858d76fb5c67acda16390d9640c254c120bfb6e5
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_visitor.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_cfg.h"
26 #include "glsl/ir_uniform.h"
27 #include "program/sampler.h"
28
29 namespace brw {
30
31 vec4_instruction::vec4_instruction(enum opcode opcode, const dst_reg &dst,
32 const src_reg &src0, const src_reg &src1,
33 const src_reg &src2)
34 {
35 this->opcode = opcode;
36 this->dst = dst;
37 this->src[0] = src0;
38 this->src[1] = src1;
39 this->src[2] = src2;
40 this->saturate = false;
41 this->force_writemask_all = false;
42 this->no_dd_clear = false;
43 this->no_dd_check = false;
44 this->writes_accumulator = false;
45 this->conditional_mod = BRW_CONDITIONAL_NONE;
46 this->predicate = BRW_PREDICATE_NONE;
47 this->predicate_inverse = false;
48 this->target = 0;
49 this->regs_written = (dst.file == BAD_FILE ? 0 : 1);
50 this->shadow_compare = false;
51 this->ir = NULL;
52 this->urb_write_flags = BRW_URB_WRITE_NO_FLAGS;
53 this->header_size = 0;
54 this->flag_subreg = 0;
55 this->mlen = 0;
56 this->base_mrf = 0;
57 this->offset = 0;
58 this->annotation = NULL;
59 }
60
61 vec4_instruction *
62 vec4_visitor::emit(vec4_instruction *inst)
63 {
64 inst->ir = this->base_ir;
65 inst->annotation = this->current_annotation;
66
67 this->instructions.push_tail(inst);
68
69 return inst;
70 }
71
72 vec4_instruction *
73 vec4_visitor::emit_before(bblock_t *block, vec4_instruction *inst,
74 vec4_instruction *new_inst)
75 {
76 new_inst->ir = inst->ir;
77 new_inst->annotation = inst->annotation;
78
79 inst->insert_before(block, new_inst);
80
81 return inst;
82 }
83
84 vec4_instruction *
85 vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
86 const src_reg &src1, const src_reg &src2)
87 {
88 return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0, src1, src2));
89 }
90
91
92 vec4_instruction *
93 vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
94 const src_reg &src1)
95 {
96 return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0, src1));
97 }
98
99 vec4_instruction *
100 vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0)
101 {
102 return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0));
103 }
104
105 vec4_instruction *
106 vec4_visitor::emit(enum opcode opcode, const dst_reg &dst)
107 {
108 return emit(new(mem_ctx) vec4_instruction(opcode, dst));
109 }
110
111 vec4_instruction *
112 vec4_visitor::emit(enum opcode opcode)
113 {
114 return emit(new(mem_ctx) vec4_instruction(opcode, dst_reg()));
115 }
116
117 #define ALU1(op) \
118 vec4_instruction * \
119 vec4_visitor::op(const dst_reg &dst, const src_reg &src0) \
120 { \
121 return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, src0); \
122 }
123
124 #define ALU2(op) \
125 vec4_instruction * \
126 vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
127 const src_reg &src1) \
128 { \
129 return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, \
130 src0, src1); \
131 }
132
133 #define ALU2_ACC(op) \
134 vec4_instruction * \
135 vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
136 const src_reg &src1) \
137 { \
138 vec4_instruction *inst = new(mem_ctx) vec4_instruction( \
139 BRW_OPCODE_##op, dst, src0, src1); \
140 inst->writes_accumulator = true; \
141 return inst; \
142 }
143
144 #define ALU3(op) \
145 vec4_instruction * \
146 vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
147 const src_reg &src1, const src_reg &src2) \
148 { \
149 assert(devinfo->gen >= 6); \
150 return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, \
151 src0, src1, src2); \
152 }
153
154 ALU1(NOT)
155 ALU1(MOV)
156 ALU1(FRC)
157 ALU1(RNDD)
158 ALU1(RNDE)
159 ALU1(RNDZ)
160 ALU1(F32TO16)
161 ALU1(F16TO32)
162 ALU2(ADD)
163 ALU2(MUL)
164 ALU2_ACC(MACH)
165 ALU2(AND)
166 ALU2(OR)
167 ALU2(XOR)
168 ALU2(DP3)
169 ALU2(DP4)
170 ALU2(DPH)
171 ALU2(SHL)
172 ALU2(SHR)
173 ALU2(ASR)
174 ALU3(LRP)
175 ALU1(BFREV)
176 ALU3(BFE)
177 ALU2(BFI1)
178 ALU3(BFI2)
179 ALU1(FBH)
180 ALU1(FBL)
181 ALU1(CBIT)
182 ALU3(MAD)
183 ALU2_ACC(ADDC)
184 ALU2_ACC(SUBB)
185 ALU2(MAC)
186
187 /** Gen4 predicated IF. */
188 vec4_instruction *
189 vec4_visitor::IF(enum brw_predicate predicate)
190 {
191 vec4_instruction *inst;
192
193 inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_IF);
194 inst->predicate = predicate;
195
196 return inst;
197 }
198
199 /** Gen6 IF with embedded comparison. */
200 vec4_instruction *
201 vec4_visitor::IF(src_reg src0, src_reg src1,
202 enum brw_conditional_mod condition)
203 {
204 assert(devinfo->gen == 6);
205
206 vec4_instruction *inst;
207
208 resolve_ud_negate(&src0);
209 resolve_ud_negate(&src1);
210
211 inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_IF, dst_null_d(),
212 src0, src1);
213 inst->conditional_mod = condition;
214
215 return inst;
216 }
217
218 /**
219 * CMP: Sets the low bit of the destination channels with the result
220 * of the comparison, while the upper bits are undefined, and updates
221 * the flag register with the packed 16 bits of the result.
222 */
223 vec4_instruction *
224 vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1,
225 enum brw_conditional_mod condition)
226 {
227 vec4_instruction *inst;
228
229 /* Take the instruction:
230 *
231 * CMP null<d> src0<f> src1<f>
232 *
233 * Original gen4 does type conversion to the destination type before
234 * comparison, producing garbage results for floating point comparisons.
235 *
236 * The destination type doesn't matter on newer generations, so we set the
237 * type to match src0 so we can compact the instruction.
238 */
239 dst.type = src0.type;
240
241 resolve_ud_negate(&src0);
242 resolve_ud_negate(&src1);
243
244 inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_CMP, dst, src0, src1);
245 inst->conditional_mod = condition;
246
247 return inst;
248 }
249
250 vec4_instruction *
251 vec4_visitor::SCRATCH_READ(const dst_reg &dst, const src_reg &index)
252 {
253 vec4_instruction *inst;
254
255 inst = new(mem_ctx) vec4_instruction(SHADER_OPCODE_GEN4_SCRATCH_READ,
256 dst, index);
257 inst->base_mrf = FIRST_SPILL_MRF(devinfo->gen) + 1;
258 inst->mlen = 2;
259
260 return inst;
261 }
262
263 vec4_instruction *
264 vec4_visitor::SCRATCH_WRITE(const dst_reg &dst, const src_reg &src,
265 const src_reg &index)
266 {
267 vec4_instruction *inst;
268
269 inst = new(mem_ctx) vec4_instruction(SHADER_OPCODE_GEN4_SCRATCH_WRITE,
270 dst, src, index);
271 inst->base_mrf = FIRST_SPILL_MRF(devinfo->gen);
272 inst->mlen = 3;
273
274 return inst;
275 }
276
277 src_reg
278 vec4_visitor::fix_3src_operand(const src_reg &src)
279 {
280 /* Using vec4 uniforms in SIMD4x2 programs is difficult. You'd like to be
281 * able to use vertical stride of zero to replicate the vec4 uniform, like
282 *
283 * g3<0;4,1>:f - [0, 4][1, 5][2, 6][3, 7]
284 *
285 * But you can't, since vertical stride is always four in three-source
286 * instructions. Instead, insert a MOV instruction to do the replication so
287 * that the three-source instruction can consume it.
288 */
289
290 /* The MOV is only needed if the source is a uniform or immediate. */
291 if (src.file != UNIFORM && src.file != IMM)
292 return src;
293
294 if (src.file == UNIFORM && brw_is_single_value_swizzle(src.swizzle))
295 return src;
296
297 dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
298 expanded.type = src.type;
299 emit(VEC4_OPCODE_UNPACK_UNIFORM, expanded, src);
300 return src_reg(expanded);
301 }
302
303 src_reg
304 vec4_visitor::resolve_source_modifiers(const src_reg &src)
305 {
306 if (!src.abs && !src.negate)
307 return src;
308
309 dst_reg resolved = dst_reg(this, glsl_type::ivec4_type);
310 resolved.type = src.type;
311 emit(MOV(resolved, src));
312
313 return src_reg(resolved);
314 }
315
316 src_reg
317 vec4_visitor::fix_math_operand(const src_reg &src)
318 {
319 if (devinfo->gen < 6 || devinfo->gen >= 8 || src.file == BAD_FILE)
320 return src;
321
322 /* The gen6 math instruction ignores the source modifiers --
323 * swizzle, abs, negate, and at least some parts of the register
324 * region description.
325 *
326 * Rather than trying to enumerate all these cases, *always* expand the
327 * operand to a temp GRF for gen6.
328 *
329 * For gen7, keep the operand as-is, except if immediate, which gen7 still
330 * can't use.
331 */
332
333 if (devinfo->gen == 7 && src.file != IMM)
334 return src;
335
336 dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
337 expanded.type = src.type;
338 emit(MOV(expanded, src));
339 return src_reg(expanded);
340 }
341
342 vec4_instruction *
343 vec4_visitor::emit_math(enum opcode opcode,
344 const dst_reg &dst,
345 const src_reg &src0, const src_reg &src1)
346 {
347 vec4_instruction *math =
348 emit(opcode, dst, fix_math_operand(src0), fix_math_operand(src1));
349
350 if (devinfo->gen == 6 && dst.writemask != WRITEMASK_XYZW) {
351 /* MATH on Gen6 must be align1, so we can't do writemasks. */
352 math->dst = dst_reg(this, glsl_type::vec4_type);
353 math->dst.type = dst.type;
354 math = emit(MOV(dst, src_reg(math->dst)));
355 } else if (devinfo->gen < 6) {
356 math->base_mrf = 1;
357 math->mlen = src1.file == BAD_FILE ? 1 : 2;
358 }
359
360 return math;
361 }
362
363 void
364 vec4_visitor::emit_pack_half_2x16(dst_reg dst, src_reg src0)
365 {
366 if (devinfo->gen < 7) {
367 unreachable("ir_unop_pack_half_2x16 should be lowered");
368 }
369
370 assert(dst.type == BRW_REGISTER_TYPE_UD);
371 assert(src0.type == BRW_REGISTER_TYPE_F);
372
373 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
374 *
375 * Because this instruction does not have a 16-bit floating-point type,
376 * the destination data type must be Word (W).
377 *
378 * The destination must be DWord-aligned and specify a horizontal stride
379 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
380 * each destination channel and the upper word is not modified.
381 *
382 * The above restriction implies that the f32to16 instruction must use
383 * align1 mode, because only in align1 mode is it possible to specify
384 * horizontal stride. We choose here to defy the hardware docs and emit
385 * align16 instructions.
386 *
387 * (I [chadv] did attempt to emit align1 instructions for VS f32to16
388 * instructions. I was partially successful in that the code passed all
389 * tests. However, the code was dubiously correct and fragile, and the
390 * tests were not harsh enough to probe that frailty. Not trusting the
391 * code, I chose instead to remain in align16 mode in defiance of the hw
392 * docs).
393 *
394 * I've [chadv] experimentally confirmed that, on gen7 hardware and the
395 * simulator, emitting a f32to16 in align16 mode with UD as destination
396 * data type is safe. The behavior differs from that specified in the PRM
397 * in that the upper word of each destination channel is cleared to 0.
398 */
399
400 dst_reg tmp_dst(this, glsl_type::uvec2_type);
401 src_reg tmp_src(tmp_dst);
402
403 #if 0
404 /* Verify the undocumented behavior on which the following instructions
405 * rely. If f32to16 fails to clear the upper word of the X and Y channels,
406 * then the result of the bit-or instruction below will be incorrect.
407 *
408 * You should inspect the disasm output in order to verify that the MOV is
409 * not optimized away.
410 */
411 emit(MOV(tmp_dst, src_reg(0x12345678u)));
412 #endif
413
414 /* Give tmp the form below, where "." means untouched.
415 *
416 * w z y x w z y x
417 * |.|.|0x0000hhhh|0x0000llll|.|.|0x0000hhhh|0x0000llll|
418 *
419 * That the upper word of each write-channel be 0 is required for the
420 * following bit-shift and bit-or instructions to work. Note that this
421 * relies on the undocumented hardware behavior mentioned above.
422 */
423 tmp_dst.writemask = WRITEMASK_XY;
424 emit(F32TO16(tmp_dst, src0));
425
426 /* Give the write-channels of dst the form:
427 * 0xhhhh0000
428 */
429 tmp_src.swizzle = BRW_SWIZZLE_YYYY;
430 emit(SHL(dst, tmp_src, src_reg(16u)));
431
432 /* Finally, give the write-channels of dst the form of packHalf2x16's
433 * output:
434 * 0xhhhhllll
435 */
436 tmp_src.swizzle = BRW_SWIZZLE_XXXX;
437 emit(OR(dst, src_reg(dst), tmp_src));
438 }
439
440 void
441 vec4_visitor::emit_unpack_half_2x16(dst_reg dst, src_reg src0)
442 {
443 if (devinfo->gen < 7) {
444 unreachable("ir_unop_unpack_half_2x16 should be lowered");
445 }
446
447 assert(dst.type == BRW_REGISTER_TYPE_F);
448 assert(src0.type == BRW_REGISTER_TYPE_UD);
449
450 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
451 *
452 * Because this instruction does not have a 16-bit floating-point type,
453 * the source data type must be Word (W). The destination type must be
454 * F (Float).
455 *
456 * To use W as the source data type, we must adjust horizontal strides,
457 * which is only possible in align1 mode. All my [chadv] attempts at
458 * emitting align1 instructions for unpackHalf2x16 failed to pass the
459 * Piglit tests, so I gave up.
460 *
461 * I've verified that, on gen7 hardware and the simulator, it is safe to
462 * emit f16to32 in align16 mode with UD as source data type.
463 */
464
465 dst_reg tmp_dst(this, glsl_type::uvec2_type);
466 src_reg tmp_src(tmp_dst);
467
468 tmp_dst.writemask = WRITEMASK_X;
469 emit(AND(tmp_dst, src0, src_reg(0xffffu)));
470
471 tmp_dst.writemask = WRITEMASK_Y;
472 emit(SHR(tmp_dst, src0, src_reg(16u)));
473
474 dst.writemask = WRITEMASK_XY;
475 emit(F16TO32(dst, tmp_src));
476 }
477
478 void
479 vec4_visitor::emit_unpack_unorm_4x8(const dst_reg &dst, src_reg src0)
480 {
481 /* Instead of splitting the 32-bit integer, shifting, and ORing it back
482 * together, we can shift it by <0, 8, 16, 24>. The packed integer immediate
483 * is not suitable to generate the shift values, but we can use the packed
484 * vector float and a type-converting MOV.
485 */
486 dst_reg shift(this, glsl_type::uvec4_type);
487 emit(MOV(shift, src_reg(0x00, 0x60, 0x70, 0x78)));
488
489 dst_reg shifted(this, glsl_type::uvec4_type);
490 src0.swizzle = BRW_SWIZZLE_XXXX;
491 emit(SHR(shifted, src0, src_reg(shift)));
492
493 shifted.type = BRW_REGISTER_TYPE_UB;
494 dst_reg f(this, glsl_type::vec4_type);
495 emit(VEC4_OPCODE_MOV_BYTES, f, src_reg(shifted));
496
497 emit(MUL(dst, src_reg(f), src_reg(1.0f / 255.0f)));
498 }
499
500 void
501 vec4_visitor::emit_unpack_snorm_4x8(const dst_reg &dst, src_reg src0)
502 {
503 /* Instead of splitting the 32-bit integer, shifting, and ORing it back
504 * together, we can shift it by <0, 8, 16, 24>. The packed integer immediate
505 * is not suitable to generate the shift values, but we can use the packed
506 * vector float and a type-converting MOV.
507 */
508 dst_reg shift(this, glsl_type::uvec4_type);
509 emit(MOV(shift, src_reg(0x00, 0x60, 0x70, 0x78)));
510
511 dst_reg shifted(this, glsl_type::uvec4_type);
512 src0.swizzle = BRW_SWIZZLE_XXXX;
513 emit(SHR(shifted, src0, src_reg(shift)));
514
515 shifted.type = BRW_REGISTER_TYPE_B;
516 dst_reg f(this, glsl_type::vec4_type);
517 emit(VEC4_OPCODE_MOV_BYTES, f, src_reg(shifted));
518
519 dst_reg scaled(this, glsl_type::vec4_type);
520 emit(MUL(scaled, src_reg(f), src_reg(1.0f / 127.0f)));
521
522 dst_reg max(this, glsl_type::vec4_type);
523 emit_minmax(BRW_CONDITIONAL_GE, max, src_reg(scaled), src_reg(-1.0f));
524 emit_minmax(BRW_CONDITIONAL_L, dst, src_reg(max), src_reg(1.0f));
525 }
526
527 void
528 vec4_visitor::emit_pack_unorm_4x8(const dst_reg &dst, const src_reg &src0)
529 {
530 dst_reg saturated(this, glsl_type::vec4_type);
531 vec4_instruction *inst = emit(MOV(saturated, src0));
532 inst->saturate = true;
533
534 dst_reg scaled(this, glsl_type::vec4_type);
535 emit(MUL(scaled, src_reg(saturated), src_reg(255.0f)));
536
537 dst_reg rounded(this, glsl_type::vec4_type);
538 emit(RNDE(rounded, src_reg(scaled)));
539
540 dst_reg u(this, glsl_type::uvec4_type);
541 emit(MOV(u, src_reg(rounded)));
542
543 src_reg bytes(u);
544 emit(VEC4_OPCODE_PACK_BYTES, dst, bytes);
545 }
546
547 void
548 vec4_visitor::emit_pack_snorm_4x8(const dst_reg &dst, const src_reg &src0)
549 {
550 dst_reg max(this, glsl_type::vec4_type);
551 emit_minmax(BRW_CONDITIONAL_GE, max, src0, src_reg(-1.0f));
552
553 dst_reg min(this, glsl_type::vec4_type);
554 emit_minmax(BRW_CONDITIONAL_L, min, src_reg(max), src_reg(1.0f));
555
556 dst_reg scaled(this, glsl_type::vec4_type);
557 emit(MUL(scaled, src_reg(min), src_reg(127.0f)));
558
559 dst_reg rounded(this, glsl_type::vec4_type);
560 emit(RNDE(rounded, src_reg(scaled)));
561
562 dst_reg i(this, glsl_type::ivec4_type);
563 emit(MOV(i, src_reg(rounded)));
564
565 src_reg bytes(i);
566 emit(VEC4_OPCODE_PACK_BYTES, dst, bytes);
567 }
568
569 /**
570 * Returns the minimum number of vec4 elements needed to pack a type.
571 *
572 * For simple types, it will return 1 (a single vec4); for matrices, the
573 * number of columns; for array and struct, the sum of the vec4_size of
574 * each of its elements; and for sampler and atomic, zero.
575 *
576 * This method is useful to calculate how much register space is needed to
577 * store a particular type.
578 */
579 extern "C" int
580 type_size_vec4(const struct glsl_type *type)
581 {
582 unsigned int i;
583 int size;
584
585 switch (type->base_type) {
586 case GLSL_TYPE_UINT:
587 case GLSL_TYPE_INT:
588 case GLSL_TYPE_FLOAT:
589 case GLSL_TYPE_BOOL:
590 if (type->is_matrix()) {
591 return type->matrix_columns;
592 } else {
593 /* Regardless of size of vector, it gets a vec4. This is bad
594 * packing for things like floats, but otherwise arrays become a
595 * mess. Hopefully a later pass over the code can pack scalars
596 * down if appropriate.
597 */
598 return 1;
599 }
600 case GLSL_TYPE_ARRAY:
601 assert(type->length > 0);
602 return type_size_vec4(type->fields.array) * type->length;
603 case GLSL_TYPE_STRUCT:
604 size = 0;
605 for (i = 0; i < type->length; i++) {
606 size += type_size_vec4(type->fields.structure[i].type);
607 }
608 return size;
609 case GLSL_TYPE_SUBROUTINE:
610 return 1;
611
612 case GLSL_TYPE_SAMPLER:
613 /* Samplers take up no register space, since they're baked in at
614 * link time.
615 */
616 return 0;
617 case GLSL_TYPE_ATOMIC_UINT:
618 return 0;
619 case GLSL_TYPE_IMAGE:
620 return DIV_ROUND_UP(BRW_IMAGE_PARAM_SIZE, 4);
621 case GLSL_TYPE_VOID:
622 case GLSL_TYPE_DOUBLE:
623 case GLSL_TYPE_ERROR:
624 case GLSL_TYPE_INTERFACE:
625 unreachable("not reached");
626 }
627
628 return 0;
629 }
630
631 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
632 {
633 init();
634
635 this->file = VGRF;
636 this->nr = v->alloc.allocate(type_size_vec4(type));
637
638 if (type->is_array() || type->is_record()) {
639 this->swizzle = BRW_SWIZZLE_NOOP;
640 } else {
641 this->swizzle = brw_swizzle_for_size(type->vector_elements);
642 }
643
644 this->type = brw_type_for_base_type(type);
645 }
646
647 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type, int size)
648 {
649 assert(size > 0);
650
651 init();
652
653 this->file = VGRF;
654 this->nr = v->alloc.allocate(type_size_vec4(type) * size);
655
656 this->swizzle = BRW_SWIZZLE_NOOP;
657
658 this->type = brw_type_for_base_type(type);
659 }
660
661 dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
662 {
663 init();
664
665 this->file = VGRF;
666 this->nr = v->alloc.allocate(type_size_vec4(type));
667
668 if (type->is_array() || type->is_record()) {
669 this->writemask = WRITEMASK_XYZW;
670 } else {
671 this->writemask = (1 << type->vector_elements) - 1;
672 }
673
674 this->type = brw_type_for_base_type(type);
675 }
676
677 vec4_instruction *
678 vec4_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, dst_reg dst,
679 src_reg src0, src_reg src1)
680 {
681 vec4_instruction *inst;
682
683 if (devinfo->gen >= 6) {
684 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
685 inst->conditional_mod = conditionalmod;
686 } else {
687 emit(CMP(dst, src0, src1, conditionalmod));
688
689 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
690 inst->predicate = BRW_PREDICATE_NORMAL;
691 }
692
693 return inst;
694 }
695
696 vec4_instruction *
697 vec4_visitor::emit_lrp(const dst_reg &dst,
698 const src_reg &x, const src_reg &y, const src_reg &a)
699 {
700 if (devinfo->gen >= 6) {
701 /* Note that the instruction's argument order is reversed from GLSL
702 * and the IR.
703 */
704 return emit(LRP(dst, fix_3src_operand(a), fix_3src_operand(y),
705 fix_3src_operand(x)));
706 } else {
707 /* Earlier generations don't support three source operations, so we
708 * need to emit x*(1-a) + y*a.
709 */
710 dst_reg y_times_a = dst_reg(this, glsl_type::vec4_type);
711 dst_reg one_minus_a = dst_reg(this, glsl_type::vec4_type);
712 dst_reg x_times_one_minus_a = dst_reg(this, glsl_type::vec4_type);
713 y_times_a.writemask = dst.writemask;
714 one_minus_a.writemask = dst.writemask;
715 x_times_one_minus_a.writemask = dst.writemask;
716
717 emit(MUL(y_times_a, y, a));
718 emit(ADD(one_minus_a, negate(a), src_reg(1.0f)));
719 emit(MUL(x_times_one_minus_a, x, src_reg(one_minus_a)));
720 return emit(ADD(dst, src_reg(x_times_one_minus_a), src_reg(y_times_a)));
721 }
722 }
723
724 /**
725 * Emits the instructions needed to perform a pull constant load. before_block
726 * and before_inst can be NULL in which case the instruction will be appended
727 * to the end of the instruction list.
728 */
729 void
730 vec4_visitor::emit_pull_constant_load_reg(dst_reg dst,
731 src_reg surf_index,
732 src_reg offset_reg,
733 bblock_t *before_block,
734 vec4_instruction *before_inst)
735 {
736 assert((before_inst == NULL && before_block == NULL) ||
737 (before_inst && before_block));
738
739 vec4_instruction *pull;
740
741 if (devinfo->gen >= 9) {
742 /* Gen9+ needs a message header in order to use SIMD4x2 mode */
743 src_reg header(this, glsl_type::uvec4_type, 2);
744
745 pull = new(mem_ctx)
746 vec4_instruction(VS_OPCODE_SET_SIMD4X2_HEADER_GEN9,
747 dst_reg(header));
748
749 if (before_inst)
750 emit_before(before_block, before_inst, pull);
751 else
752 emit(pull);
753
754 dst_reg index_reg = retype(offset(dst_reg(header), 1),
755 offset_reg.type);
756 pull = MOV(writemask(index_reg, WRITEMASK_X), offset_reg);
757
758 if (before_inst)
759 emit_before(before_block, before_inst, pull);
760 else
761 emit(pull);
762
763 pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
764 dst,
765 surf_index,
766 header);
767 pull->mlen = 2;
768 pull->header_size = 1;
769 } else if (devinfo->gen >= 7) {
770 dst_reg grf_offset = dst_reg(this, glsl_type::int_type);
771
772 grf_offset.type = offset_reg.type;
773
774 pull = MOV(grf_offset, offset_reg);
775
776 if (before_inst)
777 emit_before(before_block, before_inst, pull);
778 else
779 emit(pull);
780
781 pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
782 dst,
783 surf_index,
784 src_reg(grf_offset));
785 pull->mlen = 1;
786 } else {
787 pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD,
788 dst,
789 surf_index,
790 offset_reg);
791 pull->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
792 pull->mlen = 1;
793 }
794
795 if (before_inst)
796 emit_before(before_block, before_inst, pull);
797 else
798 emit(pull);
799 }
800
801 src_reg
802 vec4_visitor::emit_uniformize(const src_reg &src)
803 {
804 const src_reg chan_index(this, glsl_type::uint_type);
805 const dst_reg dst = retype(dst_reg(this, glsl_type::uint_type),
806 src.type);
807
808 emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, dst_reg(chan_index))
809 ->force_writemask_all = true;
810 emit(SHADER_OPCODE_BROADCAST, dst, src, chan_index)
811 ->force_writemask_all = true;
812
813 return src_reg(dst);
814 }
815
816 src_reg
817 vec4_visitor::emit_mcs_fetch(const glsl_type *coordinate_type,
818 src_reg coordinate, src_reg sampler)
819 {
820 vec4_instruction *inst =
821 new(mem_ctx) vec4_instruction(SHADER_OPCODE_TXF_MCS,
822 dst_reg(this, glsl_type::uvec4_type));
823 inst->base_mrf = 2;
824 inst->src[1] = sampler;
825
826 int param_base;
827
828 if (devinfo->gen >= 9) {
829 /* Gen9+ needs a message header in order to use SIMD4x2 mode */
830 vec4_instruction *header_inst = new(mem_ctx)
831 vec4_instruction(VS_OPCODE_SET_SIMD4X2_HEADER_GEN9,
832 dst_reg(MRF, inst->base_mrf));
833
834 emit(header_inst);
835
836 inst->mlen = 2;
837 inst->header_size = 1;
838 param_base = inst->base_mrf + 1;
839 } else {
840 inst->mlen = 1;
841 param_base = inst->base_mrf;
842 }
843
844 /* parameters are: u, v, r, lod; lod will always be zero due to api restrictions */
845 int coord_mask = (1 << coordinate_type->vector_elements) - 1;
846 int zero_mask = 0xf & ~coord_mask;
847
848 emit(MOV(dst_reg(MRF, param_base, coordinate_type, coord_mask),
849 coordinate));
850
851 emit(MOV(dst_reg(MRF, param_base, coordinate_type, zero_mask),
852 src_reg(0)));
853
854 emit(inst);
855 return src_reg(inst->dst);
856 }
857
858 bool
859 vec4_visitor::is_high_sampler(src_reg sampler)
860 {
861 if (devinfo->gen < 8 && !devinfo->is_haswell)
862 return false;
863
864 return sampler.file != IMM || sampler.ud >= 16;
865 }
866
867 void
868 vec4_visitor::emit_texture(ir_texture_opcode op,
869 dst_reg dest,
870 const glsl_type *dest_type,
871 src_reg coordinate,
872 int coord_components,
873 src_reg shadow_comparitor,
874 src_reg lod, src_reg lod2,
875 src_reg sample_index,
876 uint32_t constant_offset,
877 src_reg offset_value,
878 src_reg mcs,
879 bool is_cube_array,
880 uint32_t surface,
881 src_reg surface_reg,
882 uint32_t sampler,
883 src_reg sampler_reg)
884 {
885 /* The sampler can only meaningfully compute LOD for fragment shader
886 * messages. For all other stages, we change the opcode to TXL and hardcode
887 * the LOD to 0.
888 *
889 * textureQueryLevels() is implemented in terms of TXS so we need to pass a
890 * valid LOD argument.
891 */
892 if (op == ir_tex || op == ir_query_levels) {
893 assert(lod.file == BAD_FILE);
894 lod = src_reg(0.0f);
895 }
896
897 enum opcode opcode;
898 switch (op) {
899 case ir_tex: opcode = SHADER_OPCODE_TXL; break;
900 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
901 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
902 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
903 case ir_txf_ms: opcode = (devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W :
904 SHADER_OPCODE_TXF_CMS); break;
905 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
906 case ir_tg4: opcode = offset_value.file != BAD_FILE
907 ? SHADER_OPCODE_TG4_OFFSET : SHADER_OPCODE_TG4; break;
908 case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
909 case ir_texture_samples: opcode = SHADER_OPCODE_SAMPLEINFO; break;
910 case ir_txb:
911 unreachable("TXB is not valid for vertex shaders.");
912 case ir_lod:
913 unreachable("LOD is not valid for vertex shaders.");
914 default:
915 unreachable("Unrecognized tex op");
916 }
917
918 vec4_instruction *inst = new(mem_ctx) vec4_instruction(
919 opcode, dst_reg(this, dest_type));
920
921 inst->offset = constant_offset;
922
923 /* The message header is necessary for:
924 * - Gen4 (always)
925 * - Gen9+ for selecting SIMD4x2
926 * - Texel offsets
927 * - Gather channel selection
928 * - Sampler indices too large to fit in a 4-bit value.
929 * - Sampleinfo message - takes no parameters, but mlen = 0 is illegal
930 */
931 inst->header_size =
932 (devinfo->gen < 5 || devinfo->gen >= 9 ||
933 inst->offset != 0 || op == ir_tg4 ||
934 op == ir_texture_samples ||
935 is_high_sampler(sampler_reg)) ? 1 : 0;
936 inst->base_mrf = 2;
937 inst->mlen = inst->header_size;
938 inst->dst.writemask = WRITEMASK_XYZW;
939 inst->shadow_compare = shadow_comparitor.file != BAD_FILE;
940
941 inst->src[1] = surface_reg;
942 inst->src[2] = sampler_reg;
943
944 /* MRF for the first parameter */
945 int param_base = inst->base_mrf + inst->header_size;
946
947 if (op == ir_txs || op == ir_query_levels) {
948 int writemask = devinfo->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
949 emit(MOV(dst_reg(MRF, param_base, lod.type, writemask), lod));
950 inst->mlen++;
951 } else if (op == ir_texture_samples) {
952 inst->dst.writemask = WRITEMASK_X;
953 } else {
954 /* Load the coordinate */
955 /* FINISHME: gl_clamp_mask and saturate */
956 int coord_mask = (1 << coord_components) - 1;
957 int zero_mask = 0xf & ~coord_mask;
958
959 emit(MOV(dst_reg(MRF, param_base, coordinate.type, coord_mask),
960 coordinate));
961 inst->mlen++;
962
963 if (zero_mask != 0) {
964 emit(MOV(dst_reg(MRF, param_base, coordinate.type, zero_mask),
965 src_reg(0)));
966 }
967 /* Load the shadow comparitor */
968 if (shadow_comparitor.file != BAD_FILE && op != ir_txd && (op != ir_tg4 || offset_value.file == BAD_FILE)) {
969 emit(MOV(dst_reg(MRF, param_base + 1, shadow_comparitor.type,
970 WRITEMASK_X),
971 shadow_comparitor));
972 inst->mlen++;
973 }
974
975 /* Load the LOD info */
976 if (op == ir_tex || op == ir_txl) {
977 int mrf, writemask;
978 if (devinfo->gen >= 5) {
979 mrf = param_base + 1;
980 if (shadow_comparitor.file != BAD_FILE) {
981 writemask = WRITEMASK_Y;
982 /* mlen already incremented */
983 } else {
984 writemask = WRITEMASK_X;
985 inst->mlen++;
986 }
987 } else /* devinfo->gen == 4 */ {
988 mrf = param_base;
989 writemask = WRITEMASK_W;
990 }
991 emit(MOV(dst_reg(MRF, mrf, lod.type, writemask), lod));
992 } else if (op == ir_txf) {
993 emit(MOV(dst_reg(MRF, param_base, lod.type, WRITEMASK_W), lod));
994 } else if (op == ir_txf_ms) {
995 emit(MOV(dst_reg(MRF, param_base + 1, sample_index.type, WRITEMASK_X),
996 sample_index));
997 if (opcode == SHADER_OPCODE_TXF_CMS_W) {
998 /* MCS data is stored in the first two channels of ‘mcs’, but we
999 * need to get it into the .y and .z channels of the second vec4
1000 * of params.
1001 */
1002 mcs.swizzle = BRW_SWIZZLE4(0, 0, 1, 1);
1003 emit(MOV(dst_reg(MRF, param_base + 1,
1004 glsl_type::uint_type, WRITEMASK_YZ),
1005 mcs));
1006 } else if (devinfo->gen >= 7) {
1007 /* MCS data is in the first channel of `mcs`, but we need to get it into
1008 * the .y channel of the second vec4 of params, so replicate .x across
1009 * the whole vec4 and then mask off everything except .y
1010 */
1011 mcs.swizzle = BRW_SWIZZLE_XXXX;
1012 emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::uint_type, WRITEMASK_Y),
1013 mcs));
1014 }
1015 inst->mlen++;
1016 } else if (op == ir_txd) {
1017 const brw_reg_type type = lod.type;
1018
1019 if (devinfo->gen >= 5) {
1020 lod.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1021 lod2.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1022 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), lod));
1023 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), lod2));
1024 inst->mlen++;
1025
1026 if (dest_type->vector_elements == 3 || shadow_comparitor.file != BAD_FILE) {
1027 lod.swizzle = BRW_SWIZZLE_ZZZZ;
1028 lod2.swizzle = BRW_SWIZZLE_ZZZZ;
1029 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), lod));
1030 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), lod2));
1031 inst->mlen++;
1032
1033 if (shadow_comparitor.file != BAD_FILE) {
1034 emit(MOV(dst_reg(MRF, param_base + 2,
1035 shadow_comparitor.type, WRITEMASK_Z),
1036 shadow_comparitor));
1037 }
1038 }
1039 } else /* devinfo->gen == 4 */ {
1040 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), lod));
1041 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), lod2));
1042 inst->mlen += 2;
1043 }
1044 } else if (op == ir_tg4 && offset_value.file != BAD_FILE) {
1045 if (shadow_comparitor.file != BAD_FILE) {
1046 emit(MOV(dst_reg(MRF, param_base, shadow_comparitor.type, WRITEMASK_W),
1047 shadow_comparitor));
1048 }
1049
1050 emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::ivec2_type, WRITEMASK_XY),
1051 offset_value));
1052 inst->mlen++;
1053 }
1054 }
1055
1056 emit(inst);
1057
1058 /* fixup num layers (z) for cube arrays: hardware returns faces * layers;
1059 * spec requires layers.
1060 */
1061 if (op == ir_txs && is_cube_array) {
1062 emit_math(SHADER_OPCODE_INT_QUOTIENT,
1063 writemask(inst->dst, WRITEMASK_Z),
1064 src_reg(inst->dst), src_reg(6));
1065 }
1066
1067 if (devinfo->gen == 6 && op == ir_tg4) {
1068 emit_gen6_gather_wa(key_tex->gen6_gather_wa[surface], inst->dst);
1069 }
1070
1071 swizzle_result(op, dest,
1072 src_reg(inst->dst), sampler, dest_type);
1073 }
1074
1075 /**
1076 * Apply workarounds for Gen6 gather with UINT/SINT
1077 */
1078 void
1079 vec4_visitor::emit_gen6_gather_wa(uint8_t wa, dst_reg dst)
1080 {
1081 if (!wa)
1082 return;
1083
1084 int width = (wa & WA_8BIT) ? 8 : 16;
1085 dst_reg dst_f = dst;
1086 dst_f.type = BRW_REGISTER_TYPE_F;
1087
1088 /* Convert from UNORM to UINT */
1089 emit(MUL(dst_f, src_reg(dst_f), src_reg((float)((1 << width) - 1))));
1090 emit(MOV(dst, src_reg(dst_f)));
1091
1092 if (wa & WA_SIGN) {
1093 /* Reinterpret the UINT value as a signed INT value by
1094 * shifting the sign bit into place, then shifting back
1095 * preserving sign.
1096 */
1097 emit(SHL(dst, src_reg(dst), src_reg(32 - width)));
1098 emit(ASR(dst, src_reg(dst), src_reg(32 - width)));
1099 }
1100 }
1101
1102 /**
1103 * Set up the gather channel based on the swizzle, for gather4.
1104 */
1105 uint32_t
1106 vec4_visitor::gather_channel(unsigned gather_component,
1107 uint32_t surface, uint32_t sampler)
1108 {
1109 int swiz = GET_SWZ(key_tex->swizzles[sampler], gather_component);
1110 switch (swiz) {
1111 case SWIZZLE_X: return 0;
1112 case SWIZZLE_Y:
1113 /* gather4 sampler is broken for green channel on RG32F --
1114 * we must ask for blue instead.
1115 */
1116 if (key_tex->gather_channel_quirk_mask & (1 << surface))
1117 return 2;
1118 return 1;
1119 case SWIZZLE_Z: return 2;
1120 case SWIZZLE_W: return 3;
1121 default:
1122 unreachable("Not reached"); /* zero, one swizzles handled already */
1123 }
1124 }
1125
1126 void
1127 vec4_visitor::swizzle_result(ir_texture_opcode op, dst_reg dest,
1128 src_reg orig_val, uint32_t sampler,
1129 const glsl_type *dest_type)
1130 {
1131 int s = key_tex->swizzles[sampler];
1132
1133 dst_reg swizzled_result = dest;
1134
1135 if (op == ir_query_levels) {
1136 /* # levels is in .w */
1137 orig_val.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
1138 emit(MOV(swizzled_result, orig_val));
1139 return;
1140 }
1141
1142 if (op == ir_txs || dest_type == glsl_type::float_type
1143 || s == SWIZZLE_NOOP || op == ir_tg4) {
1144 emit(MOV(swizzled_result, orig_val));
1145 return;
1146 }
1147
1148
1149 int zero_mask = 0, one_mask = 0, copy_mask = 0;
1150 int swizzle[4] = {0};
1151
1152 for (int i = 0; i < 4; i++) {
1153 switch (GET_SWZ(s, i)) {
1154 case SWIZZLE_ZERO:
1155 zero_mask |= (1 << i);
1156 break;
1157 case SWIZZLE_ONE:
1158 one_mask |= (1 << i);
1159 break;
1160 default:
1161 copy_mask |= (1 << i);
1162 swizzle[i] = GET_SWZ(s, i);
1163 break;
1164 }
1165 }
1166
1167 if (copy_mask) {
1168 orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1169 swizzled_result.writemask = copy_mask;
1170 emit(MOV(swizzled_result, orig_val));
1171 }
1172
1173 if (zero_mask) {
1174 swizzled_result.writemask = zero_mask;
1175 emit(MOV(swizzled_result, src_reg(0.0f)));
1176 }
1177
1178 if (one_mask) {
1179 swizzled_result.writemask = one_mask;
1180 emit(MOV(swizzled_result, src_reg(1.0f)));
1181 }
1182 }
1183
1184 void
1185 vec4_visitor::gs_emit_vertex(int stream_id)
1186 {
1187 unreachable("not reached");
1188 }
1189
1190 void
1191 vec4_visitor::gs_end_primitive()
1192 {
1193 unreachable("not reached");
1194 }
1195
1196 void
1197 vec4_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
1198 dst_reg dst, src_reg surf_offset,
1199 src_reg src0, src_reg src1)
1200 {
1201 unsigned mlen = 1 + (src0.file != BAD_FILE) + (src1.file != BAD_FILE);
1202 src_reg src_payload(this, glsl_type::uint_type, mlen);
1203 dst_reg payload(src_payload);
1204 payload.writemask = WRITEMASK_X;
1205
1206 /* Set the atomic operation offset. */
1207 emit(MOV(offset(payload, 0), surf_offset));
1208 unsigned i = 1;
1209
1210 /* Set the atomic operation arguments. */
1211 if (src0.file != BAD_FILE) {
1212 emit(MOV(offset(payload, i), src0));
1213 i++;
1214 }
1215
1216 if (src1.file != BAD_FILE) {
1217 emit(MOV(offset(payload, i), src1));
1218 i++;
1219 }
1220
1221 /* Emit the instruction. Note that this maps to the normal SIMD8
1222 * untyped atomic message on Ivy Bridge, but that's OK because
1223 * unused channels will be masked out.
1224 */
1225 vec4_instruction *inst = emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst,
1226 src_payload,
1227 src_reg(surf_index), src_reg(atomic_op));
1228 inst->mlen = mlen;
1229 }
1230
1231 void
1232 vec4_visitor::emit_untyped_surface_read(unsigned surf_index, dst_reg dst,
1233 src_reg surf_offset)
1234 {
1235 dst_reg offset(this, glsl_type::uint_type);
1236 offset.writemask = WRITEMASK_X;
1237
1238 /* Set the surface read offset. */
1239 emit(MOV(offset, surf_offset));
1240
1241 /* Emit the instruction. Note that this maps to the normal SIMD8
1242 * untyped surface read message, but that's OK because unused
1243 * channels will be masked out.
1244 */
1245 vec4_instruction *inst = emit(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst,
1246 src_reg(offset),
1247 src_reg(surf_index), src_reg(1));
1248 inst->mlen = 1;
1249 }
1250
1251 void
1252 vec4_visitor::emit_ndc_computation()
1253 {
1254 if (output_reg[VARYING_SLOT_POS].file == BAD_FILE)
1255 return;
1256
1257 /* Get the position */
1258 src_reg pos = src_reg(output_reg[VARYING_SLOT_POS]);
1259
1260 /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
1261 dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
1262 output_reg[BRW_VARYING_SLOT_NDC] = ndc;
1263
1264 current_annotation = "NDC";
1265 dst_reg ndc_w = ndc;
1266 ndc_w.writemask = WRITEMASK_W;
1267 src_reg pos_w = pos;
1268 pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
1269 emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
1270
1271 dst_reg ndc_xyz = ndc;
1272 ndc_xyz.writemask = WRITEMASK_XYZ;
1273
1274 emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
1275 }
1276
1277 void
1278 vec4_visitor::emit_psiz_and_flags(dst_reg reg)
1279 {
1280 if (devinfo->gen < 6 &&
1281 ((prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) ||
1282 output_reg[VARYING_SLOT_CLIP_DIST0].file != BAD_FILE ||
1283 devinfo->has_negative_rhw_bug)) {
1284 dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
1285 dst_reg header1_w = header1;
1286 header1_w.writemask = WRITEMASK_W;
1287
1288 emit(MOV(header1, 0u));
1289
1290 if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
1291 src_reg psiz = src_reg(output_reg[VARYING_SLOT_PSIZ]);
1292
1293 current_annotation = "Point size";
1294 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
1295 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
1296 }
1297
1298 if (output_reg[VARYING_SLOT_CLIP_DIST0].file != BAD_FILE) {
1299 current_annotation = "Clipping flags";
1300 dst_reg flags0 = dst_reg(this, glsl_type::uint_type);
1301 dst_reg flags1 = dst_reg(this, glsl_type::uint_type);
1302
1303 emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST0]), src_reg(0.0f), BRW_CONDITIONAL_L));
1304 emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags0, src_reg(0));
1305 emit(OR(header1_w, src_reg(header1_w), src_reg(flags0)));
1306
1307 emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST1]), src_reg(0.0f), BRW_CONDITIONAL_L));
1308 emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags1, src_reg(0));
1309 emit(SHL(flags1, src_reg(flags1), src_reg(4)));
1310 emit(OR(header1_w, src_reg(header1_w), src_reg(flags1)));
1311 }
1312
1313 /* i965 clipping workaround:
1314 * 1) Test for -ve rhw
1315 * 2) If set,
1316 * set ndc = (0,0,0,0)
1317 * set ucp[6] = 1
1318 *
1319 * Later, clipping will detect ucp[6] and ensure the primitive is
1320 * clipped against all fixed planes.
1321 */
1322 if (devinfo->has_negative_rhw_bug &&
1323 output_reg[BRW_VARYING_SLOT_NDC].file != BAD_FILE) {
1324 src_reg ndc_w = src_reg(output_reg[BRW_VARYING_SLOT_NDC]);
1325 ndc_w.swizzle = BRW_SWIZZLE_WWWW;
1326 emit(CMP(dst_null_f(), ndc_w, src_reg(0.0f), BRW_CONDITIONAL_L));
1327 vec4_instruction *inst;
1328 inst = emit(OR(header1_w, src_reg(header1_w), src_reg(1u << 6)));
1329 inst->predicate = BRW_PREDICATE_NORMAL;
1330 output_reg[BRW_VARYING_SLOT_NDC].type = BRW_REGISTER_TYPE_F;
1331 inst = emit(MOV(output_reg[BRW_VARYING_SLOT_NDC], src_reg(0.0f)));
1332 inst->predicate = BRW_PREDICATE_NORMAL;
1333 }
1334
1335 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
1336 } else if (devinfo->gen < 6) {
1337 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
1338 } else {
1339 emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
1340 if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
1341 dst_reg reg_w = reg;
1342 reg_w.writemask = WRITEMASK_W;
1343 src_reg reg_as_src = src_reg(output_reg[VARYING_SLOT_PSIZ]);
1344 reg_as_src.type = reg_w.type;
1345 reg_as_src.swizzle = brw_swizzle_for_size(1);
1346 emit(MOV(reg_w, reg_as_src));
1347 }
1348 if (prog_data->vue_map.slots_valid & VARYING_BIT_LAYER) {
1349 dst_reg reg_y = reg;
1350 reg_y.writemask = WRITEMASK_Y;
1351 reg_y.type = BRW_REGISTER_TYPE_D;
1352 output_reg[VARYING_SLOT_LAYER].type = reg_y.type;
1353 emit(MOV(reg_y, src_reg(output_reg[VARYING_SLOT_LAYER])));
1354 }
1355 if (prog_data->vue_map.slots_valid & VARYING_BIT_VIEWPORT) {
1356 dst_reg reg_z = reg;
1357 reg_z.writemask = WRITEMASK_Z;
1358 reg_z.type = BRW_REGISTER_TYPE_D;
1359 output_reg[VARYING_SLOT_VIEWPORT].type = reg_z.type;
1360 emit(MOV(reg_z, src_reg(output_reg[VARYING_SLOT_VIEWPORT])));
1361 }
1362 }
1363 }
1364
1365 vec4_instruction *
1366 vec4_visitor::emit_generic_urb_slot(dst_reg reg, int varying)
1367 {
1368 assert(varying < VARYING_SLOT_MAX);
1369 assert(output_reg[varying].type == reg.type);
1370 current_annotation = output_reg_annotation[varying];
1371 if (output_reg[varying].file != BAD_FILE)
1372 return emit(MOV(reg, src_reg(output_reg[varying])));
1373 else
1374 return NULL;
1375 }
1376
1377 void
1378 vec4_visitor::emit_urb_slot(dst_reg reg, int varying)
1379 {
1380 reg.type = BRW_REGISTER_TYPE_F;
1381 output_reg[varying].type = reg.type;
1382
1383 switch (varying) {
1384 case VARYING_SLOT_PSIZ:
1385 {
1386 /* PSIZ is always in slot 0, and is coupled with other flags. */
1387 current_annotation = "indices, point width, clip flags";
1388 emit_psiz_and_flags(reg);
1389 break;
1390 }
1391 case BRW_VARYING_SLOT_NDC:
1392 current_annotation = "NDC";
1393 if (output_reg[BRW_VARYING_SLOT_NDC].file != BAD_FILE)
1394 emit(MOV(reg, src_reg(output_reg[BRW_VARYING_SLOT_NDC])));
1395 break;
1396 case VARYING_SLOT_POS:
1397 current_annotation = "gl_Position";
1398 if (output_reg[VARYING_SLOT_POS].file != BAD_FILE)
1399 emit(MOV(reg, src_reg(output_reg[VARYING_SLOT_POS])));
1400 break;
1401 case VARYING_SLOT_EDGE:
1402 /* This is present when doing unfilled polygons. We're supposed to copy
1403 * the edge flag from the user-provided vertex array
1404 * (glEdgeFlagPointer), or otherwise we'll copy from the current value
1405 * of that attribute (starts as 1.0f). This is then used in clipping to
1406 * determine which edges should be drawn as wireframe.
1407 */
1408 current_annotation = "edge flag";
1409 emit(MOV(reg, src_reg(dst_reg(ATTR, VERT_ATTRIB_EDGEFLAG,
1410 glsl_type::float_type, WRITEMASK_XYZW))));
1411 break;
1412 case BRW_VARYING_SLOT_PAD:
1413 /* No need to write to this slot */
1414 break;
1415 default:
1416 emit_generic_urb_slot(reg, varying);
1417 break;
1418 }
1419 }
1420
1421 static int
1422 align_interleaved_urb_mlen(const struct brw_device_info *devinfo, int mlen)
1423 {
1424 if (devinfo->gen >= 6) {
1425 /* URB data written (does not include the message header reg) must
1426 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
1427 * section 5.4.3.2.2: URB_INTERLEAVED.
1428 *
1429 * URB entries are allocated on a multiple of 1024 bits, so an
1430 * extra 128 bits written here to make the end align to 256 is
1431 * no problem.
1432 */
1433 if ((mlen % 2) != 1)
1434 mlen++;
1435 }
1436
1437 return mlen;
1438 }
1439
1440
1441 /**
1442 * Generates the VUE payload plus the necessary URB write instructions to
1443 * output it.
1444 *
1445 * The VUE layout is documented in Volume 2a.
1446 */
1447 void
1448 vec4_visitor::emit_vertex()
1449 {
1450 /* MRF 0 is reserved for the debugger, so start with message header
1451 * in MRF 1.
1452 */
1453 int base_mrf = 1;
1454 int mrf = base_mrf;
1455 /* In the process of generating our URB write message contents, we
1456 * may need to unspill a register or load from an array. Those
1457 * reads would use MRFs 14-15.
1458 */
1459 int max_usable_mrf = FIRST_SPILL_MRF(devinfo->gen);
1460
1461 /* The following assertion verifies that max_usable_mrf causes an
1462 * even-numbered amount of URB write data, which will meet gen6's
1463 * requirements for length alignment.
1464 */
1465 assert ((max_usable_mrf - base_mrf) % 2 == 0);
1466
1467 /* First mrf is the g0-based message header containing URB handles and
1468 * such.
1469 */
1470 emit_urb_write_header(mrf++);
1471
1472 if (devinfo->gen < 6) {
1473 emit_ndc_computation();
1474 }
1475
1476 /* We may need to split this up into several URB writes, so do them in a
1477 * loop.
1478 */
1479 int slot = 0;
1480 bool complete = false;
1481 do {
1482 /* URB offset is in URB row increments, and each of our MRFs is half of
1483 * one of those, since we're doing interleaved writes.
1484 */
1485 int offset = slot / 2;
1486
1487 mrf = base_mrf + 1;
1488 for (; slot < prog_data->vue_map.num_slots; ++slot) {
1489 emit_urb_slot(dst_reg(MRF, mrf++),
1490 prog_data->vue_map.slot_to_varying[slot]);
1491
1492 /* If this was max_usable_mrf, we can't fit anything more into this
1493 * URB WRITE. Same thing if we reached the maximum length available.
1494 */
1495 if (mrf > max_usable_mrf ||
1496 align_interleaved_urb_mlen(devinfo, mrf - base_mrf + 1) > BRW_MAX_MSG_LENGTH) {
1497 slot++;
1498 break;
1499 }
1500 }
1501
1502 complete = slot >= prog_data->vue_map.num_slots;
1503 current_annotation = "URB write";
1504 vec4_instruction *inst = emit_urb_write_opcode(complete);
1505 inst->base_mrf = base_mrf;
1506 inst->mlen = align_interleaved_urb_mlen(devinfo, mrf - base_mrf);
1507 inst->offset += offset;
1508 } while(!complete);
1509 }
1510
1511
1512 src_reg
1513 vec4_visitor::get_scratch_offset(bblock_t *block, vec4_instruction *inst,
1514 src_reg *reladdr, int reg_offset)
1515 {
1516 /* Because we store the values to scratch interleaved like our
1517 * vertex data, we need to scale the vec4 index by 2.
1518 */
1519 int message_header_scale = 2;
1520
1521 /* Pre-gen6, the message header uses byte offsets instead of vec4
1522 * (16-byte) offset units.
1523 */
1524 if (devinfo->gen < 6)
1525 message_header_scale *= 16;
1526
1527 if (reladdr) {
1528 src_reg index = src_reg(this, glsl_type::int_type);
1529
1530 emit_before(block, inst, ADD(dst_reg(index), *reladdr,
1531 src_reg(reg_offset)));
1532 emit_before(block, inst, MUL(dst_reg(index), index,
1533 src_reg(message_header_scale)));
1534
1535 return index;
1536 } else {
1537 return src_reg(reg_offset * message_header_scale);
1538 }
1539 }
1540
1541 src_reg
1542 vec4_visitor::get_pull_constant_offset(bblock_t * block, vec4_instruction *inst,
1543 src_reg *reladdr, int reg_offset)
1544 {
1545 if (reladdr) {
1546 src_reg index = src_reg(this, glsl_type::int_type);
1547
1548 emit_before(block, inst, ADD(dst_reg(index), *reladdr,
1549 src_reg(reg_offset)));
1550
1551 /* Pre-gen6, the message header uses byte offsets instead of vec4
1552 * (16-byte) offset units.
1553 */
1554 if (devinfo->gen < 6) {
1555 emit_before(block, inst, MUL(dst_reg(index), index, src_reg(16)));
1556 }
1557
1558 return index;
1559 } else if (devinfo->gen >= 8) {
1560 /* Store the offset in a GRF so we can send-from-GRF. */
1561 src_reg offset = src_reg(this, glsl_type::int_type);
1562 emit_before(block, inst, MOV(dst_reg(offset), src_reg(reg_offset)));
1563 return offset;
1564 } else {
1565 int message_header_scale = devinfo->gen < 6 ? 16 : 1;
1566 return src_reg(reg_offset * message_header_scale);
1567 }
1568 }
1569
1570 /**
1571 * Emits an instruction before @inst to load the value named by @orig_src
1572 * from scratch space at @base_offset to @temp.
1573 *
1574 * @base_offset is measured in 32-byte units (the size of a register).
1575 */
1576 void
1577 vec4_visitor::emit_scratch_read(bblock_t *block, vec4_instruction *inst,
1578 dst_reg temp, src_reg orig_src,
1579 int base_offset)
1580 {
1581 int reg_offset = base_offset + orig_src.reg_offset;
1582 src_reg index = get_scratch_offset(block, inst, orig_src.reladdr,
1583 reg_offset);
1584
1585 emit_before(block, inst, SCRATCH_READ(temp, index));
1586 }
1587
1588 /**
1589 * Emits an instruction after @inst to store the value to be written
1590 * to @orig_dst to scratch space at @base_offset, from @temp.
1591 *
1592 * @base_offset is measured in 32-byte units (the size of a register).
1593 */
1594 void
1595 vec4_visitor::emit_scratch_write(bblock_t *block, vec4_instruction *inst,
1596 int base_offset)
1597 {
1598 int reg_offset = base_offset + inst->dst.reg_offset;
1599 src_reg index = get_scratch_offset(block, inst, inst->dst.reladdr,
1600 reg_offset);
1601
1602 /* Create a temporary register to store *inst's result in.
1603 *
1604 * We have to be careful in MOVing from our temporary result register in
1605 * the scratch write. If we swizzle from channels of the temporary that
1606 * weren't initialized, it will confuse live interval analysis, which will
1607 * make spilling fail to make progress.
1608 */
1609 const src_reg temp = swizzle(retype(src_reg(this, glsl_type::vec4_type),
1610 inst->dst.type),
1611 brw_swizzle_for_mask(inst->dst.writemask));
1612 dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
1613 inst->dst.writemask));
1614 vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
1615 if (inst->opcode != BRW_OPCODE_SEL)
1616 write->predicate = inst->predicate;
1617 write->ir = inst->ir;
1618 write->annotation = inst->annotation;
1619 inst->insert_after(block, write);
1620
1621 inst->dst.file = temp.file;
1622 inst->dst.nr = temp.nr;
1623 inst->dst.reg_offset = temp.reg_offset;
1624 inst->dst.reladdr = NULL;
1625 }
1626
1627 /**
1628 * Checks if \p src and/or \p src.reladdr require a scratch read, and if so,
1629 * adds the scratch read(s) before \p inst. The function also checks for
1630 * recursive reladdr scratch accesses, issuing the corresponding scratch
1631 * loads and rewriting reladdr references accordingly.
1632 *
1633 * \return \p src if it did not require a scratch load, otherwise, the
1634 * register holding the result of the scratch load that the caller should
1635 * use to rewrite src.
1636 */
1637 src_reg
1638 vec4_visitor::emit_resolve_reladdr(int scratch_loc[], bblock_t *block,
1639 vec4_instruction *inst, src_reg src)
1640 {
1641 /* Resolve recursive reladdr scratch access by calling ourselves
1642 * with src.reladdr
1643 */
1644 if (src.reladdr)
1645 *src.reladdr = emit_resolve_reladdr(scratch_loc, block, inst,
1646 *src.reladdr);
1647
1648 /* Now handle scratch access on src */
1649 if (src.file == VGRF && scratch_loc[src.nr] != -1) {
1650 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
1651 emit_scratch_read(block, inst, temp, src, scratch_loc[src.nr]);
1652 src.nr = temp.nr;
1653 src.reg_offset = temp.reg_offset;
1654 src.reladdr = NULL;
1655 }
1656
1657 return src;
1658 }
1659
1660 /**
1661 * We can't generally support array access in GRF space, because a
1662 * single instruction's destination can only span 2 contiguous
1663 * registers. So, we send all GRF arrays that get variable index
1664 * access to scratch space.
1665 */
1666 void
1667 vec4_visitor::move_grf_array_access_to_scratch()
1668 {
1669 int scratch_loc[this->alloc.count];
1670 memset(scratch_loc, -1, sizeof(scratch_loc));
1671
1672 /* First, calculate the set of virtual GRFs that need to be punted
1673 * to scratch due to having any array access on them, and where in
1674 * scratch.
1675 */
1676 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1677 if (inst->dst.file == VGRF && inst->dst.reladdr) {
1678 if (scratch_loc[inst->dst.nr] == -1) {
1679 scratch_loc[inst->dst.nr] = last_scratch;
1680 last_scratch += this->alloc.sizes[inst->dst.nr];
1681 }
1682
1683 for (src_reg *iter = inst->dst.reladdr;
1684 iter->reladdr;
1685 iter = iter->reladdr) {
1686 if (iter->file == VGRF && scratch_loc[iter->nr] == -1) {
1687 scratch_loc[iter->nr] = last_scratch;
1688 last_scratch += this->alloc.sizes[iter->nr];
1689 }
1690 }
1691 }
1692
1693 for (int i = 0 ; i < 3; i++) {
1694 for (src_reg *iter = &inst->src[i];
1695 iter->reladdr;
1696 iter = iter->reladdr) {
1697 if (iter->file == VGRF && scratch_loc[iter->nr] == -1) {
1698 scratch_loc[iter->nr] = last_scratch;
1699 last_scratch += this->alloc.sizes[iter->nr];
1700 }
1701 }
1702 }
1703 }
1704
1705 /* Now, for anything that will be accessed through scratch, rewrite
1706 * it to load/store. Note that this is a _safe list walk, because
1707 * we may generate a new scratch_write instruction after the one
1708 * we're processing.
1709 */
1710 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1711 /* Set up the annotation tracking for new generated instructions. */
1712 base_ir = inst->ir;
1713 current_annotation = inst->annotation;
1714
1715 /* First handle scratch access on the dst. Notice we have to handle
1716 * the case where the dst's reladdr also points to scratch space.
1717 */
1718 if (inst->dst.reladdr)
1719 *inst->dst.reladdr = emit_resolve_reladdr(scratch_loc, block, inst,
1720 *inst->dst.reladdr);
1721
1722 /* Now that we have handled any (possibly recursive) reladdr scratch
1723 * accesses for dst we can safely do the scratch write for dst itself
1724 */
1725 if (inst->dst.file == VGRF && scratch_loc[inst->dst.nr] != -1)
1726 emit_scratch_write(block, inst, scratch_loc[inst->dst.nr]);
1727
1728 /* Now handle scratch access on any src. In this case, since inst->src[i]
1729 * already is a src_reg, we can just call emit_resolve_reladdr with
1730 * inst->src[i] and it will take care of handling scratch loads for
1731 * both src and src.reladdr (recursively).
1732 */
1733 for (int i = 0 ; i < 3; i++) {
1734 inst->src[i] = emit_resolve_reladdr(scratch_loc, block, inst,
1735 inst->src[i]);
1736 }
1737 }
1738 }
1739
1740 /**
1741 * Emits an instruction before @inst to load the value named by @orig_src
1742 * from the pull constant buffer (surface) at @base_offset to @temp.
1743 */
1744 void
1745 vec4_visitor::emit_pull_constant_load(bblock_t *block, vec4_instruction *inst,
1746 dst_reg temp, src_reg orig_src,
1747 int base_offset)
1748 {
1749 int reg_offset = base_offset + orig_src.reg_offset;
1750 const unsigned index = prog_data->base.binding_table.pull_constants_start;
1751 src_reg offset = get_pull_constant_offset(block, inst, orig_src.reladdr,
1752 reg_offset);
1753
1754 emit_pull_constant_load_reg(temp,
1755 src_reg(index),
1756 offset,
1757 block, inst);
1758
1759 brw_mark_surface_used(&prog_data->base, index);
1760 }
1761
1762 /**
1763 * Implements array access of uniforms by inserting a
1764 * PULL_CONSTANT_LOAD instruction.
1765 *
1766 * Unlike temporary GRF array access (where we don't support it due to
1767 * the difficulty of doing relative addressing on instruction
1768 * destinations), we could potentially do array access of uniforms
1769 * that were loaded in GRF space as push constants. In real-world
1770 * usage we've seen, though, the arrays being used are always larger
1771 * than we could load as push constants, so just always move all
1772 * uniform array access out to a pull constant buffer.
1773 */
1774 void
1775 vec4_visitor::move_uniform_array_access_to_pull_constants()
1776 {
1777 int pull_constant_loc[this->uniforms];
1778 memset(pull_constant_loc, -1, sizeof(pull_constant_loc));
1779 bool nested_reladdr;
1780
1781 /* Walk through and find array access of uniforms. Put a copy of that
1782 * uniform in the pull constant buffer.
1783 *
1784 * Note that we don't move constant-indexed accesses to arrays. No
1785 * testing has been done of the performance impact of this choice.
1786 */
1787 do {
1788 nested_reladdr = false;
1789
1790 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1791 for (int i = 0 ; i < 3; i++) {
1792 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
1793 continue;
1794
1795 int uniform = inst->src[i].nr;
1796
1797 if (inst->src[i].reladdr->reladdr)
1798 nested_reladdr = true; /* will need another pass */
1799
1800 /* If this array isn't already present in the pull constant buffer,
1801 * add it.
1802 */
1803 if (pull_constant_loc[uniform] == -1) {
1804 const gl_constant_value **values =
1805 &stage_prog_data->param[uniform * 4];
1806
1807 pull_constant_loc[uniform] = stage_prog_data->nr_pull_params / 4;
1808
1809 assert(uniform < uniform_array_size);
1810 for (int j = 0; j < uniform_size[uniform] * 4; j++) {
1811 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++]
1812 = values[j];
1813 }
1814 }
1815
1816 /* Set up the annotation tracking for new generated instructions. */
1817 base_ir = inst->ir;
1818 current_annotation = inst->annotation;
1819
1820 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
1821
1822 emit_pull_constant_load(block, inst, temp, inst->src[i],
1823 pull_constant_loc[uniform]);
1824
1825 inst->src[i].file = temp.file;
1826 inst->src[i].nr = temp.nr;
1827 inst->src[i].reg_offset = temp.reg_offset;
1828 inst->src[i].reladdr = NULL;
1829 }
1830 }
1831 } while (nested_reladdr);
1832
1833 /* Now there are no accesses of the UNIFORM file with a reladdr, so
1834 * no need to track them as larger-than-vec4 objects. This will be
1835 * relied on in cutting out unused uniform vectors from push
1836 * constants.
1837 */
1838 split_uniform_registers();
1839 }
1840
1841 void
1842 vec4_visitor::resolve_ud_negate(src_reg *reg)
1843 {
1844 if (reg->type != BRW_REGISTER_TYPE_UD ||
1845 !reg->negate)
1846 return;
1847
1848 src_reg temp = src_reg(this, glsl_type::uvec4_type);
1849 emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
1850 *reg = temp;
1851 }
1852
1853 vec4_visitor::vec4_visitor(const struct brw_compiler *compiler,
1854 void *log_data,
1855 const struct brw_sampler_prog_key_data *key_tex,
1856 struct brw_vue_prog_data *prog_data,
1857 const nir_shader *shader,
1858 void *mem_ctx,
1859 bool no_spills,
1860 int shader_time_index)
1861 : backend_shader(compiler, log_data, mem_ctx, shader, &prog_data->base),
1862 key_tex(key_tex),
1863 prog_data(prog_data),
1864 fail_msg(NULL),
1865 first_non_payload_grf(0),
1866 need_all_constants_in_pull_buffer(false),
1867 no_spills(no_spills),
1868 shader_time_index(shader_time_index),
1869 last_scratch(0)
1870 {
1871 this->failed = false;
1872
1873 this->base_ir = NULL;
1874 this->current_annotation = NULL;
1875 memset(this->output_reg_annotation, 0, sizeof(this->output_reg_annotation));
1876
1877 this->virtual_grf_start = NULL;
1878 this->virtual_grf_end = NULL;
1879 this->live_intervals = NULL;
1880
1881 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1882
1883 this->uniforms = 0;
1884
1885 /* Initialize uniform_array_size to at least 1 because pre-gen6 VS requires
1886 * at least one. See setup_uniforms() in brw_vec4.cpp.
1887 */
1888 this->uniform_array_size = 1;
1889 if (prog_data) {
1890 this->uniform_array_size =
1891 MAX2(DIV_ROUND_UP(stage_prog_data->nr_params, 4), 1);
1892 }
1893
1894 this->uniform_size = rzalloc_array(mem_ctx, int, this->uniform_array_size);
1895 }
1896
1897 vec4_visitor::~vec4_visitor()
1898 {
1899 }
1900
1901
1902 void
1903 vec4_visitor::fail(const char *format, ...)
1904 {
1905 va_list va;
1906 char *msg;
1907
1908 if (failed)
1909 return;
1910
1911 failed = true;
1912
1913 va_start(va, format);
1914 msg = ralloc_vasprintf(mem_ctx, format, va);
1915 va_end(va);
1916 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
1917
1918 this->fail_msg = msg;
1919
1920 if (debug_enabled) {
1921 fprintf(stderr, "%s", msg);
1922 }
1923 }
1924
1925 } /* namespace brw */