_op_fnoise4_4:
1350 unreachable("not reached: should be handled by lower_noise");
1351
1352 case nir_op_unpack_half_2x16_split_x:
1353 case nir_op_unpack_half_2x16_split_y:
1354 case nir_op_pack_half_2x16_split:
1355 unreachable("not reached: should not occur in vertex shader");
1356
1357 case nir_op_unpack_snorm_2x16:
1358 case nir_op_unpack_unorm_2x16:
1359 case nir_op_pack_snorm_2x16:
1360 case nir_op_pack_unorm_2x16:
1361 unreachable("not reached: should be handled by lower_packing_builtins");
1362
1363 case nir_op_unpack_half_2x16:
1364 /* As NIR does not guarantee that we have a correct swizzle outside the
1365 * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1366 * uses the source operand in an operation with WRITEMASK_Y while our
1367 * source operand has only size 1, it accessed incorrect data producing
1368 * regressions in Piglit. We repeat the swizzle of the first component on the
1369 * rest of components to avoid regressions. In the vec4_visitor IR code path
1370 * this is not needed because the operand has already the correct swizzle.
1371 */
1372 op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1373 emit_unpack_half_2x16(dst, op[0]);
1374 break;
1375
1376 case nir_op_pack_half_2x16:
1377 emit_pack_half_2x16(dst, op[0]);
1378 break;
1379
1380 case nir_op_unpack_unorm_4x8:
1381 emit_unpack_unorm_4x8(dst, op[0]);
1382 break;
1383
1384 case nir_op_pack_unorm_4x8:
1385 emit_pack_unorm_4x8(dst, op[0]);
1386 break;
1387
1388 case nir_op_unpack_snorm_4x8:
1389 emit_unpack_snorm_4x8(dst, op[0]);
1390 break;
1391
1392 case nir_op_pack_snorm_4x8:
1393 emit_pack_snorm_4x8(dst, op[0]);
1394 break;
1395
1396 case nir_op_bitfield_reverse:
1397 emit(BFREV(dst, op[0]));
1398 break;
1399
1400 case nir_op_bit_count:
1401 emit(CBIT(dst, op[0]));
1402 break;
1403
1404 case nir_op_ufind_msb:
1405 case nir_op_ifind_msb: {
1406 emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1407
1408 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1409 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1410 * subtract the result from 31 to convert the MSB count into an LSB count.
1411 */
1412 src_reg src(dst);
1413 emit(CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ));
1414
1415 inst = emit(ADD(dst, src, brw_imm_d(31)));
1416 inst->predicate = BRW_PREDICATE_NORMAL;
1417 inst->src[0].negate = true;
1418 break;
1419 }
1420
1421 case nir_op_find_lsb:
1422 emit(FBL(dst, op[0]));
1423 break;
1424
1425 case nir_op_ubitfield_extract:
1426 case nir_op_ibitfield_extract:
1427 unreachable("should have been lowered");
1428 case nir_op_ubfe:
1429 case nir_op_ibfe:
1430 op[0] = fix_3src_operand(op[0]);
1431 op[1] = fix_3src_operand(op[1]);
1432 op[2] = fix_3src_operand(op[2]);
1433
1434 emit(BFE(dst, op[2], op[1], op[0]));
1435 break;
1436
1437 case nir_op_bfm:
1438 emit(BFI1(dst, op[0], op[1]));
1439 break;
1440
1441 case nir_op_bfi:
1442 op[0] = fix_3src_operand(op[0]);
1443 op[1] = fix_3src_operand(op[1]);
1444 op[2] = fix_3src_operand(op[2]);
1445
1446 emit(BFI2(dst, op[0], op[1], op[2]));
1447 break;
1448
1449 case nir_op_bitfield_insert:
1450 unreachable("not reached: should have been lowered");
1451
1452 case nir_op_fsign:
1453 /* AND(val, 0x80000000) gives the sign bit.
1454 *
1455 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1456 * zero.
1457 */
1458 emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1459
1460 op[0].type = BRW_REGISTER_TYPE_UD;
1461 dst.type = BRW_REGISTER_TYPE_UD;
1462 emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1463
1464 inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1465 inst->predicate = BRW_PREDICATE_NORMAL;
1466 dst.type = BRW_REGISTER_TYPE_F;
1467
1468 if (instr->dest.saturate) {
1469 inst = emit(MOV(dst, src_reg(dst)));
1470 inst->saturate = true;
1471 }
1472 break;
1473
1474 case nir_op_isign:
1475 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
1476 * -> non-negative val generates 0x00000000.
1477 * Predicated OR sets 1 if val is positive.
1478 */
1479 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G));
1480 emit(ASR(dst, op[0], brw_imm_d(31)));
1481 inst = emit(OR(dst, src_reg(dst), brw_imm_d(1)));
1482 inst->predicate = BRW_PREDICATE_NORMAL;
1483 break;
1484
1485 case nir_op_ishl:
1486 emit(SHL(dst, op[0], op[1]));
1487 break;
1488
1489 case nir_op_ishr:
1490 emit(ASR(dst, op[0], op[1]));
1491 break;
1492
1493 case nir_op_ushr:
1494 emit(SHR(dst, op[0], op[1]));
1495 break;
1496
1497 case nir_op_ffma:
1498 op[0] = fix_3src_operand(op[0]);
1499 op[1] = fix_3src_operand(op[1]);
1500 op[2] = fix_3src_operand(op[2]);
1501
1502 inst = emit(MAD(dst, op[2], op[1], op[0]));
1503 inst->saturate = instr->dest.saturate;
1504 break;
1505
1506 case nir_op_flrp:
1507 inst = emit_lrp(dst, op[0], op[1], op[2]);
1508 inst->saturate = instr->dest.saturate;
1509 break;
1510
1511 case nir_op_bcsel:
1512 enum brw_predicate predicate;
1513 if (!optimize_predicate(instr, &predicate)) {
1514 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1515 switch (dst.writemask) {
1516 case WRITEMASK_X:
1517 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1518 break;
1519 case WRITEMASK_Y:
1520 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1521 break;
1522 case WRITEMASK_Z:
1523 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1524 break;
1525 case WRITEMASK_W:
1526 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1527 break;
1528 default:
1529 predicate = BRW_PREDICATE_NORMAL;
1530 break;
1531 }
1532 }
1533 inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1534 inst->predicate = predicate;
1535 break;
1536
1537 case nir_op_fdot_replicated2:
1538 inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
1539 inst->saturate = instr->dest.saturate;
1540 break;
1541
1542 case nir_op_fdot_replicated3:
1543 inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
1544 inst->saturate = instr->dest.saturate;
1545 break;
1546
1547 case nir_op_fdot_replicated4:
1548 inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
1549 inst->saturate = instr->dest.saturate;
1550 break;
1551
1552 case nir_op_fdph_replicated:
1553 inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
1554 inst->saturate = instr->dest.saturate;
1555 break;
1556
1557 case nir_op_fabs:
1558 case nir_op_iabs:
1559 case nir_op_fneg:
1560 case nir_op_ineg:
1561 case nir_op_fsat:
1562 unreachable("not reached: should be lowered by lower_source mods");
1563
1564 case nir_op_fdiv:
1565 unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
1566
1567 case nir_op_fmod:
1568 unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
1569
1570 case nir_op_fsub:
1571 case nir_op_isub:
1572 unreachable("not reached: should be handled by ir_sub_to_add_neg");
1573
1574 default:
1575 unreachable("Unimplemented ALU operation");
1576 }
1577
1578 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1579 * to sign extend the low bit to 0/~0
1580 */
1581 if (devinfo->gen <= 5 &&
1582 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
1583 BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1584 dst_reg masked = dst_reg(this, glsl_type::int_type);
1585 masked.writemask = dst.writemask;
1586 emit(AND(masked, src_reg(dst), brw_imm_d(1)));
1587 src_reg masked_neg = src_reg(masked);
1588 masked_neg.negate = true;
1589 emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
1590 }
1591 }
1592
1593 void
1594 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
1595 {
1596 switch (instr->type) {
1597 case nir_jump_break:
1598 emit(BRW_OPCODE_BREAK);
1599 break;
1600
1601 case nir_jump_continue:
1602 emit(BRW_OPCODE_CONTINUE);
1603 break;
1604
1605 case nir_jump_return:
1606 default:
1607 unreachable("unknown jump");
1608 }
1609 }
1610
1611 enum ir_texture_opcode
1612 ir_texture_opcode_for_nir_texop(nir_texop texop)
1613 {
1614 enum ir_texture_opcode op;
1615
1616 switch (texop) {
1617 case nir_texop_lod: op = ir_lod; break;
1618 case nir_texop_query_levels: op = ir_query_levels; break;
1619 case nir_texop_texture_samples: op = ir_texture_samples; break;
1620 case nir_texop_tex: op = ir_tex; break;
1621 case nir_texop_tg4: op = ir_tg4; break;
1622 case nir_texop_txb: op = ir_txb; break;
1623 case nir_texop_txd: op = ir_txd; break;
1624 case nir_texop_txf: op = ir_txf; break;
1625 case nir_texop_txf_ms: op = ir_txf_ms; break;
1626 case nir_texop_txl: op = ir_txl; break;
1627 case nir_texop_txs: op = ir_txs; break;
1628 case nir_texop_samples_identical: op = ir_samples_identical; break;
1629 default:
1630 unreachable("unknown texture opcode");
1631 }
1632
1633 return op;
1634 }
1635 const glsl_type *
1636 glsl_type_for_nir_alu_type(nir_alu_type alu_type,
1637 unsigned components)
1638 {
1639 switch (alu_type) {
1640 case nir_type_float:
1641 return glsl_type::vec(components);
1642 case nir_type_int:
1643 return glsl_type::ivec(components);
1644 case nir_type_uint:
1645 return glsl_type::uvec(components);
1646 case nir_type_bool:
1647 return glsl_type::bvec(components);
1648 default:
1649 return glsl_type::error_type;
1650 }
1651
1652 return glsl_type::error_type;
1653 }
1654
1655 void
1656 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
1657 {
1658 unsigned texture = instr->texture_index;
1659 unsigned sampler = instr->sampler_index;
1660 src_reg texture_reg = brw_imm_ud(texture);
1661 src_reg sampler_reg = brw_imm_ud(sampler);
1662 src_reg coordinate;
1663 const glsl_type *coord_type = NULL;
1664 src_reg shadow_comparitor;
1665 src_reg offset_value;
1666 src_reg lod, lod2;
1667 src_reg sample_index;
1668 src_reg mcs;
1669
1670 const glsl_type *dest_type =
1671 glsl_type_for_nir_alu_type(instr->dest_type,
1672 nir_tex_instr_dest_size(instr));
1673 dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
1674
1675 /* Our hardware requires a LOD for buffer textures */
1676 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
1677 lod = brw_imm_d(0);
1678
1679 /* Load the texture operation sources */
1680 for (unsigned i = 0; i < instr->num_srcs; i++) {
1681 switch (instr->src[i].src_type) {
1682 case nir_tex_src_comparitor:
1683 shadow_comparitor = get_nir_src(instr->src[i].src,
1684 BRW_REGISTER_TYPE_F, 1);
1685 break;
1686
1687 case nir_tex_src_coord: {
1688 unsigned src_size = nir_tex_instr_src_size(instr, i);
1689
1690 switch (instr->op) {
1691 case nir_texop_txf:
1692 case nir_texop_txf_ms:
1693 case nir_texop_samples_identical:
1694 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
1695 src_size);
1696 coord_type = glsl_type::ivec(src_size);
1697 break;
1698
1699 default:
1700 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
1701 src_size);
1702 coord_type = glsl_type::vec(src_size);
1703 break;
1704 }
1705 break;
1706 }
1707
1708 case nir_tex_src_ddx:
1709 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
1710 nir_tex_instr_src_size(instr, i));
1711 break;
1712
1713 case nir_tex_src_ddy:
1714 lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
1715 nir_tex_instr_src_size(instr, i));
1716 break;
1717
1718 case nir_tex_src_lod:
1719 switch (instr->op) {
1720 case nir_texop_txs:
1721 case nir_texop_txf:
1722 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
1723 break;
1724
1725 default:
1726 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
1727 break;
1728 }
1729 break;
1730
1731 case nir_tex_src_ms_index: {
1732 sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
1733 break;
1734 }
1735
1736 case nir_tex_src_offset:
1737 offset_value = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
1738 break;
1739
1740 case nir_tex_src_texture_offset: {
1741 /* The highest texture which may be used by this operation is
1742 * the last element of the array. Mark it here, because the generator
1743 * doesn't have enough information to determine the bound.
1744 */
1745 uint32_t max_used = texture + instr->texture_array_size - 1;
1746 if (instr->op == nir_texop_tg4) {
1747 max_used += prog_data->base.binding_table.gather_texture_start;
1748 } else {
1749 max_used += prog_data->base.binding_table.texture_start;
1750 }
1751
1752 brw_mark_surface_used(&prog_data->base, max_used);
1753
1754 /* Emit code to evaluate the actual indexing expression */
1755 src_reg src = get_nir_src(instr->src[i].src, 1);
1756 src_reg temp(this, glsl_type::uint_type);
1757 emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
1758 texture_reg = emit_uniformize(temp);
1759 break;
1760 }
1761
1762 case nir_tex_src_sampler_offset: {
1763 /* Emit code to evaluate the actual indexing expression */
1764 src_reg src = get_nir_src(instr->src[i].src, 1);
1765 src_reg temp(this, glsl_type::uint_type);
1766 emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
1767 sampler_reg = emit_uniformize(temp);
1768 break;
1769 }
1770
1771 case nir_tex_src_projector:
1772 unreachable("Should be lowered by do_lower_texture_projection");
1773
1774 case nir_tex_src_bias:
1775 unreachable("LOD bias is not valid for vertex shaders.\n");
1776
1777 default:
1778 unreachable("unknown texture source");
1779 }
1780 }
1781
1782 if (instr->op == nir_texop_txf_ms ||
1783 instr->op == nir_texop_samples_identical) {
1784 assert(coord_type != NULL);
1785 if (devinfo->gen >= 7 &&
1786 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
1787 mcs = emit_mcs_fetch(coord_type, coordinate, sampler_reg);
1788 } else {
1789 mcs = brw_imm_ud(0u);
1790 }
1791 }
1792
1793 uint32_t constant_offset = 0;
1794 for (unsigned i = 0; i < 3; i++) {
1795 if (instr->const_offset[i] != 0) {
1796 constant_offset = brw_texture_offset(instr->const_offset, 3);
1797 break;
1798 }
1799 }
1800
1801 /* Stuff the channel select bits in the top of the texture offset */
1802 if (instr->op == nir_texop_tg4) {
1803 if (instr->component == 1 &&
1804 (key_tex->gather_channel_quirk_mask & (1 << texture))) {
1805 /* gather4 sampler is broken for green channel on RG32F --
1806 * we must ask for blue instead.
1807 */
1808 constant_offset |= 2 << 16;
1809 } else {
1810 constant_offset |= instr->component << 16;
1811 }
1812 }
1813
1814 ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
1815
1816 bool is_cube_array =
1817 instr->op == nir_texop_txs &&
1818 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1819 instr->is_array;
1820
1821 emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
1822 shadow_comparitor,
1823 lod, lod2, sample_index,
1824 constant_offset, offset_value,
1825 mcs, is_cube_array,
1826 texture, texture_reg, sampler, sampler_reg);
1827 }
1828
1829 void
1830 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
1831 {
1832 nir_ssa_values[instr->def.index] = dst_reg(VGRF, alloc.allocate(1));
1833 }
1834
1835 }