i965/vec4: Use UD rather than D for uniform indirects
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_nir.cpp
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28 #include "brw_program.h"
29
30 using namespace brw;
31 using namespace brw::surface_access;
32
33 namespace brw {
34
35 void
36 vec4_visitor::emit_nir_code()
37 {
38 if (nir->num_uniforms > 0)
39 nir_setup_uniforms();
40
41 nir_setup_system_values();
42
43 /* get the main function and emit it */
44 nir_foreach_function(nir, function) {
45 assert(strcmp(function->name, "main") == 0);
46 assert(function->impl);
47 nir_emit_impl(function->impl);
48 }
49 }
50
51 void
52 vec4_visitor::nir_setup_system_value_intrinsic(nir_intrinsic_instr *instr)
53 {
54 dst_reg *reg;
55
56 switch (instr->intrinsic) {
57 case nir_intrinsic_load_vertex_id:
58 unreachable("should be lowered by lower_vertex_id().");
59
60 case nir_intrinsic_load_vertex_id_zero_base:
61 reg = &nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
62 if (reg->file == BAD_FILE)
63 *reg = *make_reg_for_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE,
64 glsl_type::int_type);
65 break;
66
67 case nir_intrinsic_load_base_vertex:
68 reg = &nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
69 if (reg->file == BAD_FILE)
70 *reg = *make_reg_for_system_value(SYSTEM_VALUE_BASE_VERTEX,
71 glsl_type::int_type);
72 break;
73
74 case nir_intrinsic_load_instance_id:
75 reg = &nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
76 if (reg->file == BAD_FILE)
77 *reg = *make_reg_for_system_value(SYSTEM_VALUE_INSTANCE_ID,
78 glsl_type::int_type);
79 break;
80
81 case nir_intrinsic_load_base_instance:
82 reg = &nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
83 if (reg->file == BAD_FILE)
84 *reg = *make_reg_for_system_value(SYSTEM_VALUE_BASE_INSTANCE,
85 glsl_type::int_type);
86 break;
87
88 case nir_intrinsic_load_draw_id:
89 reg = &nir_system_values[SYSTEM_VALUE_DRAW_ID];
90 if (reg->file == BAD_FILE)
91 *reg = *make_reg_for_system_value(SYSTEM_VALUE_DRAW_ID,
92 glsl_type::int_type);
93 break;
94
95 default:
96 break;
97 }
98 }
99
100 static bool
101 setup_system_values_block(nir_block *block, void *void_visitor)
102 {
103 vec4_visitor *v = (vec4_visitor *)void_visitor;
104
105 nir_foreach_instr(block, instr) {
106 if (instr->type != nir_instr_type_intrinsic)
107 continue;
108
109 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
110 v->nir_setup_system_value_intrinsic(intrin);
111 }
112
113 return true;
114 }
115
116 void
117 vec4_visitor::nir_setup_system_values()
118 {
119 nir_system_values = ralloc_array(mem_ctx, dst_reg, SYSTEM_VALUE_MAX);
120 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
121 nir_system_values[i] = dst_reg();
122 }
123
124 nir_foreach_function(nir, function) {
125 assert(strcmp(function->name, "main") == 0);
126 assert(function->impl);
127 nir_foreach_block(function->impl, setup_system_values_block, this);
128 }
129 }
130
131 void
132 vec4_visitor::nir_setup_uniforms()
133 {
134 uniforms = nir->num_uniforms / 16;
135
136 nir_foreach_variable(var, &nir->uniforms) {
137 /* UBO's and atomics don't take up space in the uniform file */
138 if (var->interface_type != NULL || var->type->contains_atomic())
139 continue;
140
141 if (type_size_vec4(var->type) > 0)
142 uniform_size[var->data.driver_location / 16] = type_size_vec4(var->type);
143 }
144 }
145
146 void
147 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
148 {
149 nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
150 for (unsigned i = 0; i < impl->reg_alloc; i++) {
151 nir_locals[i] = dst_reg();
152 }
153
154 foreach_list_typed(nir_register, reg, node, &impl->registers) {
155 unsigned array_elems =
156 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
157
158 nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(array_elems));
159 }
160
161 nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
162
163 nir_emit_cf_list(&impl->body);
164 }
165
166 void
167 vec4_visitor::nir_emit_cf_list(exec_list *list)
168 {
169 exec_list_validate(list);
170 foreach_list_typed(nir_cf_node, node, node, list) {
171 switch (node->type) {
172 case nir_cf_node_if:
173 nir_emit_if(nir_cf_node_as_if(node));
174 break;
175
176 case nir_cf_node_loop:
177 nir_emit_loop(nir_cf_node_as_loop(node));
178 break;
179
180 case nir_cf_node_block:
181 nir_emit_block(nir_cf_node_as_block(node));
182 break;
183
184 default:
185 unreachable("Invalid CFG node block");
186 }
187 }
188 }
189
190 void
191 vec4_visitor::nir_emit_if(nir_if *if_stmt)
192 {
193 /* First, put the condition in f0 */
194 src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
195 vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
196 inst->conditional_mod = BRW_CONDITIONAL_NZ;
197
198 /* We can just predicate based on the X channel, as the condition only
199 * goes on its own line */
200 emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
201
202 nir_emit_cf_list(&if_stmt->then_list);
203
204 /* note: if the else is empty, dead CF elimination will remove it */
205 emit(BRW_OPCODE_ELSE);
206
207 nir_emit_cf_list(&if_stmt->else_list);
208
209 emit(BRW_OPCODE_ENDIF);
210 }
211
212 void
213 vec4_visitor::nir_emit_loop(nir_loop *loop)
214 {
215 emit(BRW_OPCODE_DO);
216
217 nir_emit_cf_list(&loop->body);
218
219 emit(BRW_OPCODE_WHILE);
220 }
221
222 void
223 vec4_visitor::nir_emit_block(nir_block *block)
224 {
225 nir_foreach_instr(block, instr) {
226 nir_emit_instr(instr);
227 }
228 }
229
230 void
231 vec4_visitor::nir_emit_instr(nir_instr *instr)
232 {
233 base_ir = instr;
234
235 switch (instr->type) {
236 case nir_instr_type_load_const:
237 nir_emit_load_const(nir_instr_as_load_const(instr));
238 break;
239
240 case nir_instr_type_intrinsic:
241 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
242 break;
243
244 case nir_instr_type_alu:
245 nir_emit_alu(nir_instr_as_alu(instr));
246 break;
247
248 case nir_instr_type_jump:
249 nir_emit_jump(nir_instr_as_jump(instr));
250 break;
251
252 case nir_instr_type_tex:
253 nir_emit_texture(nir_instr_as_tex(instr));
254 break;
255
256 case nir_instr_type_ssa_undef:
257 nir_emit_undef(nir_instr_as_ssa_undef(instr));
258 break;
259
260 default:
261 fprintf(stderr, "VS instruction not yet implemented by NIR->vec4\n");
262 break;
263 }
264 }
265
266 static dst_reg
267 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
268 unsigned base_offset, nir_src *indirect)
269 {
270 dst_reg reg;
271
272 reg = v->nir_locals[nir_reg->index];
273 reg = offset(reg, base_offset);
274 if (indirect) {
275 reg.reladdr =
276 new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
277 BRW_REGISTER_TYPE_D,
278 1));
279 }
280 return reg;
281 }
282
283 dst_reg
284 vec4_visitor::get_nir_dest(nir_dest dest)
285 {
286 if (dest.is_ssa) {
287 dst_reg dst = dst_reg(VGRF, alloc.allocate(1));
288 nir_ssa_values[dest.ssa.index] = dst;
289 return dst;
290 } else {
291 return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
292 dest.reg.indirect);
293 }
294 }
295
296 dst_reg
297 vec4_visitor::get_nir_dest(nir_dest dest, enum brw_reg_type type)
298 {
299 return retype(get_nir_dest(dest), type);
300 }
301
302 dst_reg
303 vec4_visitor::get_nir_dest(nir_dest dest, nir_alu_type type)
304 {
305 return get_nir_dest(dest, brw_type_for_nir_type(type));
306 }
307
308 src_reg
309 vec4_visitor::get_nir_src(nir_src src, enum brw_reg_type type,
310 unsigned num_components)
311 {
312 dst_reg reg;
313
314 if (src.is_ssa) {
315 assert(src.ssa != NULL);
316 reg = nir_ssa_values[src.ssa->index];
317 }
318 else {
319 reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
320 src.reg.indirect);
321 }
322
323 reg = retype(reg, type);
324
325 src_reg reg_as_src = src_reg(reg);
326 reg_as_src.swizzle = brw_swizzle_for_size(num_components);
327 return reg_as_src;
328 }
329
330 src_reg
331 vec4_visitor::get_nir_src(nir_src src, nir_alu_type type,
332 unsigned num_components)
333 {
334 return get_nir_src(src, brw_type_for_nir_type(type), num_components);
335 }
336
337 src_reg
338 vec4_visitor::get_nir_src(nir_src src, unsigned num_components)
339 {
340 /* if type is not specified, default to signed int */
341 return get_nir_src(src, nir_type_int, num_components);
342 }
343
344 src_reg
345 vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
346 {
347 nir_src *offset_src = nir_get_io_offset_src(instr);
348 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
349
350 if (const_value) {
351 /* The only constant offset we should find is 0. brw_nir.c's
352 * add_const_offset_to_base() will fold other constant offsets
353 * into instr->const_index[0].
354 */
355 assert(const_value->u32[0] == 0);
356 return src_reg();
357 }
358
359 return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
360 }
361
362 void
363 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
364 {
365 dst_reg reg = dst_reg(VGRF, alloc.allocate(1));
366 reg.type = BRW_REGISTER_TYPE_D;
367
368 unsigned remaining = brw_writemask_for_size(instr->def.num_components);
369
370 /* @FIXME: consider emitting vector operations to save some MOVs in
371 * cases where the components are representable in 8 bits.
372 * For now, we emit a MOV for each distinct value.
373 */
374 for (unsigned i = 0; i < instr->def.num_components; i++) {
375 unsigned writemask = 1 << i;
376
377 if ((remaining & writemask) == 0)
378 continue;
379
380 for (unsigned j = i; j < instr->def.num_components; j++) {
381 if (instr->value.u32[i] == instr->value.u32[j]) {
382 writemask |= 1 << j;
383 }
384 }
385
386 reg.writemask = writemask;
387 emit(MOV(reg, brw_imm_d(instr->value.i32[i])));
388
389 remaining &= ~writemask;
390 }
391
392 /* Set final writemask */
393 reg.writemask = brw_writemask_for_size(instr->def.num_components);
394
395 nir_ssa_values[instr->def.index] = reg;
396 }
397
398 void
399 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
400 {
401 dst_reg dest;
402 src_reg src;
403
404 switch (instr->intrinsic) {
405
406 case nir_intrinsic_load_input: {
407 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
408
409 /* We set EmitNoIndirectInput for VS */
410 assert(const_offset);
411
412 src = src_reg(ATTR, instr->const_index[0] + const_offset->u32[0],
413 glsl_type::uvec4_type);
414
415 dest = get_nir_dest(instr->dest, src.type);
416 dest.writemask = brw_writemask_for_size(instr->num_components);
417
418 emit(MOV(dest, src));
419 break;
420 }
421
422 case nir_intrinsic_store_output: {
423 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
424 assert(const_offset);
425
426 int varying = instr->const_index[0] + const_offset->u32[0];
427
428 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
429 instr->num_components);
430
431 output_reg[varying] = dst_reg(src);
432 break;
433 }
434
435 case nir_intrinsic_get_buffer_size: {
436 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
437 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
438
439 const unsigned index =
440 prog_data->base.binding_table.ssbo_start + ssbo_index;
441 dst_reg result_dst = get_nir_dest(instr->dest);
442 vec4_instruction *inst = new(mem_ctx)
443 vec4_instruction(VS_OPCODE_GET_BUFFER_SIZE, result_dst);
444
445 inst->base_mrf = 2;
446 inst->mlen = 1; /* always at least one */
447 inst->src[1] = brw_imm_ud(index);
448
449 /* MRF for the first parameter */
450 src_reg lod = brw_imm_d(0);
451 int param_base = inst->base_mrf;
452 int writemask = WRITEMASK_X;
453 emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
454
455 emit(inst);
456
457 brw_mark_surface_used(&prog_data->base, index);
458 break;
459 }
460
461 case nir_intrinsic_store_ssbo: {
462 assert(devinfo->gen >= 7);
463
464 /* Block index */
465 src_reg surf_index;
466 nir_const_value *const_uniform_block =
467 nir_src_as_const_value(instr->src[1]);
468 if (const_uniform_block) {
469 unsigned index = prog_data->base.binding_table.ssbo_start +
470 const_uniform_block->u32[0];
471 surf_index = brw_imm_ud(index);
472 brw_mark_surface_used(&prog_data->base, index);
473 } else {
474 surf_index = src_reg(this, glsl_type::uint_type);
475 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[1], 1),
476 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
477 surf_index = emit_uniformize(surf_index);
478
479 brw_mark_surface_used(&prog_data->base,
480 prog_data->base.binding_table.ssbo_start +
481 nir->info.num_ssbos - 1);
482 }
483
484 /* Offset */
485 src_reg offset_reg;
486 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
487 if (const_offset) {
488 offset_reg = brw_imm_ud(const_offset->u32[0]);
489 } else {
490 offset_reg = get_nir_src(instr->src[2], 1);
491 }
492
493 /* Value */
494 src_reg val_reg = get_nir_src(instr->src[0], 4);
495
496 /* Writemask */
497 unsigned write_mask = instr->const_index[0];
498
499 /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
500 * writes will use SIMD8 mode. In order to hide this and keep symmetry across
501 * typed and untyped messages and across hardware platforms, the
502 * current implementation of the untyped messages will transparently convert
503 * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
504 * and enabling only channel X on the SEND instruction.
505 *
506 * The above, works well for full vector writes, but not for partial writes
507 * where we want to write some channels and not others, like when we have
508 * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
509 * quite restrictive with regards to the channel enables we can configure in
510 * the message descriptor (not all combinations are allowed) we cannot simply
511 * implement these scenarios with a single message while keeping the
512 * aforementioned symmetry in the implementation. For now we de decided that
513 * it is better to keep the symmetry to reduce complexity, so in situations
514 * such as the one described we end up emitting two untyped write messages
515 * (one for xy and another for w).
516 *
517 * The code below packs consecutive channels into a single write message,
518 * detects gaps in the vector write and if needed, sends a second message
519 * with the remaining channels. If in the future we decide that we want to
520 * emit a single message at the expense of losing the symmetry in the
521 * implementation we can:
522 *
523 * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
524 * message payload. In this mode we can write up to 8 offsets and dwords
525 * to the red channel only (for the two vec4s in the SIMD4x2 execution)
526 * and select which of the 8 channels carry data to write by setting the
527 * appropriate writemask in the dst register of the SEND instruction.
528 * It would require to write a new generator opcode specifically for
529 * IvyBridge since we would need to prepare a SIMD8 payload that could
530 * use any channel, not just X.
531 *
532 * 2) For Haswell+: Simply send a single write message but set the writemask
533 * on the dst of the SEND instruction to select the channels we want to
534 * write. It would require to modify the current messages to receive
535 * and honor the writemask provided.
536 */
537 const vec4_builder bld = vec4_builder(this).at_end()
538 .annotate(current_annotation, base_ir);
539
540 int swizzle[4] = { 0, 0, 0, 0};
541 int num_channels = 0;
542 unsigned skipped_channels = 0;
543 int num_components = instr->num_components;
544 for (int i = 0; i < num_components; i++) {
545 /* Check if this channel needs to be written. If so, record the
546 * channel we need to take the data from in the swizzle array
547 */
548 int component_mask = 1 << i;
549 int write_test = write_mask & component_mask;
550 if (write_test)
551 swizzle[num_channels++] = i;
552
553 /* If we don't have to write this channel it means we have a gap in the
554 * vector, so write the channels we accumulated until now, if any. Do
555 * the same if this was the last component in the vector.
556 */
557 if (!write_test || i == num_components - 1) {
558 if (num_channels > 0) {
559 /* We have channels to write, so update the offset we need to
560 * write at to skip the channels we skipped, if any.
561 */
562 if (skipped_channels > 0) {
563 if (offset_reg.file == IMM) {
564 offset_reg.ud += 4 * skipped_channels;
565 } else {
566 emit(ADD(dst_reg(offset_reg), offset_reg,
567 brw_imm_ud(4 * skipped_channels)));
568 }
569 }
570
571 /* Swizzle the data register so we take the data from the channels
572 * we need to write and send the write message. This will write
573 * num_channels consecutive dwords starting at offset.
574 */
575 val_reg.swizzle =
576 BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
577 emit_untyped_write(bld, surf_index, offset_reg, val_reg,
578 1 /* dims */, num_channels /* size */,
579 BRW_PREDICATE_NONE);
580
581 /* If we have to do a second write we will have to update the
582 * offset so that we jump over the channels we have just written
583 * now.
584 */
585 skipped_channels = num_channels;
586
587 /* Restart the count for the next write message */
588 num_channels = 0;
589 }
590
591 /* We did not write the current channel, so increase skipped count */
592 skipped_channels++;
593 }
594 }
595
596 break;
597 }
598
599 case nir_intrinsic_load_ssbo: {
600 assert(devinfo->gen >= 7);
601
602 nir_const_value *const_uniform_block =
603 nir_src_as_const_value(instr->src[0]);
604
605 src_reg surf_index;
606 if (const_uniform_block) {
607 unsigned index = prog_data->base.binding_table.ssbo_start +
608 const_uniform_block->u32[0];
609 surf_index = brw_imm_ud(index);
610
611 brw_mark_surface_used(&prog_data->base, index);
612 } else {
613 surf_index = src_reg(this, glsl_type::uint_type);
614 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], 1),
615 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
616 surf_index = emit_uniformize(surf_index);
617
618 /* Assume this may touch any UBO. It would be nice to provide
619 * a tighter bound, but the array information is already lowered away.
620 */
621 brw_mark_surface_used(&prog_data->base,
622 prog_data->base.binding_table.ssbo_start +
623 nir->info.num_ssbos - 1);
624 }
625
626 src_reg offset_reg;
627 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
628 if (const_offset) {
629 offset_reg = brw_imm_ud(const_offset->u32[0]);
630 } else {
631 offset_reg = get_nir_src(instr->src[1], 1);
632 }
633
634 /* Read the vector */
635 const vec4_builder bld = vec4_builder(this).at_end()
636 .annotate(current_annotation, base_ir);
637
638 src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
639 1 /* dims */, 4 /* size*/,
640 BRW_PREDICATE_NONE);
641 dst_reg dest = get_nir_dest(instr->dest);
642 read_result.type = dest.type;
643 read_result.swizzle = brw_swizzle_for_size(instr->num_components);
644 emit(MOV(dest, read_result));
645
646 break;
647 }
648
649 case nir_intrinsic_ssbo_atomic_add:
650 nir_emit_ssbo_atomic(BRW_AOP_ADD, instr);
651 break;
652 case nir_intrinsic_ssbo_atomic_imin:
653 nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
654 break;
655 case nir_intrinsic_ssbo_atomic_umin:
656 nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
657 break;
658 case nir_intrinsic_ssbo_atomic_imax:
659 nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
660 break;
661 case nir_intrinsic_ssbo_atomic_umax:
662 nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
663 break;
664 case nir_intrinsic_ssbo_atomic_and:
665 nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
666 break;
667 case nir_intrinsic_ssbo_atomic_or:
668 nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
669 break;
670 case nir_intrinsic_ssbo_atomic_xor:
671 nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
672 break;
673 case nir_intrinsic_ssbo_atomic_exchange:
674 nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
675 break;
676 case nir_intrinsic_ssbo_atomic_comp_swap:
677 nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
678 break;
679
680 case nir_intrinsic_load_vertex_id:
681 unreachable("should be lowered by lower_vertex_id()");
682
683 case nir_intrinsic_load_vertex_id_zero_base:
684 case nir_intrinsic_load_base_vertex:
685 case nir_intrinsic_load_instance_id:
686 case nir_intrinsic_load_base_instance:
687 case nir_intrinsic_load_draw_id:
688 case nir_intrinsic_load_invocation_id: {
689 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
690 src_reg val = src_reg(nir_system_values[sv]);
691 assert(val.file != BAD_FILE);
692 dest = get_nir_dest(instr->dest, val.type);
693 emit(MOV(dest, val));
694 break;
695 }
696
697 case nir_intrinsic_load_uniform: {
698 /* Offsets are in bytes but they should always be multiples of 16 */
699 assert(instr->const_index[0] % 16 == 0);
700
701 dest = get_nir_dest(instr->dest);
702
703 src = src_reg(dst_reg(UNIFORM, instr->const_index[0] / 16));
704 src.type = dest.type;
705
706 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
707 if (const_offset) {
708 /* Offsets are in bytes but they should always be multiples of 16 */
709 assert(const_offset->u32[0] % 16 == 0);
710 src.reg_offset = const_offset->u32[0] / 16;
711 } else {
712 src_reg tmp = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
713 src.reladdr = new(mem_ctx) src_reg(tmp);
714 }
715
716 emit(MOV(dest, src));
717 break;
718 }
719
720 case nir_intrinsic_atomic_counter_read:
721 case nir_intrinsic_atomic_counter_inc:
722 case nir_intrinsic_atomic_counter_dec: {
723 unsigned surf_index = prog_data->base.binding_table.abo_start +
724 (unsigned) instr->const_index[0];
725 src_reg offset = get_nir_src(instr->src[0], nir_type_int,
726 instr->num_components);
727 const src_reg surface = brw_imm_ud(surf_index);
728 const vec4_builder bld =
729 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
730 src_reg tmp;
731
732 dest = get_nir_dest(instr->dest);
733
734 switch (instr->intrinsic) {
735 case nir_intrinsic_atomic_counter_inc:
736 tmp = emit_untyped_atomic(bld, surface, offset,
737 src_reg(), src_reg(),
738 1, 1,
739 BRW_AOP_INC);
740 break;
741 case nir_intrinsic_atomic_counter_dec:
742 tmp = emit_untyped_atomic(bld, surface, offset,
743 src_reg(), src_reg(),
744 1, 1,
745 BRW_AOP_PREDEC);
746 break;
747 case nir_intrinsic_atomic_counter_read:
748 tmp = emit_untyped_read(bld, surface, offset, 1, 1);
749 break;
750 default:
751 unreachable("Unreachable");
752 }
753
754 bld.MOV(retype(dest, tmp.type), tmp);
755 brw_mark_surface_used(stage_prog_data, surf_index);
756 break;
757 }
758
759 case nir_intrinsic_load_ubo: {
760 nir_const_value *const_block_index = nir_src_as_const_value(instr->src[0]);
761 src_reg surf_index;
762
763 dest = get_nir_dest(instr->dest);
764
765 if (const_block_index) {
766 /* The block index is a constant, so just emit the binding table entry
767 * as an immediate.
768 */
769 const unsigned index = prog_data->base.binding_table.ubo_start +
770 const_block_index->u32[0];
771 surf_index = brw_imm_ud(index);
772 brw_mark_surface_used(&prog_data->base, index);
773 } else {
774 /* The block index is not a constant. Evaluate the index expression
775 * per-channel and add the base UBO index; we have to select a value
776 * from any live channel.
777 */
778 surf_index = src_reg(this, glsl_type::uint_type);
779 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int,
780 instr->num_components),
781 brw_imm_ud(prog_data->base.binding_table.ubo_start)));
782 surf_index = emit_uniformize(surf_index);
783
784 /* Assume this may touch any UBO. It would be nice to provide
785 * a tighter bound, but the array information is already lowered away.
786 */
787 brw_mark_surface_used(&prog_data->base,
788 prog_data->base.binding_table.ubo_start +
789 nir->info.num_ubos - 1);
790 }
791
792 src_reg offset;
793 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
794 if (const_offset) {
795 offset = brw_imm_ud(const_offset->u32[0] & ~15);
796 } else {
797 offset = get_nir_src(instr->src[1], nir_type_int, 1);
798 }
799
800 src_reg packed_consts = src_reg(this, glsl_type::vec4_type);
801 packed_consts.type = dest.type;
802
803 emit_pull_constant_load_reg(dst_reg(packed_consts),
804 surf_index,
805 offset,
806 NULL, NULL /* before_block/inst */);
807
808 packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
809 if (const_offset) {
810 packed_consts.swizzle += BRW_SWIZZLE4(const_offset->u32[0] % 16 / 4,
811 const_offset->u32[0] % 16 / 4,
812 const_offset->u32[0] % 16 / 4,
813 const_offset->u32[0] % 16 / 4);
814 }
815
816 emit(MOV(dest, packed_consts));
817 break;
818 }
819
820 case nir_intrinsic_memory_barrier: {
821 const vec4_builder bld =
822 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
823 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
824 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
825 ->regs_written = 2;
826 break;
827 }
828
829 case nir_intrinsic_shader_clock: {
830 /* We cannot do anything if there is an event, so ignore it for now */
831 const src_reg shader_clock = get_timestamp();
832 const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
833
834 dest = get_nir_dest(instr->dest, type);
835 emit(MOV(dest, shader_clock));
836 break;
837 }
838
839 default:
840 unreachable("Unknown intrinsic");
841 }
842 }
843
844 void
845 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
846 {
847 dst_reg dest;
848 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
849 dest = get_nir_dest(instr->dest);
850
851 src_reg surface;
852 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
853 if (const_surface) {
854 unsigned surf_index = prog_data->base.binding_table.ssbo_start +
855 const_surface->u32[0];
856 surface = brw_imm_ud(surf_index);
857 brw_mark_surface_used(&prog_data->base, surf_index);
858 } else {
859 surface = src_reg(this, glsl_type::uint_type);
860 emit(ADD(dst_reg(surface), get_nir_src(instr->src[0]),
861 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
862
863 /* Assume this may touch any UBO. This is the same we do for other
864 * UBO/SSBO accesses with non-constant surface.
865 */
866 brw_mark_surface_used(&prog_data->base,
867 prog_data->base.binding_table.ssbo_start +
868 nir->info.num_ssbos - 1);
869 }
870
871 src_reg offset = get_nir_src(instr->src[1], 1);
872 src_reg data1 = get_nir_src(instr->src[2], 1);
873 src_reg data2;
874 if (op == BRW_AOP_CMPWR)
875 data2 = get_nir_src(instr->src[3], 1);
876
877 /* Emit the actual atomic operation operation */
878 const vec4_builder bld =
879 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
880
881 src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
882 data1, data2,
883 1 /* dims */, 1 /* rsize */,
884 op,
885 BRW_PREDICATE_NONE);
886 dest.type = atomic_result.type;
887 bld.MOV(dest, atomic_result);
888 }
889
890 static unsigned
891 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
892 {
893 return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
894 }
895
896 static enum brw_conditional_mod
897 brw_conditional_for_nir_comparison(nir_op op)
898 {
899 switch (op) {
900 case nir_op_flt:
901 case nir_op_ilt:
902 case nir_op_ult:
903 return BRW_CONDITIONAL_L;
904
905 case nir_op_fge:
906 case nir_op_ige:
907 case nir_op_uge:
908 return BRW_CONDITIONAL_GE;
909
910 case nir_op_feq:
911 case nir_op_ieq:
912 case nir_op_ball_fequal2:
913 case nir_op_ball_iequal2:
914 case nir_op_ball_fequal3:
915 case nir_op_ball_iequal3:
916 case nir_op_ball_fequal4:
917 case nir_op_ball_iequal4:
918 return BRW_CONDITIONAL_Z;
919
920 case nir_op_fne:
921 case nir_op_ine:
922 case nir_op_bany_fnequal2:
923 case nir_op_bany_inequal2:
924 case nir_op_bany_fnequal3:
925 case nir_op_bany_inequal3:
926 case nir_op_bany_fnequal4:
927 case nir_op_bany_inequal4:
928 return BRW_CONDITIONAL_NZ;
929
930 default:
931 unreachable("not reached: bad operation for comparison");
932 }
933 }
934
935 bool
936 vec4_visitor::optimize_predicate(nir_alu_instr *instr,
937 enum brw_predicate *predicate)
938 {
939 if (!instr->src[0].src.is_ssa ||
940 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
941 return false;
942
943 nir_alu_instr *cmp_instr =
944 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
945
946 switch (cmp_instr->op) {
947 case nir_op_bany_fnequal2:
948 case nir_op_bany_inequal2:
949 case nir_op_bany_fnequal3:
950 case nir_op_bany_inequal3:
951 case nir_op_bany_fnequal4:
952 case nir_op_bany_inequal4:
953 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
954 break;
955 case nir_op_ball_fequal2:
956 case nir_op_ball_iequal2:
957 case nir_op_ball_fequal3:
958 case nir_op_ball_iequal3:
959 case nir_op_ball_fequal4:
960 case nir_op_ball_iequal4:
961 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
962 break;
963 default:
964 return false;
965 }
966
967 unsigned size_swizzle =
968 brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
969
970 src_reg op[2];
971 assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
972 for (unsigned i = 0; i < 2; i++) {
973 op[i] = get_nir_src(cmp_instr->src[i].src,
974 nir_op_infos[cmp_instr->op].input_types[i], 4);
975 unsigned base_swizzle =
976 brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
977 op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
978 op[i].abs = cmp_instr->src[i].abs;
979 op[i].negate = cmp_instr->src[i].negate;
980 }
981
982 emit(CMP(dst_null_d(), op[0], op[1],
983 brw_conditional_for_nir_comparison(cmp_instr->op)));
984
985 return true;
986 }
987
988 void
989 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
990 {
991 vec4_instruction *inst;
992
993 dst_reg dst = get_nir_dest(instr->dest.dest,
994 nir_op_infos[instr->op].output_type);
995 dst.writemask = instr->dest.write_mask;
996
997 src_reg op[4];
998 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
999 op[i] = get_nir_src(instr->src[i].src,
1000 nir_op_infos[instr->op].input_types[i], 4);
1001 op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
1002 op[i].abs = instr->src[i].abs;
1003 op[i].negate = instr->src[i].negate;
1004 }
1005
1006 switch (instr->op) {
1007 case nir_op_imov:
1008 case nir_op_fmov:
1009 inst = emit(MOV(dst, op[0]));
1010 inst->saturate = instr->dest.saturate;
1011 break;
1012
1013 case nir_op_vec2:
1014 case nir_op_vec3:
1015 case nir_op_vec4:
1016 unreachable("not reached: should be handled by lower_vec_to_movs()");
1017
1018 case nir_op_i2f:
1019 case nir_op_u2f:
1020 inst = emit(MOV(dst, op[0]));
1021 inst->saturate = instr->dest.saturate;
1022 break;
1023
1024 case nir_op_f2i:
1025 case nir_op_f2u:
1026 inst = emit(MOV(dst, op[0]));
1027 break;
1028
1029 case nir_op_fadd:
1030 /* fall through */
1031 case nir_op_iadd:
1032 inst = emit(ADD(dst, op[0], op[1]));
1033 inst->saturate = instr->dest.saturate;
1034 break;
1035
1036 case nir_op_fmul:
1037 inst = emit(MUL(dst, op[0], op[1]));
1038 inst->saturate = instr->dest.saturate;
1039 break;
1040
1041 case nir_op_imul: {
1042 if (devinfo->gen < 8) {
1043 nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
1044 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
1045
1046 /* For integer multiplication, the MUL uses the low 16 bits of one of
1047 * the operands (src0 through SNB, src1 on IVB and later). The MACH
1048 * accumulates in the contribution of the upper 16 bits of that
1049 * operand. If we can determine that one of the args is in the low
1050 * 16 bits, though, we can just emit a single MUL.
1051 */
1052 if (value0 && value0->u32[0] < (1 << 16)) {
1053 if (devinfo->gen < 7)
1054 emit(MUL(dst, op[0], op[1]));
1055 else
1056 emit(MUL(dst, op[1], op[0]));
1057 } else if (value1 && value1->u32[0] < (1 << 16)) {
1058 if (devinfo->gen < 7)
1059 emit(MUL(dst, op[1], op[0]));
1060 else
1061 emit(MUL(dst, op[0], op[1]));
1062 } else {
1063 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1064
1065 emit(MUL(acc, op[0], op[1]));
1066 emit(MACH(dst_null_d(), op[0], op[1]));
1067 emit(MOV(dst, src_reg(acc)));
1068 }
1069 } else {
1070 emit(MUL(dst, op[0], op[1]));
1071 }
1072 break;
1073 }
1074
1075 case nir_op_imul_high:
1076 case nir_op_umul_high: {
1077 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1078
1079 if (devinfo->gen >= 8)
1080 emit(MUL(acc, op[0], retype(op[1], BRW_REGISTER_TYPE_UW)));
1081 else
1082 emit(MUL(acc, op[0], op[1]));
1083
1084 emit(MACH(dst, op[0], op[1]));
1085 break;
1086 }
1087
1088 case nir_op_frcp:
1089 inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1090 inst->saturate = instr->dest.saturate;
1091 break;
1092
1093 case nir_op_fexp2:
1094 inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1095 inst->saturate = instr->dest.saturate;
1096 break;
1097
1098 case nir_op_flog2:
1099 inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1100 inst->saturate = instr->dest.saturate;
1101 break;
1102
1103 case nir_op_fsin:
1104 inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1105 inst->saturate = instr->dest.saturate;
1106 break;
1107
1108 case nir_op_fcos:
1109 inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1110 inst->saturate = instr->dest.saturate;
1111 break;
1112
1113 case nir_op_idiv:
1114 case nir_op_udiv:
1115 emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1116 break;
1117
1118 case nir_op_umod:
1119 case nir_op_irem:
1120 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1121 * appears that our hardware just does the right thing for signed
1122 * remainder.
1123 */
1124 emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1125 break;
1126
1127 case nir_op_imod: {
1128 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1129 inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1130
1131 /* Math instructions don't support conditional mod */
1132 inst = emit(MOV(dst_null_d(), src_reg(dst)));
1133 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1134
1135 /* Now, we need to determine if signs of the sources are different.
1136 * When we XOR the sources, the top bit is 0 if they are the same and 1
1137 * if they are different. We can then use a conditional modifier to
1138 * turn that into a predicate. This leads us to an XOR.l instruction.
1139 *
1140 * Technically, according to the PRM, you're not allowed to use .l on a
1141 * XOR instruction. However, emperical experiments and Curro's reading
1142 * of the simulator source both indicate that it's safe.
1143 */
1144 src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1145 inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1146 inst->predicate = BRW_PREDICATE_NORMAL;
1147 inst->conditional_mod = BRW_CONDITIONAL_L;
1148
1149 /* If the result of the initial remainder operation is non-zero and the
1150 * two sources have different signs, add in a copy of op[1] to get the
1151 * final integer modulus value.
1152 */
1153 inst = emit(ADD(dst, src_reg(dst), op[1]));
1154 inst->predicate = BRW_PREDICATE_NORMAL;
1155 break;
1156 }
1157
1158 case nir_op_ldexp:
1159 unreachable("not reached: should be handled by ldexp_to_arith()");
1160
1161 case nir_op_fsqrt:
1162 inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1163 inst->saturate = instr->dest.saturate;
1164 break;
1165
1166 case nir_op_frsq:
1167 inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1168 inst->saturate = instr->dest.saturate;
1169 break;
1170
1171 case nir_op_fpow:
1172 inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1173 inst->saturate = instr->dest.saturate;
1174 break;
1175
1176 case nir_op_uadd_carry: {
1177 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1178
1179 emit(ADDC(dst_null_ud(), op[0], op[1]));
1180 emit(MOV(dst, src_reg(acc)));
1181 break;
1182 }
1183
1184 case nir_op_usub_borrow: {
1185 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1186
1187 emit(SUBB(dst_null_ud(), op[0], op[1]));
1188 emit(MOV(dst, src_reg(acc)));
1189 break;
1190 }
1191
1192 case nir_op_ftrunc:
1193 inst = emit(RNDZ(dst, op[0]));
1194 inst->saturate = instr->dest.saturate;
1195 break;
1196
1197 case nir_op_fceil: {
1198 src_reg tmp = src_reg(this, glsl_type::float_type);
1199 tmp.swizzle =
1200 brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1201 instr->src[0].src.ssa->num_components :
1202 instr->src[0].src.reg.reg->num_components);
1203
1204 op[0].negate = !op[0].negate;
1205 emit(RNDD(dst_reg(tmp), op[0]));
1206 tmp.negate = true;
1207 inst = emit(MOV(dst, tmp));
1208 inst->saturate = instr->dest.saturate;
1209 break;
1210 }
1211
1212 case nir_op_ffloor:
1213 inst = emit(RNDD(dst, op[0]));
1214 inst->saturate = instr->dest.saturate;
1215 break;
1216
1217 case nir_op_ffract:
1218 inst = emit(FRC(dst, op[0]));
1219 inst->saturate = instr->dest.saturate;
1220 break;
1221
1222 case nir_op_fround_even:
1223 inst = emit(RNDE(dst, op[0]));
1224 inst->saturate = instr->dest.saturate;
1225 break;
1226
1227 case nir_op_fquantize2f16: {
1228 /* See also vec4_visitor::emit_pack_half_2x16() */
1229 src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
1230 src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
1231 src_reg zero = src_reg(this, glsl_type::vec4_type);
1232
1233 /* Check for denormal */
1234 src_reg abs_src0 = op[0];
1235 abs_src0.abs = true;
1236 emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1237 BRW_CONDITIONAL_L));
1238 /* Get the appropriately signed zero */
1239 emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
1240 retype(op[0], BRW_REGISTER_TYPE_UD),
1241 brw_imm_ud(0x80000000)));
1242 /* Do the actual F32 -> F16 -> F32 conversion */
1243 emit(F32TO16(dst_reg(tmp16), op[0]));
1244 emit(F16TO32(dst_reg(tmp32), tmp16));
1245 /* Select that or zero based on normal status */
1246 inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
1247 inst->predicate = BRW_PREDICATE_NORMAL;
1248 inst->saturate = instr->dest.saturate;
1249 break;
1250 }
1251
1252 case nir_op_fmin:
1253 case nir_op_imin:
1254 case nir_op_umin:
1255 inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1256 inst->saturate = instr->dest.saturate;
1257 break;
1258
1259 case nir_op_fmax:
1260 case nir_op_imax:
1261 case nir_op_umax:
1262 inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1263 inst->saturate = instr->dest.saturate;
1264 break;
1265
1266 case nir_op_fddx:
1267 case nir_op_fddx_coarse:
1268 case nir_op_fddx_fine:
1269 case nir_op_fddy:
1270 case nir_op_fddy_coarse:
1271 case nir_op_fddy_fine:
1272 unreachable("derivatives are not valid in vertex shaders");
1273
1274 case nir_op_flt:
1275 case nir_op_ilt:
1276 case nir_op_ult:
1277 case nir_op_fge:
1278 case nir_op_ige:
1279 case nir_op_uge:
1280 case nir_op_feq:
1281 case nir_op_ieq:
1282 case nir_op_fne:
1283 case nir_op_ine:
1284 emit(CMP(dst, op[0], op[1],
1285 brw_conditional_for_nir_comparison(instr->op)));
1286 break;
1287
1288 case nir_op_ball_fequal2:
1289 case nir_op_ball_iequal2:
1290 case nir_op_ball_fequal3:
1291 case nir_op_ball_iequal3:
1292 case nir_op_ball_fequal4:
1293 case nir_op_ball_iequal4: {
1294 unsigned swiz =
1295 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1296
1297 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1298 brw_conditional_for_nir_comparison(instr->op)));
1299 emit(MOV(dst, brw_imm_d(0)));
1300 inst = emit(MOV(dst, brw_imm_d(~0)));
1301 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1302 break;
1303 }
1304
1305 case nir_op_bany_fnequal2:
1306 case nir_op_bany_inequal2:
1307 case nir_op_bany_fnequal3:
1308 case nir_op_bany_inequal3:
1309 case nir_op_bany_fnequal4:
1310 case nir_op_bany_inequal4: {
1311 unsigned swiz =
1312 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1313
1314 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1315 brw_conditional_for_nir_comparison(instr->op)));
1316
1317 emit(MOV(dst, brw_imm_d(0)));
1318 inst = emit(MOV(dst, brw_imm_d(~0)));
1319 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1320 break;
1321 }
1322
1323 case nir_op_inot:
1324 if (devinfo->gen >= 8) {
1325 op[0] = resolve_source_modifiers(op[0]);
1326 }
1327 emit(NOT(dst, op[0]));
1328 break;
1329
1330 case nir_op_ixor:
1331 if (devinfo->gen >= 8) {
1332 op[0] = resolve_source_modifiers(op[0]);
1333 op[1] = resolve_source_modifiers(op[1]);
1334 }
1335 emit(XOR(dst, op[0], op[1]));
1336 break;
1337
1338 case nir_op_ior:
1339 if (devinfo->gen >= 8) {
1340 op[0] = resolve_source_modifiers(op[0]);
1341 op[1] = resolve_source_modifiers(op[1]);
1342 }
1343 emit(OR(dst, op[0], op[1]));
1344 break;
1345
1346 case nir_op_iand:
1347 if (devinfo->gen >= 8) {
1348 op[0] = resolve_source_modifiers(op[0]);
1349 op[1] = resolve_source_modifiers(op[1]);
1350 }
1351 emit(AND(dst, op[0], op[1]));
1352 break;
1353
1354 case nir_op_b2i:
1355 case nir_op_b2f:
1356 emit(MOV(dst, negate(op[0])));
1357 break;
1358
1359 case nir_op_f2b:
1360 emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1361 break;
1362
1363 case nir_op_i2b:
1364 emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1365 break;
1366
1367 case nir_op_fnoise1_1:
1368 case nir_op_fnoise1_2:
1369 case nir_op_fnoise1_3:
1370 case nir_op_fnoise1_4:
1371 case nir_op_fnoise2_1:
1372 case nir_op_fnoise2_2:
1373 case nir_op_fnoise2_3:
1374 case nir_op_fnoise2_4:
1375 case nir_op_fnoise3_1:
1376 case nir_op_fnoise3_2:
1377 case nir_op_fnoise3_3:
1378 case nir_op_fnoise3_4:
1379 case nir_op_fnoise4_1:
1380 case nir_op_fnoise4_2:
1381 case nir_op_fnoise4_3:
1382 case nir_op_fnoise4_4:
1383 unreachable("not reached: should be handled by lower_noise");
1384
1385 case nir_op_unpack_half_2x16_split_x:
1386 case nir_op_unpack_half_2x16_split_y:
1387 case nir_op_pack_half_2x16_split:
1388 unreachable("not reached: should not occur in vertex shader");
1389
1390 case nir_op_unpack_snorm_2x16:
1391 case nir_op_unpack_unorm_2x16:
1392 case nir_op_pack_snorm_2x16:
1393 case nir_op_pack_unorm_2x16:
1394 unreachable("not reached: should be handled by lower_packing_builtins");
1395
1396 case nir_op_pack_uvec4_to_uint:
1397 unreachable("not reached");
1398
1399 case nir_op_pack_uvec2_to_uint: {
1400 dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
1401 tmp1.writemask = WRITEMASK_X;
1402 op[0].swizzle = BRW_SWIZZLE_YYYY;
1403 emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
1404
1405 dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
1406 tmp2.writemask = WRITEMASK_X;
1407 op[0].swizzle = BRW_SWIZZLE_XXXX;
1408 emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
1409
1410 emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
1411 break;
1412 }
1413
1414 case nir_op_unpack_half_2x16:
1415 /* As NIR does not guarantee that we have a correct swizzle outside the
1416 * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1417 * uses the source operand in an operation with WRITEMASK_Y while our
1418 * source operand has only size 1, it accessed incorrect data producing
1419 * regressions in Piglit. We repeat the swizzle of the first component on the
1420 * rest of components to avoid regressions. In the vec4_visitor IR code path
1421 * this is not needed because the operand has already the correct swizzle.
1422 */
1423 op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1424 emit_unpack_half_2x16(dst, op[0]);
1425 break;
1426
1427 case nir_op_pack_half_2x16:
1428 emit_pack_half_2x16(dst, op[0]);
1429 break;
1430
1431 case nir_op_unpack_unorm_4x8:
1432 emit_unpack_unorm_4x8(dst, op[0]);
1433 break;
1434
1435 case nir_op_pack_unorm_4x8:
1436 emit_pack_unorm_4x8(dst, op[0]);
1437 break;
1438
1439 case nir_op_unpack_snorm_4x8:
1440 emit_unpack_snorm_4x8(dst, op[0]);
1441 break;
1442
1443 case nir_op_pack_snorm_4x8:
1444 emit_pack_snorm_4x8(dst, op[0]);
1445 break;
1446
1447 case nir_op_bitfield_reverse:
1448 emit(BFREV(dst, op[0]));
1449 break;
1450
1451 case nir_op_bit_count:
1452 emit(CBIT(dst, op[0]));
1453 break;
1454
1455 case nir_op_ufind_msb:
1456 case nir_op_ifind_msb: {
1457 emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1458
1459 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1460 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1461 * subtract the result from 31 to convert the MSB count into an LSB count.
1462 */
1463 src_reg src(dst);
1464 emit(CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ));
1465
1466 inst = emit(ADD(dst, src, brw_imm_d(31)));
1467 inst->predicate = BRW_PREDICATE_NORMAL;
1468 inst->src[0].negate = true;
1469 break;
1470 }
1471
1472 case nir_op_find_lsb:
1473 emit(FBL(dst, op[0]));
1474 break;
1475
1476 case nir_op_ubitfield_extract:
1477 case nir_op_ibitfield_extract:
1478 unreachable("should have been lowered");
1479 case nir_op_ubfe:
1480 case nir_op_ibfe:
1481 op[0] = fix_3src_operand(op[0]);
1482 op[1] = fix_3src_operand(op[1]);
1483 op[2] = fix_3src_operand(op[2]);
1484
1485 emit(BFE(dst, op[2], op[1], op[0]));
1486 break;
1487
1488 case nir_op_bfm:
1489 emit(BFI1(dst, op[0], op[1]));
1490 break;
1491
1492 case nir_op_bfi:
1493 op[0] = fix_3src_operand(op[0]);
1494 op[1] = fix_3src_operand(op[1]);
1495 op[2] = fix_3src_operand(op[2]);
1496
1497 emit(BFI2(dst, op[0], op[1], op[2]));
1498 break;
1499
1500 case nir_op_bitfield_insert:
1501 unreachable("not reached: should have been lowered");
1502
1503 case nir_op_fsign:
1504 /* AND(val, 0x80000000) gives the sign bit.
1505 *
1506 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1507 * zero.
1508 */
1509 emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1510
1511 op[0].type = BRW_REGISTER_TYPE_UD;
1512 dst.type = BRW_REGISTER_TYPE_UD;
1513 emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1514
1515 inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1516 inst->predicate = BRW_PREDICATE_NORMAL;
1517 dst.type = BRW_REGISTER_TYPE_F;
1518
1519 if (instr->dest.saturate) {
1520 inst = emit(MOV(dst, src_reg(dst)));
1521 inst->saturate = true;
1522 }
1523 break;
1524
1525 case nir_op_isign:
1526 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
1527 * -> non-negative val generates 0x00000000.
1528 * Predicated OR sets 1 if val is positive.
1529 */
1530 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G));
1531 emit(ASR(dst, op[0], brw_imm_d(31)));
1532 inst = emit(OR(dst, src_reg(dst), brw_imm_d(1)));
1533 inst->predicate = BRW_PREDICATE_NORMAL;
1534 break;
1535
1536 case nir_op_ishl:
1537 emit(SHL(dst, op[0], op[1]));
1538 break;
1539
1540 case nir_op_ishr:
1541 emit(ASR(dst, op[0], op[1]));
1542 break;
1543
1544 case nir_op_ushr:
1545 emit(SHR(dst, op[0], op[1]));
1546 break;
1547
1548 case nir_op_ffma:
1549 op[0] = fix_3src_operand(op[0]);
1550 op[1] = fix_3src_operand(op[1]);
1551 op[2] = fix_3src_operand(op[2]);
1552
1553 inst = emit(MAD(dst, op[2], op[1], op[0]));
1554 inst->saturate = instr->dest.saturate;
1555 break;
1556
1557 case nir_op_flrp:
1558 inst = emit_lrp(dst, op[0], op[1], op[2]);
1559 inst->saturate = instr->dest.saturate;
1560 break;
1561
1562 case nir_op_bcsel:
1563 enum brw_predicate predicate;
1564 if (!optimize_predicate(instr, &predicate)) {
1565 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1566 switch (dst.writemask) {
1567 case WRITEMASK_X:
1568 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1569 break;
1570 case WRITEMASK_Y:
1571 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1572 break;
1573 case WRITEMASK_Z:
1574 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1575 break;
1576 case WRITEMASK_W:
1577 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1578 break;
1579 default:
1580 predicate = BRW_PREDICATE_NORMAL;
1581 break;
1582 }
1583 }
1584 inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1585 inst->predicate = predicate;
1586 break;
1587
1588 case nir_op_fdot_replicated2:
1589 inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
1590 inst->saturate = instr->dest.saturate;
1591 break;
1592
1593 case nir_op_fdot_replicated3:
1594 inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
1595 inst->saturate = instr->dest.saturate;
1596 break;
1597
1598 case nir_op_fdot_replicated4:
1599 inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
1600 inst->saturate = instr->dest.saturate;
1601 break;
1602
1603 case nir_op_fdph_replicated:
1604 inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
1605 inst->saturate = instr->dest.saturate;
1606 break;
1607
1608 case nir_op_fabs:
1609 case nir_op_iabs:
1610 case nir_op_fneg:
1611 case nir_op_ineg:
1612 case nir_op_fsat:
1613 unreachable("not reached: should be lowered by lower_source mods");
1614
1615 case nir_op_fdiv:
1616 unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
1617
1618 case nir_op_fmod:
1619 unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
1620
1621 case nir_op_fsub:
1622 case nir_op_isub:
1623 unreachable("not reached: should be handled by ir_sub_to_add_neg");
1624
1625 default:
1626 unreachable("Unimplemented ALU operation");
1627 }
1628
1629 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1630 * to sign extend the low bit to 0/~0
1631 */
1632 if (devinfo->gen <= 5 &&
1633 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
1634 BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1635 dst_reg masked = dst_reg(this, glsl_type::int_type);
1636 masked.writemask = dst.writemask;
1637 emit(AND(masked, src_reg(dst), brw_imm_d(1)));
1638 src_reg masked_neg = src_reg(masked);
1639 masked_neg.negate = true;
1640 emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
1641 }
1642 }
1643
1644 void
1645 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
1646 {
1647 switch (instr->type) {
1648 case nir_jump_break:
1649 emit(BRW_OPCODE_BREAK);
1650 break;
1651
1652 case nir_jump_continue:
1653 emit(BRW_OPCODE_CONTINUE);
1654 break;
1655
1656 case nir_jump_return:
1657 /* fall through */
1658 default:
1659 unreachable("unknown jump");
1660 }
1661 }
1662
1663 enum ir_texture_opcode
1664 ir_texture_opcode_for_nir_texop(nir_texop texop)
1665 {
1666 enum ir_texture_opcode op;
1667
1668 switch (texop) {
1669 case nir_texop_lod: op = ir_lod; break;
1670 case nir_texop_query_levels: op = ir_query_levels; break;
1671 case nir_texop_texture_samples: op = ir_texture_samples; break;
1672 case nir_texop_tex: op = ir_tex; break;
1673 case nir_texop_tg4: op = ir_tg4; break;
1674 case nir_texop_txb: op = ir_txb; break;
1675 case nir_texop_txd: op = ir_txd; break;
1676 case nir_texop_txf: op = ir_txf; break;
1677 case nir_texop_txf_ms: op = ir_txf_ms; break;
1678 case nir_texop_txl: op = ir_txl; break;
1679 case nir_texop_txs: op = ir_txs; break;
1680 case nir_texop_samples_identical: op = ir_samples_identical; break;
1681 default:
1682 unreachable("unknown texture opcode");
1683 }
1684
1685 return op;
1686 }
1687 const glsl_type *
1688 glsl_type_for_nir_alu_type(nir_alu_type alu_type,
1689 unsigned components)
1690 {
1691 switch (alu_type) {
1692 case nir_type_float:
1693 return glsl_type::vec(components);
1694 case nir_type_int:
1695 return glsl_type::ivec(components);
1696 case nir_type_uint:
1697 return glsl_type::uvec(components);
1698 case nir_type_bool:
1699 return glsl_type::bvec(components);
1700 default:
1701 return glsl_type::error_type;
1702 }
1703
1704 return glsl_type::error_type;
1705 }
1706
1707 void
1708 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
1709 {
1710 unsigned texture = instr->texture_index;
1711 unsigned sampler = instr->sampler_index;
1712 src_reg texture_reg = brw_imm_ud(texture);
1713 src_reg sampler_reg = brw_imm_ud(sampler);
1714 src_reg coordinate;
1715 const glsl_type *coord_type = NULL;
1716 src_reg shadow_comparitor;
1717 src_reg offset_value;
1718 src_reg lod, lod2;
1719 src_reg sample_index;
1720 src_reg mcs;
1721
1722 const glsl_type *dest_type =
1723 glsl_type_for_nir_alu_type(instr->dest_type,
1724 nir_tex_instr_dest_size(instr));
1725 dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
1726
1727 /* The hardware requires a LOD for buffer textures */
1728 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
1729 lod = brw_imm_d(0);
1730
1731 /* Load the texture operation sources */
1732 uint32_t constant_offset = 0;
1733 for (unsigned i = 0; i < instr->num_srcs; i++) {
1734 switch (instr->src[i].src_type) {
1735 case nir_tex_src_comparitor:
1736 shadow_comparitor = get_nir_src(instr->src[i].src,
1737 BRW_REGISTER_TYPE_F, 1);
1738 break;
1739
1740 case nir_tex_src_coord: {
1741 unsigned src_size = nir_tex_instr_src_size(instr, i);
1742
1743 switch (instr->op) {
1744 case nir_texop_txf:
1745 case nir_texop_txf_ms:
1746 case nir_texop_samples_identical:
1747 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
1748 src_size);
1749 coord_type = glsl_type::ivec(src_size);
1750 break;
1751
1752 default:
1753 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
1754 src_size);
1755 coord_type = glsl_type::vec(src_size);
1756 break;
1757 }
1758 break;
1759 }
1760
1761 case nir_tex_src_ddx:
1762 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
1763 nir_tex_instr_src_size(instr, i));
1764 break;
1765
1766 case nir_tex_src_ddy:
1767 lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
1768 nir_tex_instr_src_size(instr, i));
1769 break;
1770
1771 case nir_tex_src_lod:
1772 switch (instr->op) {
1773 case nir_texop_txs:
1774 case nir_texop_txf:
1775 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
1776 break;
1777
1778 default:
1779 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
1780 break;
1781 }
1782 break;
1783
1784 case nir_tex_src_ms_index: {
1785 sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
1786 break;
1787 }
1788
1789 case nir_tex_src_offset: {
1790 nir_const_value *const_offset =
1791 nir_src_as_const_value(instr->src[i].src);
1792 if (const_offset) {
1793 constant_offset = brw_texture_offset(const_offset->i32, 3);
1794 } else {
1795 offset_value =
1796 get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
1797 }
1798 break;
1799 }
1800
1801 case nir_tex_src_texture_offset: {
1802 /* The highest texture which may be used by this operation is
1803 * the last element of the array. Mark it here, because the generator
1804 * doesn't have enough information to determine the bound.
1805 */
1806 uint32_t array_size = instr->texture_array_size;
1807 uint32_t max_used = texture + array_size - 1;
1808 if (instr->op == nir_texop_tg4) {
1809 max_used += prog_data->base.binding_table.gather_texture_start;
1810 } else {
1811 max_used += prog_data->base.binding_table.texture_start;
1812 }
1813
1814 brw_mark_surface_used(&prog_data->base, max_used);
1815
1816 /* Emit code to evaluate the actual indexing expression */
1817 src_reg src = get_nir_src(instr->src[i].src, 1);
1818 src_reg temp(this, glsl_type::uint_type);
1819 emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
1820 texture_reg = emit_uniformize(temp);
1821 break;
1822 }
1823
1824 case nir_tex_src_sampler_offset: {
1825 /* Emit code to evaluate the actual indexing expression */
1826 src_reg src = get_nir_src(instr->src[i].src, 1);
1827 src_reg temp(this, glsl_type::uint_type);
1828 emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
1829 sampler_reg = emit_uniformize(temp);
1830 break;
1831 }
1832
1833 case nir_tex_src_projector:
1834 unreachable("Should be lowered by do_lower_texture_projection");
1835
1836 case nir_tex_src_bias:
1837 unreachable("LOD bias is not valid for vertex shaders.\n");
1838
1839 default:
1840 unreachable("unknown texture source");
1841 }
1842 }
1843
1844 if (instr->op == nir_texop_txf_ms ||
1845 instr->op == nir_texop_samples_identical) {
1846 assert(coord_type != NULL);
1847 if (devinfo->gen >= 7 &&
1848 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
1849 mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
1850 } else {
1851 mcs = brw_imm_ud(0u);
1852 }
1853 }
1854
1855 /* Stuff the channel select bits in the top of the texture offset */
1856 if (instr->op == nir_texop_tg4) {
1857 if (instr->component == 1 &&
1858 (key_tex->gather_channel_quirk_mask & (1 << texture))) {
1859 /* gather4 sampler is broken for green channel on RG32F --
1860 * we must ask for blue instead.
1861 */
1862 constant_offset |= 2 << 16;
1863 } else {
1864 constant_offset |= instr->component << 16;
1865 }
1866 }
1867
1868 ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
1869
1870 bool is_cube_array =
1871 instr->op == nir_texop_txs &&
1872 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1873 instr->is_array;
1874
1875 emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
1876 shadow_comparitor,
1877 lod, lod2, sample_index,
1878 constant_offset, offset_value,
1879 mcs, is_cube_array,
1880 texture, texture_reg, sampler, sampler_reg);
1881 }
1882
1883 void
1884 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
1885 {
1886 nir_ssa_values[instr->def.index] = dst_reg(VGRF, alloc.allocate(1));
1887 }
1888
1889 }