01c9c96276e923b1ab0d8435c477acfb5f4b621b
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_reg_allocate.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/register_allocate.h"
25 #include "brw_vec4.h"
26 #include "brw_cfg.h"
27
28 using namespace brw;
29
30 namespace brw {
31
32 static void
33 assign(unsigned int *reg_hw_locations, backend_reg *reg)
34 {
35 if (reg->file == VGRF) {
36 reg->nr = reg_hw_locations[reg->nr] + reg->reg_offset;
37 reg->reg_offset = 0;
38 }
39 }
40
41 bool
42 vec4_visitor::reg_allocate_trivial()
43 {
44 unsigned int hw_reg_mapping[this->alloc.count];
45 bool virtual_grf_used[this->alloc.count];
46 int next;
47
48 /* Calculate which virtual GRFs are actually in use after whatever
49 * optimization passes have occurred.
50 */
51 for (unsigned i = 0; i < this->alloc.count; i++) {
52 virtual_grf_used[i] = false;
53 }
54
55 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
56 if (inst->dst.file == VGRF)
57 virtual_grf_used[inst->dst.nr] = true;
58
59 for (unsigned i = 0; i < 3; i++) {
60 if (inst->src[i].file == VGRF)
61 virtual_grf_used[inst->src[i].nr] = true;
62 }
63 }
64
65 hw_reg_mapping[0] = this->first_non_payload_grf;
66 next = hw_reg_mapping[0] + this->alloc.sizes[0];
67 for (unsigned i = 1; i < this->alloc.count; i++) {
68 if (virtual_grf_used[i]) {
69 hw_reg_mapping[i] = next;
70 next += this->alloc.sizes[i];
71 }
72 }
73 prog_data->total_grf = next;
74
75 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
76 assign(hw_reg_mapping, &inst->dst);
77 assign(hw_reg_mapping, &inst->src[0]);
78 assign(hw_reg_mapping, &inst->src[1]);
79 assign(hw_reg_mapping, &inst->src[2]);
80 }
81
82 if (prog_data->total_grf > max_grf) {
83 fail("Ran out of regs on trivial allocator (%d/%d)\n",
84 prog_data->total_grf, max_grf);
85 return false;
86 }
87
88 return true;
89 }
90
91 extern "C" void
92 brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
93 {
94 int base_reg_count =
95 compiler->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
96
97 /* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
98 * SEND-from-GRF sources cannot be split, so we also need classes for each
99 * potential message length.
100 */
101 const int class_count = MAX_VGRF_SIZE;
102 int class_sizes[MAX_VGRF_SIZE];
103
104 for (int i = 0; i < class_count; i++)
105 class_sizes[i] = i + 1;
106
107 /* Compute the total number of registers across all classes. */
108 int ra_reg_count = 0;
109 for (int i = 0; i < class_count; i++) {
110 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
111 }
112
113 ralloc_free(compiler->vec4_reg_set.ra_reg_to_grf);
114 compiler->vec4_reg_set.ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
115 ralloc_free(compiler->vec4_reg_set.regs);
116 compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
117 if (compiler->devinfo->gen >= 6)
118 ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
119 ralloc_free(compiler->vec4_reg_set.classes);
120 compiler->vec4_reg_set.classes = ralloc_array(compiler, int, class_count);
121
122 /* Now, add the registers to their classes, and add the conflicts
123 * between them and the base GRF registers (and also each other).
124 */
125 int reg = 0;
126 unsigned *q_values[MAX_VGRF_SIZE];
127 for (int i = 0; i < class_count; i++) {
128 int class_reg_count = base_reg_count - (class_sizes[i] - 1);
129 compiler->vec4_reg_set.classes[i] = ra_alloc_reg_class(compiler->vec4_reg_set.regs);
130
131 q_values[i] = new unsigned[MAX_VGRF_SIZE];
132
133 for (int j = 0; j < class_reg_count; j++) {
134 ra_class_add_reg(compiler->vec4_reg_set.regs, compiler->vec4_reg_set.classes[i], reg);
135
136 compiler->vec4_reg_set.ra_reg_to_grf[reg] = j;
137
138 for (int base_reg = j;
139 base_reg < j + class_sizes[i];
140 base_reg++) {
141 ra_add_reg_conflict(compiler->vec4_reg_set.regs, base_reg, reg);
142 }
143
144 reg++;
145 }
146
147 for (int j = 0; j < class_count; j++) {
148 /* Calculate the q values manually because the algorithm used by
149 * ra_set_finalize() to do it has higher complexity affecting the
150 * start-up time of some applications. q(i, j) is just the maximum
151 * number of registers from class i a register from class j can
152 * conflict with.
153 */
154 q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
155 }
156 }
157 assert(reg == ra_reg_count);
158
159 for (int reg = 0; reg < base_reg_count; reg++)
160 ra_make_reg_conflicts_transitive(compiler->vec4_reg_set.regs, reg);
161
162 ra_set_finalize(compiler->vec4_reg_set.regs, q_values);
163
164 for (int i = 0; i < MAX_VGRF_SIZE; i++)
165 delete[] q_values[i];
166 }
167
168 void
169 vec4_visitor::setup_payload_interference(struct ra_graph *g,
170 int first_payload_node,
171 int reg_node_count)
172 {
173 int payload_node_count = this->first_non_payload_grf;
174
175 for (int i = 0; i < payload_node_count; i++) {
176 /* Mark each payload reg node as being allocated to its physical register.
177 *
178 * The alternative would be to have per-physical register classes, which
179 * would just be silly.
180 */
181 ra_set_node_reg(g, first_payload_node + i, i);
182
183 /* For now, just mark each payload node as interfering with every other
184 * node to be allocated.
185 */
186 for (int j = 0; j < reg_node_count; j++) {
187 ra_add_node_interference(g, first_payload_node + i, j);
188 }
189 }
190 }
191
192 bool
193 vec4_visitor::reg_allocate()
194 {
195 unsigned int hw_reg_mapping[alloc.count];
196 int payload_reg_count = this->first_non_payload_grf;
197
198 /* Using the trivial allocator can be useful in debugging undefined
199 * register access as a result of broken optimization passes.
200 */
201 if (0)
202 return reg_allocate_trivial();
203
204 calculate_live_intervals();
205
206 int node_count = alloc.count;
207 int first_payload_node = node_count;
208 node_count += payload_reg_count;
209 struct ra_graph *g =
210 ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
211
212 for (unsigned i = 0; i < alloc.count; i++) {
213 int size = this->alloc.sizes[i];
214 assert(size >= 1 && size <= MAX_VGRF_SIZE);
215 ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
216
217 for (unsigned j = 0; j < i; j++) {
218 if (virtual_grf_interferes(i, j)) {
219 ra_add_node_interference(g, i, j);
220 }
221 }
222 }
223
224 setup_payload_interference(g, first_payload_node, node_count);
225
226 if (!ra_allocate(g)) {
227 /* Failed to allocate registers. Spill a reg, and the caller will
228 * loop back into here to try again.
229 */
230 int reg = choose_spill_reg(g);
231 if (this->no_spills) {
232 fail("Failure to register allocate. Reduce number of live "
233 "values to avoid this.");
234 } else if (reg == -1) {
235 fail("no register to spill\n");
236 } else {
237 spill_reg(reg);
238 }
239 ralloc_free(g);
240 return false;
241 }
242
243 /* Get the chosen virtual registers for each node, and map virtual
244 * regs in the register classes back down to real hardware reg
245 * numbers.
246 */
247 prog_data->total_grf = payload_reg_count;
248 for (unsigned i = 0; i < alloc.count; i++) {
249 int reg = ra_get_node_reg(g, i);
250
251 hw_reg_mapping[i] = compiler->vec4_reg_set.ra_reg_to_grf[reg];
252 prog_data->total_grf = MAX2(prog_data->total_grf,
253 hw_reg_mapping[i] + alloc.sizes[i]);
254 }
255
256 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
257 assign(hw_reg_mapping, &inst->dst);
258 assign(hw_reg_mapping, &inst->src[0]);
259 assign(hw_reg_mapping, &inst->src[1]);
260 assign(hw_reg_mapping, &inst->src[2]);
261 }
262
263 ralloc_free(g);
264
265 return true;
266 }
267
268 /**
269 * When we decide to spill a register, instead of blindly spilling every use,
270 * save unspills when the spill register is used (read) in consecutive
271 * instructions. This can potentially save a bunch of unspills that would
272 * have very little impact in register allocation anyway.
273 *
274 * Notice that we need to account for this behavior when spilling a register
275 * and when evaluating spilling costs. This function is designed so it can
276 * be called from both places and avoid repeating the logic.
277 *
278 * - When we call this function from spill_reg(), we pass in scratch_reg the
279 * actual unspill/spill register that we want to reuse in the current
280 * instruction.
281 *
282 * - When we call this from evaluate_spill_costs(), we pass the register for
283 * which we are evaluating spilling costs.
284 *
285 * In either case, we check if the previous instructions read scratch_reg until
286 * we find one that writes to it with a compatible mask or does not read/write
287 * scratch_reg at all.
288 */
289 static bool
290 can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
291 unsigned scratch_reg)
292 {
293 assert(inst->src[i].file == VGRF);
294 bool prev_inst_read_scratch_reg = false;
295
296 /* See if any previous source in the same instructions reads scratch_reg */
297 for (unsigned n = 0; n < i; n++) {
298 if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
299 prev_inst_read_scratch_reg = true;
300 }
301
302 /* Now check if previous instructions read/write scratch_reg */
303 for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
304 !prev_inst->is_head_sentinel();
305 prev_inst = (vec4_instruction *) prev_inst->prev) {
306
307 /* If the previous instruction writes to scratch_reg then we can reuse
308 * it if the write is not conditional and the channels we write are
309 * compatible with our read mask
310 */
311 if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
312 return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
313 (brw_mask_for_swizzle(inst->src[i].swizzle) &
314 ~prev_inst->dst.writemask) == 0;
315 }
316
317 /* Skip scratch read/writes so that instructions generated by spilling
318 * other registers (that won't read/write scratch_reg) do not stop us from
319 * reusing scratch_reg for this instruction.
320 */
321 if (prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE ||
322 prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ)
323 continue;
324
325 /* If the previous instruction does not write to scratch_reg, then check
326 * if it reads it
327 */
328 int n;
329 for (n = 0; n < 3; n++) {
330 if (prev_inst->src[n].file == VGRF &&
331 prev_inst->src[n].nr == scratch_reg) {
332 prev_inst_read_scratch_reg = true;
333 break;
334 }
335 }
336 if (n == 3) {
337 /* The previous instruction does not read scratch_reg. At this point,
338 * if no previous instruction has read scratch_reg it means that we
339 * will need to unspill it here and we can't reuse it (so we return
340 * false). Otherwise, if we found at least one consecutive instruction
341 * that read scratch_reg, then we know that we got here from
342 * evaluate_spill_costs (since for the spill_reg path any block of
343 * consecutive instructions using scratch_reg must start with a write
344 * to that register, so we would've exited the loop in the check for
345 * the write that we have at the start of this loop), and in that case
346 * it means that we found the point at which the scratch_reg would be
347 * unspilled. Since we always unspill a full vec4, it means that we
348 * have all the channels available and we can just return true to
349 * signal that we can reuse the register in the current instruction
350 * too.
351 */
352 return prev_inst_read_scratch_reg;
353 }
354 }
355
356 return prev_inst_read_scratch_reg;
357 }
358
359 void
360 vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
361 {
362 float loop_scale = 1.0;
363
364 for (unsigned i = 0; i < this->alloc.count; i++) {
365 spill_costs[i] = 0.0;
366 no_spill[i] = alloc.sizes[i] != 1;
367 }
368
369 /* Calculate costs for spilling nodes. Call it a cost of 1 per
370 * spill/unspill we'll have to do, and guess that the insides of
371 * loops run 10 times.
372 */
373 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
374 for (unsigned int i = 0; i < 3; i++) {
375 if (inst->src[i].file == VGRF) {
376 /* We will only unspill src[i] it it wasn't unspilled for the
377 * previous instruction, in which case we'll just reuse the scratch
378 * reg for this instruction.
379 */
380 if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
381 spill_costs[inst->src[i].nr] += loop_scale;
382 if (inst->src[i].reladdr)
383 no_spill[inst->src[i].nr] = true;
384 }
385 }
386 }
387
388 if (inst->dst.file == VGRF) {
389 spill_costs[inst->dst.nr] += loop_scale;
390 if (inst->dst.reladdr)
391 no_spill[inst->dst.nr] = true;
392 }
393
394 switch (inst->opcode) {
395
396 case BRW_OPCODE_DO:
397 loop_scale *= 10;
398 break;
399
400 case BRW_OPCODE_WHILE:
401 loop_scale /= 10;
402 break;
403
404 case SHADER_OPCODE_GEN4_SCRATCH_READ:
405 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
406 for (int i = 0; i < 3; i++) {
407 if (inst->src[i].file == VGRF)
408 no_spill[inst->src[i].nr] = true;
409 }
410 if (inst->dst.file == VGRF)
411 no_spill[inst->dst.nr] = true;
412 break;
413
414 default:
415 break;
416 }
417 }
418 }
419
420 int
421 vec4_visitor::choose_spill_reg(struct ra_graph *g)
422 {
423 float spill_costs[this->alloc.count];
424 bool no_spill[this->alloc.count];
425
426 evaluate_spill_costs(spill_costs, no_spill);
427
428 for (unsigned i = 0; i < this->alloc.count; i++) {
429 if (!no_spill[i])
430 ra_set_node_spill_cost(g, i, spill_costs[i]);
431 }
432
433 return ra_get_best_spill_node(g);
434 }
435
436 void
437 vec4_visitor::spill_reg(int spill_reg_nr)
438 {
439 assert(alloc.sizes[spill_reg_nr] == 1);
440 unsigned int spill_offset = last_scratch++;
441
442 /* Generate spill/unspill instructions for the objects being spilled. */
443 int scratch_reg = -1;
444 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
445 for (unsigned int i = 0; i < 3; i++) {
446 if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
447 if (scratch_reg == -1 ||
448 !can_use_scratch_for_source(inst, i, scratch_reg)) {
449 /* We need to unspill anyway so make sure we read the full vec4
450 * in any case. This way, the cached register can be reused
451 * for consecutive instructions that read different channels of
452 * the same vec4.
453 */
454 scratch_reg = alloc.allocate(1);
455 src_reg temp = inst->src[i];
456 temp.nr = scratch_reg;
457 temp.swizzle = BRW_SWIZZLE_XYZW;
458 emit_scratch_read(block, inst,
459 dst_reg(temp), inst->src[i], spill_offset);
460 }
461 assert(scratch_reg != -1);
462 inst->src[i].nr = scratch_reg;
463 }
464 }
465
466 if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
467 emit_scratch_write(block, inst, spill_offset);
468 scratch_reg = inst->dst.nr;
469 }
470 }
471
472 invalidate_live_intervals();
473 }
474
475 } /* namespace brw */