i965: Implement nir_op_irem and nir_op_srem
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_nir.cpp
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28 #include "brw_program.h"
29
30 using namespace brw;
31 using namespace brw::surface_access;
32
33 namespace brw {
34
35 void
36 vec4_visitor::emit_nir_code()
37 {
38 if (nir->num_uniforms > 0)
39 nir_setup_uniforms();
40
41 nir_setup_system_values();
42
43 /* get the main function and emit it */
44 nir_foreach_function(nir, function) {
45 assert(strcmp(function->name, "main") == 0);
46 assert(function->impl);
47 nir_emit_impl(function->impl);
48 }
49 }
50
51 void
52 vec4_visitor::nir_setup_system_value_intrinsic(nir_intrinsic_instr *instr)
53 {
54 dst_reg *reg;
55
56 switch (instr->intrinsic) {
57 case nir_intrinsic_load_vertex_id:
58 unreachable("should be lowered by lower_vertex_id().");
59
60 case nir_intrinsic_load_vertex_id_zero_base:
61 reg = &nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
62 if (reg->file == BAD_FILE)
63 *reg = *make_reg_for_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE,
64 glsl_type::int_type);
65 break;
66
67 case nir_intrinsic_load_base_vertex:
68 reg = &nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
69 if (reg->file == BAD_FILE)
70 *reg = *make_reg_for_system_value(SYSTEM_VALUE_BASE_VERTEX,
71 glsl_type::int_type);
72 break;
73
74 case nir_intrinsic_load_instance_id:
75 reg = &nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
76 if (reg->file == BAD_FILE)
77 *reg = *make_reg_for_system_value(SYSTEM_VALUE_INSTANCE_ID,
78 glsl_type::int_type);
79 break;
80
81 case nir_intrinsic_load_base_instance:
82 reg = &nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
83 if (reg->file == BAD_FILE)
84 *reg = *make_reg_for_system_value(SYSTEM_VALUE_BASE_INSTANCE,
85 glsl_type::int_type);
86 break;
87
88 case nir_intrinsic_load_draw_id:
89 reg = &nir_system_values[SYSTEM_VALUE_DRAW_ID];
90 if (reg->file == BAD_FILE)
91 *reg = *make_reg_for_system_value(SYSTEM_VALUE_DRAW_ID,
92 glsl_type::int_type);
93 break;
94
95 default:
96 break;
97 }
98 }
99
100 static bool
101 setup_system_values_block(nir_block *block, void *void_visitor)
102 {
103 vec4_visitor *v = (vec4_visitor *)void_visitor;
104
105 nir_foreach_instr(block, instr) {
106 if (instr->type != nir_instr_type_intrinsic)
107 continue;
108
109 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
110 v->nir_setup_system_value_intrinsic(intrin);
111 }
112
113 return true;
114 }
115
116 void
117 vec4_visitor::nir_setup_system_values()
118 {
119 nir_system_values = ralloc_array(mem_ctx, dst_reg, SYSTEM_VALUE_MAX);
120 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
121 nir_system_values[i] = dst_reg();
122 }
123
124 nir_foreach_function(nir, function) {
125 assert(strcmp(function->name, "main") == 0);
126 assert(function->impl);
127 nir_foreach_block(function->impl, setup_system_values_block, this);
128 }
129 }
130
131 void
132 vec4_visitor::nir_setup_uniforms()
133 {
134 uniforms = nir->num_uniforms / 16;
135
136 nir_foreach_variable(var, &nir->uniforms) {
137 /* UBO's and atomics don't take up space in the uniform file */
138 if (var->interface_type != NULL || var->type->contains_atomic())
139 continue;
140
141 if (type_size_vec4(var->type) > 0)
142 uniform_size[var->data.driver_location / 16] = type_size_vec4(var->type);
143 }
144 }
145
146 void
147 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
148 {
149 nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
150 for (unsigned i = 0; i < impl->reg_alloc; i++) {
151 nir_locals[i] = dst_reg();
152 }
153
154 foreach_list_typed(nir_register, reg, node, &impl->registers) {
155 unsigned array_elems =
156 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
157
158 nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(array_elems));
159 }
160
161 nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
162
163 nir_emit_cf_list(&impl->body);
164 }
165
166 void
167 vec4_visitor::nir_emit_cf_list(exec_list *list)
168 {
169 exec_list_validate(list);
170 foreach_list_typed(nir_cf_node, node, node, list) {
171 switch (node->type) {
172 case nir_cf_node_if:
173 nir_emit_if(nir_cf_node_as_if(node));
174 break;
175
176 case nir_cf_node_loop:
177 nir_emit_loop(nir_cf_node_as_loop(node));
178 break;
179
180 case nir_cf_node_block:
181 nir_emit_block(nir_cf_node_as_block(node));
182 break;
183
184 default:
185 unreachable("Invalid CFG node block");
186 }
187 }
188 }
189
190 void
191 vec4_visitor::nir_emit_if(nir_if *if_stmt)
192 {
193 /* First, put the condition in f0 */
194 src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
195 vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
196 inst->conditional_mod = BRW_CONDITIONAL_NZ;
197
198 /* We can just predicate based on the X channel, as the condition only
199 * goes on its own line */
200 emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
201
202 nir_emit_cf_list(&if_stmt->then_list);
203
204 /* note: if the else is empty, dead CF elimination will remove it */
205 emit(BRW_OPCODE_ELSE);
206
207 nir_emit_cf_list(&if_stmt->else_list);
208
209 emit(BRW_OPCODE_ENDIF);
210 }
211
212 void
213 vec4_visitor::nir_emit_loop(nir_loop *loop)
214 {
215 emit(BRW_OPCODE_DO);
216
217 nir_emit_cf_list(&loop->body);
218
219 emit(BRW_OPCODE_WHILE);
220 }
221
222 void
223 vec4_visitor::nir_emit_block(nir_block *block)
224 {
225 nir_foreach_instr(block, instr) {
226 nir_emit_instr(instr);
227 }
228 }
229
230 void
231 vec4_visitor::nir_emit_instr(nir_instr *instr)
232 {
233 base_ir = instr;
234
235 switch (instr->type) {
236 case nir_instr_type_load_const:
237 nir_emit_load_const(nir_instr_as_load_const(instr));
238 break;
239
240 case nir_instr_type_intrinsic:
241 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
242 break;
243
244 case nir_instr_type_alu:
245 nir_emit_alu(nir_instr_as_alu(instr));
246 break;
247
248 case nir_instr_type_jump:
249 nir_emit_jump(nir_instr_as_jump(instr));
250 break;
251
252 case nir_instr_type_tex:
253 nir_emit_texture(nir_instr_as_tex(instr));
254 break;
255
256 case nir_instr_type_ssa_undef:
257 nir_emit_undef(nir_instr_as_ssa_undef(instr));
258 break;
259
260 default:
261 fprintf(stderr, "VS instruction not yet implemented by NIR->vec4\n");
262 break;
263 }
264 }
265
266 static dst_reg
267 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
268 unsigned base_offset, nir_src *indirect)
269 {
270 dst_reg reg;
271
272 reg = v->nir_locals[nir_reg->index];
273 reg = offset(reg, base_offset);
274 if (indirect) {
275 reg.reladdr =
276 new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
277 BRW_REGISTER_TYPE_D,
278 1));
279 }
280 return reg;
281 }
282
283 dst_reg
284 vec4_visitor::get_nir_dest(nir_dest dest)
285 {
286 if (dest.is_ssa) {
287 dst_reg dst = dst_reg(VGRF, alloc.allocate(1));
288 nir_ssa_values[dest.ssa.index] = dst;
289 return dst;
290 } else {
291 return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
292 dest.reg.indirect);
293 }
294 }
295
296 dst_reg
297 vec4_visitor::get_nir_dest(nir_dest dest, enum brw_reg_type type)
298 {
299 return retype(get_nir_dest(dest), type);
300 }
301
302 dst_reg
303 vec4_visitor::get_nir_dest(nir_dest dest, nir_alu_type type)
304 {
305 return get_nir_dest(dest, brw_type_for_nir_type(type));
306 }
307
308 src_reg
309 vec4_visitor::get_nir_src(nir_src src, enum brw_reg_type type,
310 unsigned num_components)
311 {
312 dst_reg reg;
313
314 if (src.is_ssa) {
315 assert(src.ssa != NULL);
316 reg = nir_ssa_values[src.ssa->index];
317 }
318 else {
319 reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
320 src.reg.indirect);
321 }
322
323 reg = retype(reg, type);
324
325 src_reg reg_as_src = src_reg(reg);
326 reg_as_src.swizzle = brw_swizzle_for_size(num_components);
327 return reg_as_src;
328 }
329
330 src_reg
331 vec4_visitor::get_nir_src(nir_src src, nir_alu_type type,
332 unsigned num_components)
333 {
334 return get_nir_src(src, brw_type_for_nir_type(type), num_components);
335 }
336
337 src_reg
338 vec4_visitor::get_nir_src(nir_src src, unsigned num_components)
339 {
340 /* if type is not specified, default to signed int */
341 return get_nir_src(src, nir_type_int, num_components);
342 }
343
344 src_reg
345 vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
346 {
347 nir_src *offset_src = nir_get_io_offset_src(instr);
348 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
349
350 if (const_value) {
351 /* The only constant offset we should find is 0. brw_nir.c's
352 * add_const_offset_to_base() will fold other constant offsets
353 * into instr->const_index[0].
354 */
355 assert(const_value->u[0] == 0);
356 return src_reg();
357 }
358
359 return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
360 }
361
362 void
363 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
364 {
365 dst_reg reg = dst_reg(VGRF, alloc.allocate(1));
366 reg.type = BRW_REGISTER_TYPE_D;
367
368 unsigned remaining = brw_writemask_for_size(instr->def.num_components);
369
370 /* @FIXME: consider emitting vector operations to save some MOVs in
371 * cases where the components are representable in 8 bits.
372 * For now, we emit a MOV for each distinct value.
373 */
374 for (unsigned i = 0; i < instr->def.num_components; i++) {
375 unsigned writemask = 1 << i;
376
377 if ((remaining & writemask) == 0)
378 continue;
379
380 for (unsigned j = i; j < instr->def.num_components; j++) {
381 if (instr->value.u[i] == instr->value.u[j]) {
382 writemask |= 1 << j;
383 }
384 }
385
386 reg.writemask = writemask;
387 emit(MOV(reg, brw_imm_d(instr->value.i[i])));
388
389 remaining &= ~writemask;
390 }
391
392 /* Set final writemask */
393 reg.writemask = brw_writemask_for_size(instr->def.num_components);
394
395 nir_ssa_values[instr->def.index] = reg;
396 }
397
398 void
399 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
400 {
401 dst_reg dest;
402 src_reg src;
403
404 switch (instr->intrinsic) {
405
406 case nir_intrinsic_load_input: {
407 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
408
409 /* We set EmitNoIndirectInput for VS */
410 assert(const_offset);
411
412 src = src_reg(ATTR, instr->const_index[0] + const_offset->u[0],
413 glsl_type::uvec4_type);
414
415 dest = get_nir_dest(instr->dest, src.type);
416 dest.writemask = brw_writemask_for_size(instr->num_components);
417
418 emit(MOV(dest, src));
419 break;
420 }
421
422 case nir_intrinsic_store_output: {
423 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
424 assert(const_offset);
425
426 int varying = instr->const_index[0] + const_offset->u[0];
427
428 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
429 instr->num_components);
430
431 output_reg[varying] = dst_reg(src);
432 break;
433 }
434
435 case nir_intrinsic_get_buffer_size: {
436 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
437 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u[0] : 0;
438
439 const unsigned index =
440 prog_data->base.binding_table.ssbo_start + ssbo_index;
441 dst_reg result_dst = get_nir_dest(instr->dest);
442 vec4_instruction *inst = new(mem_ctx)
443 vec4_instruction(VS_OPCODE_GET_BUFFER_SIZE, result_dst);
444
445 inst->base_mrf = 2;
446 inst->mlen = 1; /* always at least one */
447 inst->src[1] = brw_imm_ud(index);
448
449 /* MRF for the first parameter */
450 src_reg lod = brw_imm_d(0);
451 int param_base = inst->base_mrf;
452 int writemask = WRITEMASK_X;
453 emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
454
455 emit(inst);
456
457 brw_mark_surface_used(&prog_data->base, index);
458 break;
459 }
460
461 case nir_intrinsic_store_ssbo: {
462 assert(devinfo->gen >= 7);
463
464 /* Block index */
465 src_reg surf_index;
466 nir_const_value *const_uniform_block =
467 nir_src_as_const_value(instr->src[1]);
468 if (const_uniform_block) {
469 unsigned index = prog_data->base.binding_table.ssbo_start +
470 const_uniform_block->u[0];
471 surf_index = brw_imm_ud(index);
472 brw_mark_surface_used(&prog_data->base, index);
473 } else {
474 surf_index = src_reg(this, glsl_type::uint_type);
475 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[1], 1),
476 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
477 surf_index = emit_uniformize(surf_index);
478
479 brw_mark_surface_used(&prog_data->base,
480 prog_data->base.binding_table.ssbo_start +
481 nir->info.num_ssbos - 1);
482 }
483
484 /* Offset */
485 src_reg offset_reg;
486 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
487 if (const_offset) {
488 offset_reg = brw_imm_ud(const_offset->u[0]);
489 } else {
490 offset_reg = get_nir_src(instr->src[2], 1);
491 }
492
493 /* Value */
494 src_reg val_reg = get_nir_src(instr->src[0], 4);
495
496 /* Writemask */
497 unsigned write_mask = instr->const_index[0];
498
499 /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
500 * writes will use SIMD8 mode. In order to hide this and keep symmetry across
501 * typed and untyped messages and across hardware platforms, the
502 * current implementation of the untyped messages will transparently convert
503 * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
504 * and enabling only channel X on the SEND instruction.
505 *
506 * The above, works well for full vector writes, but not for partial writes
507 * where we want to write some channels and not others, like when we have
508 * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
509 * quite restrictive with regards to the channel enables we can configure in
510 * the message descriptor (not all combinations are allowed) we cannot simply
511 * implement these scenarios with a single message while keeping the
512 * aforementioned symmetry in the implementation. For now we de decided that
513 * it is better to keep the symmetry to reduce complexity, so in situations
514 * such as the one described we end up emitting two untyped write messages
515 * (one for xy and another for w).
516 *
517 * The code below packs consecutive channels into a single write message,
518 * detects gaps in the vector write and if needed, sends a second message
519 * with the remaining channels. If in the future we decide that we want to
520 * emit a single message at the expense of losing the symmetry in the
521 * implementation we can:
522 *
523 * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
524 * message payload. In this mode we can write up to 8 offsets and dwords
525 * to the red channel only (for the two vec4s in the SIMD4x2 execution)
526 * and select which of the 8 channels carry data to write by setting the
527 * appropriate writemask in the dst register of the SEND instruction.
528 * It would require to write a new generator opcode specifically for
529 * IvyBridge since we would need to prepare a SIMD8 payload that could
530 * use any channel, not just X.
531 *
532 * 2) For Haswell+: Simply send a single write message but set the writemask
533 * on the dst of the SEND instruction to select the channels we want to
534 * write. It would require to modify the current messages to receive
535 * and honor the writemask provided.
536 */
537 const vec4_builder bld = vec4_builder(this).at_end()
538 .annotate(current_annotation, base_ir);
539
540 int swizzle[4] = { 0, 0, 0, 0};
541 int num_channels = 0;
542 unsigned skipped_channels = 0;
543 int num_components = instr->num_components;
544 for (int i = 0; i < num_components; i++) {
545 /* Check if this channel needs to be written. If so, record the
546 * channel we need to take the data from in the swizzle array
547 */
548 int component_mask = 1 << i;
549 int write_test = write_mask & component_mask;
550 if (write_test)
551 swizzle[num_channels++] = i;
552
553 /* If we don't have to write this channel it means we have a gap in the
554 * vector, so write the channels we accumulated until now, if any. Do
555 * the same if this was the last component in the vector.
556 */
557 if (!write_test || i == num_components - 1) {
558 if (num_channels > 0) {
559 /* We have channels to write, so update the offset we need to
560 * write at to skip the channels we skipped, if any.
561 */
562 if (skipped_channels > 0) {
563 if (offset_reg.file == IMM) {
564 offset_reg.ud += 4 * skipped_channels;
565 } else {
566 emit(ADD(dst_reg(offset_reg), offset_reg,
567 brw_imm_ud(4 * skipped_channels)));
568 }
569 }
570
571 /* Swizzle the data register so we take the data from the channels
572 * we need to write and send the write message. This will write
573 * num_channels consecutive dwords starting at offset.
574 */
575 val_reg.swizzle =
576 BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
577 emit_untyped_write(bld, surf_index, offset_reg, val_reg,
578 1 /* dims */, num_channels /* size */,
579 BRW_PREDICATE_NONE);
580
581 /* If we have to do a second write we will have to update the
582 * offset so that we jump over the channels we have just written
583 * now.
584 */
585 skipped_channels = num_channels;
586
587 /* Restart the count for the next write message */
588 num_channels = 0;
589 }
590
591 /* We did not write the current channel, so increase skipped count */
592 skipped_channels++;
593 }
594 }
595
596 break;
597 }
598
599 case nir_intrinsic_load_ssbo: {
600 assert(devinfo->gen >= 7);
601
602 nir_const_value *const_uniform_block =
603 nir_src_as_const_value(instr->src[0]);
604
605 src_reg surf_index;
606 if (const_uniform_block) {
607 unsigned index = prog_data->base.binding_table.ssbo_start +
608 const_uniform_block->u[0];
609 surf_index = brw_imm_ud(index);
610
611 brw_mark_surface_used(&prog_data->base, index);
612 } else {
613 surf_index = src_reg(this, glsl_type::uint_type);
614 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], 1),
615 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
616 surf_index = emit_uniformize(surf_index);
617
618 /* Assume this may touch any UBO. It would be nice to provide
619 * a tighter bound, but the array information is already lowered away.
620 */
621 brw_mark_surface_used(&prog_data->base,
622 prog_data->base.binding_table.ssbo_start +
623 nir->info.num_ssbos - 1);
624 }
625
626 src_reg offset_reg;
627 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
628 if (const_offset) {
629 offset_reg = brw_imm_ud(const_offset->u[0]);
630 } else {
631 offset_reg = get_nir_src(instr->src[1], 1);
632 }
633
634 /* Read the vector */
635 const vec4_builder bld = vec4_builder(this).at_end()
636 .annotate(current_annotation, base_ir);
637
638 src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
639 1 /* dims */, 4 /* size*/,
640 BRW_PREDICATE_NONE);
641 dst_reg dest = get_nir_dest(instr->dest);
642 read_result.type = dest.type;
643 read_result.swizzle = brw_swizzle_for_size(instr->num_components);
644 emit(MOV(dest, read_result));
645
646 break;
647 }
648
649 case nir_intrinsic_ssbo_atomic_add:
650 nir_emit_ssbo_atomic(BRW_AOP_ADD, instr);
651 break;
652 case nir_intrinsic_ssbo_atomic_imin:
653 nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
654 break;
655 case nir_intrinsic_ssbo_atomic_umin:
656 nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
657 break;
658 case nir_intrinsic_ssbo_atomic_imax:
659 nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
660 break;
661 case nir_intrinsic_ssbo_atomic_umax:
662 nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
663 break;
664 case nir_intrinsic_ssbo_atomic_and:
665 nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
666 break;
667 case nir_intrinsic_ssbo_atomic_or:
668 nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
669 break;
670 case nir_intrinsic_ssbo_atomic_xor:
671 nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
672 break;
673 case nir_intrinsic_ssbo_atomic_exchange:
674 nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
675 break;
676 case nir_intrinsic_ssbo_atomic_comp_swap:
677 nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
678 break;
679
680 case nir_intrinsic_load_vertex_id:
681 unreachable("should be lowered by lower_vertex_id()");
682
683 case nir_intrinsic_load_vertex_id_zero_base:
684 case nir_intrinsic_load_base_vertex:
685 case nir_intrinsic_load_instance_id:
686 case nir_intrinsic_load_base_instance:
687 case nir_intrinsic_load_draw_id:
688 case nir_intrinsic_load_invocation_id:
689 case nir_intrinsic_load_tess_level_inner:
690 case nir_intrinsic_load_tess_level_outer: {
691 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
692 src_reg val = src_reg(nir_system_values[sv]);
693 assert(val.file != BAD_FILE);
694 dest = get_nir_dest(instr->dest, val.type);
695 emit(MOV(dest, val));
696 break;
697 }
698
699 case nir_intrinsic_load_uniform: {
700 /* Offsets are in bytes but they should always be multiples of 16 */
701 assert(instr->const_index[0] % 16 == 0);
702
703 dest = get_nir_dest(instr->dest);
704
705 src = src_reg(dst_reg(UNIFORM, instr->const_index[0] / 16));
706 src.type = dest.type;
707
708 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
709 if (const_offset) {
710 /* Offsets are in bytes but they should always be multiples of 16 */
711 assert(const_offset->u[0] % 16 == 0);
712 src.reg_offset = const_offset->u[0] / 16;
713 } else {
714 src_reg tmp = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_D, 1);
715 src.reladdr = new(mem_ctx) src_reg(tmp);
716 }
717
718 emit(MOV(dest, src));
719 break;
720 }
721
722 case nir_intrinsic_atomic_counter_read:
723 case nir_intrinsic_atomic_counter_inc:
724 case nir_intrinsic_atomic_counter_dec: {
725 unsigned surf_index = prog_data->base.binding_table.abo_start +
726 (unsigned) instr->const_index[0];
727 src_reg offset = get_nir_src(instr->src[0], nir_type_int,
728 instr->num_components);
729 dest = get_nir_dest(instr->dest);
730
731 switch (instr->intrinsic) {
732 case nir_intrinsic_atomic_counter_inc:
733 emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
734 src_reg(), src_reg());
735 break;
736 case nir_intrinsic_atomic_counter_dec:
737 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
738 src_reg(), src_reg());
739 break;
740 case nir_intrinsic_atomic_counter_read:
741 emit_untyped_surface_read(surf_index, dest, offset);
742 break;
743 default:
744 unreachable("Unreachable");
745 }
746
747 brw_mark_surface_used(stage_prog_data, surf_index);
748 break;
749 }
750
751 case nir_intrinsic_load_ubo: {
752 nir_const_value *const_block_index = nir_src_as_const_value(instr->src[0]);
753 src_reg surf_index;
754
755 dest = get_nir_dest(instr->dest);
756
757 if (const_block_index) {
758 /* The block index is a constant, so just emit the binding table entry
759 * as an immediate.
760 */
761 const unsigned index = prog_data->base.binding_table.ubo_start +
762 const_block_index->u[0];
763 surf_index = brw_imm_ud(index);
764 brw_mark_surface_used(&prog_data->base, index);
765 } else {
766 /* The block index is not a constant. Evaluate the index expression
767 * per-channel and add the base UBO index; we have to select a value
768 * from any live channel.
769 */
770 surf_index = src_reg(this, glsl_type::uint_type);
771 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int,
772 instr->num_components),
773 brw_imm_ud(prog_data->base.binding_table.ubo_start)));
774 surf_index = emit_uniformize(surf_index);
775
776 /* Assume this may touch any UBO. It would be nice to provide
777 * a tighter bound, but the array information is already lowered away.
778 */
779 brw_mark_surface_used(&prog_data->base,
780 prog_data->base.binding_table.ubo_start +
781 nir->info.num_ubos - 1);
782 }
783
784 src_reg offset;
785 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
786 if (const_offset) {
787 offset = brw_imm_ud(const_offset->u[0] & ~15);
788 } else {
789 offset = get_nir_src(instr->src[1], nir_type_int, 1);
790 }
791
792 src_reg packed_consts = src_reg(this, glsl_type::vec4_type);
793 packed_consts.type = dest.type;
794
795 emit_pull_constant_load_reg(dst_reg(packed_consts),
796 surf_index,
797 offset,
798 NULL, NULL /* before_block/inst */);
799
800 packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
801 if (const_offset) {
802 packed_consts.swizzle += BRW_SWIZZLE4(const_offset->u[0] % 16 / 4,
803 const_offset->u[0] % 16 / 4,
804 const_offset->u[0] % 16 / 4,
805 const_offset->u[0] % 16 / 4);
806 }
807
808 emit(MOV(dest, packed_consts));
809 break;
810 }
811
812 case nir_intrinsic_memory_barrier: {
813 const vec4_builder bld =
814 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
815 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
816 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
817 ->regs_written = 2;
818 break;
819 }
820
821 case nir_intrinsic_shader_clock: {
822 /* We cannot do anything if there is an event, so ignore it for now */
823 const src_reg shader_clock = get_timestamp();
824 const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
825
826 dest = get_nir_dest(instr->dest, type);
827 emit(MOV(dest, shader_clock));
828 break;
829 }
830
831 default:
832 unreachable("Unknown intrinsic");
833 }
834 }
835
836 void
837 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
838 {
839 dst_reg dest;
840 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
841 dest = get_nir_dest(instr->dest);
842
843 src_reg surface;
844 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
845 if (const_surface) {
846 unsigned surf_index = prog_data->base.binding_table.ssbo_start +
847 const_surface->u[0];
848 surface = brw_imm_ud(surf_index);
849 brw_mark_surface_used(&prog_data->base, surf_index);
850 } else {
851 surface = src_reg(this, glsl_type::uint_type);
852 emit(ADD(dst_reg(surface), get_nir_src(instr->src[0]),
853 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
854
855 /* Assume this may touch any UBO. This is the same we do for other
856 * UBO/SSBO accesses with non-constant surface.
857 */
858 brw_mark_surface_used(&prog_data->base,
859 prog_data->base.binding_table.ssbo_start +
860 nir->info.num_ssbos - 1);
861 }
862
863 src_reg offset = get_nir_src(instr->src[1], 1);
864 src_reg data1 = get_nir_src(instr->src[2], 1);
865 src_reg data2;
866 if (op == BRW_AOP_CMPWR)
867 data2 = get_nir_src(instr->src[3], 1);
868
869 /* Emit the actual atomic operation operation */
870 const vec4_builder bld =
871 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
872
873 src_reg atomic_result =
874 surface_access::emit_untyped_atomic(bld, surface, offset,
875 data1, data2,
876 1 /* dims */, 1 /* rsize */,
877 op,
878 BRW_PREDICATE_NONE);
879 dest.type = atomic_result.type;
880 bld.MOV(dest, atomic_result);
881 }
882
883 static unsigned
884 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
885 {
886 return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
887 }
888
889 static enum brw_conditional_mod
890 brw_conditional_for_nir_comparison(nir_op op)
891 {
892 switch (op) {
893 case nir_op_flt:
894 case nir_op_ilt:
895 case nir_op_ult:
896 return BRW_CONDITIONAL_L;
897
898 case nir_op_fge:
899 case nir_op_ige:
900 case nir_op_uge:
901 return BRW_CONDITIONAL_GE;
902
903 case nir_op_feq:
904 case nir_op_ieq:
905 case nir_op_ball_fequal2:
906 case nir_op_ball_iequal2:
907 case nir_op_ball_fequal3:
908 case nir_op_ball_iequal3:
909 case nir_op_ball_fequal4:
910 case nir_op_ball_iequal4:
911 return BRW_CONDITIONAL_Z;
912
913 case nir_op_fne:
914 case nir_op_ine:
915 case nir_op_bany_fnequal2:
916 case nir_op_bany_inequal2:
917 case nir_op_bany_fnequal3:
918 case nir_op_bany_inequal3:
919 case nir_op_bany_fnequal4:
920 case nir_op_bany_inequal4:
921 return BRW_CONDITIONAL_NZ;
922
923 default:
924 unreachable("not reached: bad operation for comparison");
925 }
926 }
927
928 bool
929 vec4_visitor::optimize_predicate(nir_alu_instr *instr,
930 enum brw_predicate *predicate)
931 {
932 if (!instr->src[0].src.is_ssa ||
933 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
934 return false;
935
936 nir_alu_instr *cmp_instr =
937 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
938
939 switch (cmp_instr->op) {
940 case nir_op_bany_fnequal2:
941 case nir_op_bany_inequal2:
942 case nir_op_bany_fnequal3:
943 case nir_op_bany_inequal3:
944 case nir_op_bany_fnequal4:
945 case nir_op_bany_inequal4:
946 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
947 break;
948 case nir_op_ball_fequal2:
949 case nir_op_ball_iequal2:
950 case nir_op_ball_fequal3:
951 case nir_op_ball_iequal3:
952 case nir_op_ball_fequal4:
953 case nir_op_ball_iequal4:
954 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
955 break;
956 default:
957 return false;
958 }
959
960 unsigned size_swizzle =
961 brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
962
963 src_reg op[2];
964 assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
965 for (unsigned i = 0; i < 2; i++) {
966 op[i] = get_nir_src(cmp_instr->src[i].src,
967 nir_op_infos[cmp_instr->op].input_types[i], 4);
968 unsigned base_swizzle =
969 brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
970 op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
971 op[i].abs = cmp_instr->src[i].abs;
972 op[i].negate = cmp_instr->src[i].negate;
973 }
974
975 emit(CMP(dst_null_d(), op[0], op[1],
976 brw_conditional_for_nir_comparison(cmp_instr->op)));
977
978 return true;
979 }
980
981 void
982 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
983 {
984 vec4_instruction *inst;
985
986 dst_reg dst = get_nir_dest(instr->dest.dest,
987 nir_op_infos[instr->op].output_type);
988 dst.writemask = instr->dest.write_mask;
989
990 src_reg op[4];
991 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
992 op[i] = get_nir_src(instr->src[i].src,
993 nir_op_infos[instr->op].input_types[i], 4);
994 op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
995 op[i].abs = instr->src[i].abs;
996 op[i].negate = instr->src[i].negate;
997 }
998
999 switch (instr->op) {
1000 case nir_op_imov:
1001 case nir_op_fmov:
1002 inst = emit(MOV(dst, op[0]));
1003 inst->saturate = instr->dest.saturate;
1004 break;
1005
1006 case nir_op_vec2:
1007 case nir_op_vec3:
1008 case nir_op_vec4:
1009 unreachable("not reached: should be handled by lower_vec_to_movs()");
1010
1011 case nir_op_i2f:
1012 case nir_op_u2f:
1013 inst = emit(MOV(dst, op[0]));
1014 inst->saturate = instr->dest.saturate;
1015 break;
1016
1017 case nir_op_f2i:
1018 case nir_op_f2u:
1019 inst = emit(MOV(dst, op[0]));
1020 break;
1021
1022 case nir_op_fadd:
1023 /* fall through */
1024 case nir_op_iadd:
1025 inst = emit(ADD(dst, op[0], op[1]));
1026 inst->saturate = instr->dest.saturate;
1027 break;
1028
1029 case nir_op_fmul:
1030 inst = emit(MUL(dst, op[0], op[1]));
1031 inst->saturate = instr->dest.saturate;
1032 break;
1033
1034 case nir_op_imul: {
1035 if (devinfo->gen < 8) {
1036 nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
1037 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
1038
1039 /* For integer multiplication, the MUL uses the low 16 bits of one of
1040 * the operands (src0 through SNB, src1 on IVB and later). The MACH
1041 * accumulates in the contribution of the upper 16 bits of that
1042 * operand. If we can determine that one of the args is in the low
1043 * 16 bits, though, we can just emit a single MUL.
1044 */
1045 if (value0 && value0->u[0] < (1 << 16)) {
1046 if (devinfo->gen < 7)
1047 emit(MUL(dst, op[0], op[1]));
1048 else
1049 emit(MUL(dst, op[1], op[0]));
1050 } else if (value1 && value1->u[0] < (1 << 16)) {
1051 if (devinfo->gen < 7)
1052 emit(MUL(dst, op[1], op[0]));
1053 else
1054 emit(MUL(dst, op[0], op[1]));
1055 } else {
1056 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1057
1058 emit(MUL(acc, op[0], op[1]));
1059 emit(MACH(dst_null_d(), op[0], op[1]));
1060 emit(MOV(dst, src_reg(acc)));
1061 }
1062 } else {
1063 emit(MUL(dst, op[0], op[1]));
1064 }
1065 break;
1066 }
1067
1068 case nir_op_imul_high:
1069 case nir_op_umul_high: {
1070 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1071
1072 emit(MUL(acc, op[0], op[1]));
1073 emit(MACH(dst, op[0], op[1]));
1074 break;
1075 }
1076
1077 case nir_op_frcp:
1078 inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1079 inst->saturate = instr->dest.saturate;
1080 break;
1081
1082 case nir_op_fexp2:
1083 inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1084 inst->saturate = instr->dest.saturate;
1085 break;
1086
1087 case nir_op_flog2:
1088 inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1089 inst->saturate = instr->dest.saturate;
1090 break;
1091
1092 case nir_op_fsin:
1093 inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1094 inst->saturate = instr->dest.saturate;
1095 break;
1096
1097 case nir_op_fcos:
1098 inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1099 inst->saturate = instr->dest.saturate;
1100 break;
1101
1102 case nir_op_idiv:
1103 case nir_op_udiv:
1104 emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1105 break;
1106
1107 case nir_op_umod:
1108 case nir_op_irem:
1109 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1110 * appears that our hardware just does the right thing for signed
1111 * remainder.
1112 */
1113 emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1114 break;
1115
1116 case nir_op_imod: {
1117 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1118 inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1119
1120 /* Math instructions don't support conditional mod */
1121 inst = emit(MOV(dst_null_d(), src_reg(dst)));
1122 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1123
1124 /* Now, we need to determine if signs of the sources are different.
1125 * When we XOR the sources, the top bit is 0 if they are the same and 1
1126 * if they are different. We can then use a conditional modifier to
1127 * turn that into a predicate. This leads us to an XOR.l instruction.
1128 */
1129 src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1130 inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1131 inst->predicate = BRW_PREDICATE_NORMAL;
1132 inst->conditional_mod = BRW_CONDITIONAL_L;
1133
1134 /* If the result of the initial remainder operation is non-zero and the
1135 * two sources have different signs, add in a copy of op[1] to get the
1136 * final integer modulus value.
1137 */
1138 inst = emit(ADD(dst, src_reg(dst), op[1]));
1139 inst->predicate = BRW_PREDICATE_NORMAL;
1140 break;
1141 }
1142
1143 case nir_op_ldexp:
1144 unreachable("not reached: should be handled by ldexp_to_arith()");
1145
1146 case nir_op_fsqrt:
1147 inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1148 inst->saturate = instr->dest.saturate;
1149 break;
1150
1151 case nir_op_frsq:
1152 inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1153 inst->saturate = instr->dest.saturate;
1154 break;
1155
1156 case nir_op_fpow:
1157 inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1158 inst->saturate = instr->dest.saturate;
1159 break;
1160
1161 case nir_op_uadd_carry: {
1162 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1163
1164 emit(ADDC(dst_null_ud(), op[0], op[1]));
1165 emit(MOV(dst, src_reg(acc)));
1166 break;
1167 }
1168
1169 case nir_op_usub_borrow: {
1170 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1171
1172 emit(SUBB(dst_null_ud(), op[0], op[1]));
1173 emit(MOV(dst, src_reg(acc)));
1174 break;
1175 }
1176
1177 case nir_op_ftrunc:
1178 inst = emit(RNDZ(dst, op[0]));
1179 inst->saturate = instr->dest.saturate;
1180 break;
1181
1182 case nir_op_fceil: {
1183 src_reg tmp = src_reg(this, glsl_type::float_type);
1184 tmp.swizzle =
1185 brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1186 instr->src[0].src.ssa->num_components :
1187 instr->src[0].src.reg.reg->num_components);
1188
1189 op[0].negate = !op[0].negate;
1190 emit(RNDD(dst_reg(tmp), op[0]));
1191 tmp.negate = true;
1192 inst = emit(MOV(dst, tmp));
1193 inst->saturate = instr->dest.saturate;
1194 break;
1195 }
1196
1197 case nir_op_ffloor:
1198 inst = emit(RNDD(dst, op[0]));
1199 inst->saturate = instr->dest.saturate;
1200 break;
1201
1202 case nir_op_ffract:
1203 inst = emit(FRC(dst, op[0]));
1204 inst->saturate = instr->dest.saturate;
1205 break;
1206
1207 case nir_op_fround_even:
1208 inst = emit(RNDE(dst, op[0]));
1209 inst->saturate = instr->dest.saturate;
1210 break;
1211
1212 case nir_op_fquantize2f16: {
1213 /* See also vec4_visitor::emit_pack_half_2x16() */
1214 src_reg tmp = src_reg(this, glsl_type::uvec4_type);
1215
1216 emit(F32TO16(dst_reg(tmp), op[0]));
1217 inst = emit(F16TO32(dst, tmp));
1218 inst->saturate = instr->dest.saturate;
1219 break;
1220 }
1221
1222 case nir_op_fmin:
1223 case nir_op_imin:
1224 case nir_op_umin:
1225 inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1226 inst->saturate = instr->dest.saturate;
1227 break;
1228
1229 case nir_op_fmax:
1230 case nir_op_imax:
1231 case nir_op_umax:
1232 inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1233 inst->saturate = instr->dest.saturate;
1234 break;
1235
1236 case nir_op_fddx:
1237 case nir_op_fddx_coarse:
1238 case nir_op_fddx_fine:
1239 case nir_op_fddy:
1240 case nir_op_fddy_coarse:
1241 case nir_op_fddy_fine:
1242 unreachable("derivatives are not valid in vertex shaders");
1243
1244 case nir_op_flt:
1245 case nir_op_ilt:
1246 case nir_op_ult:
1247 case nir_op_fge:
1248 case nir_op_ige:
1249 case nir_op_uge:
1250 case nir_op_feq:
1251 case nir_op_ieq:
1252 case nir_op_fne:
1253 case nir_op_ine:
1254 emit(CMP(dst, op[0], op[1],
1255 brw_conditional_for_nir_comparison(instr->op)));
1256 break;
1257
1258 case nir_op_ball_fequal2:
1259 case nir_op_ball_iequal2:
1260 case nir_op_ball_fequal3:
1261 case nir_op_ball_iequal3:
1262 case nir_op_ball_fequal4:
1263 case nir_op_ball_iequal4: {
1264 unsigned swiz =
1265 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1266
1267 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1268 brw_conditional_for_nir_comparison(instr->op)));
1269 emit(MOV(dst, brw_imm_d(0)));
1270 inst = emit(MOV(dst, brw_imm_d(~0)));
1271 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1272 break;
1273 }
1274
1275 case nir_op_bany_fnequal2:
1276 case nir_op_bany_inequal2:
1277 case nir_op_bany_fnequal3:
1278 case nir_op_bany_inequal3:
1279 case nir_op_bany_fnequal4:
1280 case nir_op_bany_inequal4: {
1281 unsigned swiz =
1282 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1283
1284 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1285 brw_conditional_for_nir_comparison(instr->op)));
1286
1287 emit(MOV(dst, brw_imm_d(0)));
1288 inst = emit(MOV(dst, brw_imm_d(~0)));
1289 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1290 break;
1291 }
1292
1293 case nir_op_inot:
1294 if (devinfo->gen >= 8) {
1295 op[0] = resolve_source_modifiers(op[0]);
1296 }
1297 emit(NOT(dst, op[0]));
1298 break;
1299
1300 case nir_op_ixor:
1301 if (devinfo->gen >= 8) {
1302 op[0] = resolve_source_modifiers(op[0]);
1303 op[1] = resolve_source_modifiers(op[1]);
1304 }
1305 emit(XOR(dst, op[0], op[1]));
1306 break;
1307
1308 case nir_op_ior:
1309 if (devinfo->gen >= 8) {
1310 op[0] = resolve_source_modifiers(op[0]);
1311 op[1] = resolve_source_modifiers(op[1]);
1312 }
1313 emit(OR(dst, op[0], op[1]));
1314 break;
1315
1316 case nir_op_iand:
1317 if (devinfo->gen >= 8) {
1318 op[0] = resolve_source_modifiers(op[0]);
1319 op[1] = resolve_source_modifiers(op[1]);
1320 }
1321 emit(AND(dst, op[0], op[1]));
1322 break;
1323
1324 case nir_op_b2i:
1325 case nir_op_b2f:
1326 emit(MOV(dst, negate(op[0])));
1327 break;
1328
1329 case nir_op_f2b:
1330 emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1331 break;
1332
1333 case nir_op_i2b:
1334 emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1335 break;
1336
1337 case nir_op_fnoise1_1:
1338 case nir_op_fnoise1_2:
1339 case nir_op_fnoise1_3:
1340 case nir_op_fnoise1_4:
1341 case nir_op_fnoise2_1:
1342 case nir_op_fnoise2_2:
1343 case nir_op_fnoise2_3:
1344 case nir_op_fnoise2_4:
1345 case nir_op_fnoise3_1:
1346 case nir_op_fnoise3_2:
1347 case nir_op_fnoise3_3:
1348 case nir_op_fnoise3_4:
1349 case nir_op_fnoise4_1:
1350 case nir_op_fnoise4_2:
1351 case nir_op_fnoise4_3:
1352 case nir_op_fnoise4_4:
1353 unreachable("not reached: should be handled by lower_noise");
1354
1355 case nir_op_unpack_half_2x16_split_x:
1356 case nir_op_unpack_half_2x16_split_y:
1357 case nir_op_pack_half_2x16_split:
1358 unreachable("not reached: should not occur in vertex shader");
1359
1360 case nir_op_unpack_snorm_2x16:
1361 case nir_op_unpack_unorm_2x16:
1362 case nir_op_pack_snorm_2x16:
1363 case nir_op_pack_unorm_2x16:
1364 unreachable("not reached: should be handled by lower_packing_builtins");
1365
1366 case nir_op_unpack_half_2x16:
1367 /* As NIR does not guarantee that we have a correct swizzle outside the
1368 * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1369 * uses the source operand in an operation with WRITEMASK_Y while our
1370 * source operand has only size 1, it accessed incorrect data producing
1371 * regressions in Piglit. We repeat the swizzle of the first component on the
1372 * rest of components to avoid regressions. In the vec4_visitor IR code path
1373 * this is not needed because the operand has already the correct swizzle.
1374 */
1375 op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1376 emit_unpack_half_2x16(dst, op[0]);
1377 break;
1378
1379 case nir_op_pack_half_2x16:
1380 emit_pack_half_2x16(dst, op[0]);
1381 break;
1382
1383 case nir_op_unpack_unorm_4x8:
1384 emit_unpack_unorm_4x8(dst, op[0]);
1385 break;
1386
1387 case nir_op_pack_unorm_4x8:
1388 emit_pack_unorm_4x8(dst, op[0]);
1389 break;
1390
1391 case nir_op_unpack_snorm_4x8:
1392 emit_unpack_snorm_4x8(dst, op[0]);
1393 break;
1394
1395 case nir_op_pack_snorm_4x8:
1396 emit_pack_snorm_4x8(dst, op[0]);
1397 break;
1398
1399 case nir_op_bitfield_reverse:
1400 emit(BFREV(dst, op[0]));
1401 break;
1402
1403 case nir_op_bit_count:
1404 emit(CBIT(dst, op[0]));
1405 break;
1406
1407 case nir_op_ufind_msb:
1408 case nir_op_ifind_msb: {
1409 emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1410
1411 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1412 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1413 * subtract the result from 31 to convert the MSB count into an LSB count.
1414 */
1415 src_reg src(dst);
1416 emit(CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ));
1417
1418 inst = emit(ADD(dst, src, brw_imm_d(31)));
1419 inst->predicate = BRW_PREDICATE_NORMAL;
1420 inst->src[0].negate = true;
1421 break;
1422 }
1423
1424 case nir_op_find_lsb:
1425 emit(FBL(dst, op[0]));
1426 break;
1427
1428 case nir_op_ubitfield_extract:
1429 case nir_op_ibitfield_extract:
1430 op[0] = fix_3src_operand(op[0]);
1431 op[1] = fix_3src_operand(op[1]);
1432 op[2] = fix_3src_operand(op[2]);
1433
1434 emit(BFE(dst, op[2], op[1], op[0]));
1435 break;
1436
1437 case nir_op_bfm:
1438 emit(BFI1(dst, op[0], op[1]));
1439 break;
1440
1441 case nir_op_bfi:
1442 op[0] = fix_3src_operand(op[0]);
1443 op[1] = fix_3src_operand(op[1]);
1444 op[2] = fix_3src_operand(op[2]);
1445
1446 emit(BFI2(dst, op[0], op[1], op[2]));
1447 break;
1448
1449 case nir_op_bitfield_insert:
1450 unreachable("not reached: should be handled by "
1451 "lower_instructions::bitfield_insert_to_bfm_bfi");
1452
1453 case nir_op_fsign:
1454 /* AND(val, 0x80000000) gives the sign bit.
1455 *
1456 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1457 * zero.
1458 */
1459 emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1460
1461 op[0].type = BRW_REGISTER_TYPE_UD;
1462 dst.type = BRW_REGISTER_TYPE_UD;
1463 emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1464
1465 inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1466 inst->predicate = BRW_PREDICATE_NORMAL;
1467 dst.type = BRW_REGISTER_TYPE_F;
1468
1469 if (instr->dest.saturate) {
1470 inst = emit(MOV(dst, src_reg(dst)));
1471 inst->saturate = true;
1472 }
1473 break;
1474
1475 case nir_op_isign:
1476 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
1477 * -> non-negative val generates 0x00000000.
1478 * Predicated OR sets 1 if val is positive.
1479 */
1480 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G));
1481 emit(ASR(dst, op[0], brw_imm_d(31)));
1482 inst = emit(OR(dst, src_reg(dst), brw_imm_d(1)));
1483 inst->predicate = BRW_PREDICATE_NORMAL;
1484 break;
1485
1486 case nir_op_ishl:
1487 emit(SHL(dst, op[0], op[1]));
1488 break;
1489
1490 case nir_op_ishr:
1491 emit(ASR(dst, op[0], op[1]));
1492 break;
1493
1494 case nir_op_ushr:
1495 emit(SHR(dst, op[0], op[1]));
1496 break;
1497
1498 case nir_op_ffma:
1499 op[0] = fix_3src_operand(op[0]);
1500 op[1] = fix_3src_operand(op[1]);
1501 op[2] = fix_3src_operand(op[2]);
1502
1503 inst = emit(MAD(dst, op[2], op[1], op[0]));
1504 inst->saturate = instr->dest.saturate;
1505 break;
1506
1507 case nir_op_flrp:
1508 inst = emit_lrp(dst, op[0], op[1], op[2]);
1509 inst->saturate = instr->dest.saturate;
1510 break;
1511
1512 case nir_op_bcsel:
1513 enum brw_predicate predicate;
1514 if (!optimize_predicate(instr, &predicate)) {
1515 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1516 switch (dst.writemask) {
1517 case WRITEMASK_X:
1518 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1519 break;
1520 case WRITEMASK_Y:
1521 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1522 break;
1523 case WRITEMASK_Z:
1524 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1525 break;
1526 case WRITEMASK_W:
1527 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1528 break;
1529 default:
1530 predicate = BRW_PREDICATE_NORMAL;
1531 break;
1532 }
1533 }
1534 inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1535 inst->predicate = predicate;
1536 break;
1537
1538 case nir_op_fdot_replicated2:
1539 inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
1540 inst->saturate = instr->dest.saturate;
1541 break;
1542
1543 case nir_op_fdot_replicated3:
1544 inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
1545 inst->saturate = instr->dest.saturate;
1546 break;
1547
1548 case nir_op_fdot_replicated4:
1549 inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
1550 inst->saturate = instr->dest.saturate;
1551 break;
1552
1553 case nir_op_fdph_replicated:
1554 inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
1555 inst->saturate = instr->dest.saturate;
1556 break;
1557
1558 case nir_op_fabs:
1559 case nir_op_iabs:
1560 case nir_op_fneg:
1561 case nir_op_ineg:
1562 case nir_op_fsat:
1563 unreachable("not reached: should be lowered by lower_source mods");
1564
1565 case nir_op_fdiv:
1566 unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
1567
1568 case nir_op_fmod:
1569 unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
1570
1571 case nir_op_fsub:
1572 case nir_op_isub:
1573 unreachable("not reached: should be handled by ir_sub_to_add_neg");
1574
1575 default:
1576 unreachable("Unimplemented ALU operation");
1577 }
1578
1579 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1580 * to sign extend the low bit to 0/~0
1581 */
1582 if (devinfo->gen <= 5 &&
1583 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
1584 BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1585 dst_reg masked = dst_reg(this, glsl_type::int_type);
1586 masked.writemask = dst.writemask;
1587 emit(AND(masked, src_reg(dst), brw_imm_d(1)));
1588 src_reg masked_neg = src_reg(masked);
1589 masked_neg.negate = true;
1590 emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
1591 }
1592 }
1593
1594 void
1595 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
1596 {
1597 switch (instr->type) {
1598 case nir_jump_break:
1599 emit(BRW_OPCODE_BREAK);
1600 break;
1601
1602 case nir_jump_continue:
1603 emit(BRW_OPCODE_CONTINUE);
1604 break;
1605
1606 case nir_jump_return:
1607 default:
1608 unreachable("unknown jump");
1609 }
1610 }
1611
1612 enum ir_texture_opcode
1613 ir_texture_opcode_for_nir_texop(nir_texop texop)
1614 {
1615 enum ir_texture_opcode op;
1616
1617 switch (texop) {
1618 case nir_texop_lod: op = ir_lod; break;
1619 case nir_texop_query_levels: op = ir_query_levels; break;
1620 case nir_texop_texture_samples: op = ir_texture_samples; break;
1621 case nir_texop_tex: op = ir_tex; break;
1622 case nir_texop_tg4: op = ir_tg4; break;
1623 case nir_texop_txb: op = ir_txb; break;
1624 case nir_texop_txd: op = ir_txd; break;
1625 case nir_texop_txf: op = ir_txf; break;
1626 case nir_texop_txf_ms: op = ir_txf_ms; break;
1627 case nir_texop_txl: op = ir_txl; break;
1628 case nir_texop_txs: op = ir_txs; break;
1629 case nir_texop_samples_identical: op = ir_samples_identical; break;
1630 default:
1631 unreachable("unknown texture opcode");
1632 }
1633
1634 return op;
1635 }
1636 const glsl_type *
1637 glsl_type_for_nir_alu_type(nir_alu_type alu_type,
1638 unsigned components)
1639 {
1640 switch (alu_type) {
1641 case nir_type_float:
1642 return glsl_type::vec(components);
1643 case nir_type_int:
1644 return glsl_type::ivec(components);
1645 case nir_type_uint:
1646 return glsl_type::uvec(components);
1647 case nir_type_bool:
1648 return glsl_type::bvec(components);
1649 default:
1650 return glsl_type::error_type;
1651 }
1652
1653 return glsl_type::error_type;
1654 }
1655
1656 void
1657 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
1658 {
1659 unsigned texture = instr->texture_index;
1660 unsigned sampler = instr->sampler_index;
1661 src_reg texture_reg = brw_imm_ud(texture);
1662 src_reg sampler_reg = brw_imm_ud(sampler);
1663 src_reg coordinate;
1664 const glsl_type *coord_type = NULL;
1665 src_reg shadow_comparitor;
1666 src_reg offset_value;
1667 src_reg lod, lod2;
1668 src_reg sample_index;
1669 src_reg mcs;
1670
1671 const glsl_type *dest_type =
1672 glsl_type_for_nir_alu_type(instr->dest_type,
1673 nir_tex_instr_dest_size(instr));
1674 dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
1675
1676 /* Our hardware requires a LOD for buffer textures */
1677 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
1678 lod = brw_imm_d(0);
1679
1680 /* Load the texture operation sources */
1681 for (unsigned i = 0; i < instr->num_srcs; i++) {
1682 switch (instr->src[i].src_type) {
1683 case nir_tex_src_comparitor:
1684 shadow_comparitor = get_nir_src(instr->src[i].src,
1685 BRW_REGISTER_TYPE_F, 1);
1686 break;
1687
1688 case nir_tex_src_coord: {
1689 unsigned src_size = nir_tex_instr_src_size(instr, i);
1690
1691 switch (instr->op) {
1692 case nir_texop_txf:
1693 case nir_texop_txf_ms:
1694 case nir_texop_samples_identical:
1695 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
1696 src_size);
1697 coord_type = glsl_type::ivec(src_size);
1698 break;
1699
1700 default:
1701 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
1702 src_size);
1703 coord_type = glsl_type::vec(src_size);
1704 break;
1705 }
1706 break;
1707 }
1708
1709 case nir_tex_src_ddx:
1710 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
1711 nir_tex_instr_src_size(instr, i));
1712 break;
1713
1714 case nir_tex_src_ddy:
1715 lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
1716 nir_tex_instr_src_size(instr, i));
1717 break;
1718
1719 case nir_tex_src_lod:
1720 switch (instr->op) {
1721 case nir_texop_txs:
1722 case nir_texop_txf:
1723 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
1724 break;
1725
1726 default:
1727 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
1728 break;
1729 }
1730 break;
1731
1732 case nir_tex_src_ms_index: {
1733 sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
1734 break;
1735 }
1736
1737 case nir_tex_src_offset:
1738 offset_value = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
1739 break;
1740
1741 case nir_tex_src_texture_offset: {
1742 /* The highest texture which may be used by this operation is
1743 * the last element of the array. Mark it here, because the generator
1744 * doesn't have enough information to determine the bound.
1745 */
1746 uint32_t max_used = texture + instr->texture_array_size - 1;
1747 if (instr->op == nir_texop_tg4) {
1748 max_used += prog_data->base.binding_table.gather_texture_start;
1749 } else {
1750 max_used += prog_data->base.binding_table.texture_start;
1751 }
1752
1753 brw_mark_surface_used(&prog_data->base, max_used);
1754
1755 /* Emit code to evaluate the actual indexing expression */
1756 src_reg src = get_nir_src(instr->src[i].src, 1);
1757 src_reg temp(this, glsl_type::uint_type);
1758 emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
1759 texture_reg = emit_uniformize(temp);
1760 break;
1761 }
1762
1763 case nir_tex_src_sampler_offset: {
1764 /* Emit code to evaluate the actual indexing expression */
1765 src_reg src = get_nir_src(instr->src[i].src, 1);
1766 src_reg temp(this, glsl_type::uint_type);
1767 emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
1768 sampler_reg = emit_uniformize(temp);
1769 break;
1770 }
1771
1772 case nir_tex_src_projector:
1773 unreachable("Should be lowered by do_lower_texture_projection");
1774
1775 case nir_tex_src_bias:
1776 unreachable("LOD bias is not valid for vertex shaders.\n");
1777
1778 default:
1779 unreachable("unknown texture source");
1780 }
1781 }
1782
1783 if (instr->op == nir_texop_txf_ms ||
1784 instr->op == nir_texop_samples_identical) {
1785 assert(coord_type != NULL);
1786 if (devinfo->gen >= 7 &&
1787 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
1788 mcs = emit_mcs_fetch(coord_type, coordinate, sampler_reg);
1789 } else {
1790 mcs = brw_imm_ud(0u);
1791 }
1792 }
1793
1794 uint32_t constant_offset = 0;
1795 for (unsigned i = 0; i < 3; i++) {
1796 if (instr->const_offset[i] != 0) {
1797 constant_offset = brw_texture_offset(instr->const_offset, 3);
1798 break;
1799 }
1800 }
1801
1802 /* Stuff the channel select bits in the top of the texture offset */
1803 if (instr->op == nir_texop_tg4) {
1804 if (instr->component == 1 &&
1805 (key_tex->gather_channel_quirk_mask & (1 << texture))) {
1806 /* gather4 sampler is broken for green channel on RG32F --
1807 * we must ask for blue instead.
1808 */
1809 constant_offset |= 2 << 16;
1810 } else {
1811 constant_offset |= instr->component << 16;
1812 }
1813 }
1814
1815 ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
1816
1817 bool is_cube_array =
1818 instr->op == nir_texop_txs &&
1819 instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1820 instr->is_array;
1821
1822 emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
1823 shadow_comparitor,
1824 lod, lod2, sample_index,
1825 constant_offset, offset_value,
1826 mcs, is_cube_array,
1827 texture, texture_reg, sampler, sampler_reg);
1828 }
1829
1830 void
1831 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
1832 {
1833 nir_ssa_values[instr->def.index] = dst_reg(VGRF, alloc.allocate(1));
1834 }
1835
1836 }