i965/vec4: Use a stride of 1 and byte offsets for UBOs
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_nir.cpp
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28 #include "brw_program.h"
29
30 using namespace brw;
31 using namespace brw::surface_access;
32
33 namespace brw {
34
35 void
36 vec4_visitor::emit_nir_code()
37 {
38 if (nir->num_uniforms > 0)
39 nir_setup_uniforms();
40
41 nir_setup_system_values();
42
43 /* get the main function and emit it */
44 nir_foreach_overload(nir, overload) {
45 assert(strcmp(overload->function->name, "main") == 0);
46 assert(overload->impl);
47 nir_emit_impl(overload->impl);
48 }
49 }
50
51 void
52 vec4_visitor::nir_setup_system_value_intrinsic(nir_intrinsic_instr *instr)
53 {
54 dst_reg *reg;
55
56 switch (instr->intrinsic) {
57 case nir_intrinsic_load_vertex_id:
58 unreachable("should be lowered by lower_vertex_id().");
59
60 case nir_intrinsic_load_vertex_id_zero_base:
61 reg = &nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
62 if (reg->file == BAD_FILE)
63 *reg = *make_reg_for_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE,
64 glsl_type::int_type);
65 break;
66
67 case nir_intrinsic_load_base_vertex:
68 reg = &nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
69 if (reg->file == BAD_FILE)
70 *reg = *make_reg_for_system_value(SYSTEM_VALUE_BASE_VERTEX,
71 glsl_type::int_type);
72 break;
73
74 case nir_intrinsic_load_instance_id:
75 reg = &nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
76 if (reg->file == BAD_FILE)
77 *reg = *make_reg_for_system_value(SYSTEM_VALUE_INSTANCE_ID,
78 glsl_type::int_type);
79 break;
80
81 default:
82 break;
83 }
84 }
85
86 static bool
87 setup_system_values_block(nir_block *block, void *void_visitor)
88 {
89 vec4_visitor *v = (vec4_visitor *)void_visitor;
90
91 nir_foreach_instr(block, instr) {
92 if (instr->type != nir_instr_type_intrinsic)
93 continue;
94
95 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
96 v->nir_setup_system_value_intrinsic(intrin);
97 }
98
99 return true;
100 }
101
102 void
103 vec4_visitor::nir_setup_system_values()
104 {
105 nir_system_values = ralloc_array(mem_ctx, dst_reg, SYSTEM_VALUE_MAX);
106 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
107 nir_system_values[i] = dst_reg();
108 }
109
110 nir_foreach_overload(nir, overload) {
111 assert(strcmp(overload->function->name, "main") == 0);
112 assert(overload->impl);
113 nir_foreach_block(overload->impl, setup_system_values_block, this);
114 }
115 }
116
117 void
118 vec4_visitor::nir_setup_uniforms()
119 {
120 uniforms = nir->num_uniforms;
121
122 nir_foreach_variable(var, &nir->uniforms) {
123 /* UBO's and atomics don't take up space in the uniform file */
124 if (var->interface_type != NULL || var->type->contains_atomic())
125 continue;
126
127 if (type_size_vec4(var->type) > 0)
128 uniform_size[var->data.driver_location] = type_size_vec4(var->type);
129 }
130 }
131
132 void
133 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
134 {
135 nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
136 for (unsigned i = 0; i < impl->reg_alloc; i++) {
137 nir_locals[i] = dst_reg();
138 }
139
140 foreach_list_typed(nir_register, reg, node, &impl->registers) {
141 unsigned array_elems =
142 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
143
144 nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(array_elems));
145 }
146
147 nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
148
149 nir_emit_cf_list(&impl->body);
150 }
151
152 void
153 vec4_visitor::nir_emit_cf_list(exec_list *list)
154 {
155 exec_list_validate(list);
156 foreach_list_typed(nir_cf_node, node, node, list) {
157 switch (node->type) {
158 case nir_cf_node_if:
159 nir_emit_if(nir_cf_node_as_if(node));
160 break;
161
162 case nir_cf_node_loop:
163 nir_emit_loop(nir_cf_node_as_loop(node));
164 break;
165
166 case nir_cf_node_block:
167 nir_emit_block(nir_cf_node_as_block(node));
168 break;
169
170 default:
171 unreachable("Invalid CFG node block");
172 }
173 }
174 }
175
176 void
177 vec4_visitor::nir_emit_if(nir_if *if_stmt)
178 {
179 /* First, put the condition in f0 */
180 src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
181 vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
182 inst->conditional_mod = BRW_CONDITIONAL_NZ;
183
184 /* We can just predicate based on the X channel, as the condition only
185 * goes on its own line */
186 emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
187
188 nir_emit_cf_list(&if_stmt->then_list);
189
190 /* note: if the else is empty, dead CF elimination will remove it */
191 emit(BRW_OPCODE_ELSE);
192
193 nir_emit_cf_list(&if_stmt->else_list);
194
195 emit(BRW_OPCODE_ENDIF);
196 }
197
198 void
199 vec4_visitor::nir_emit_loop(nir_loop *loop)
200 {
201 emit(BRW_OPCODE_DO);
202
203 nir_emit_cf_list(&loop->body);
204
205 emit(BRW_OPCODE_WHILE);
206 }
207
208 void
209 vec4_visitor::nir_emit_block(nir_block *block)
210 {
211 nir_foreach_instr(block, instr) {
212 nir_emit_instr(instr);
213 }
214 }
215
216 void
217 vec4_visitor::nir_emit_instr(nir_instr *instr)
218 {
219 base_ir = instr;
220
221 switch (instr->type) {
222 case nir_instr_type_load_const:
223 nir_emit_load_const(nir_instr_as_load_const(instr));
224 break;
225
226 case nir_instr_type_intrinsic:
227 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
228 break;
229
230 case nir_instr_type_alu:
231 nir_emit_alu(nir_instr_as_alu(instr));
232 break;
233
234 case nir_instr_type_jump:
235 nir_emit_jump(nir_instr_as_jump(instr));
236 break;
237
238 case nir_instr_type_tex:
239 nir_emit_texture(nir_instr_as_tex(instr));
240 break;
241
242 case nir_instr_type_ssa_undef:
243 nir_emit_undef(nir_instr_as_ssa_undef(instr));
244 break;
245
246 default:
247 fprintf(stderr, "VS instruction not yet implemented by NIR->vec4\n");
248 break;
249 }
250 }
251
252 static dst_reg
253 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
254 unsigned base_offset, nir_src *indirect)
255 {
256 dst_reg reg;
257
258 reg = v->nir_locals[nir_reg->index];
259 reg = offset(reg, base_offset);
260 if (indirect) {
261 reg.reladdr =
262 new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
263 BRW_REGISTER_TYPE_D,
264 1));
265 }
266 return reg;
267 }
268
269 dst_reg
270 vec4_visitor::get_nir_dest(nir_dest dest)
271 {
272 if (dest.is_ssa) {
273 dst_reg dst = dst_reg(VGRF, alloc.allocate(1));
274 nir_ssa_values[dest.ssa.index] = dst;
275 return dst;
276 } else {
277 return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
278 dest.reg.indirect);
279 }
280 }
281
282 dst_reg
283 vec4_visitor::get_nir_dest(nir_dest dest, enum brw_reg_type type)
284 {
285 return retype(get_nir_dest(dest), type);
286 }
287
288 dst_reg
289 vec4_visitor::get_nir_dest(nir_dest dest, nir_alu_type type)
290 {
291 return get_nir_dest(dest, brw_type_for_nir_type(type));
292 }
293
294 src_reg
295 vec4_visitor::get_nir_src(nir_src src, enum brw_reg_type type,
296 unsigned num_components)
297 {
298 dst_reg reg;
299
300 if (src.is_ssa) {
301 assert(src.ssa != NULL);
302 reg = nir_ssa_values[src.ssa->index];
303 }
304 else {
305 reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
306 src.reg.indirect);
307 }
308
309 reg = retype(reg, type);
310
311 src_reg reg_as_src = src_reg(reg);
312 reg_as_src.swizzle = brw_swizzle_for_size(num_components);
313 return reg_as_src;
314 }
315
316 src_reg
317 vec4_visitor::get_nir_src(nir_src src, nir_alu_type type,
318 unsigned num_components)
319 {
320 return get_nir_src(src, brw_type_for_nir_type(type), num_components);
321 }
322
323 src_reg
324 vec4_visitor::get_nir_src(nir_src src, unsigned num_components)
325 {
326 /* if type is not specified, default to signed int */
327 return get_nir_src(src, nir_type_int, num_components);
328 }
329
330 void
331 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
332 {
333 dst_reg reg = dst_reg(VGRF, alloc.allocate(1));
334 reg.type = BRW_REGISTER_TYPE_D;
335
336 unsigned remaining = brw_writemask_for_size(instr->def.num_components);
337
338 /* @FIXME: consider emitting vector operations to save some MOVs in
339 * cases where the components are representable in 8 bits.
340 * For now, we emit a MOV for each distinct value.
341 */
342 for (unsigned i = 0; i < instr->def.num_components; i++) {
343 unsigned writemask = 1 << i;
344
345 if ((remaining & writemask) == 0)
346 continue;
347
348 for (unsigned j = i; j < instr->def.num_components; j++) {
349 if (instr->value.u[i] == instr->value.u[j]) {
350 writemask |= 1 << j;
351 }
352 }
353
354 reg.writemask = writemask;
355 emit(MOV(reg, brw_imm_d(instr->value.i[i])));
356
357 remaining &= ~writemask;
358 }
359
360 /* Set final writemask */
361 reg.writemask = brw_writemask_for_size(instr->def.num_components);
362
363 nir_ssa_values[instr->def.index] = reg;
364 }
365
366 void
367 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
368 {
369 dst_reg dest;
370 src_reg src;
371
372 bool has_indirect = false;
373
374 switch (instr->intrinsic) {
375
376 case nir_intrinsic_load_input_indirect:
377 has_indirect = true;
378 /* fallthrough */
379 case nir_intrinsic_load_input: {
380 int offset = instr->const_index[0];
381 src = src_reg(ATTR, offset, glsl_type::uvec4_type);
382
383 if (has_indirect) {
384 dest.reladdr = new(mem_ctx) src_reg(get_nir_src(instr->src[0],
385 BRW_REGISTER_TYPE_D,
386 1));
387 }
388 dest = get_nir_dest(instr->dest, src.type);
389 dest.writemask = brw_writemask_for_size(instr->num_components);
390
391 emit(MOV(dest, src));
392 break;
393 }
394
395 case nir_intrinsic_store_output_indirect:
396 unreachable("nir_lower_outputs_to_temporaries should prevent this");
397
398 case nir_intrinsic_store_output: {
399 int varying = instr->const_index[0];
400
401 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
402 instr->num_components);
403
404 output_reg[varying] = dst_reg(src);
405 break;
406 }
407
408 case nir_intrinsic_get_buffer_size: {
409 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
410 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u[0] : 0;
411
412 const unsigned index =
413 prog_data->base.binding_table.ssbo_start + ssbo_index;
414 dst_reg result_dst = get_nir_dest(instr->dest);
415 vec4_instruction *inst = new(mem_ctx)
416 vec4_instruction(VS_OPCODE_GET_BUFFER_SIZE, result_dst);
417
418 inst->base_mrf = 2;
419 inst->mlen = 1; /* always at least one */
420 inst->src[1] = brw_imm_ud(index);
421
422 /* MRF for the first parameter */
423 src_reg lod = brw_imm_d(0);
424 int param_base = inst->base_mrf;
425 int writemask = WRITEMASK_X;
426 emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
427
428 emit(inst);
429
430 brw_mark_surface_used(&prog_data->base, index);
431 break;
432 }
433
434 case nir_intrinsic_store_ssbo_indirect:
435 has_indirect = true;
436 /* fallthrough */
437 case nir_intrinsic_store_ssbo: {
438 assert(devinfo->gen >= 7);
439
440 /* Block index */
441 src_reg surf_index;
442 nir_const_value *const_uniform_block =
443 nir_src_as_const_value(instr->src[1]);
444 if (const_uniform_block) {
445 unsigned index = prog_data->base.binding_table.ssbo_start +
446 const_uniform_block->u[0];
447 surf_index = brw_imm_ud(index);
448 brw_mark_surface_used(&prog_data->base, index);
449 } else {
450 surf_index = src_reg(this, glsl_type::uint_type);
451 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[1], 1),
452 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
453 surf_index = emit_uniformize(surf_index);
454
455 brw_mark_surface_used(&prog_data->base,
456 prog_data->base.binding_table.ssbo_start +
457 nir->info.num_ssbos - 1);
458 }
459
460 /* Offset */
461 src_reg offset_reg = src_reg(this, glsl_type::uint_type);
462 unsigned const_offset_bytes = 0;
463 if (has_indirect) {
464 emit(MOV(dst_reg(offset_reg), get_nir_src(instr->src[2], 1)));
465 } else {
466 const_offset_bytes = instr->const_index[0];
467 emit(MOV(dst_reg(offset_reg), brw_imm_ud(const_offset_bytes)));
468 }
469
470 /* Value */
471 src_reg val_reg = get_nir_src(instr->src[0], 4);
472
473 /* Writemask */
474 unsigned write_mask = instr->const_index[1];
475
476 /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
477 * writes will use SIMD8 mode. In order to hide this and keep symmetry across
478 * typed and untyped messages and across hardware platforms, the
479 * current implementation of the untyped messages will transparently convert
480 * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
481 * and enabling only channel X on the SEND instruction.
482 *
483 * The above, works well for full vector writes, but not for partial writes
484 * where we want to write some channels and not others, like when we have
485 * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
486 * quite restrictive with regards to the channel enables we can configure in
487 * the message descriptor (not all combinations are allowed) we cannot simply
488 * implement these scenarios with a single message while keeping the
489 * aforementioned symmetry in the implementation. For now we de decided that
490 * it is better to keep the symmetry to reduce complexity, so in situations
491 * such as the one described we end up emitting two untyped write messages
492 * (one for xy and another for w).
493 *
494 * The code below packs consecutive channels into a single write message,
495 * detects gaps in the vector write and if needed, sends a second message
496 * with the remaining channels. If in the future we decide that we want to
497 * emit a single message at the expense of losing the symmetry in the
498 * implementation we can:
499 *
500 * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
501 * message payload. In this mode we can write up to 8 offsets and dwords
502 * to the red channel only (for the two vec4s in the SIMD4x2 execution)
503 * and select which of the 8 channels carry data to write by setting the
504 * appropriate writemask in the dst register of the SEND instruction.
505 * It would require to write a new generator opcode specifically for
506 * IvyBridge since we would need to prepare a SIMD8 payload that could
507 * use any channel, not just X.
508 *
509 * 2) For Haswell+: Simply send a single write message but set the writemask
510 * on the dst of the SEND instruction to select the channels we want to
511 * write. It would require to modify the current messages to receive
512 * and honor the writemask provided.
513 */
514 const vec4_builder bld = vec4_builder(this).at_end()
515 .annotate(current_annotation, base_ir);
516
517 int swizzle[4] = { 0, 0, 0, 0};
518 int num_channels = 0;
519 unsigned skipped_channels = 0;
520 int num_components = instr->num_components;
521 for (int i = 0; i < num_components; i++) {
522 /* Check if this channel needs to be written. If so, record the
523 * channel we need to take the data from in the swizzle array
524 */
525 int component_mask = 1 << i;
526 int write_test = write_mask & component_mask;
527 if (write_test)
528 swizzle[num_channels++] = i;
529
530 /* If we don't have to write this channel it means we have a gap in the
531 * vector, so write the channels we accumulated until now, if any. Do
532 * the same if this was the last component in the vector.
533 */
534 if (!write_test || i == num_components - 1) {
535 if (num_channels > 0) {
536 /* We have channels to write, so update the offset we need to
537 * write at to skip the channels we skipped, if any.
538 */
539 if (skipped_channels > 0) {
540 if (!has_indirect) {
541 const_offset_bytes += 4 * skipped_channels;
542 offset_reg = brw_imm_ud(const_offset_bytes);
543 } else {
544 emit(ADD(dst_reg(offset_reg), offset_reg,
545 brw_imm_ud(4 * skipped_channels)));
546 }
547 }
548
549 /* Swizzle the data register so we take the data from the channels
550 * we need to write and send the write message. This will write
551 * num_channels consecutive dwords starting at offset.
552 */
553 val_reg.swizzle =
554 BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
555 emit_untyped_write(bld, surf_index, offset_reg, val_reg,
556 1 /* dims */, num_channels /* size */,
557 BRW_PREDICATE_NONE);
558
559 /* If we have to do a second write we will have to update the
560 * offset so that we jump over the channels we have just written
561 * now.
562 */
563 skipped_channels = num_channels;
564
565 /* Restart the count for the next write message */
566 num_channels = 0;
567 }
568
569 /* We did not write the current channel, so increase skipped count */
570 skipped_channels++;
571 }
572 }
573
574 break;
575 }
576
577 case nir_intrinsic_load_ssbo_indirect:
578 has_indirect = true;
579 /* fallthrough */
580 case nir_intrinsic_load_ssbo: {
581 assert(devinfo->gen >= 7);
582
583 nir_const_value *const_uniform_block =
584 nir_src_as_const_value(instr->src[0]);
585
586 src_reg surf_index;
587 if (const_uniform_block) {
588 unsigned index = prog_data->base.binding_table.ssbo_start +
589 const_uniform_block->u[0];
590 surf_index = brw_imm_ud(index);
591
592 brw_mark_surface_used(&prog_data->base, index);
593 } else {
594 surf_index = src_reg(this, glsl_type::uint_type);
595 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], 1),
596 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
597 surf_index = emit_uniformize(surf_index);
598
599 /* Assume this may touch any UBO. It would be nice to provide
600 * a tighter bound, but the array information is already lowered away.
601 */
602 brw_mark_surface_used(&prog_data->base,
603 prog_data->base.binding_table.ssbo_start +
604 nir->info.num_ssbos - 1);
605 }
606
607 src_reg offset_reg = src_reg(this, glsl_type::uint_type);
608 unsigned const_offset_bytes = 0;
609 if (has_indirect) {
610 emit(MOV(dst_reg(offset_reg), get_nir_src(instr->src[1], 1)));
611 } else {
612 const_offset_bytes = instr->const_index[0];
613 emit(MOV(dst_reg(offset_reg), brw_imm_ud((const_offset_bytes))));
614 }
615
616 /* Read the vector */
617 const vec4_builder bld = vec4_builder(this).at_end()
618 .annotate(current_annotation, base_ir);
619
620 src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
621 1 /* dims */, 4 /* size*/,
622 BRW_PREDICATE_NONE);
623 dst_reg dest = get_nir_dest(instr->dest);
624 read_result.type = dest.type;
625 read_result.swizzle = brw_swizzle_for_size(instr->num_components);
626 emit(MOV(dest, read_result));
627
628 break;
629 }
630
631 case nir_intrinsic_ssbo_atomic_add:
632 nir_emit_ssbo_atomic(BRW_AOP_ADD, instr);
633 break;
634 case nir_intrinsic_ssbo_atomic_imin:
635 nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
636 break;
637 case nir_intrinsic_ssbo_atomic_umin:
638 nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
639 break;
640 case nir_intrinsic_ssbo_atomic_imax:
641 nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
642 break;
643 case nir_intrinsic_ssbo_atomic_umax:
644 nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
645 break;
646 case nir_intrinsic_ssbo_atomic_and:
647 nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
648 break;
649 case nir_intrinsic_ssbo_atomic_or:
650 nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
651 break;
652 case nir_intrinsic_ssbo_atomic_xor:
653 nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
654 break;
655 case nir_intrinsic_ssbo_atomic_exchange:
656 nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
657 break;
658 case nir_intrinsic_ssbo_atomic_comp_swap:
659 nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
660 break;
661
662 case nir_intrinsic_load_vertex_id:
663 unreachable("should be lowered by lower_vertex_id()");
664
665 case nir_intrinsic_load_vertex_id_zero_base:
666 case nir_intrinsic_load_base_vertex:
667 case nir_intrinsic_load_instance_id: {
668 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
669 src_reg val = src_reg(nir_system_values[sv]);
670 assert(val.file != BAD_FILE);
671 dest = get_nir_dest(instr->dest, val.type);
672 emit(MOV(dest, val));
673 break;
674 }
675
676 case nir_intrinsic_load_uniform_indirect:
677 has_indirect = true;
678 /* fallthrough */
679 case nir_intrinsic_load_uniform: {
680 dest = get_nir_dest(instr->dest);
681
682 src = src_reg(dst_reg(UNIFORM, instr->const_index[0]));
683 src.reg_offset = instr->const_index[1];
684
685 if (has_indirect) {
686 src_reg tmp = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_D, 1);
687 src.reladdr = new(mem_ctx) src_reg(tmp);
688 }
689
690 emit(MOV(dest, src));
691 break;
692 }
693
694 case nir_intrinsic_atomic_counter_read:
695 case nir_intrinsic_atomic_counter_inc:
696 case nir_intrinsic_atomic_counter_dec: {
697 unsigned surf_index = prog_data->base.binding_table.abo_start +
698 (unsigned) instr->const_index[0];
699 src_reg offset = get_nir_src(instr->src[0], nir_type_int,
700 instr->num_components);
701 dest = get_nir_dest(instr->dest);
702
703 switch (instr->intrinsic) {
704 case nir_intrinsic_atomic_counter_inc:
705 emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
706 src_reg(), src_reg());
707 break;
708 case nir_intrinsic_atomic_counter_dec:
709 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
710 src_reg(), src_reg());
711 break;
712 case nir_intrinsic_atomic_counter_read:
713 emit_untyped_surface_read(surf_index, dest, offset);
714 break;
715 default:
716 unreachable("Unreachable");
717 }
718
719 brw_mark_surface_used(stage_prog_data, surf_index);
720 break;
721 }
722
723 case nir_intrinsic_load_ubo_indirect:
724 has_indirect = true;
725 /* fallthrough */
726 case nir_intrinsic_load_ubo: {
727 nir_const_value *const_block_index = nir_src_as_const_value(instr->src[0]);
728 src_reg surf_index;
729
730 dest = get_nir_dest(instr->dest);
731
732 if (const_block_index) {
733 /* The block index is a constant, so just emit the binding table entry
734 * as an immediate.
735 */
736 const unsigned index = prog_data->base.binding_table.ubo_start +
737 const_block_index->u[0];
738 surf_index = brw_imm_ud(index);
739 brw_mark_surface_used(&prog_data->base, index);
740 } else {
741 /* The block index is not a constant. Evaluate the index expression
742 * per-channel and add the base UBO index; we have to select a value
743 * from any live channel.
744 */
745 surf_index = src_reg(this, glsl_type::uint_type);
746 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int,
747 instr->num_components),
748 brw_imm_ud(prog_data->base.binding_table.ubo_start)));
749 surf_index = emit_uniformize(surf_index);
750
751 /* Assume this may touch any UBO. It would be nice to provide
752 * a tighter bound, but the array information is already lowered away.
753 */
754 brw_mark_surface_used(&prog_data->base,
755 prog_data->base.binding_table.ubo_start +
756 nir->info.num_ubos - 1);
757 }
758
759 unsigned const_offset = instr->const_index[0];
760 src_reg offset;
761
762 if (!has_indirect) {
763 offset = brw_imm_ud(const_offset & ~15);
764 } else {
765 offset = get_nir_src(instr->src[1], nir_type_int, 1);
766 }
767
768 src_reg packed_consts = src_reg(this, glsl_type::vec4_type);
769 packed_consts.type = dest.type;
770
771 emit_pull_constant_load_reg(dst_reg(packed_consts),
772 surf_index,
773 offset,
774 NULL, NULL /* before_block/inst */);
775
776 packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
777 packed_consts.swizzle += BRW_SWIZZLE4(const_offset % 16 / 4,
778 const_offset % 16 / 4,
779 const_offset % 16 / 4,
780 const_offset % 16 / 4);
781
782 emit(MOV(dest, packed_consts));
783 break;
784 }
785
786 case nir_intrinsic_memory_barrier: {
787 const vec4_builder bld =
788 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
789 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
790 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
791 ->regs_written = 2;
792 break;
793 }
794
795 case nir_intrinsic_shader_clock: {
796 /* We cannot do anything if there is an event, so ignore it for now */
797 const src_reg shader_clock = get_timestamp();
798 const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
799
800 dest = get_nir_dest(instr->dest, type);
801 emit(MOV(dest, shader_clock));
802 break;
803 }
804
805 default:
806 unreachable("Unknown intrinsic");
807 }
808 }
809
810 void
811 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
812 {
813 dst_reg dest;
814 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
815 dest = get_nir_dest(instr->dest);
816
817 src_reg surface;
818 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
819 if (const_surface) {
820 unsigned surf_index = prog_data->base.binding_table.ssbo_start +
821 const_surface->u[0];
822 surface = brw_imm_ud(surf_index);
823 brw_mark_surface_used(&prog_data->base, surf_index);
824 } else {
825 surface = src_reg(this, glsl_type::uint_type);
826 emit(ADD(dst_reg(surface), get_nir_src(instr->src[0]),
827 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
828
829 /* Assume this may touch any UBO. This is the same we do for other
830 * UBO/SSBO accesses with non-constant surface.
831 */
832 brw_mark_surface_used(&prog_data->base,
833 prog_data->base.binding_table.ssbo_start +
834 nir->info.num_ssbos - 1);
835 }
836
837 src_reg offset = get_nir_src(instr->src[1], 1);
838 src_reg data1 = get_nir_src(instr->src[2], 1);
839 src_reg data2;
840 if (op == BRW_AOP_CMPWR)
841 data2 = get_nir_src(instr->src[3], 1);
842
843 /* Emit the actual atomic operation operation */
844 const vec4_builder bld =
845 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
846
847 src_reg atomic_result =
848 surface_access::emit_untyped_atomic(bld, surface, offset,
849 data1, data2,
850 1 /* dims */, 1 /* rsize */,
851 op,
852 BRW_PREDICATE_NONE);
853 dest.type = atomic_result.type;
854 bld.MOV(dest, atomic_result);
855 }
856
857 static unsigned
858 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
859 {
860 return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
861 }
862
863 static enum brw_conditional_mod
864 brw_conditional_for_nir_comparison(nir_op op)
865 {
866 switch (op) {
867 case nir_op_flt:
868 case nir_op_ilt:
869 case nir_op_ult:
870 return BRW_CONDITIONAL_L;
871
872 case nir_op_fge:
873 case nir_op_ige:
874 case nir_op_uge:
875 return BRW_CONDITIONAL_GE;
876
877 case nir_op_feq:
878 case nir_op_ieq:
879 case nir_op_ball_fequal2:
880 case nir_op_ball_iequal2:
881 case nir_op_ball_fequal3:
882 case nir_op_ball_iequal3:
883 case nir_op_ball_fequal4:
884 case nir_op_ball_iequal4:
885 return BRW_CONDITIONAL_Z;
886
887 case nir_op_fne:
888 case nir_op_ine:
889 case nir_op_bany_fnequal2:
890 case nir_op_bany_inequal2:
891 case nir_op_bany_fnequal3:
892 case nir_op_bany_inequal3:
893 case nir_op_bany_fnequal4:
894 case nir_op_bany_inequal4:
895 return BRW_CONDITIONAL_NZ;
896
897 default:
898 unreachable("not reached: bad operation for comparison");
899 }
900 }
901
902 void
903 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
904 {
905 vec4_instruction *inst;
906
907 dst_reg dst = get_nir_dest(instr->dest.dest,
908 nir_op_infos[instr->op].output_type);
909 dst.writemask = instr->dest.write_mask;
910
911 src_reg op[4];
912 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
913 op[i] = get_nir_src(instr->src[i].src,
914 nir_op_infos[instr->op].input_types[i], 4);
915 op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
916 op[i].abs = instr->src[i].abs;
917 op[i].negate = instr->src[i].negate;
918 }
919
920 switch (instr->op) {
921 case nir_op_imov:
922 case nir_op_fmov:
923 inst = emit(MOV(dst, op[0]));
924 inst->saturate = instr->dest.saturate;
925 break;
926
927 case nir_op_vec2:
928 case nir_op_vec3:
929 case nir_op_vec4:
930 unreachable("not reached: should be handled by lower_vec_to_movs()");
931
932 case nir_op_i2f:
933 case nir_op_u2f:
934 inst = emit(MOV(dst, op[0]));
935 inst->saturate = instr->dest.saturate;
936 break;
937
938 case nir_op_f2i:
939 case nir_op_f2u:
940 inst = emit(MOV(dst, op[0]));
941 break;
942
943 case nir_op_fadd:
944 /* fall through */
945 case nir_op_iadd:
946 inst = emit(ADD(dst, op[0], op[1]));
947 inst->saturate = instr->dest.saturate;
948 break;
949
950 case nir_op_fmul:
951 inst = emit(MUL(dst, op[0], op[1]));
952 inst->saturate = instr->dest.saturate;
953 break;
954
955 case nir_op_imul: {
956 if (devinfo->gen < 8) {
957 nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
958 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
959
960 /* For integer multiplication, the MUL uses the low 16 bits of one of
961 * the operands (src0 through SNB, src1 on IVB and later). The MACH
962 * accumulates in the contribution of the upper 16 bits of that
963 * operand. If we can determine that one of the args is in the low
964 * 16 bits, though, we can just emit a single MUL.
965 */
966 if (value0 && value0->u[0] < (1 << 16)) {
967 if (devinfo->gen < 7)
968 emit(MUL(dst, op[0], op[1]));
969 else
970 emit(MUL(dst, op[1], op[0]));
971 } else if (value1 && value1->u[0] < (1 << 16)) {
972 if (devinfo->gen < 7)
973 emit(MUL(dst, op[1], op[0]));
974 else
975 emit(MUL(dst, op[0], op[1]));
976 } else {
977 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
978
979 emit(MUL(acc, op[0], op[1]));
980 emit(MACH(dst_null_d(), op[0], op[1]));
981 emit(MOV(dst, src_reg(acc)));
982 }
983 } else {
984 emit(MUL(dst, op[0], op[1]));
985 }
986 break;
987 }
988
989 case nir_op_imul_high:
990 case nir_op_umul_high: {
991 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
992
993 emit(MUL(acc, op[0], op[1]));
994 emit(MACH(dst, op[0], op[1]));
995 break;
996 }
997
998 case nir_op_frcp:
999 inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1000 inst->saturate = instr->dest.saturate;
1001 break;
1002
1003 case nir_op_fexp2:
1004 inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1005 inst->saturate = instr->dest.saturate;
1006 break;
1007
1008 case nir_op_flog2:
1009 inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1010 inst->saturate = instr->dest.saturate;
1011 break;
1012
1013 case nir_op_fsin:
1014 inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1015 inst->saturate = instr->dest.saturate;
1016 break;
1017
1018 case nir_op_fcos:
1019 inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1020 inst->saturate = instr->dest.saturate;
1021 break;
1022
1023 case nir_op_idiv:
1024 case nir_op_udiv:
1025 emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1026 break;
1027
1028 case nir_op_umod:
1029 emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1030 break;
1031
1032 case nir_op_ldexp:
1033 unreachable("not reached: should be handled by ldexp_to_arith()");
1034
1035 case nir_op_fsqrt:
1036 inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1037 inst->saturate = instr->dest.saturate;
1038 break;
1039
1040 case nir_op_frsq:
1041 inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1042 inst->saturate = instr->dest.saturate;
1043 break;
1044
1045 case nir_op_fpow:
1046 inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1047 inst->saturate = instr->dest.saturate;
1048 break;
1049
1050 case nir_op_uadd_carry: {
1051 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1052
1053 emit(ADDC(dst_null_ud(), op[0], op[1]));
1054 emit(MOV(dst, src_reg(acc)));
1055 break;
1056 }
1057
1058 case nir_op_usub_borrow: {
1059 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1060
1061 emit(SUBB(dst_null_ud(), op[0], op[1]));
1062 emit(MOV(dst, src_reg(acc)));
1063 break;
1064 }
1065
1066 case nir_op_ftrunc:
1067 inst = emit(RNDZ(dst, op[0]));
1068 inst->saturate = instr->dest.saturate;
1069 break;
1070
1071 case nir_op_fceil: {
1072 src_reg tmp = src_reg(this, glsl_type::float_type);
1073 tmp.swizzle =
1074 brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1075 instr->src[0].src.ssa->num_components :
1076 instr->src[0].src.reg.reg->num_components);
1077
1078 op[0].negate = !op[0].negate;
1079 emit(RNDD(dst_reg(tmp), op[0]));
1080 tmp.negate = true;
1081 inst = emit(MOV(dst, tmp));
1082 inst->saturate = instr->dest.saturate;
1083 break;
1084 }
1085
1086 case nir_op_ffloor:
1087 inst = emit(RNDD(dst, op[0]));
1088 inst->saturate = instr->dest.saturate;
1089 break;
1090
1091 case nir_op_ffract:
1092 inst = emit(FRC(dst, op[0]));
1093 inst->saturate = instr->dest.saturate;
1094 break;
1095
1096 case nir_op_fround_even:
1097 inst = emit(RNDE(dst, op[0]));
1098 inst->saturate = instr->dest.saturate;
1099 break;
1100
1101 case nir_op_fmin:
1102 case nir_op_imin:
1103 case nir_op_umin:
1104 inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1105 inst->saturate = instr->dest.saturate;
1106 break;
1107
1108 case nir_op_fmax:
1109 case nir_op_imax:
1110 case nir_op_umax:
1111 inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1112 inst->saturate = instr->dest.saturate;
1113 break;
1114
1115 case nir_op_fddx:
1116 case nir_op_fddx_coarse:
1117 case nir_op_fddx_fine:
1118 case nir_op_fddy:
1119 case nir_op_fddy_coarse:
1120 case nir_op_fddy_fine:
1121 unreachable("derivatives are not valid in vertex shaders");
1122
1123 case nir_op_flt:
1124 case nir_op_ilt:
1125 case nir_op_ult:
1126 case nir_op_fge:
1127 case nir_op_ige:
1128 case nir_op_uge:
1129 case nir_op_feq:
1130 case nir_op_ieq:
1131 case nir_op_fne:
1132 case nir_op_ine:
1133 emit(CMP(dst, op[0], op[1],
1134 brw_conditional_for_nir_comparison(instr->op)));
1135 break;
1136
1137 case nir_op_ball_fequal2:
1138 case nir_op_ball_iequal2:
1139 case nir_op_ball_fequal3:
1140 case nir_op_ball_iequal3:
1141 case nir_op_ball_fequal4:
1142 case nir_op_ball_iequal4: {
1143 unsigned swiz =
1144 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1145
1146 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1147 brw_conditional_for_nir_comparison(instr->op)));
1148 emit(MOV(dst, brw_imm_d(0)));
1149 inst = emit(MOV(dst, brw_imm_d(~0)));
1150 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1151 break;
1152 }
1153
1154 case nir_op_bany_fnequal2:
1155 case nir_op_bany_inequal2:
1156 case nir_op_bany_fnequal3:
1157 case nir_op_bany_inequal3:
1158 case nir_op_bany_fnequal4:
1159 case nir_op_bany_inequal4: {
1160 unsigned swiz =
1161 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1162
1163 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1164 brw_conditional_for_nir_comparison(instr->op)));
1165
1166 emit(MOV(dst, brw_imm_d(0)));
1167 inst = emit(MOV(dst, brw_imm_d(~0)));
1168 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1169 break;
1170 }
1171
1172 case nir_op_inot:
1173 if (devinfo->gen >= 8) {
1174 op[0] = resolve_source_modifiers(op[0]);
1175 }
1176 emit(NOT(dst, op[0]));
1177 break;
1178
1179 case nir_op_ixor:
1180 if (devinfo->gen >= 8) {
1181 op[0] = resolve_source_modifiers(op[0]);
1182 op[1] = resolve_source_modifiers(op[1]);
1183 }
1184 emit(XOR(dst, op[0], op[1]));
1185 break;
1186
1187 case nir_op_ior:
1188 if (devinfo->gen >= 8) {
1189 op[0] = resolve_source_modifiers(op[0]);
1190 op[1] = resolve_source_modifiers(op[1]);
1191 }
1192 emit(OR(dst, op[0], op[1]));
1193 break;
1194
1195 case nir_op_iand:
1196 if (devinfo->gen >= 8) {
1197 op[0] = resolve_source_modifiers(op[0]);
1198 op[1] = resolve_source_modifiers(op[1]);
1199 }
1200 emit(AND(dst, op[0], op[1]));
1201 break;
1202
1203 case nir_op_b2i:
1204 case nir_op_b2f:
1205 emit(MOV(dst, negate(op[0])));
1206 break;
1207
1208 case nir_op_f2b:
1209 emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1210 break;
1211
1212 case nir_op_i2b:
1213 emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1214 break;
1215
1216 case nir_op_fnoise1_1:
1217 case nir_op_fnoise1_2:
1218 case nir_op_fnoise1_3:
1219 case nir_op_fnoise1_4:
1220 case nir_op_fnoise2_1:
1221 case nir_op_fnoise2_2:
1222 case nir_op_fnoise2_3:
1223 case nir_op_fnoise2_4:
1224 case nir_op_fnoise3_1:
1225 case nir_op_fnoise3_2:
1226 case nir_op_fnoise3_3:
1227 case nir_op_fnoise3_4:
1228 case nir_op_fnoise4_1:
1229 case nir_op_fnoise4_2:
1230 case nir_op_fnoise4_3:
1231 case nir_op_fnoise4_4:
1232 unreachable("not reached: should be handled by lower_noise");
1233
1234 case nir_op_unpack_half_2x16_split_x:
1235 case nir_op_unpack_half_2x16_split_y:
1236 case nir_op_pack_half_2x16_split:
1237 unreachable("not reached: should not occur in vertex shader");
1238
1239 case nir_op_unpack_snorm_2x16:
1240 case nir_op_unpack_unorm_2x16:
1241 case nir_op_pack_snorm_2x16:
1242 case nir_op_pack_unorm_2x16:
1243 unreachable("not reached: should be handled by lower_packing_builtins");
1244
1245 case nir_op_unpack_half_2x16:
1246 /* As NIR does not guarantee that we have a correct swizzle outside the
1247 * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1248 * uses the source operand in an operation with WRITEMASK_Y while our
1249 * source operand has only size 1, it accessed incorrect data producing
1250 * regressions in Piglit. We repeat the swizzle of the first component on the
1251 * rest of components to avoid regressions. In the vec4_visitor IR code path
1252 * this is not needed because the operand has already the correct swizzle.
1253 */
1254 op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1255 emit_unpack_half_2x16(dst, op[0]);
1256 break;
1257
1258 case nir_op_pack_half_2x16:
1259 emit_pack_half_2x16(dst, op[0]);
1260 break;
1261
1262 case nir_op_unpack_unorm_4x8:
1263 emit_unpack_unorm_4x8(dst, op[0]);
1264 break;
1265
1266 case nir_op_pack_unorm_4x8:
1267 emit_pack_unorm_4x8(dst, op[0]);
1268 break;
1269
1270 case nir_op_unpack_snorm_4x8:
1271 emit_unpack_snorm_4x8(dst, op[0]);
1272 break;
1273
1274 case nir_op_pack_snorm_4x8:
1275 emit_pack_snorm_4x8(dst, op[0]);
1276 break;
1277
1278 case nir_op_bitfield_reverse:
1279 emit(BFREV(dst, op[0]));
1280 break;
1281
1282 case nir_op_bit_count:
1283 emit(CBIT(dst, op[0]));
1284 break;
1285
1286 case nir_op_ufind_msb:
1287 case nir_op_ifind_msb: {
1288 emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1289
1290 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1291 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1292 * subtract the result from 31 to convert the MSB count into an LSB count.
1293 */
1294 src_reg src(dst);
1295 emit(CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ));
1296
1297 inst = emit(ADD(dst, src, brw_imm_d(31)));
1298 inst->predicate = BRW_PREDICATE_NORMAL;
1299 inst->src[0].negate = true;
1300 break;
1301 }
1302
1303 case nir_op_find_lsb:
1304 emit(FBL(dst, op[0]));
1305 break;
1306
1307 case nir_op_ubitfield_extract:
1308 case nir_op_ibitfield_extract:
1309 op[0] = fix_3src_operand(op[0]);
1310 op[1] = fix_3src_operand(op[1]);
1311 op[2] = fix_3src_operand(op[2]);
1312
1313 emit(BFE(dst, op[2], op[1], op[0]));
1314 break;
1315
1316 case nir_op_bfm:
1317 emit(BFI1(dst, op[0], op[1]));
1318 break;
1319
1320 case nir_op_bfi:
1321 op[0] = fix_3src_operand(op[0]);
1322 op[1] = fix_3src_operand(op[1]);
1323 op[2] = fix_3src_operand(op[2]);
1324
1325 emit(BFI2(dst, op[0], op[1], op[2]));
1326 break;
1327
1328 case nir_op_bitfield_insert:
1329 unreachable("not reached: should be handled by "
1330 "lower_instructions::bitfield_insert_to_bfm_bfi");
1331
1332 case nir_op_fsign:
1333 /* AND(val, 0x80000000) gives the sign bit.
1334 *
1335 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1336 * zero.
1337 */
1338 emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1339
1340 op[0].type = BRW_REGISTER_TYPE_UD;
1341 dst.type = BRW_REGISTER_TYPE_UD;
1342 emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1343
1344 inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1345 inst->predicate = BRW_PREDICATE_NORMAL;
1346 dst.type = BRW_REGISTER_TYPE_F;
1347
1348 if (instr->dest.saturate) {
1349 inst = emit(MOV(dst, src_reg(dst)));
1350 inst->saturate = true;
1351 }
1352 break;
1353
1354 case nir_op_isign:
1355 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
1356 * -> non-negative val generates 0x00000000.
1357 * Predicated OR sets 1 if val is positive.
1358 */
1359 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G));
1360 emit(ASR(dst, op[0], brw_imm_d(31)));
1361 inst = emit(OR(dst, src_reg(dst), brw_imm_d(1)));
1362 inst->predicate = BRW_PREDICATE_NORMAL;
1363 break;
1364
1365 case nir_op_ishl:
1366 emit(SHL(dst, op[0], op[1]));
1367 break;
1368
1369 case nir_op_ishr:
1370 emit(ASR(dst, op[0], op[1]));
1371 break;
1372
1373 case nir_op_ushr:
1374 emit(SHR(dst, op[0], op[1]));
1375 break;
1376
1377 case nir_op_ffma:
1378 op[0] = fix_3src_operand(op[0]);
1379 op[1] = fix_3src_operand(op[1]);
1380 op[2] = fix_3src_operand(op[2]);
1381
1382 inst = emit(MAD(dst, op[2], op[1], op[0]));
1383 inst->saturate = instr->dest.saturate;
1384 break;
1385
1386 case nir_op_flrp:
1387 inst = emit_lrp(dst, op[0], op[1], op[2]);
1388 inst->saturate = instr->dest.saturate;
1389 break;
1390
1391 case nir_op_bcsel:
1392 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1393 inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1394 switch (dst.writemask) {
1395 case WRITEMASK_X:
1396 inst->predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1397 break;
1398 case WRITEMASK_Y:
1399 inst->predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1400 break;
1401 case WRITEMASK_Z:
1402 inst->predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1403 break;
1404 case WRITEMASK_W:
1405 inst->predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1406 break;
1407 default:
1408 inst->predicate = BRW_PREDICATE_NORMAL;
1409 break;
1410 }
1411 break;
1412
1413 case nir_op_fdot_replicated2:
1414 inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
1415 inst->saturate = instr->dest.saturate;
1416 break;
1417
1418 case nir_op_fdot_replicated3:
1419 inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
1420 inst->saturate = instr->dest.saturate;
1421 break;
1422
1423 case nir_op_fdot_replicated4:
1424 inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
1425 inst->saturate = instr->dest.saturate;
1426 break;
1427
1428 case nir_op_fdph_replicated:
1429 inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
1430 inst->saturate = instr->dest.saturate;
1431 break;
1432
1433 case nir_op_bany2:
1434 case nir_op_bany3:
1435 case nir_op_bany4: {
1436 unsigned swiz =
1437 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1438
1439 emit(CMP(dst_null_d(), swizzle(op[0], swiz), brw_imm_d(0),
1440 BRW_CONDITIONAL_NZ));
1441 emit(MOV(dst, brw_imm_d(0)));
1442 inst = emit(MOV(dst, brw_imm_d(~0)));
1443 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1444 break;
1445 }
1446
1447 case nir_op_fabs:
1448 case nir_op_iabs:
1449 case nir_op_fneg:
1450 case nir_op_ineg:
1451 case nir_op_fsat:
1452 unreachable("not reached: should be lowered by lower_source mods");
1453
1454 case nir_op_fdiv:
1455 unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
1456
1457 case nir_op_fmod:
1458 unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
1459
1460 case nir_op_fsub:
1461 case nir_op_isub:
1462 unreachable("not reached: should be handled by ir_sub_to_add_neg");
1463
1464 default:
1465 unreachable("Unimplemented ALU operation");
1466 }
1467
1468 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1469 * to sign extend the low bit to 0/~0
1470 */
1471 if (devinfo->gen <= 5 &&
1472 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
1473 BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1474 dst_reg masked = dst_reg(this, glsl_type::int_type);
1475 masked.writemask = dst.writemask;
1476 emit(AND(masked, src_reg(dst), brw_imm_d(1)));
1477 src_reg masked_neg = src_reg(masked);
1478 masked_neg.negate = true;
1479 emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
1480 }
1481 }
1482
1483 void
1484 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
1485 {
1486 switch (instr->type) {
1487 case nir_jump_break:
1488 emit(BRW_OPCODE_BREAK);
1489 break;
1490
1491 case nir_jump_continue:
1492 emit(BRW_OPCODE_CONTINUE);
1493 break;
1494
1495 case nir_jump_return:
1496 /* fall through */
1497 default:
1498 unreachable("unknown jump");
1499 }
1500 }
1501
1502 enum ir_texture_opcode
1503 ir_texture_opcode_for_nir_texop(nir_texop texop)
1504 {
1505 enum ir_texture_opcode op;
1506
1507 switch (texop) {
1508 case nir_texop_lod: op = ir_lod; break;
1509 case nir_texop_query_levels: op = ir_query_levels; break;
1510 case nir_texop_texture_samples: op = ir_texture_samples; break;
1511 case nir_texop_tex: op = ir_tex; break;
1512 case nir_texop_tg4: op = ir_tg4; break;
1513 case nir_texop_txb: op = ir_txb; break;
1514 case nir_texop_txd: op = ir_txd; break;
1515 case nir_texop_txf: op = ir_txf; break;
1516 case nir_texop_txf_ms: op = ir_txf_ms; break;
1517 case nir_texop_txl: op = ir_txl; break;
1518 case nir_texop_txs: op = ir_txs; break;
1519 case nir_texop_samples_identical: op = ir_samples_identical; break;
1520 default:
1521 unreachable("unknown texture opcode");
1522 }
1523
1524 return op;
1525 }
1526 const glsl_type *
1527 glsl_type_for_nir_alu_type(nir_alu_type alu_type,
1528 unsigned components)
1529 {
1530 switch (alu_type) {
1531 case nir_type_float:
1532 return glsl_type::vec(components);
1533 case nir_type_int:
1534 return glsl_type::ivec(components);
1535 case nir_type_uint:
1536 return glsl_type::uvec(components);
1537 case nir_type_bool:
1538 return glsl_type::bvec(components);
1539 default:
1540 return glsl_type::error_type;
1541 }
1542
1543 return glsl_type::error_type;
1544 }
1545
1546 void
1547 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
1548 {
1549 unsigned sampler = instr->sampler_index;
1550 src_reg sampler_reg = brw_imm_ud(sampler);
1551 src_reg coordinate;
1552 const glsl_type *coord_type = NULL;
1553 src_reg shadow_comparitor;
1554 src_reg offset_value;
1555 src_reg lod, lod2;
1556 src_reg sample_index;
1557 src_reg mcs;
1558
1559 const glsl_type *dest_type =
1560 glsl_type_for_nir_alu_type(instr->dest_type,
1561 nir_tex_instr_dest_size(instr));
1562 dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
1563
1564 /* Load the texture operation sources */
1565 for (unsigned i = 0; i < instr->num_srcs; i++) {
1566 switch (instr->src[i].src_type) {
1567 case nir_tex_src_comparitor:
1568 shadow_comparitor = get_nir_src(instr->src[i].src,
1569 BRW_REGISTER_TYPE_F, 1);
1570 break;
1571
1572 case nir_tex_src_coord: {
1573 unsigned src_size = nir_tex_instr_src_size(instr, i);
1574
1575 switch (instr->op) {
1576 case nir_texop_txf:
1577 case nir_texop_txf_ms:
1578 case nir_texop_samples_identical:
1579 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
1580 src_size);
1581 coord_type = glsl_type::ivec(src_size);
1582 break;
1583
1584 default:
1585 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
1586 src_size);
1587 coord_type = glsl_type::vec(src_size);
1588 break;
1589 }
1590 break;
1591 }
1592
1593 case nir_tex_src_ddx:
1594 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
1595 nir_tex_instr_src_size(instr, i));
1596 break;
1597
1598 case nir_tex_src_ddy:
1599 lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
1600 nir_tex_instr_src_size(instr, i));
1601 break;
1602
1603 case nir_tex_src_lod:
1604 switch (instr->op) {
1605 case nir_texop_txs:
1606 case nir_texop_txf:
1607 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
1608 break;
1609
1610 default:
1611 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
1612 break;
1613 }
1614 break;
1615
1616 case nir_tex_src_ms_index: {
1617 sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
1618 break;
1619 }
1620
1621 case nir_tex_src_offset:
1622 offset_value = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
1623 break;
1624
1625 case nir_tex_src_sampler_offset: {
1626 /* The highest sampler which may be used by this operation is
1627 * the last element of the array. Mark it here, because the generator
1628 * doesn't have enough information to determine the bound.
1629 */
1630 uint32_t array_size = instr->sampler_array_size;
1631 uint32_t max_used = sampler + array_size - 1;
1632 if (instr->op == nir_texop_tg4) {
1633 max_used += prog_data->base.binding_table.gather_texture_start;
1634 } else {
1635 max_used += prog_data->base.binding_table.texture_start;
1636 }
1637
1638 brw_mark_surface_used(&prog_data->base, max_used);
1639
1640 /* Emit code to evaluate the actual indexing expression */
1641 src_reg src = get_nir_src(instr->src[i].src, 1);
1642 src_reg temp(this, glsl_type::uint_type);
1643 emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
1644 sampler_reg = emit_uniformize(temp);
1645 break;
1646 }
1647
1648 case nir_tex_src_projector:
1649 unreachable("Should be lowered by do_lower_texture_projection");
1650
1651 case nir_tex_src_bias:
1652 unreachable("LOD bias is not valid for vertex shaders.\n");
1653
1654 default:
1655 unreachable("unknown texture source");
1656 }
1657 }
1658
1659 if (instr->op == nir_texop_txf_ms ||
1660 instr->op == nir_texop_samples_identical) {
1661 assert(coord_type != NULL);
1662 if (devinfo->gen >= 7 &&
1663 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
1664 mcs = emit_mcs_fetch(coord_type, coordinate, sampler_reg);
1665 } else {
1666 mcs = brw_imm_ud(0u);
1667 }
1668 }
1669
1670 uint32_t constant_offset = 0;
1671 for (unsigned i = 0; i < 3; i++) {
1672 if (instr->const_offset[i] != 0) {
1673 constant_offset = brw_texture_offset(instr->const_offset, 3);
1674 break;
1675 }
1676 }
1677
1678 /* Stuff the channel select bits in the top of the texture offset */
1679 if (instr->op == nir_texop_tg4) {
1680 if (instr->component == 1 &&
1681 (key_tex->gather_channel_quirk_mask & (1 << sampler))) {
1682 /* gather4 sampler is broken for green channel on RG32F --
1683 * we must ask for blue instead.
1684 */
1685 constant_offset |= 2 << 16;
1686 } else {
1687 constant_offset |= instr->component << 16;
1688 }
1689 }
1690
1691 ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
1692
1693 bool is_cube_array =
1694 instr->op == nir_texop_txs &&
1695 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1696 instr->is_array;
1697
1698 emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
1699 shadow_comparitor,
1700 lod, lod2, sample_index,
1701 constant_offset, offset_value,
1702 mcs, is_cube_array, sampler, sampler_reg);
1703 }
1704
1705 void
1706 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
1707 {
1708 nir_ssa_values[instr->def.index] = dst_reg(VGRF, alloc.allocate(1));
1709 }
1710
1711 }