i965/fs: print non-1 strides when dumping instructions
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_reg_allocate.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/macros.h"
25 #include "util/register_allocate.h"
26 #include "brw_vec4.h"
27 #include "brw_vs.h"
28 #include "brw_cfg.h"
29
30 using namespace brw;
31
32 namespace brw {
33
34 static void
35 assign(unsigned int *reg_hw_locations, backend_reg *reg)
36 {
37 if (reg->file == VGRF) {
38 reg->nr = reg_hw_locations[reg->nr] + reg->reg_offset;
39 reg->reg_offset = 0;
40 }
41 }
42
43 bool
44 vec4_visitor::reg_allocate_trivial()
45 {
46 unsigned int hw_reg_mapping[this->alloc.count];
47 bool virtual_grf_used[this->alloc.count];
48 int next;
49
50 /* Calculate which virtual GRFs are actually in use after whatever
51 * optimization passes have occurred.
52 */
53 for (unsigned i = 0; i < this->alloc.count; i++) {
54 virtual_grf_used[i] = false;
55 }
56
57 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
58 if (inst->dst.file == VGRF)
59 virtual_grf_used[inst->dst.nr] = true;
60
61 for (unsigned i = 0; i < 3; i++) {
62 if (inst->src[i].file == VGRF)
63 virtual_grf_used[inst->src[i].nr] = true;
64 }
65 }
66
67 hw_reg_mapping[0] = this->first_non_payload_grf;
68 next = hw_reg_mapping[0] + this->alloc.sizes[0];
69 for (unsigned i = 1; i < this->alloc.count; i++) {
70 if (virtual_grf_used[i]) {
71 hw_reg_mapping[i] = next;
72 next += this->alloc.sizes[i];
73 }
74 }
75 prog_data->total_grf = next;
76
77 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
78 assign(hw_reg_mapping, &inst->dst);
79 assign(hw_reg_mapping, &inst->src[0]);
80 assign(hw_reg_mapping, &inst->src[1]);
81 assign(hw_reg_mapping, &inst->src[2]);
82 }
83
84 if (prog_data->total_grf > max_grf) {
85 fail("Ran out of regs on trivial allocator (%d/%d)\n",
86 prog_data->total_grf, max_grf);
87 return false;
88 }
89
90 return true;
91 }
92
93 extern "C" void
94 brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
95 {
96 int base_reg_count =
97 compiler->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
98
99 /* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
100 * SEND-from-GRF sources cannot be split, so we also need classes for each
101 * potential message length.
102 */
103 const int class_count = MAX_VGRF_SIZE;
104 int class_sizes[MAX_VGRF_SIZE];
105
106 for (int i = 0; i < class_count; i++)
107 class_sizes[i] = i + 1;
108
109 /* Compute the total number of registers across all classes. */
110 int ra_reg_count = 0;
111 for (int i = 0; i < class_count; i++) {
112 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
113 }
114
115 ralloc_free(compiler->vec4_reg_set.ra_reg_to_grf);
116 compiler->vec4_reg_set.ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
117 ralloc_free(compiler->vec4_reg_set.regs);
118 compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
119 if (compiler->devinfo->gen >= 6)
120 ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
121 ralloc_free(compiler->vec4_reg_set.classes);
122 compiler->vec4_reg_set.classes = ralloc_array(compiler, int, class_count);
123
124 /* Now, add the registers to their classes, and add the conflicts
125 * between them and the base GRF registers (and also each other).
126 */
127 int reg = 0;
128 unsigned *q_values[MAX_VGRF_SIZE];
129 for (int i = 0; i < class_count; i++) {
130 int class_reg_count = base_reg_count - (class_sizes[i] - 1);
131 compiler->vec4_reg_set.classes[i] = ra_alloc_reg_class(compiler->vec4_reg_set.regs);
132
133 q_values[i] = new unsigned[MAX_VGRF_SIZE];
134
135 for (int j = 0; j < class_reg_count; j++) {
136 ra_class_add_reg(compiler->vec4_reg_set.regs, compiler->vec4_reg_set.classes[i], reg);
137
138 compiler->vec4_reg_set.ra_reg_to_grf[reg] = j;
139
140 for (int base_reg = j;
141 base_reg < j + class_sizes[i];
142 base_reg++) {
143 ra_add_reg_conflict(compiler->vec4_reg_set.regs, base_reg, reg);
144 }
145
146 reg++;
147 }
148
149 for (int j = 0; j < class_count; j++) {
150 /* Calculate the q values manually because the algorithm used by
151 * ra_set_finalize() to do it has higher complexity affecting the
152 * start-up time of some applications. q(i, j) is just the maximum
153 * number of registers from class i a register from class j can
154 * conflict with.
155 */
156 q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
157 }
158 }
159 assert(reg == ra_reg_count);
160
161 for (int reg = 0; reg < base_reg_count; reg++)
162 ra_make_reg_conflicts_transitive(compiler->vec4_reg_set.regs, reg);
163
164 ra_set_finalize(compiler->vec4_reg_set.regs, q_values);
165
166 for (int i = 0; i < MAX_VGRF_SIZE; i++)
167 delete[] q_values[i];
168 }
169
170 void
171 vec4_visitor::setup_payload_interference(struct ra_graph *g,
172 int first_payload_node,
173 int reg_node_count)
174 {
175 int payload_node_count = this->first_non_payload_grf;
176
177 for (int i = 0; i < payload_node_count; i++) {
178 /* Mark each payload reg node as being allocated to its physical register.
179 *
180 * The alternative would be to have per-physical register classes, which
181 * would just be silly.
182 */
183 ra_set_node_reg(g, first_payload_node + i, i);
184
185 /* For now, just mark each payload node as interfering with every other
186 * node to be allocated.
187 */
188 for (int j = 0; j < reg_node_count; j++) {
189 ra_add_node_interference(g, first_payload_node + i, j);
190 }
191 }
192 }
193
194 bool
195 vec4_visitor::reg_allocate()
196 {
197 unsigned int hw_reg_mapping[alloc.count];
198 int payload_reg_count = this->first_non_payload_grf;
199
200 /* Using the trivial allocator can be useful in debugging undefined
201 * register access as a result of broken optimization passes.
202 */
203 if (0)
204 return reg_allocate_trivial();
205
206 calculate_live_intervals();
207
208 int node_count = alloc.count;
209 int first_payload_node = node_count;
210 node_count += payload_reg_count;
211 struct ra_graph *g =
212 ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
213
214 for (unsigned i = 0; i < alloc.count; i++) {
215 int size = this->alloc.sizes[i];
216 assert(size >= 1 && size <= MAX_VGRF_SIZE);
217 ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
218
219 for (unsigned j = 0; j < i; j++) {
220 if (virtual_grf_interferes(i, j)) {
221 ra_add_node_interference(g, i, j);
222 }
223 }
224 }
225
226 setup_payload_interference(g, first_payload_node, node_count);
227
228 if (!ra_allocate(g)) {
229 /* Failed to allocate registers. Spill a reg, and the caller will
230 * loop back into here to try again.
231 */
232 int reg = choose_spill_reg(g);
233 if (this->no_spills) {
234 fail("Failure to register allocate. Reduce number of live "
235 "values to avoid this.");
236 } else if (reg == -1) {
237 fail("no register to spill\n");
238 } else {
239 spill_reg(reg);
240 }
241 ralloc_free(g);
242 return false;
243 }
244
245 /* Get the chosen virtual registers for each node, and map virtual
246 * regs in the register classes back down to real hardware reg
247 * numbers.
248 */
249 prog_data->total_grf = payload_reg_count;
250 for (unsigned i = 0; i < alloc.count; i++) {
251 int reg = ra_get_node_reg(g, i);
252
253 hw_reg_mapping[i] = compiler->vec4_reg_set.ra_reg_to_grf[reg];
254 prog_data->total_grf = MAX2(prog_data->total_grf,
255 hw_reg_mapping[i] + alloc.sizes[i]);
256 }
257
258 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
259 assign(hw_reg_mapping, &inst->dst);
260 assign(hw_reg_mapping, &inst->src[0]);
261 assign(hw_reg_mapping, &inst->src[1]);
262 assign(hw_reg_mapping, &inst->src[2]);
263 }
264
265 ralloc_free(g);
266
267 return true;
268 }
269
270 /**
271 * When we decide to spill a register, instead of blindly spilling every use,
272 * save unspills when the spill register is used (read) in consecutive
273 * instructions. This can potentially save a bunch of unspills that would
274 * have very little impact in register allocation anyway.
275 *
276 * Notice that we need to account for this behavior when spilling a register
277 * and when evaluating spilling costs. This function is designed so it can
278 * be called from both places and avoid repeating the logic.
279 *
280 * - When we call this function from spill_reg(), we pass in scratch_reg the
281 * actual unspill/spill register that we want to reuse in the current
282 * instruction.
283 *
284 * - When we call this from evaluate_spill_costs(), we pass the register for
285 * which we are evaluating spilling costs.
286 *
287 * In either case, we check if the previous instructions read scratch_reg until
288 * we find one that writes to it with a compatible mask or does not read/write
289 * scratch_reg at all.
290 */
291 static bool
292 can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
293 unsigned scratch_reg)
294 {
295 assert(inst->src[i].file == VGRF);
296 bool prev_inst_read_scratch_reg = false;
297
298 /* See if any previous source in the same instructions reads scratch_reg */
299 for (unsigned n = 0; n < i; n++) {
300 if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
301 prev_inst_read_scratch_reg = true;
302 }
303
304 /* Now check if previous instructions read/write scratch_reg */
305 for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
306 !prev_inst->is_head_sentinel();
307 prev_inst = (vec4_instruction *) prev_inst->prev) {
308
309 /* If the previous instruction writes to scratch_reg then we can reuse
310 * it if the write is not conditional and the channels we write are
311 * compatible with our read mask
312 */
313 if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
314 return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
315 (brw_mask_for_swizzle(inst->src[i].swizzle) &
316 ~prev_inst->dst.writemask) == 0;
317 }
318
319 /* Skip scratch read/writes so that instructions generated by spilling
320 * other registers (that won't read/write scratch_reg) do not stop us from
321 * reusing scratch_reg for this instruction.
322 */
323 if (prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE ||
324 prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ)
325 continue;
326
327 /* If the previous instruction does not write to scratch_reg, then check
328 * if it reads it
329 */
330 int n;
331 for (n = 0; n < 3; n++) {
332 if (prev_inst->src[n].file == VGRF &&
333 prev_inst->src[n].nr == scratch_reg) {
334 prev_inst_read_scratch_reg = true;
335 break;
336 }
337 }
338 if (n == 3) {
339 /* The previous instruction does not read scratch_reg. At this point,
340 * if no previous instruction has read scratch_reg it means that we
341 * will need to unspill it here and we can't reuse it (so we return
342 * false). Otherwise, if we found at least one consecutive instruction
343 * that read scratch_reg, then we know that we got here from
344 * evaluate_spill_costs (since for the spill_reg path any block of
345 * consecutive instructions using scratch_reg must start with a write
346 * to that register, so we would've exited the loop in the check for
347 * the write that we have at the start of this loop), and in that case
348 * it means that we found the point at which the scratch_reg would be
349 * unspilled. Since we always unspill a full vec4, it means that we
350 * have all the channels available and we can just return true to
351 * signal that we can reuse the register in the current instruction
352 * too.
353 */
354 return prev_inst_read_scratch_reg;
355 }
356 }
357
358 return prev_inst_read_scratch_reg;
359 }
360
361 void
362 vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
363 {
364 float loop_scale = 1.0;
365
366 for (unsigned i = 0; i < this->alloc.count; i++) {
367 spill_costs[i] = 0.0;
368 no_spill[i] = alloc.sizes[i] != 1;
369 }
370
371 /* Calculate costs for spilling nodes. Call it a cost of 1 per
372 * spill/unspill we'll have to do, and guess that the insides of
373 * loops run 10 times.
374 */
375 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
376 for (unsigned int i = 0; i < 3; i++) {
377 if (inst->src[i].file == VGRF) {
378 /* We will only unspill src[i] it it wasn't unspilled for the
379 * previous instruction, in which case we'll just reuse the scratch
380 * reg for this instruction.
381 */
382 if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
383 spill_costs[inst->src[i].nr] += loop_scale;
384 if (inst->src[i].reladdr)
385 no_spill[inst->src[i].nr] = true;
386 }
387 }
388 }
389
390 if (inst->dst.file == VGRF) {
391 spill_costs[inst->dst.nr] += loop_scale;
392 if (inst->dst.reladdr)
393 no_spill[inst->dst.nr] = true;
394 }
395
396 switch (inst->opcode) {
397
398 case BRW_OPCODE_DO:
399 loop_scale *= 10;
400 break;
401
402 case BRW_OPCODE_WHILE:
403 loop_scale /= 10;
404 break;
405
406 case SHADER_OPCODE_GEN4_SCRATCH_READ:
407 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
408 for (int i = 0; i < 3; i++) {
409 if (inst->src[i].file == VGRF)
410 no_spill[inst->src[i].nr] = true;
411 }
412 if (inst->dst.file == VGRF)
413 no_spill[inst->dst.nr] = true;
414 break;
415
416 default:
417 break;
418 }
419 }
420 }
421
422 int
423 vec4_visitor::choose_spill_reg(struct ra_graph *g)
424 {
425 float spill_costs[this->alloc.count];
426 bool no_spill[this->alloc.count];
427
428 evaluate_spill_costs(spill_costs, no_spill);
429
430 for (unsigned i = 0; i < this->alloc.count; i++) {
431 if (!no_spill[i])
432 ra_set_node_spill_cost(g, i, spill_costs[i]);
433 }
434
435 return ra_get_best_spill_node(g);
436 }
437
438 void
439 vec4_visitor::spill_reg(int spill_reg_nr)
440 {
441 assert(alloc.sizes[spill_reg_nr] == 1);
442 unsigned int spill_offset = last_scratch++;
443
444 /* Generate spill/unspill instructions for the objects being spilled. */
445 int scratch_reg = -1;
446 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
447 for (unsigned int i = 0; i < 3; i++) {
448 if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
449 if (scratch_reg == -1 ||
450 !can_use_scratch_for_source(inst, i, scratch_reg)) {
451 /* We need to unspill anyway so make sure we read the full vec4
452 * in any case. This way, the cached register can be reused
453 * for consecutive instructions that read different channels of
454 * the same vec4.
455 */
456 scratch_reg = alloc.allocate(1);
457 src_reg temp = inst->src[i];
458 temp.nr = scratch_reg;
459 temp.swizzle = BRW_SWIZZLE_XYZW;
460 emit_scratch_read(block, inst,
461 dst_reg(temp), inst->src[i], spill_offset);
462 }
463 assert(scratch_reg != -1);
464 inst->src[i].nr = scratch_reg;
465 }
466 }
467
468 if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
469 emit_scratch_write(block, inst, spill_offset);
470 scratch_reg = inst->dst.nr;
471 }
472 }
473
474 invalidate_live_intervals();
475 }
476
477 } /* namespace brw */