i965: Enable the GL_ARB_shader_bit_encode extension.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_visitor.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 extern "C" {
26 #include "main/macros.h"
27 #include "program/prog_parameter.h"
28 #include "program/sampler.h"
29 }
30
31 namespace brw {
32
33 src_reg::src_reg(dst_reg reg)
34 {
35 init();
36
37 this->file = reg.file;
38 this->reg = reg.reg;
39 this->reg_offset = reg.reg_offset;
40 this->type = reg.type;
41 this->reladdr = reg.reladdr;
42 this->fixed_hw_reg = reg.fixed_hw_reg;
43
44 int swizzles[4];
45 int next_chan = 0;
46 int last = 0;
47
48 for (int i = 0; i < 4; i++) {
49 if (!(reg.writemask & (1 << i)))
50 continue;
51
52 swizzles[next_chan++] = last = i;
53 }
54
55 for (; next_chan < 4; next_chan++) {
56 swizzles[next_chan] = last;
57 }
58
59 this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
60 swizzles[2], swizzles[3]);
61 }
62
63 dst_reg::dst_reg(src_reg reg)
64 {
65 init();
66
67 this->file = reg.file;
68 this->reg = reg.reg;
69 this->reg_offset = reg.reg_offset;
70 this->type = reg.type;
71 this->writemask = WRITEMASK_XYZW;
72 this->reladdr = reg.reladdr;
73 this->fixed_hw_reg = reg.fixed_hw_reg;
74 }
75
76 vec4_instruction::vec4_instruction(vec4_visitor *v,
77 enum opcode opcode, dst_reg dst,
78 src_reg src0, src_reg src1, src_reg src2)
79 {
80 this->opcode = opcode;
81 this->dst = dst;
82 this->src[0] = src0;
83 this->src[1] = src1;
84 this->src[2] = src2;
85 this->ir = v->base_ir;
86 this->annotation = v->current_annotation;
87 }
88
89 vec4_instruction *
90 vec4_visitor::emit(vec4_instruction *inst)
91 {
92 this->instructions.push_tail(inst);
93
94 return inst;
95 }
96
97 vec4_instruction *
98 vec4_visitor::emit_before(vec4_instruction *inst, vec4_instruction *new_inst)
99 {
100 new_inst->ir = inst->ir;
101 new_inst->annotation = inst->annotation;
102
103 inst->insert_before(new_inst);
104
105 return inst;
106 }
107
108 vec4_instruction *
109 vec4_visitor::emit(enum opcode opcode, dst_reg dst,
110 src_reg src0, src_reg src1, src_reg src2)
111 {
112 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst,
113 src0, src1, src2));
114 }
115
116
117 vec4_instruction *
118 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
119 {
120 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0, src1));
121 }
122
123 vec4_instruction *
124 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
125 {
126 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0));
127 }
128
129 vec4_instruction *
130 vec4_visitor::emit(enum opcode opcode)
131 {
132 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst_reg()));
133 }
134
135 #define ALU1(op) \
136 vec4_instruction * \
137 vec4_visitor::op(dst_reg dst, src_reg src0) \
138 { \
139 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
140 src0); \
141 }
142
143 #define ALU2(op) \
144 vec4_instruction * \
145 vec4_visitor::op(dst_reg dst, src_reg src0, src_reg src1) \
146 { \
147 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
148 src0, src1); \
149 }
150
151 ALU1(NOT)
152 ALU1(MOV)
153 ALU1(FRC)
154 ALU1(RNDD)
155 ALU1(RNDE)
156 ALU1(RNDZ)
157 ALU2(ADD)
158 ALU2(MUL)
159 ALU2(MACH)
160 ALU2(AND)
161 ALU2(OR)
162 ALU2(XOR)
163 ALU2(DP3)
164 ALU2(DP4)
165
166 /** Gen4 predicated IF. */
167 vec4_instruction *
168 vec4_visitor::IF(uint32_t predicate)
169 {
170 vec4_instruction *inst;
171
172 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF);
173 inst->predicate = predicate;
174
175 return inst;
176 }
177
178 /** Gen6+ IF with embedded comparison. */
179 vec4_instruction *
180 vec4_visitor::IF(src_reg src0, src_reg src1, uint32_t condition)
181 {
182 assert(intel->gen >= 6);
183
184 vec4_instruction *inst;
185
186 resolve_ud_negate(&src0);
187 resolve_ud_negate(&src1);
188
189 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF, dst_null_d(),
190 src0, src1);
191 inst->conditional_mod = condition;
192
193 return inst;
194 }
195
196 /**
197 * CMP: Sets the low bit of the destination channels with the result
198 * of the comparison, while the upper bits are undefined, and updates
199 * the flag register with the packed 16 bits of the result.
200 */
201 vec4_instruction *
202 vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1, uint32_t condition)
203 {
204 vec4_instruction *inst;
205
206 /* original gen4 does type conversion to the destination type
207 * before before comparison, producing garbage results for floating
208 * point comparisons.
209 */
210 if (intel->gen == 4) {
211 dst.type = src0.type;
212 if (dst.file == HW_REG)
213 dst.fixed_hw_reg.type = dst.type;
214 }
215
216 resolve_ud_negate(&src0);
217 resolve_ud_negate(&src1);
218
219 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_CMP, dst, src0, src1);
220 inst->conditional_mod = condition;
221
222 return inst;
223 }
224
225 vec4_instruction *
226 vec4_visitor::SCRATCH_READ(dst_reg dst, src_reg index)
227 {
228 vec4_instruction *inst;
229
230 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_READ,
231 dst, index);
232 inst->base_mrf = 14;
233 inst->mlen = 1;
234
235 return inst;
236 }
237
238 vec4_instruction *
239 vec4_visitor::SCRATCH_WRITE(dst_reg dst, src_reg src, src_reg index)
240 {
241 vec4_instruction *inst;
242
243 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_WRITE,
244 dst, src, index);
245 inst->base_mrf = 13;
246 inst->mlen = 2;
247
248 return inst;
249 }
250
251 void
252 vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
253 {
254 static enum opcode dot_opcodes[] = {
255 BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
256 };
257
258 emit(dot_opcodes[elements - 2], dst, src0, src1);
259 }
260
261 void
262 vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
263 {
264 /* The gen6 math instruction ignores the source modifiers --
265 * swizzle, abs, negate, and at least some parts of the register
266 * region description.
267 *
268 * While it would seem that this MOV could be avoided at this point
269 * in the case that the swizzle is matched up with the destination
270 * writemask, note that uniform packing and register allocation
271 * could rearrange our swizzle, so let's leave this matter up to
272 * copy propagation later.
273 */
274 src_reg temp_src = src_reg(this, glsl_type::vec4_type);
275 emit(MOV(dst_reg(temp_src), src));
276
277 if (dst.writemask != WRITEMASK_XYZW) {
278 /* The gen6 math instruction must be align1, so we can't do
279 * writemasks.
280 */
281 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
282
283 emit(opcode, temp_dst, temp_src);
284
285 emit(MOV(dst, src_reg(temp_dst)));
286 } else {
287 emit(opcode, dst, temp_src);
288 }
289 }
290
291 void
292 vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
293 {
294 vec4_instruction *inst = emit(opcode, dst, src);
295 inst->base_mrf = 1;
296 inst->mlen = 1;
297 }
298
299 void
300 vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
301 {
302 switch (opcode) {
303 case SHADER_OPCODE_RCP:
304 case SHADER_OPCODE_RSQ:
305 case SHADER_OPCODE_SQRT:
306 case SHADER_OPCODE_EXP2:
307 case SHADER_OPCODE_LOG2:
308 case SHADER_OPCODE_SIN:
309 case SHADER_OPCODE_COS:
310 break;
311 default:
312 assert(!"not reached: bad math opcode");
313 return;
314 }
315
316 if (intel->gen >= 7) {
317 emit(opcode, dst, src);
318 } else if (intel->gen == 6) {
319 return emit_math1_gen6(opcode, dst, src);
320 } else {
321 return emit_math1_gen4(opcode, dst, src);
322 }
323 }
324
325 void
326 vec4_visitor::emit_math2_gen6(enum opcode opcode,
327 dst_reg dst, src_reg src0, src_reg src1)
328 {
329 src_reg expanded;
330
331 /* The gen6 math instruction ignores the source modifiers --
332 * swizzle, abs, negate, and at least some parts of the register
333 * region description. Move the sources to temporaries to make it
334 * generally work.
335 */
336
337 expanded = src_reg(this, glsl_type::vec4_type);
338 expanded.type = src0.type;
339 emit(MOV(dst_reg(expanded), src0));
340 src0 = expanded;
341
342 expanded = src_reg(this, glsl_type::vec4_type);
343 expanded.type = src1.type;
344 emit(MOV(dst_reg(expanded), src1));
345 src1 = expanded;
346
347 if (dst.writemask != WRITEMASK_XYZW) {
348 /* The gen6 math instruction must be align1, so we can't do
349 * writemasks.
350 */
351 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
352 temp_dst.type = dst.type;
353
354 emit(opcode, temp_dst, src0, src1);
355
356 emit(MOV(dst, src_reg(temp_dst)));
357 } else {
358 emit(opcode, dst, src0, src1);
359 }
360 }
361
362 void
363 vec4_visitor::emit_math2_gen4(enum opcode opcode,
364 dst_reg dst, src_reg src0, src_reg src1)
365 {
366 vec4_instruction *inst = emit(opcode, dst, src0, src1);
367 inst->base_mrf = 1;
368 inst->mlen = 2;
369 }
370
371 void
372 vec4_visitor::emit_math(enum opcode opcode,
373 dst_reg dst, src_reg src0, src_reg src1)
374 {
375 switch (opcode) {
376 case SHADER_OPCODE_POW:
377 case SHADER_OPCODE_INT_QUOTIENT:
378 case SHADER_OPCODE_INT_REMAINDER:
379 break;
380 default:
381 assert(!"not reached: unsupported binary math opcode");
382 return;
383 }
384
385 if (intel->gen >= 7) {
386 emit(opcode, dst, src0, src1);
387 } else if (intel->gen == 6) {
388 return emit_math2_gen6(opcode, dst, src0, src1);
389 } else {
390 return emit_math2_gen4(opcode, dst, src0, src1);
391 }
392 }
393
394 void
395 vec4_visitor::visit_instructions(const exec_list *list)
396 {
397 foreach_list(node, list) {
398 ir_instruction *ir = (ir_instruction *)node;
399
400 base_ir = ir;
401 ir->accept(this);
402 }
403 }
404
405
406 static int
407 type_size(const struct glsl_type *type)
408 {
409 unsigned int i;
410 int size;
411
412 switch (type->base_type) {
413 case GLSL_TYPE_UINT:
414 case GLSL_TYPE_INT:
415 case GLSL_TYPE_FLOAT:
416 case GLSL_TYPE_BOOL:
417 if (type->is_matrix()) {
418 return type->matrix_columns;
419 } else {
420 /* Regardless of size of vector, it gets a vec4. This is bad
421 * packing for things like floats, but otherwise arrays become a
422 * mess. Hopefully a later pass over the code can pack scalars
423 * down if appropriate.
424 */
425 return 1;
426 }
427 case GLSL_TYPE_ARRAY:
428 assert(type->length > 0);
429 return type_size(type->fields.array) * type->length;
430 case GLSL_TYPE_STRUCT:
431 size = 0;
432 for (i = 0; i < type->length; i++) {
433 size += type_size(type->fields.structure[i].type);
434 }
435 return size;
436 case GLSL_TYPE_SAMPLER:
437 /* Samplers take up one slot in UNIFORMS[], but they're baked in
438 * at link time.
439 */
440 return 1;
441 default:
442 assert(0);
443 return 0;
444 }
445 }
446
447 int
448 vec4_visitor::virtual_grf_alloc(int size)
449 {
450 if (virtual_grf_array_size <= virtual_grf_count) {
451 if (virtual_grf_array_size == 0)
452 virtual_grf_array_size = 16;
453 else
454 virtual_grf_array_size *= 2;
455 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
456 virtual_grf_array_size);
457 virtual_grf_reg_map = reralloc(mem_ctx, virtual_grf_reg_map, int,
458 virtual_grf_array_size);
459 }
460 virtual_grf_reg_map[virtual_grf_count] = virtual_grf_reg_count;
461 virtual_grf_reg_count += size;
462 virtual_grf_sizes[virtual_grf_count] = size;
463 return virtual_grf_count++;
464 }
465
466 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
467 {
468 init();
469
470 this->file = GRF;
471 this->reg = v->virtual_grf_alloc(type_size(type));
472
473 if (type->is_array() || type->is_record()) {
474 this->swizzle = BRW_SWIZZLE_NOOP;
475 } else {
476 this->swizzle = swizzle_for_size(type->vector_elements);
477 }
478
479 this->type = brw_type_for_base_type(type);
480 }
481
482 dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
483 {
484 init();
485
486 this->file = GRF;
487 this->reg = v->virtual_grf_alloc(type_size(type));
488
489 if (type->is_array() || type->is_record()) {
490 this->writemask = WRITEMASK_XYZW;
491 } else {
492 this->writemask = (1 << type->vector_elements) - 1;
493 }
494
495 this->type = brw_type_for_base_type(type);
496 }
497
498 /* Our support for uniforms is piggy-backed on the struct
499 * gl_fragment_program, because that's where the values actually
500 * get stored, rather than in some global gl_shader_program uniform
501 * store.
502 */
503 int
504 vec4_visitor::setup_uniform_values(int loc, const glsl_type *type)
505 {
506 unsigned int offset = 0;
507 float *values = &this->vp->Base.Parameters->ParameterValues[loc][0].f;
508
509 if (type->is_matrix()) {
510 const glsl_type *column = type->column_type();
511
512 for (unsigned int i = 0; i < type->matrix_columns; i++) {
513 offset += setup_uniform_values(loc + offset, column);
514 }
515
516 return offset;
517 }
518
519 switch (type->base_type) {
520 case GLSL_TYPE_FLOAT:
521 case GLSL_TYPE_UINT:
522 case GLSL_TYPE_INT:
523 case GLSL_TYPE_BOOL:
524 for (unsigned int i = 0; i < type->vector_elements; i++) {
525 c->prog_data.param[this->uniforms * 4 + i] = &values[i];
526 }
527
528 /* Set up pad elements to get things aligned to a vec4 boundary. */
529 for (unsigned int i = type->vector_elements; i < 4; i++) {
530 static float zero = 0;
531
532 c->prog_data.param[this->uniforms * 4 + i] = &zero;
533 }
534
535 /* Track the size of this uniform vector, for future packing of
536 * uniforms.
537 */
538 this->uniform_vector_size[this->uniforms] = type->vector_elements;
539 this->uniforms++;
540
541 return 1;
542
543 case GLSL_TYPE_STRUCT:
544 for (unsigned int i = 0; i < type->length; i++) {
545 offset += setup_uniform_values(loc + offset,
546 type->fields.structure[i].type);
547 }
548 return offset;
549
550 case GLSL_TYPE_ARRAY:
551 for (unsigned int i = 0; i < type->length; i++) {
552 offset += setup_uniform_values(loc + offset, type->fields.array);
553 }
554 return offset;
555
556 case GLSL_TYPE_SAMPLER:
557 /* The sampler takes up a slot, but we don't use any values from it. */
558 return 1;
559
560 default:
561 assert(!"not reached");
562 return 0;
563 }
564 }
565
566 void
567 vec4_visitor::setup_uniform_clipplane_values()
568 {
569 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
570
571 /* Pre-Gen6, we compact clip planes. For example, if the user
572 * enables just clip planes 0, 1, and 3, we will enable clip planes
573 * 0, 1, and 2 in the hardware, and we'll move clip plane 3 to clip
574 * plane 2. This simplifies the implementation of the Gen6 clip
575 * thread.
576 *
577 * In Gen6 and later, we don't compact clip planes, because this
578 * simplifies the implementation of gl_ClipDistance.
579 */
580 int compacted_clipplane_index = 0;
581 for (int i = 0; i < c->key.nr_userclip_plane_consts; ++i) {
582 if (intel->gen < 6 &&
583 !(c->key.userclip_planes_enabled_gen_4_5 & (1 << i))) {
584 continue;
585 }
586 this->uniform_vector_size[this->uniforms] = 4;
587 this->userplane[compacted_clipplane_index] = dst_reg(UNIFORM, this->uniforms);
588 this->userplane[compacted_clipplane_index].type = BRW_REGISTER_TYPE_F;
589 for (int j = 0; j < 4; ++j) {
590 c->prog_data.param[this->uniforms * 4 + j] = &clip_planes[i][j];
591 }
592 ++compacted_clipplane_index;
593 ++this->uniforms;
594 }
595 }
596
597 /* Our support for builtin uniforms is even scarier than non-builtin.
598 * It sits on top of the PROG_STATE_VAR parameters that are
599 * automatically updated from GL context state.
600 */
601 void
602 vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
603 {
604 const ir_state_slot *const slots = ir->state_slots;
605 assert(ir->state_slots != NULL);
606
607 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
608 /* This state reference has already been setup by ir_to_mesa,
609 * but we'll get the same index back here. We can reference
610 * ParameterValues directly, since unlike brw_fs.cpp, we never
611 * add new state references during compile.
612 */
613 int index = _mesa_add_state_reference(this->vp->Base.Parameters,
614 (gl_state_index *)slots[i].tokens);
615 float *values = &this->vp->Base.Parameters->ParameterValues[index][0].f;
616
617 this->uniform_vector_size[this->uniforms] = 0;
618 /* Add each of the unique swizzled channels of the element.
619 * This will end up matching the size of the glsl_type of this field.
620 */
621 int last_swiz = -1;
622 for (unsigned int j = 0; j < 4; j++) {
623 int swiz = GET_SWZ(slots[i].swizzle, j);
624 last_swiz = swiz;
625
626 c->prog_data.param[this->uniforms * 4 + j] = &values[swiz];
627 if (swiz <= last_swiz)
628 this->uniform_vector_size[this->uniforms]++;
629 }
630 this->uniforms++;
631 }
632 }
633
634 dst_reg *
635 vec4_visitor::variable_storage(ir_variable *var)
636 {
637 return (dst_reg *)hash_table_find(this->variable_ht, var);
638 }
639
640 void
641 vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir, uint32_t *predicate)
642 {
643 ir_expression *expr = ir->as_expression();
644
645 *predicate = BRW_PREDICATE_NORMAL;
646
647 if (expr) {
648 src_reg op[2];
649 vec4_instruction *inst;
650
651 assert(expr->get_num_operands() <= 2);
652 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
653 expr->operands[i]->accept(this);
654 op[i] = this->result;
655
656 resolve_ud_negate(&op[i]);
657 }
658
659 switch (expr->operation) {
660 case ir_unop_logic_not:
661 inst = emit(AND(dst_null_d(), op[0], src_reg(1)));
662 inst->conditional_mod = BRW_CONDITIONAL_Z;
663 break;
664
665 case ir_binop_logic_xor:
666 inst = emit(XOR(dst_null_d(), op[0], op[1]));
667 inst->conditional_mod = BRW_CONDITIONAL_NZ;
668 break;
669
670 case ir_binop_logic_or:
671 inst = emit(OR(dst_null_d(), op[0], op[1]));
672 inst->conditional_mod = BRW_CONDITIONAL_NZ;
673 break;
674
675 case ir_binop_logic_and:
676 inst = emit(AND(dst_null_d(), op[0], op[1]));
677 inst->conditional_mod = BRW_CONDITIONAL_NZ;
678 break;
679
680 case ir_unop_f2b:
681 if (intel->gen >= 6) {
682 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
683 } else {
684 inst = emit(MOV(dst_null_f(), op[0]));
685 inst->conditional_mod = BRW_CONDITIONAL_NZ;
686 }
687 break;
688
689 case ir_unop_i2b:
690 if (intel->gen >= 6) {
691 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
692 } else {
693 inst = emit(MOV(dst_null_d(), op[0]));
694 inst->conditional_mod = BRW_CONDITIONAL_NZ;
695 }
696 break;
697
698 case ir_binop_all_equal:
699 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
700 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
701 break;
702
703 case ir_binop_any_nequal:
704 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
705 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
706 break;
707
708 case ir_unop_any:
709 inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
710 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
711 break;
712
713 case ir_binop_greater:
714 case ir_binop_gequal:
715 case ir_binop_less:
716 case ir_binop_lequal:
717 case ir_binop_equal:
718 case ir_binop_nequal:
719 emit(CMP(dst_null_d(), op[0], op[1],
720 brw_conditional_for_comparison(expr->operation)));
721 break;
722
723 default:
724 assert(!"not reached");
725 break;
726 }
727 return;
728 }
729
730 ir->accept(this);
731
732 resolve_ud_negate(&this->result);
733
734 if (intel->gen >= 6) {
735 vec4_instruction *inst = emit(AND(dst_null_d(),
736 this->result, src_reg(1)));
737 inst->conditional_mod = BRW_CONDITIONAL_NZ;
738 } else {
739 vec4_instruction *inst = emit(MOV(dst_null_d(), this->result));
740 inst->conditional_mod = BRW_CONDITIONAL_NZ;
741 }
742 }
743
744 /**
745 * Emit a gen6 IF statement with the comparison folded into the IF
746 * instruction.
747 */
748 void
749 vec4_visitor::emit_if_gen6(ir_if *ir)
750 {
751 ir_expression *expr = ir->condition->as_expression();
752
753 if (expr) {
754 src_reg op[2];
755 dst_reg temp;
756
757 assert(expr->get_num_operands() <= 2);
758 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
759 expr->operands[i]->accept(this);
760 op[i] = this->result;
761 }
762
763 switch (expr->operation) {
764 case ir_unop_logic_not:
765 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z));
766 return;
767
768 case ir_binop_logic_xor:
769 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
770 return;
771
772 case ir_binop_logic_or:
773 temp = dst_reg(this, glsl_type::bool_type);
774 emit(OR(temp, op[0], op[1]));
775 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
776 return;
777
778 case ir_binop_logic_and:
779 temp = dst_reg(this, glsl_type::bool_type);
780 emit(AND(temp, op[0], op[1]));
781 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
782 return;
783
784 case ir_unop_f2b:
785 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
786 return;
787
788 case ir_unop_i2b:
789 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
790 return;
791
792 case ir_binop_greater:
793 case ir_binop_gequal:
794 case ir_binop_less:
795 case ir_binop_lequal:
796 case ir_binop_equal:
797 case ir_binop_nequal:
798 emit(IF(op[0], op[1],
799 brw_conditional_for_comparison(expr->operation)));
800 return;
801
802 case ir_binop_all_equal:
803 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
804 emit(IF(BRW_PREDICATE_ALIGN16_ALL4H));
805 return;
806
807 case ir_binop_any_nequal:
808 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
809 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
810 return;
811
812 case ir_unop_any:
813 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
814 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
815 return;
816
817 default:
818 assert(!"not reached");
819 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
820 return;
821 }
822 return;
823 }
824
825 ir->condition->accept(this);
826
827 emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ));
828 }
829
830 void
831 vec4_visitor::visit(ir_variable *ir)
832 {
833 dst_reg *reg = NULL;
834
835 if (variable_storage(ir))
836 return;
837
838 switch (ir->mode) {
839 case ir_var_in:
840 reg = new(mem_ctx) dst_reg(ATTR, ir->location);
841
842 /* Do GL_FIXED rescaling for GLES2.0. Our GL_FIXED attributes
843 * come in as floating point conversions of the integer values.
844 */
845 for (int i = ir->location; i < ir->location + type_size(ir->type); i++) {
846 if (!c->key.gl_fixed_input_size[i])
847 continue;
848
849 dst_reg dst = *reg;
850 dst.type = brw_type_for_base_type(ir->type);
851 dst.writemask = (1 << c->key.gl_fixed_input_size[i]) - 1;
852 emit(MUL(dst, src_reg(dst), src_reg(1.0f / 65536.0f)));
853 }
854 break;
855
856 case ir_var_out:
857 reg = new(mem_ctx) dst_reg(this, ir->type);
858
859 for (int i = 0; i < type_size(ir->type); i++) {
860 output_reg[ir->location + i] = *reg;
861 output_reg[ir->location + i].reg_offset = i;
862 output_reg[ir->location + i].type =
863 brw_type_for_base_type(ir->type->get_scalar_type());
864 output_reg_annotation[ir->location + i] = ir->name;
865 }
866 break;
867
868 case ir_var_auto:
869 case ir_var_temporary:
870 reg = new(mem_ctx) dst_reg(this, ir->type);
871 break;
872
873 case ir_var_uniform:
874 reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
875
876 /* Track how big the whole uniform variable is, in case we need to put a
877 * copy of its data into pull constants for array access.
878 */
879 this->uniform_size[this->uniforms] = type_size(ir->type);
880
881 if (!strncmp(ir->name, "gl_", 3)) {
882 setup_builtin_uniform_values(ir);
883 } else {
884 setup_uniform_values(ir->location, ir->type);
885 }
886 break;
887
888 case ir_var_system_value:
889 /* VertexID is stored by the VF as the last vertex element, but
890 * we don't represent it with a flag in inputs_read, so we call
891 * it VERT_ATTRIB_MAX, which setup_attributes() picks up on.
892 */
893 reg = new(mem_ctx) dst_reg(ATTR, VERT_ATTRIB_MAX);
894 prog_data->uses_vertexid = true;
895
896 switch (ir->location) {
897 case SYSTEM_VALUE_VERTEX_ID:
898 reg->writemask = WRITEMASK_X;
899 break;
900 case SYSTEM_VALUE_INSTANCE_ID:
901 reg->writemask = WRITEMASK_Y;
902 break;
903 default:
904 assert(!"not reached");
905 break;
906 }
907 break;
908
909 default:
910 assert(!"not reached");
911 }
912
913 reg->type = brw_type_for_base_type(ir->type);
914 hash_table_insert(this->variable_ht, reg, ir);
915 }
916
917 void
918 vec4_visitor::visit(ir_loop *ir)
919 {
920 dst_reg counter;
921
922 /* We don't want debugging output to print the whole body of the
923 * loop as the annotation.
924 */
925 this->base_ir = NULL;
926
927 if (ir->counter != NULL) {
928 this->base_ir = ir->counter;
929 ir->counter->accept(this);
930 counter = *(variable_storage(ir->counter));
931
932 if (ir->from != NULL) {
933 this->base_ir = ir->from;
934 ir->from->accept(this);
935
936 emit(MOV(counter, this->result));
937 }
938 }
939
940 emit(BRW_OPCODE_DO);
941
942 if (ir->to) {
943 this->base_ir = ir->to;
944 ir->to->accept(this);
945
946 emit(CMP(dst_null_d(), src_reg(counter), this->result,
947 brw_conditional_for_comparison(ir->cmp)));
948
949 vec4_instruction *inst = emit(BRW_OPCODE_BREAK);
950 inst->predicate = BRW_PREDICATE_NORMAL;
951 }
952
953 visit_instructions(&ir->body_instructions);
954
955
956 if (ir->increment) {
957 this->base_ir = ir->increment;
958 ir->increment->accept(this);
959 emit(ADD(counter, src_reg(counter), this->result));
960 }
961
962 emit(BRW_OPCODE_WHILE);
963 }
964
965 void
966 vec4_visitor::visit(ir_loop_jump *ir)
967 {
968 switch (ir->mode) {
969 case ir_loop_jump::jump_break:
970 emit(BRW_OPCODE_BREAK);
971 break;
972 case ir_loop_jump::jump_continue:
973 emit(BRW_OPCODE_CONTINUE);
974 break;
975 }
976 }
977
978
979 void
980 vec4_visitor::visit(ir_function_signature *ir)
981 {
982 assert(0);
983 (void)ir;
984 }
985
986 void
987 vec4_visitor::visit(ir_function *ir)
988 {
989 /* Ignore function bodies other than main() -- we shouldn't see calls to
990 * them since they should all be inlined.
991 */
992 if (strcmp(ir->name, "main") == 0) {
993 const ir_function_signature *sig;
994 exec_list empty;
995
996 sig = ir->matching_signature(&empty);
997
998 assert(sig);
999
1000 visit_instructions(&sig->body);
1001 }
1002 }
1003
1004 bool
1005 vec4_visitor::try_emit_sat(ir_expression *ir)
1006 {
1007 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1008 if (!sat_src)
1009 return false;
1010
1011 sat_src->accept(this);
1012 src_reg src = this->result;
1013
1014 this->result = src_reg(this, ir->type);
1015 vec4_instruction *inst;
1016 inst = emit(MOV(dst_reg(this->result), src));
1017 inst->saturate = true;
1018
1019 return true;
1020 }
1021
1022 void
1023 vec4_visitor::emit_bool_comparison(unsigned int op,
1024 dst_reg dst, src_reg src0, src_reg src1)
1025 {
1026 /* original gen4 does destination conversion before comparison. */
1027 if (intel->gen < 5)
1028 dst.type = src0.type;
1029
1030 emit(CMP(dst, src0, src1, brw_conditional_for_comparison(op)));
1031
1032 dst.type = BRW_REGISTER_TYPE_D;
1033 emit(AND(dst, src_reg(dst), src_reg(0x1)));
1034 }
1035
1036 void
1037 vec4_visitor::visit(ir_expression *ir)
1038 {
1039 unsigned int operand;
1040 src_reg op[Elements(ir->operands)];
1041 src_reg result_src;
1042 dst_reg result_dst;
1043 vec4_instruction *inst;
1044
1045 if (try_emit_sat(ir))
1046 return;
1047
1048 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1049 this->result.file = BAD_FILE;
1050 ir->operands[operand]->accept(this);
1051 if (this->result.file == BAD_FILE) {
1052 printf("Failed to get tree for expression operand:\n");
1053 ir->operands[operand]->print();
1054 exit(1);
1055 }
1056 op[operand] = this->result;
1057
1058 /* Matrix expression operands should have been broken down to vector
1059 * operations already.
1060 */
1061 assert(!ir->operands[operand]->type->is_matrix());
1062 }
1063
1064 int vector_elements = ir->operands[0]->type->vector_elements;
1065 if (ir->operands[1]) {
1066 vector_elements = MAX2(vector_elements,
1067 ir->operands[1]->type->vector_elements);
1068 }
1069
1070 this->result.file = BAD_FILE;
1071
1072 /* Storage for our result. Ideally for an assignment we'd be using
1073 * the actual storage for the result here, instead.
1074 */
1075 result_src = src_reg(this, ir->type);
1076 /* convenience for the emit functions below. */
1077 result_dst = dst_reg(result_src);
1078 /* If nothing special happens, this is the result. */
1079 this->result = result_src;
1080 /* Limit writes to the channels that will be used by result_src later.
1081 * This does limit this temp's use as a temporary for multi-instruction
1082 * sequences.
1083 */
1084 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1085
1086 switch (ir->operation) {
1087 case ir_unop_logic_not:
1088 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
1089 * ones complement of the whole register, not just bit 0.
1090 */
1091 emit(XOR(result_dst, op[0], src_reg(1)));
1092 break;
1093 case ir_unop_neg:
1094 op[0].negate = !op[0].negate;
1095 this->result = op[0];
1096 break;
1097 case ir_unop_abs:
1098 op[0].abs = true;
1099 op[0].negate = false;
1100 this->result = op[0];
1101 break;
1102
1103 case ir_unop_sign:
1104 emit(MOV(result_dst, src_reg(0.0f)));
1105
1106 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_G));
1107 inst = emit(MOV(result_dst, src_reg(1.0f)));
1108 inst->predicate = BRW_PREDICATE_NORMAL;
1109
1110 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_L));
1111 inst = emit(MOV(result_dst, src_reg(-1.0f)));
1112 inst->predicate = BRW_PREDICATE_NORMAL;
1113
1114 break;
1115
1116 case ir_unop_rcp:
1117 emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
1118 break;
1119
1120 case ir_unop_exp2:
1121 emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
1122 break;
1123 case ir_unop_log2:
1124 emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
1125 break;
1126 case ir_unop_exp:
1127 case ir_unop_log:
1128 assert(!"not reached: should be handled by ir_explog_to_explog2");
1129 break;
1130 case ir_unop_sin:
1131 case ir_unop_sin_reduced:
1132 emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
1133 break;
1134 case ir_unop_cos:
1135 case ir_unop_cos_reduced:
1136 emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
1137 break;
1138
1139 case ir_unop_dFdx:
1140 case ir_unop_dFdy:
1141 assert(!"derivatives not valid in vertex shader");
1142 break;
1143
1144 case ir_unop_noise:
1145 assert(!"not reached: should be handled by lower_noise");
1146 break;
1147
1148 case ir_binop_add:
1149 emit(ADD(result_dst, op[0], op[1]));
1150 break;
1151 case ir_binop_sub:
1152 assert(!"not reached: should be handled by ir_sub_to_add_neg");
1153 break;
1154
1155 case ir_binop_mul:
1156 if (ir->type->is_integer()) {
1157 /* For integer multiplication, the MUL uses the low 16 bits
1158 * of one of the operands (src0 on gen6, src1 on gen7). The
1159 * MACH accumulates in the contribution of the upper 16 bits
1160 * of that operand.
1161 *
1162 * FINISHME: Emit just the MUL if we know an operand is small
1163 * enough.
1164 */
1165 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
1166
1167 emit(MUL(acc, op[0], op[1]));
1168 emit(MACH(dst_null_d(), op[0], op[1]));
1169 emit(MOV(result_dst, src_reg(acc)));
1170 } else {
1171 emit(MUL(result_dst, op[0], op[1]));
1172 }
1173 break;
1174 case ir_binop_div:
1175 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
1176 assert(ir->type->is_integer());
1177 emit_math(SHADER_OPCODE_INT_QUOTIENT, result_dst, op[0], op[1]);
1178 break;
1179 case ir_binop_mod:
1180 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1181 assert(ir->type->is_integer());
1182 emit_math(SHADER_OPCODE_INT_REMAINDER, result_dst, op[0], op[1]);
1183 break;
1184
1185 case ir_binop_less:
1186 case ir_binop_greater:
1187 case ir_binop_lequal:
1188 case ir_binop_gequal:
1189 case ir_binop_equal:
1190 case ir_binop_nequal: {
1191 emit(CMP(result_dst, op[0], op[1],
1192 brw_conditional_for_comparison(ir->operation)));
1193 emit(AND(result_dst, result_src, src_reg(0x1)));
1194 break;
1195 }
1196
1197 case ir_binop_all_equal:
1198 /* "==" operator producing a scalar boolean. */
1199 if (ir->operands[0]->type->is_vector() ||
1200 ir->operands[1]->type->is_vector()) {
1201 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
1202 emit(MOV(result_dst, src_reg(0)));
1203 inst = emit(MOV(result_dst, src_reg(1)));
1204 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1205 } else {
1206 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z));
1207 emit(AND(result_dst, result_src, src_reg(0x1)));
1208 }
1209 break;
1210 case ir_binop_any_nequal:
1211 /* "!=" operator producing a scalar boolean. */
1212 if (ir->operands[0]->type->is_vector() ||
1213 ir->operands[1]->type->is_vector()) {
1214 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
1215
1216 emit(MOV(result_dst, src_reg(0)));
1217 inst = emit(MOV(result_dst, src_reg(1)));
1218 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1219 } else {
1220 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ));
1221 emit(AND(result_dst, result_src, src_reg(0x1)));
1222 }
1223 break;
1224
1225 case ir_unop_any:
1226 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
1227 emit(MOV(result_dst, src_reg(0)));
1228
1229 inst = emit(MOV(result_dst, src_reg(1)));
1230 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1231 break;
1232
1233 case ir_binop_logic_xor:
1234 emit(XOR(result_dst, op[0], op[1]));
1235 break;
1236
1237 case ir_binop_logic_or:
1238 emit(OR(result_dst, op[0], op[1]));
1239 break;
1240
1241 case ir_binop_logic_and:
1242 emit(AND(result_dst, op[0], op[1]));
1243 break;
1244
1245 case ir_binop_dot:
1246 assert(ir->operands[0]->type->is_vector());
1247 assert(ir->operands[0]->type == ir->operands[1]->type);
1248 emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
1249 break;
1250
1251 case ir_unop_sqrt:
1252 emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
1253 break;
1254 case ir_unop_rsq:
1255 emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
1256 break;
1257
1258 case ir_unop_bitcast_i2f:
1259 case ir_unop_bitcast_u2f:
1260 this->result = op[0];
1261 this->result.type = BRW_REGISTER_TYPE_F;
1262 break;
1263
1264 case ir_unop_bitcast_f2i:
1265 this->result = op[0];
1266 this->result.type = BRW_REGISTER_TYPE_D;
1267 break;
1268
1269 case ir_unop_bitcast_f2u:
1270 this->result = op[0];
1271 this->result.type = BRW_REGISTER_TYPE_UD;
1272 break;
1273
1274 case ir_unop_i2f:
1275 case ir_unop_i2u:
1276 case ir_unop_u2i:
1277 case ir_unop_u2f:
1278 case ir_unop_b2f:
1279 case ir_unop_b2i:
1280 case ir_unop_f2i:
1281 emit(MOV(result_dst, op[0]));
1282 break;
1283 case ir_unop_f2b:
1284 case ir_unop_i2b: {
1285 emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
1286 emit(AND(result_dst, result_src, src_reg(1)));
1287 break;
1288 }
1289
1290 case ir_unop_trunc:
1291 emit(RNDZ(result_dst, op[0]));
1292 break;
1293 case ir_unop_ceil:
1294 op[0].negate = !op[0].negate;
1295 inst = emit(RNDD(result_dst, op[0]));
1296 this->result.negate = true;
1297 break;
1298 case ir_unop_floor:
1299 inst = emit(RNDD(result_dst, op[0]));
1300 break;
1301 case ir_unop_fract:
1302 inst = emit(FRC(result_dst, op[0]));
1303 break;
1304 case ir_unop_round_even:
1305 emit(RNDE(result_dst, op[0]));
1306 break;
1307
1308 case ir_binop_min:
1309 if (intel->gen >= 6) {
1310 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1311 inst->conditional_mod = BRW_CONDITIONAL_L;
1312 } else {
1313 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_L));
1314
1315 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1316 inst->predicate = BRW_PREDICATE_NORMAL;
1317 }
1318 break;
1319 case ir_binop_max:
1320 if (intel->gen >= 6) {
1321 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1322 inst->conditional_mod = BRW_CONDITIONAL_G;
1323 } else {
1324 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_G));
1325
1326 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1327 inst->predicate = BRW_PREDICATE_NORMAL;
1328 }
1329 break;
1330
1331 case ir_binop_pow:
1332 emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
1333 break;
1334
1335 case ir_unop_bit_not:
1336 inst = emit(NOT(result_dst, op[0]));
1337 break;
1338 case ir_binop_bit_and:
1339 inst = emit(AND(result_dst, op[0], op[1]));
1340 break;
1341 case ir_binop_bit_xor:
1342 inst = emit(XOR(result_dst, op[0], op[1]));
1343 break;
1344 case ir_binop_bit_or:
1345 inst = emit(OR(result_dst, op[0], op[1]));
1346 break;
1347
1348 case ir_binop_lshift:
1349 inst = emit(BRW_OPCODE_SHL, result_dst, op[0], op[1]);
1350 break;
1351
1352 case ir_binop_rshift:
1353 if (ir->type->base_type == GLSL_TYPE_INT)
1354 inst = emit(BRW_OPCODE_ASR, result_dst, op[0], op[1]);
1355 else
1356 inst = emit(BRW_OPCODE_SHR, result_dst, op[0], op[1]);
1357 break;
1358
1359 case ir_quadop_vector:
1360 assert(!"not reached: should be handled by lower_quadop_vector");
1361 break;
1362 }
1363 }
1364
1365
1366 void
1367 vec4_visitor::visit(ir_swizzle *ir)
1368 {
1369 src_reg src;
1370 int i = 0;
1371 int swizzle[4];
1372
1373 /* Note that this is only swizzles in expressions, not those on the left
1374 * hand side of an assignment, which do write masking. See ir_assignment
1375 * for that.
1376 */
1377
1378 ir->val->accept(this);
1379 src = this->result;
1380 assert(src.file != BAD_FILE);
1381
1382 for (i = 0; i < ir->type->vector_elements; i++) {
1383 switch (i) {
1384 case 0:
1385 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
1386 break;
1387 case 1:
1388 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
1389 break;
1390 case 2:
1391 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
1392 break;
1393 case 3:
1394 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
1395 break;
1396 }
1397 }
1398 for (; i < 4; i++) {
1399 /* Replicate the last channel out. */
1400 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1401 }
1402
1403 src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1404
1405 this->result = src;
1406 }
1407
1408 void
1409 vec4_visitor::visit(ir_dereference_variable *ir)
1410 {
1411 const struct glsl_type *type = ir->type;
1412 dst_reg *reg = variable_storage(ir->var);
1413
1414 if (!reg) {
1415 fail("Failed to find variable storage for %s\n", ir->var->name);
1416 this->result = src_reg(brw_null_reg());
1417 return;
1418 }
1419
1420 this->result = src_reg(*reg);
1421
1422 /* System values get their swizzle from the dst_reg writemask */
1423 if (ir->var->mode == ir_var_system_value)
1424 return;
1425
1426 if (type->is_scalar() || type->is_vector() || type->is_matrix())
1427 this->result.swizzle = swizzle_for_size(type->vector_elements);
1428 }
1429
1430 void
1431 vec4_visitor::visit(ir_dereference_array *ir)
1432 {
1433 ir_constant *constant_index;
1434 src_reg src;
1435 int element_size = type_size(ir->type);
1436
1437 constant_index = ir->array_index->constant_expression_value();
1438
1439 ir->array->accept(this);
1440 src = this->result;
1441
1442 if (constant_index) {
1443 src.reg_offset += constant_index->value.i[0] * element_size;
1444 } else {
1445 /* Variable index array dereference. It eats the "vec4" of the
1446 * base of the array and an index that offsets the Mesa register
1447 * index.
1448 */
1449 ir->array_index->accept(this);
1450
1451 src_reg index_reg;
1452
1453 if (element_size == 1) {
1454 index_reg = this->result;
1455 } else {
1456 index_reg = src_reg(this, glsl_type::int_type);
1457
1458 emit(MUL(dst_reg(index_reg), this->result, src_reg(element_size)));
1459 }
1460
1461 if (src.reladdr) {
1462 src_reg temp = src_reg(this, glsl_type::int_type);
1463
1464 emit(ADD(dst_reg(temp), *src.reladdr, index_reg));
1465
1466 index_reg = temp;
1467 }
1468
1469 src.reladdr = ralloc(mem_ctx, src_reg);
1470 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1471 }
1472
1473 /* If the type is smaller than a vec4, replicate the last channel out. */
1474 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
1475 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1476 else
1477 src.swizzle = BRW_SWIZZLE_NOOP;
1478 src.type = brw_type_for_base_type(ir->type);
1479
1480 this->result = src;
1481 }
1482
1483 void
1484 vec4_visitor::visit(ir_dereference_record *ir)
1485 {
1486 unsigned int i;
1487 const glsl_type *struct_type = ir->record->type;
1488 int offset = 0;
1489
1490 ir->record->accept(this);
1491
1492 for (i = 0; i < struct_type->length; i++) {
1493 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1494 break;
1495 offset += type_size(struct_type->fields.structure[i].type);
1496 }
1497
1498 /* If the type is smaller than a vec4, replicate the last channel out. */
1499 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
1500 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1501 else
1502 this->result.swizzle = BRW_SWIZZLE_NOOP;
1503 this->result.type = brw_type_for_base_type(ir->type);
1504
1505 this->result.reg_offset += offset;
1506 }
1507
1508 /**
1509 * We want to be careful in assignment setup to hit the actual storage
1510 * instead of potentially using a temporary like we might with the
1511 * ir_dereference handler.
1512 */
1513 static dst_reg
1514 get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
1515 {
1516 /* The LHS must be a dereference. If the LHS is a variable indexed array
1517 * access of a vector, it must be separated into a series conditional moves
1518 * before reaching this point (see ir_vec_index_to_cond_assign).
1519 */
1520 assert(ir->as_dereference());
1521 ir_dereference_array *deref_array = ir->as_dereference_array();
1522 if (deref_array) {
1523 assert(!deref_array->array->type->is_vector());
1524 }
1525
1526 /* Use the rvalue deref handler for the most part. We'll ignore
1527 * swizzles in it and write swizzles using writemask, though.
1528 */
1529 ir->accept(v);
1530 return dst_reg(v->result);
1531 }
1532
1533 void
1534 vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src,
1535 const struct glsl_type *type, uint32_t predicate)
1536 {
1537 if (type->base_type == GLSL_TYPE_STRUCT) {
1538 for (unsigned int i = 0; i < type->length; i++) {
1539 emit_block_move(dst, src, type->fields.structure[i].type, predicate);
1540 }
1541 return;
1542 }
1543
1544 if (type->is_array()) {
1545 for (unsigned int i = 0; i < type->length; i++) {
1546 emit_block_move(dst, src, type->fields.array, predicate);
1547 }
1548 return;
1549 }
1550
1551 if (type->is_matrix()) {
1552 const struct glsl_type *vec_type;
1553
1554 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
1555 type->vector_elements, 1);
1556
1557 for (int i = 0; i < type->matrix_columns; i++) {
1558 emit_block_move(dst, src, vec_type, predicate);
1559 }
1560 return;
1561 }
1562
1563 assert(type->is_scalar() || type->is_vector());
1564
1565 dst->type = brw_type_for_base_type(type);
1566 src->type = dst->type;
1567
1568 dst->writemask = (1 << type->vector_elements) - 1;
1569
1570 src->swizzle = swizzle_for_size(type->vector_elements);
1571
1572 vec4_instruction *inst = emit(MOV(*dst, *src));
1573 inst->predicate = predicate;
1574
1575 dst->reg_offset++;
1576 src->reg_offset++;
1577 }
1578
1579
1580 /* If the RHS processing resulted in an instruction generating a
1581 * temporary value, and it would be easy to rewrite the instruction to
1582 * generate its result right into the LHS instead, do so. This ends
1583 * up reliably removing instructions where it can be tricky to do so
1584 * later without real UD chain information.
1585 */
1586 bool
1587 vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1588 dst_reg dst,
1589 src_reg src,
1590 vec4_instruction *pre_rhs_inst,
1591 vec4_instruction *last_rhs_inst)
1592 {
1593 /* This could be supported, but it would take more smarts. */
1594 if (ir->condition)
1595 return false;
1596
1597 if (pre_rhs_inst == last_rhs_inst)
1598 return false; /* No instructions generated to work with. */
1599
1600 /* Make sure the last instruction generated our source reg. */
1601 if (src.file != GRF ||
1602 src.file != last_rhs_inst->dst.file ||
1603 src.reg != last_rhs_inst->dst.reg ||
1604 src.reg_offset != last_rhs_inst->dst.reg_offset ||
1605 src.reladdr ||
1606 src.abs ||
1607 src.negate ||
1608 last_rhs_inst->predicate != BRW_PREDICATE_NONE)
1609 return false;
1610
1611 /* Check that that last instruction fully initialized the channels
1612 * we want to use, in the order we want to use them. We could
1613 * potentially reswizzle the operands of many instructions so that
1614 * we could handle out of order channels, but don't yet.
1615 */
1616
1617 for (unsigned i = 0; i < 4; i++) {
1618 if (dst.writemask & (1 << i)) {
1619 if (!(last_rhs_inst->dst.writemask & (1 << i)))
1620 return false;
1621
1622 if (BRW_GET_SWZ(src.swizzle, i) != i)
1623 return false;
1624 }
1625 }
1626
1627 /* Success! Rewrite the instruction. */
1628 last_rhs_inst->dst.file = dst.file;
1629 last_rhs_inst->dst.reg = dst.reg;
1630 last_rhs_inst->dst.reg_offset = dst.reg_offset;
1631 last_rhs_inst->dst.reladdr = dst.reladdr;
1632 last_rhs_inst->dst.writemask &= dst.writemask;
1633
1634 return true;
1635 }
1636
1637 void
1638 vec4_visitor::visit(ir_assignment *ir)
1639 {
1640 dst_reg dst = get_assignment_lhs(ir->lhs, this);
1641 uint32_t predicate = BRW_PREDICATE_NONE;
1642
1643 if (!ir->lhs->type->is_scalar() &&
1644 !ir->lhs->type->is_vector()) {
1645 ir->rhs->accept(this);
1646 src_reg src = this->result;
1647
1648 if (ir->condition) {
1649 emit_bool_to_cond_code(ir->condition, &predicate);
1650 }
1651
1652 /* emit_block_move doesn't account for swizzles in the source register.
1653 * This should be ok, since the source register is a structure or an
1654 * array, and those can't be swizzled. But double-check to be sure.
1655 */
1656 assert(src.swizzle ==
1657 (ir->rhs->type->is_matrix()
1658 ? swizzle_for_size(ir->rhs->type->vector_elements)
1659 : BRW_SWIZZLE_NOOP));
1660
1661 emit_block_move(&dst, &src, ir->rhs->type, predicate);
1662 return;
1663 }
1664
1665 /* Now we're down to just a scalar/vector with writemasks. */
1666 int i;
1667
1668 vec4_instruction *pre_rhs_inst, *last_rhs_inst;
1669 pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1670
1671 ir->rhs->accept(this);
1672
1673 last_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1674
1675 src_reg src = this->result;
1676
1677 int swizzles[4];
1678 int first_enabled_chan = 0;
1679 int src_chan = 0;
1680
1681 assert(ir->lhs->type->is_vector() ||
1682 ir->lhs->type->is_scalar());
1683 dst.writemask = ir->write_mask;
1684
1685 for (int i = 0; i < 4; i++) {
1686 if (dst.writemask & (1 << i)) {
1687 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
1688 break;
1689 }
1690 }
1691
1692 /* Swizzle a small RHS vector into the channels being written.
1693 *
1694 * glsl ir treats write_mask as dictating how many channels are
1695 * present on the RHS while in our instructions we need to make
1696 * those channels appear in the slots of the vec4 they're written to.
1697 */
1698 for (int i = 0; i < 4; i++) {
1699 if (dst.writemask & (1 << i))
1700 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
1701 else
1702 swizzles[i] = first_enabled_chan;
1703 }
1704 src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
1705 swizzles[2], swizzles[3]);
1706
1707 if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) {
1708 return;
1709 }
1710
1711 if (ir->condition) {
1712 emit_bool_to_cond_code(ir->condition, &predicate);
1713 }
1714
1715 for (i = 0; i < type_size(ir->lhs->type); i++) {
1716 vec4_instruction *inst = emit(MOV(dst, src));
1717 inst->predicate = predicate;
1718
1719 dst.reg_offset++;
1720 src.reg_offset++;
1721 }
1722 }
1723
1724 void
1725 vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir)
1726 {
1727 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1728 foreach_list(node, &ir->components) {
1729 ir_constant *field_value = (ir_constant *)node;
1730
1731 emit_constant_values(dst, field_value);
1732 }
1733 return;
1734 }
1735
1736 if (ir->type->is_array()) {
1737 for (unsigned int i = 0; i < ir->type->length; i++) {
1738 emit_constant_values(dst, ir->array_elements[i]);
1739 }
1740 return;
1741 }
1742
1743 if (ir->type->is_matrix()) {
1744 for (int i = 0; i < ir->type->matrix_columns; i++) {
1745 float *vec = &ir->value.f[i * ir->type->vector_elements];
1746
1747 for (int j = 0; j < ir->type->vector_elements; j++) {
1748 dst->writemask = 1 << j;
1749 dst->type = BRW_REGISTER_TYPE_F;
1750
1751 emit(MOV(*dst, src_reg(vec[j])));
1752 }
1753 dst->reg_offset++;
1754 }
1755 return;
1756 }
1757
1758 int remaining_writemask = (1 << ir->type->vector_elements) - 1;
1759
1760 for (int i = 0; i < ir->type->vector_elements; i++) {
1761 if (!(remaining_writemask & (1 << i)))
1762 continue;
1763
1764 dst->writemask = 1 << i;
1765 dst->type = brw_type_for_base_type(ir->type);
1766
1767 /* Find other components that match the one we're about to
1768 * write. Emits fewer instructions for things like vec4(0.5,
1769 * 1.5, 1.5, 1.5).
1770 */
1771 for (int j = i + 1; j < ir->type->vector_elements; j++) {
1772 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1773 if (ir->value.b[i] == ir->value.b[j])
1774 dst->writemask |= (1 << j);
1775 } else {
1776 /* u, i, and f storage all line up, so no need for a
1777 * switch case for comparing each type.
1778 */
1779 if (ir->value.u[i] == ir->value.u[j])
1780 dst->writemask |= (1 << j);
1781 }
1782 }
1783
1784 switch (ir->type->base_type) {
1785 case GLSL_TYPE_FLOAT:
1786 emit(MOV(*dst, src_reg(ir->value.f[i])));
1787 break;
1788 case GLSL_TYPE_INT:
1789 emit(MOV(*dst, src_reg(ir->value.i[i])));
1790 break;
1791 case GLSL_TYPE_UINT:
1792 emit(MOV(*dst, src_reg(ir->value.u[i])));
1793 break;
1794 case GLSL_TYPE_BOOL:
1795 emit(MOV(*dst, src_reg(ir->value.b[i])));
1796 break;
1797 default:
1798 assert(!"Non-float/uint/int/bool constant");
1799 break;
1800 }
1801
1802 remaining_writemask &= ~dst->writemask;
1803 }
1804 dst->reg_offset++;
1805 }
1806
1807 void
1808 vec4_visitor::visit(ir_constant *ir)
1809 {
1810 dst_reg dst = dst_reg(this, ir->type);
1811 this->result = src_reg(dst);
1812
1813 emit_constant_values(&dst, ir);
1814 }
1815
1816 void
1817 vec4_visitor::visit(ir_call *ir)
1818 {
1819 assert(!"not reached");
1820 }
1821
1822 void
1823 vec4_visitor::visit(ir_texture *ir)
1824 {
1825 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &vp->Base);
1826 sampler = vp->Base.SamplerUnits[sampler];
1827
1828 /* Should be lowered by do_lower_texture_projection */
1829 assert(!ir->projector);
1830
1831 vec4_instruction *inst = NULL;
1832 switch (ir->op) {
1833 case ir_tex:
1834 case ir_txl:
1835 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXL);
1836 break;
1837 case ir_txd:
1838 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXD);
1839 break;
1840 case ir_txf:
1841 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXF);
1842 break;
1843 case ir_txs:
1844 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXS);
1845 break;
1846 case ir_txb:
1847 assert(!"TXB is not valid for vertex shaders.");
1848 }
1849
1850 /* Texel offsets go in the message header; Gen4 also requires headers. */
1851 inst->header_present = ir->offset || intel->gen < 5;
1852 inst->base_mrf = 2;
1853 inst->mlen = inst->header_present + 1; /* always at least one */
1854 inst->sampler = sampler;
1855 inst->dst = dst_reg(this, ir->type);
1856 inst->shadow_compare = ir->shadow_comparitor != NULL;
1857
1858 if (ir->offset != NULL && ir->op != ir_txf)
1859 inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1860
1861 /* MRF for the first parameter */
1862 int param_base = inst->base_mrf + inst->header_present;
1863
1864 if (ir->op == ir_txs) {
1865 ir->lod_info.lod->accept(this);
1866 int writemask = intel->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
1867 emit(MOV(dst_reg(MRF, param_base, ir->lod_info.lod->type, writemask),
1868 this->result));
1869 } else {
1870 int i, coord_mask = 0, zero_mask = 0;
1871 /* Load the coordinate */
1872 /* FINISHME: gl_clamp_mask and saturate */
1873 for (i = 0; i < ir->coordinate->type->vector_elements; i++)
1874 coord_mask |= (1 << i);
1875 for (; i < 4; i++)
1876 zero_mask |= (1 << i);
1877
1878 ir->coordinate->accept(this);
1879 if (ir->offset && ir->op == ir_txf) {
1880 /* It appears that the ld instruction used for txf does its
1881 * address bounds check before adding in the offset. To work
1882 * around this, just add the integer offset to the integer
1883 * texel coordinate, and don't put the offset in the header.
1884 */
1885 ir_constant *offset = ir->offset->as_constant();
1886 assert(offset);
1887
1888 for (int j = 0; j < ir->coordinate->type->vector_elements; j++) {
1889 src_reg src = this->result;
1890 src.swizzle = BRW_SWIZZLE4(BRW_GET_SWZ(src.swizzle, j),
1891 BRW_GET_SWZ(src.swizzle, j),
1892 BRW_GET_SWZ(src.swizzle, j),
1893 BRW_GET_SWZ(src.swizzle, j));
1894 emit(ADD(dst_reg(MRF, param_base, ir->coordinate->type, 1 << j),
1895 src, offset->value.i[j]));
1896 }
1897 } else {
1898 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask),
1899 this->result));
1900 }
1901 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask),
1902 src_reg(0)));
1903 /* Load the shadow comparitor */
1904 if (ir->shadow_comparitor) {
1905 ir->shadow_comparitor->accept(this);
1906 emit(MOV(dst_reg(MRF, param_base + 1, ir->shadow_comparitor->type,
1907 WRITEMASK_X),
1908 this->result));
1909 inst->mlen++;
1910 }
1911
1912 /* Load the LOD info */
1913 if (ir->op == ir_txl) {
1914 int mrf, writemask;
1915 if (intel->gen >= 5) {
1916 mrf = param_base + 1;
1917 if (ir->shadow_comparitor) {
1918 writemask = WRITEMASK_Y;
1919 /* mlen already incremented */
1920 } else {
1921 writemask = WRITEMASK_X;
1922 inst->mlen++;
1923 }
1924 } else /* intel->gen == 4 */ {
1925 mrf = param_base;
1926 writemask = WRITEMASK_Z;
1927 }
1928 ir->lod_info.lod->accept(this);
1929 emit(MOV(dst_reg(MRF, mrf, ir->lod_info.lod->type, writemask),
1930 this->result));
1931 } else if (ir->op == ir_txf) {
1932 ir->lod_info.lod->accept(this);
1933 emit(MOV(dst_reg(MRF, param_base, ir->lod_info.lod->type, WRITEMASK_W),
1934 this->result));
1935 } else if (ir->op == ir_txd) {
1936 const glsl_type *type = ir->lod_info.grad.dPdx->type;
1937
1938 ir->lod_info.grad.dPdx->accept(this);
1939 src_reg dPdx = this->result;
1940 ir->lod_info.grad.dPdy->accept(this);
1941 src_reg dPdy = this->result;
1942
1943 if (intel->gen >= 5) {
1944 dPdx.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1945 dPdy.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1946 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), dPdx));
1947 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), dPdy));
1948 inst->mlen++;
1949
1950 if (ir->type->vector_elements == 3) {
1951 dPdx.swizzle = BRW_SWIZZLE_ZZZZ;
1952 dPdy.swizzle = BRW_SWIZZLE_ZZZZ;
1953 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), dPdx));
1954 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), dPdy));
1955 inst->mlen++;
1956 }
1957 } else /* intel->gen == 4 */ {
1958 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), dPdx));
1959 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), dPdy));
1960 inst->mlen += 2;
1961 }
1962 }
1963 }
1964
1965 emit(inst);
1966
1967 swizzle_result(ir, src_reg(inst->dst), sampler);
1968 }
1969
1970 void
1971 vec4_visitor::swizzle_result(ir_texture *ir, src_reg orig_val, int sampler)
1972 {
1973 this->result = orig_val;
1974
1975 int s = c->key.tex.swizzles[sampler];
1976
1977 if (ir->op == ir_txs || ir->type == glsl_type::float_type
1978 || s == SWIZZLE_NOOP)
1979 return;
1980
1981 int zero_mask = 0, one_mask = 0, copy_mask = 0;
1982 int swizzle[4];
1983
1984 for (int i = 0; i < 4; i++) {
1985 switch (GET_SWZ(s, i)) {
1986 case SWIZZLE_ZERO:
1987 zero_mask |= (1 << i);
1988 break;
1989 case SWIZZLE_ONE:
1990 one_mask |= (1 << i);
1991 break;
1992 default:
1993 copy_mask |= (1 << i);
1994 swizzle[i] = GET_SWZ(s, i);
1995 break;
1996 }
1997 }
1998
1999 this->result = src_reg(this, ir->type);
2000 dst_reg swizzled_result(this->result);
2001
2002 if (copy_mask) {
2003 orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2004 swizzled_result.writemask = copy_mask;
2005 emit(MOV(swizzled_result, orig_val));
2006 }
2007
2008 if (zero_mask) {
2009 swizzled_result.writemask = zero_mask;
2010 emit(MOV(swizzled_result, src_reg(0.0f)));
2011 }
2012
2013 if (one_mask) {
2014 swizzled_result.writemask = one_mask;
2015 emit(MOV(swizzled_result, src_reg(1.0f)));
2016 }
2017 }
2018
2019 void
2020 vec4_visitor::visit(ir_return *ir)
2021 {
2022 assert(!"not reached");
2023 }
2024
2025 void
2026 vec4_visitor::visit(ir_discard *ir)
2027 {
2028 assert(!"not reached");
2029 }
2030
2031 void
2032 vec4_visitor::visit(ir_if *ir)
2033 {
2034 /* Don't point the annotation at the if statement, because then it plus
2035 * the then and else blocks get printed.
2036 */
2037 this->base_ir = ir->condition;
2038
2039 if (intel->gen == 6) {
2040 emit_if_gen6(ir);
2041 } else {
2042 uint32_t predicate;
2043 emit_bool_to_cond_code(ir->condition, &predicate);
2044 emit(IF(predicate));
2045 }
2046
2047 visit_instructions(&ir->then_instructions);
2048
2049 if (!ir->else_instructions.is_empty()) {
2050 this->base_ir = ir->condition;
2051 emit(BRW_OPCODE_ELSE);
2052
2053 visit_instructions(&ir->else_instructions);
2054 }
2055
2056 this->base_ir = ir->condition;
2057 emit(BRW_OPCODE_ENDIF);
2058 }
2059
2060 void
2061 vec4_visitor::emit_ndc_computation()
2062 {
2063 /* Get the position */
2064 src_reg pos = src_reg(output_reg[VERT_RESULT_HPOS]);
2065
2066 /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
2067 dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
2068 output_reg[BRW_VERT_RESULT_NDC] = ndc;
2069
2070 current_annotation = "NDC";
2071 dst_reg ndc_w = ndc;
2072 ndc_w.writemask = WRITEMASK_W;
2073 src_reg pos_w = pos;
2074 pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
2075 emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
2076
2077 dst_reg ndc_xyz = ndc;
2078 ndc_xyz.writemask = WRITEMASK_XYZ;
2079
2080 emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
2081 }
2082
2083 void
2084 vec4_visitor::emit_psiz_and_flags(struct brw_reg reg)
2085 {
2086 if (intel->gen < 6 &&
2087 ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
2088 c->key.userclip_active || brw->has_negative_rhw_bug)) {
2089 dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
2090 dst_reg header1_w = header1;
2091 header1_w.writemask = WRITEMASK_W;
2092 GLuint i;
2093
2094 emit(MOV(header1, 0u));
2095
2096 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2097 src_reg psiz = src_reg(output_reg[VERT_RESULT_PSIZ]);
2098
2099 current_annotation = "Point size";
2100 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
2101 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
2102 }
2103
2104 current_annotation = "Clipping flags";
2105 for (i = 0; i < c->key.nr_userclip_plane_consts; i++) {
2106 vec4_instruction *inst;
2107
2108 inst = emit(DP4(dst_null_f(), src_reg(output_reg[VERT_RESULT_HPOS]),
2109 src_reg(this->userplane[i])));
2110 inst->conditional_mod = BRW_CONDITIONAL_L;
2111
2112 inst = emit(OR(header1_w, src_reg(header1_w), 1u << i));
2113 inst->predicate = BRW_PREDICATE_NORMAL;
2114 }
2115
2116 /* i965 clipping workaround:
2117 * 1) Test for -ve rhw
2118 * 2) If set,
2119 * set ndc = (0,0,0,0)
2120 * set ucp[6] = 1
2121 *
2122 * Later, clipping will detect ucp[6] and ensure the primitive is
2123 * clipped against all fixed planes.
2124 */
2125 if (brw->has_negative_rhw_bug) {
2126 #if 0
2127 /* FINISHME */
2128 brw_CMP(p,
2129 vec8(brw_null_reg()),
2130 BRW_CONDITIONAL_L,
2131 brw_swizzle1(output_reg[BRW_VERT_RESULT_NDC], 3),
2132 brw_imm_f(0));
2133
2134 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
2135 brw_MOV(p, output_reg[BRW_VERT_RESULT_NDC], brw_imm_f(0));
2136 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2137 #endif
2138 }
2139
2140 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
2141 } else if (intel->gen < 6) {
2142 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
2143 } else {
2144 emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
2145 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2146 emit(MOV(brw_writemask(reg, WRITEMASK_W),
2147 src_reg(output_reg[VERT_RESULT_PSIZ])));
2148 }
2149 }
2150 }
2151
2152 void
2153 vec4_visitor::emit_clip_distances(struct brw_reg reg, int offset)
2154 {
2155 if (intel->gen < 6) {
2156 /* Clip distance slots are set aside in gen5, but they are not used. It
2157 * is not clear whether we actually need to set aside space for them,
2158 * but the performance cost is negligible.
2159 */
2160 return;
2161 }
2162
2163 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
2164 *
2165 * "If a linked set of shaders forming the vertex stage contains no
2166 * static write to gl_ClipVertex or gl_ClipDistance, but the
2167 * application has requested clipping against user clip planes through
2168 * the API, then the coordinate written to gl_Position is used for
2169 * comparison against the user clip planes."
2170 *
2171 * This function is only called if the shader didn't write to
2172 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
2173 * if the user wrote to it; otherwise we use gl_Position.
2174 */
2175 gl_vert_result clip_vertex = VERT_RESULT_CLIP_VERTEX;
2176 if (!(c->prog_data.outputs_written
2177 & BITFIELD64_BIT(VERT_RESULT_CLIP_VERTEX))) {
2178 clip_vertex = VERT_RESULT_HPOS;
2179 }
2180
2181 for (int i = 0; i + offset < c->key.nr_userclip_plane_consts && i < 4;
2182 ++i) {
2183 emit(DP4(dst_reg(brw_writemask(reg, 1 << i)),
2184 src_reg(output_reg[clip_vertex]),
2185 src_reg(this->userplane[i + offset])));
2186 }
2187 }
2188
2189 void
2190 vec4_visitor::emit_generic_urb_slot(dst_reg reg, int vert_result)
2191 {
2192 assert (vert_result < VERT_RESULT_MAX);
2193 reg.type = output_reg[vert_result].type;
2194 current_annotation = output_reg_annotation[vert_result];
2195 /* Copy the register, saturating if necessary */
2196 vec4_instruction *inst = emit(MOV(reg,
2197 src_reg(output_reg[vert_result])));
2198 if ((vert_result == VERT_RESULT_COL0 ||
2199 vert_result == VERT_RESULT_COL1 ||
2200 vert_result == VERT_RESULT_BFC0 ||
2201 vert_result == VERT_RESULT_BFC1) &&
2202 c->key.clamp_vertex_color) {
2203 inst->saturate = true;
2204 }
2205 }
2206
2207 void
2208 vec4_visitor::emit_urb_slot(int mrf, int vert_result)
2209 {
2210 struct brw_reg hw_reg = brw_message_reg(mrf);
2211 dst_reg reg = dst_reg(MRF, mrf);
2212 reg.type = BRW_REGISTER_TYPE_F;
2213
2214 switch (vert_result) {
2215 case VERT_RESULT_PSIZ:
2216 /* PSIZ is always in slot 0, and is coupled with other flags. */
2217 current_annotation = "indices, point width, clip flags";
2218 emit_psiz_and_flags(hw_reg);
2219 break;
2220 case BRW_VERT_RESULT_NDC:
2221 current_annotation = "NDC";
2222 emit(MOV(reg, src_reg(output_reg[BRW_VERT_RESULT_NDC])));
2223 break;
2224 case BRW_VERT_RESULT_HPOS_DUPLICATE:
2225 case VERT_RESULT_HPOS:
2226 current_annotation = "gl_Position";
2227 emit(MOV(reg, src_reg(output_reg[VERT_RESULT_HPOS])));
2228 break;
2229 case VERT_RESULT_CLIP_DIST0:
2230 case VERT_RESULT_CLIP_DIST1:
2231 if (this->c->key.uses_clip_distance) {
2232 emit_generic_urb_slot(reg, vert_result);
2233 } else {
2234 current_annotation = "user clip distances";
2235 emit_clip_distances(hw_reg, (vert_result - VERT_RESULT_CLIP_DIST0) * 4);
2236 }
2237 break;
2238 case BRW_VERT_RESULT_PAD:
2239 /* No need to write to this slot */
2240 break;
2241 default:
2242 emit_generic_urb_slot(reg, vert_result);
2243 break;
2244 }
2245 }
2246
2247 static int
2248 align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
2249 {
2250 struct intel_context *intel = &brw->intel;
2251
2252 if (intel->gen >= 6) {
2253 /* URB data written (does not include the message header reg) must
2254 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
2255 * section 5.4.3.2.2: URB_INTERLEAVED.
2256 *
2257 * URB entries are allocated on a multiple of 1024 bits, so an
2258 * extra 128 bits written here to make the end align to 256 is
2259 * no problem.
2260 */
2261 if ((mlen % 2) != 1)
2262 mlen++;
2263 }
2264
2265 return mlen;
2266 }
2267
2268 /**
2269 * Generates the VUE payload plus the 1 or 2 URB write instructions to
2270 * complete the VS thread.
2271 *
2272 * The VUE layout is documented in Volume 2a.
2273 */
2274 void
2275 vec4_visitor::emit_urb_writes()
2276 {
2277 /* MRF 0 is reserved for the debugger, so start with message header
2278 * in MRF 1.
2279 */
2280 int base_mrf = 1;
2281 int mrf = base_mrf;
2282 /* In the process of generating our URB write message contents, we
2283 * may need to unspill a register or load from an array. Those
2284 * reads would use MRFs 14-15.
2285 */
2286 int max_usable_mrf = 13;
2287
2288 /* The following assertion verifies that max_usable_mrf causes an
2289 * even-numbered amount of URB write data, which will meet gen6's
2290 * requirements for length alignment.
2291 */
2292 assert ((max_usable_mrf - base_mrf) % 2 == 0);
2293
2294 /* FINISHME: edgeflag */
2295
2296 /* First mrf is the g0-based message header containing URB handles and such,
2297 * which is implied in VS_OPCODE_URB_WRITE.
2298 */
2299 mrf++;
2300
2301 if (intel->gen < 6) {
2302 emit_ndc_computation();
2303 }
2304
2305 /* Set up the VUE data for the first URB write */
2306 int slot;
2307 for (slot = 0; slot < c->prog_data.vue_map.num_slots; ++slot) {
2308 emit_urb_slot(mrf++, c->prog_data.vue_map.slot_to_vert_result[slot]);
2309
2310 /* If this was max_usable_mrf, we can't fit anything more into this URB
2311 * WRITE.
2312 */
2313 if (mrf > max_usable_mrf) {
2314 slot++;
2315 break;
2316 }
2317 }
2318
2319 current_annotation = "URB write";
2320 vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
2321 inst->base_mrf = base_mrf;
2322 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2323 inst->eot = (slot >= c->prog_data.vue_map.num_slots);
2324
2325 /* Optional second URB write */
2326 if (!inst->eot) {
2327 mrf = base_mrf + 1;
2328
2329 for (; slot < c->prog_data.vue_map.num_slots; ++slot) {
2330 assert(mrf < max_usable_mrf);
2331
2332 emit_urb_slot(mrf++, c->prog_data.vue_map.slot_to_vert_result[slot]);
2333 }
2334
2335 current_annotation = "URB write";
2336 inst = emit(VS_OPCODE_URB_WRITE);
2337 inst->base_mrf = base_mrf;
2338 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2339 inst->eot = true;
2340 /* URB destination offset. In the previous write, we got MRFs
2341 * 2-13 minus the one header MRF, so 12 regs. URB offset is in
2342 * URB row increments, and each of our MRFs is half of one of
2343 * those, since we're doing interleaved writes.
2344 */
2345 inst->offset = (max_usable_mrf - base_mrf) / 2;
2346 }
2347 }
2348
2349 src_reg
2350 vec4_visitor::get_scratch_offset(vec4_instruction *inst,
2351 src_reg *reladdr, int reg_offset)
2352 {
2353 /* Because we store the values to scratch interleaved like our
2354 * vertex data, we need to scale the vec4 index by 2.
2355 */
2356 int message_header_scale = 2;
2357
2358 /* Pre-gen6, the message header uses byte offsets instead of vec4
2359 * (16-byte) offset units.
2360 */
2361 if (intel->gen < 6)
2362 message_header_scale *= 16;
2363
2364 if (reladdr) {
2365 src_reg index = src_reg(this, glsl_type::int_type);
2366
2367 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2368 emit_before(inst, MUL(dst_reg(index),
2369 index, src_reg(message_header_scale)));
2370
2371 return index;
2372 } else {
2373 return src_reg(reg_offset * message_header_scale);
2374 }
2375 }
2376
2377 src_reg
2378 vec4_visitor::get_pull_constant_offset(vec4_instruction *inst,
2379 src_reg *reladdr, int reg_offset)
2380 {
2381 if (reladdr) {
2382 src_reg index = src_reg(this, glsl_type::int_type);
2383
2384 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2385
2386 /* Pre-gen6, the message header uses byte offsets instead of vec4
2387 * (16-byte) offset units.
2388 */
2389 if (intel->gen < 6) {
2390 emit_before(inst, MUL(dst_reg(index), index, src_reg(16)));
2391 }
2392
2393 return index;
2394 } else {
2395 int message_header_scale = intel->gen < 6 ? 16 : 1;
2396 return src_reg(reg_offset * message_header_scale);
2397 }
2398 }
2399
2400 /**
2401 * Emits an instruction before @inst to load the value named by @orig_src
2402 * from scratch space at @base_offset to @temp.
2403 */
2404 void
2405 vec4_visitor::emit_scratch_read(vec4_instruction *inst,
2406 dst_reg temp, src_reg orig_src,
2407 int base_offset)
2408 {
2409 int reg_offset = base_offset + orig_src.reg_offset;
2410 src_reg index = get_scratch_offset(inst, orig_src.reladdr, reg_offset);
2411
2412 emit_before(inst, SCRATCH_READ(temp, index));
2413 }
2414
2415 /**
2416 * Emits an instruction after @inst to store the value to be written
2417 * to @orig_dst to scratch space at @base_offset, from @temp.
2418 */
2419 void
2420 vec4_visitor::emit_scratch_write(vec4_instruction *inst,
2421 src_reg temp, dst_reg orig_dst,
2422 int base_offset)
2423 {
2424 int reg_offset = base_offset + orig_dst.reg_offset;
2425 src_reg index = get_scratch_offset(inst, orig_dst.reladdr, reg_offset);
2426
2427 dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
2428 orig_dst.writemask));
2429 vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
2430 write->predicate = inst->predicate;
2431 write->ir = inst->ir;
2432 write->annotation = inst->annotation;
2433 inst->insert_after(write);
2434 }
2435
2436 /**
2437 * We can't generally support array access in GRF space, because a
2438 * single instruction's destination can only span 2 contiguous
2439 * registers. So, we send all GRF arrays that get variable index
2440 * access to scratch space.
2441 */
2442 void
2443 vec4_visitor::move_grf_array_access_to_scratch()
2444 {
2445 int scratch_loc[this->virtual_grf_count];
2446
2447 for (int i = 0; i < this->virtual_grf_count; i++) {
2448 scratch_loc[i] = -1;
2449 }
2450
2451 /* First, calculate the set of virtual GRFs that need to be punted
2452 * to scratch due to having any array access on them, and where in
2453 * scratch.
2454 */
2455 foreach_list(node, &this->instructions) {
2456 vec4_instruction *inst = (vec4_instruction *)node;
2457
2458 if (inst->dst.file == GRF && inst->dst.reladdr &&
2459 scratch_loc[inst->dst.reg] == -1) {
2460 scratch_loc[inst->dst.reg] = c->last_scratch;
2461 c->last_scratch += this->virtual_grf_sizes[inst->dst.reg] * 8 * 4;
2462 }
2463
2464 for (int i = 0 ; i < 3; i++) {
2465 src_reg *src = &inst->src[i];
2466
2467 if (src->file == GRF && src->reladdr &&
2468 scratch_loc[src->reg] == -1) {
2469 scratch_loc[src->reg] = c->last_scratch;
2470 c->last_scratch += this->virtual_grf_sizes[src->reg] * 8 * 4;
2471 }
2472 }
2473 }
2474
2475 /* Now, for anything that will be accessed through scratch, rewrite
2476 * it to load/store. Note that this is a _safe list walk, because
2477 * we may generate a new scratch_write instruction after the one
2478 * we're processing.
2479 */
2480 foreach_list_safe(node, &this->instructions) {
2481 vec4_instruction *inst = (vec4_instruction *)node;
2482
2483 /* Set up the annotation tracking for new generated instructions. */
2484 base_ir = inst->ir;
2485 current_annotation = inst->annotation;
2486
2487 if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) {
2488 src_reg temp = src_reg(this, glsl_type::vec4_type);
2489
2490 emit_scratch_write(inst, temp, inst->dst, scratch_loc[inst->dst.reg]);
2491
2492 inst->dst.file = temp.file;
2493 inst->dst.reg = temp.reg;
2494 inst->dst.reg_offset = temp.reg_offset;
2495 inst->dst.reladdr = NULL;
2496 }
2497
2498 for (int i = 0 ; i < 3; i++) {
2499 if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1)
2500 continue;
2501
2502 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2503
2504 emit_scratch_read(inst, temp, inst->src[i],
2505 scratch_loc[inst->src[i].reg]);
2506
2507 inst->src[i].file = temp.file;
2508 inst->src[i].reg = temp.reg;
2509 inst->src[i].reg_offset = temp.reg_offset;
2510 inst->src[i].reladdr = NULL;
2511 }
2512 }
2513 }
2514
2515 /**
2516 * Emits an instruction before @inst to load the value named by @orig_src
2517 * from the pull constant buffer (surface) at @base_offset to @temp.
2518 */
2519 void
2520 vec4_visitor::emit_pull_constant_load(vec4_instruction *inst,
2521 dst_reg temp, src_reg orig_src,
2522 int base_offset)
2523 {
2524 int reg_offset = base_offset + orig_src.reg_offset;
2525 src_reg index = get_pull_constant_offset(inst, orig_src.reladdr, reg_offset);
2526 vec4_instruction *load;
2527
2528 load = new(mem_ctx) vec4_instruction(this, VS_OPCODE_PULL_CONSTANT_LOAD,
2529 temp, index);
2530 load->base_mrf = 14;
2531 load->mlen = 1;
2532 emit_before(inst, load);
2533 }
2534
2535 /**
2536 * Implements array access of uniforms by inserting a
2537 * PULL_CONSTANT_LOAD instruction.
2538 *
2539 * Unlike temporary GRF array access (where we don't support it due to
2540 * the difficulty of doing relative addressing on instruction
2541 * destinations), we could potentially do array access of uniforms
2542 * that were loaded in GRF space as push constants. In real-world
2543 * usage we've seen, though, the arrays being used are always larger
2544 * than we could load as push constants, so just always move all
2545 * uniform array access out to a pull constant buffer.
2546 */
2547 void
2548 vec4_visitor::move_uniform_array_access_to_pull_constants()
2549 {
2550 int pull_constant_loc[this->uniforms];
2551
2552 for (int i = 0; i < this->uniforms; i++) {
2553 pull_constant_loc[i] = -1;
2554 }
2555
2556 /* Walk through and find array access of uniforms. Put a copy of that
2557 * uniform in the pull constant buffer.
2558 *
2559 * Note that we don't move constant-indexed accesses to arrays. No
2560 * testing has been done of the performance impact of this choice.
2561 */
2562 foreach_list_safe(node, &this->instructions) {
2563 vec4_instruction *inst = (vec4_instruction *)node;
2564
2565 for (int i = 0 ; i < 3; i++) {
2566 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
2567 continue;
2568
2569 int uniform = inst->src[i].reg;
2570
2571 /* If this array isn't already present in the pull constant buffer,
2572 * add it.
2573 */
2574 if (pull_constant_loc[uniform] == -1) {
2575 const float **values = &prog_data->param[uniform * 4];
2576
2577 pull_constant_loc[uniform] = prog_data->nr_pull_params / 4;
2578
2579 for (int j = 0; j < uniform_size[uniform] * 4; j++) {
2580 prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
2581 }
2582 }
2583
2584 /* Set up the annotation tracking for new generated instructions. */
2585 base_ir = inst->ir;
2586 current_annotation = inst->annotation;
2587
2588 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2589
2590 emit_pull_constant_load(inst, temp, inst->src[i],
2591 pull_constant_loc[uniform]);
2592
2593 inst->src[i].file = temp.file;
2594 inst->src[i].reg = temp.reg;
2595 inst->src[i].reg_offset = temp.reg_offset;
2596 inst->src[i].reladdr = NULL;
2597 }
2598 }
2599
2600 /* Now there are no accesses of the UNIFORM file with a reladdr, so
2601 * no need to track them as larger-than-vec4 objects. This will be
2602 * relied on in cutting out unused uniform vectors from push
2603 * constants.
2604 */
2605 split_uniform_registers();
2606 }
2607
2608 void
2609 vec4_visitor::resolve_ud_negate(src_reg *reg)
2610 {
2611 if (reg->type != BRW_REGISTER_TYPE_UD ||
2612 !reg->negate)
2613 return;
2614
2615 src_reg temp = src_reg(this, glsl_type::uvec4_type);
2616 emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
2617 *reg = temp;
2618 }
2619
2620 vec4_visitor::vec4_visitor(struct brw_vs_compile *c,
2621 struct gl_shader_program *prog,
2622 struct brw_shader *shader)
2623 {
2624 this->c = c;
2625 this->p = &c->func;
2626 this->brw = p->brw;
2627 this->intel = &brw->intel;
2628 this->ctx = &intel->ctx;
2629 this->prog = prog;
2630 this->shader = shader;
2631
2632 this->mem_ctx = ralloc_context(NULL);
2633 this->failed = false;
2634
2635 this->base_ir = NULL;
2636 this->current_annotation = NULL;
2637
2638 this->c = c;
2639 this->vp = (struct gl_vertex_program *)
2640 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
2641 this->prog_data = &c->prog_data;
2642
2643 this->variable_ht = hash_table_ctor(0,
2644 hash_table_pointer_hash,
2645 hash_table_pointer_compare);
2646
2647 this->virtual_grf_def = NULL;
2648 this->virtual_grf_use = NULL;
2649 this->virtual_grf_sizes = NULL;
2650 this->virtual_grf_count = 0;
2651 this->virtual_grf_reg_map = NULL;
2652 this->virtual_grf_reg_count = 0;
2653 this->virtual_grf_array_size = 0;
2654 this->live_intervals_valid = false;
2655
2656 this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2657
2658 this->uniforms = 0;
2659 }
2660
2661 vec4_visitor::~vec4_visitor()
2662 {
2663 ralloc_free(this->mem_ctx);
2664 hash_table_dtor(this->variable_ht);
2665 }
2666
2667
2668 void
2669 vec4_visitor::fail(const char *format, ...)
2670 {
2671 va_list va;
2672 char *msg;
2673
2674 if (failed)
2675 return;
2676
2677 failed = true;
2678
2679 va_start(va, format);
2680 msg = ralloc_vasprintf(mem_ctx, format, va);
2681 va_end(va);
2682 msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg);
2683
2684 this->fail_msg = msg;
2685
2686 if (INTEL_DEBUG & DEBUG_VS) {
2687 fprintf(stderr, "%s", msg);
2688 }
2689 }
2690
2691 } /* namespace brw */