i965/vs: Fix unit mismatch in scratch base_offset parameter.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_visitor.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 extern "C" {
26 #include "main/macros.h"
27 #include "program/prog_parameter.h"
28 #include "program/sampler.h"
29 }
30
31 namespace brw {
32
33 vec4_instruction::vec4_instruction(vec4_visitor *v,
34 enum opcode opcode, dst_reg dst,
35 src_reg src0, src_reg src1, src_reg src2)
36 {
37 this->opcode = opcode;
38 this->dst = dst;
39 this->src[0] = src0;
40 this->src[1] = src1;
41 this->src[2] = src2;
42 this->ir = v->base_ir;
43 this->annotation = v->current_annotation;
44 }
45
46 vec4_instruction *
47 vec4_visitor::emit(vec4_instruction *inst)
48 {
49 this->instructions.push_tail(inst);
50
51 return inst;
52 }
53
54 vec4_instruction *
55 vec4_visitor::emit_before(vec4_instruction *inst, vec4_instruction *new_inst)
56 {
57 new_inst->ir = inst->ir;
58 new_inst->annotation = inst->annotation;
59
60 inst->insert_before(new_inst);
61
62 return inst;
63 }
64
65 vec4_instruction *
66 vec4_visitor::emit(enum opcode opcode, dst_reg dst,
67 src_reg src0, src_reg src1, src_reg src2)
68 {
69 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst,
70 src0, src1, src2));
71 }
72
73
74 vec4_instruction *
75 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
76 {
77 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0, src1));
78 }
79
80 vec4_instruction *
81 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
82 {
83 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0));
84 }
85
86 vec4_instruction *
87 vec4_visitor::emit(enum opcode opcode)
88 {
89 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst_reg()));
90 }
91
92 #define ALU1(op) \
93 vec4_instruction * \
94 vec4_visitor::op(dst_reg dst, src_reg src0) \
95 { \
96 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
97 src0); \
98 }
99
100 #define ALU2(op) \
101 vec4_instruction * \
102 vec4_visitor::op(dst_reg dst, src_reg src0, src_reg src1) \
103 { \
104 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
105 src0, src1); \
106 }
107
108 ALU1(NOT)
109 ALU1(MOV)
110 ALU1(FRC)
111 ALU1(RNDD)
112 ALU1(RNDE)
113 ALU1(RNDZ)
114 ALU2(ADD)
115 ALU2(MUL)
116 ALU2(MACH)
117 ALU2(AND)
118 ALU2(OR)
119 ALU2(XOR)
120 ALU2(DP3)
121 ALU2(DP4)
122
123 /** Gen4 predicated IF. */
124 vec4_instruction *
125 vec4_visitor::IF(uint32_t predicate)
126 {
127 vec4_instruction *inst;
128
129 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF);
130 inst->predicate = predicate;
131
132 return inst;
133 }
134
135 /** Gen6+ IF with embedded comparison. */
136 vec4_instruction *
137 vec4_visitor::IF(src_reg src0, src_reg src1, uint32_t condition)
138 {
139 assert(intel->gen >= 6);
140
141 vec4_instruction *inst;
142
143 resolve_ud_negate(&src0);
144 resolve_ud_negate(&src1);
145
146 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF, dst_null_d(),
147 src0, src1);
148 inst->conditional_mod = condition;
149
150 return inst;
151 }
152
153 /**
154 * CMP: Sets the low bit of the destination channels with the result
155 * of the comparison, while the upper bits are undefined, and updates
156 * the flag register with the packed 16 bits of the result.
157 */
158 vec4_instruction *
159 vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1, uint32_t condition)
160 {
161 vec4_instruction *inst;
162
163 /* original gen4 does type conversion to the destination type
164 * before before comparison, producing garbage results for floating
165 * point comparisons.
166 */
167 if (intel->gen == 4) {
168 dst.type = src0.type;
169 if (dst.file == HW_REG)
170 dst.fixed_hw_reg.type = dst.type;
171 }
172
173 resolve_ud_negate(&src0);
174 resolve_ud_negate(&src1);
175
176 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_CMP, dst, src0, src1);
177 inst->conditional_mod = condition;
178
179 return inst;
180 }
181
182 vec4_instruction *
183 vec4_visitor::SCRATCH_READ(dst_reg dst, src_reg index)
184 {
185 vec4_instruction *inst;
186
187 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_READ,
188 dst, index);
189 inst->base_mrf = 14;
190 inst->mlen = 1;
191
192 return inst;
193 }
194
195 vec4_instruction *
196 vec4_visitor::SCRATCH_WRITE(dst_reg dst, src_reg src, src_reg index)
197 {
198 vec4_instruction *inst;
199
200 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_WRITE,
201 dst, src, index);
202 inst->base_mrf = 13;
203 inst->mlen = 2;
204
205 return inst;
206 }
207
208 void
209 vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
210 {
211 static enum opcode dot_opcodes[] = {
212 BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
213 };
214
215 emit(dot_opcodes[elements - 2], dst, src0, src1);
216 }
217
218 void
219 vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
220 {
221 /* The gen6 math instruction ignores the source modifiers --
222 * swizzle, abs, negate, and at least some parts of the register
223 * region description.
224 *
225 * While it would seem that this MOV could be avoided at this point
226 * in the case that the swizzle is matched up with the destination
227 * writemask, note that uniform packing and register allocation
228 * could rearrange our swizzle, so let's leave this matter up to
229 * copy propagation later.
230 */
231 src_reg temp_src = src_reg(this, glsl_type::vec4_type);
232 emit(MOV(dst_reg(temp_src), src));
233
234 if (dst.writemask != WRITEMASK_XYZW) {
235 /* The gen6 math instruction must be align1, so we can't do
236 * writemasks.
237 */
238 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
239
240 emit(opcode, temp_dst, temp_src);
241
242 emit(MOV(dst, src_reg(temp_dst)));
243 } else {
244 emit(opcode, dst, temp_src);
245 }
246 }
247
248 void
249 vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
250 {
251 vec4_instruction *inst = emit(opcode, dst, src);
252 inst->base_mrf = 1;
253 inst->mlen = 1;
254 }
255
256 void
257 vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
258 {
259 switch (opcode) {
260 case SHADER_OPCODE_RCP:
261 case SHADER_OPCODE_RSQ:
262 case SHADER_OPCODE_SQRT:
263 case SHADER_OPCODE_EXP2:
264 case SHADER_OPCODE_LOG2:
265 case SHADER_OPCODE_SIN:
266 case SHADER_OPCODE_COS:
267 break;
268 default:
269 assert(!"not reached: bad math opcode");
270 return;
271 }
272
273 if (intel->gen >= 7) {
274 emit(opcode, dst, src);
275 } else if (intel->gen == 6) {
276 return emit_math1_gen6(opcode, dst, src);
277 } else {
278 return emit_math1_gen4(opcode, dst, src);
279 }
280 }
281
282 void
283 vec4_visitor::emit_math2_gen6(enum opcode opcode,
284 dst_reg dst, src_reg src0, src_reg src1)
285 {
286 src_reg expanded;
287
288 /* The gen6 math instruction ignores the source modifiers --
289 * swizzle, abs, negate, and at least some parts of the register
290 * region description. Move the sources to temporaries to make it
291 * generally work.
292 */
293
294 expanded = src_reg(this, glsl_type::vec4_type);
295 expanded.type = src0.type;
296 emit(MOV(dst_reg(expanded), src0));
297 src0 = expanded;
298
299 expanded = src_reg(this, glsl_type::vec4_type);
300 expanded.type = src1.type;
301 emit(MOV(dst_reg(expanded), src1));
302 src1 = expanded;
303
304 if (dst.writemask != WRITEMASK_XYZW) {
305 /* The gen6 math instruction must be align1, so we can't do
306 * writemasks.
307 */
308 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
309 temp_dst.type = dst.type;
310
311 emit(opcode, temp_dst, src0, src1);
312
313 emit(MOV(dst, src_reg(temp_dst)));
314 } else {
315 emit(opcode, dst, src0, src1);
316 }
317 }
318
319 void
320 vec4_visitor::emit_math2_gen4(enum opcode opcode,
321 dst_reg dst, src_reg src0, src_reg src1)
322 {
323 vec4_instruction *inst = emit(opcode, dst, src0, src1);
324 inst->base_mrf = 1;
325 inst->mlen = 2;
326 }
327
328 void
329 vec4_visitor::emit_math(enum opcode opcode,
330 dst_reg dst, src_reg src0, src_reg src1)
331 {
332 switch (opcode) {
333 case SHADER_OPCODE_POW:
334 case SHADER_OPCODE_INT_QUOTIENT:
335 case SHADER_OPCODE_INT_REMAINDER:
336 break;
337 default:
338 assert(!"not reached: unsupported binary math opcode");
339 return;
340 }
341
342 if (intel->gen >= 7) {
343 emit(opcode, dst, src0, src1);
344 } else if (intel->gen == 6) {
345 return emit_math2_gen6(opcode, dst, src0, src1);
346 } else {
347 return emit_math2_gen4(opcode, dst, src0, src1);
348 }
349 }
350
351 void
352 vec4_visitor::visit_instructions(const exec_list *list)
353 {
354 foreach_list(node, list) {
355 ir_instruction *ir = (ir_instruction *)node;
356
357 base_ir = ir;
358 ir->accept(this);
359 }
360 }
361
362
363 static int
364 type_size(const struct glsl_type *type)
365 {
366 unsigned int i;
367 int size;
368
369 switch (type->base_type) {
370 case GLSL_TYPE_UINT:
371 case GLSL_TYPE_INT:
372 case GLSL_TYPE_FLOAT:
373 case GLSL_TYPE_BOOL:
374 if (type->is_matrix()) {
375 return type->matrix_columns;
376 } else {
377 /* Regardless of size of vector, it gets a vec4. This is bad
378 * packing for things like floats, but otherwise arrays become a
379 * mess. Hopefully a later pass over the code can pack scalars
380 * down if appropriate.
381 */
382 return 1;
383 }
384 case GLSL_TYPE_ARRAY:
385 assert(type->length > 0);
386 return type_size(type->fields.array) * type->length;
387 case GLSL_TYPE_STRUCT:
388 size = 0;
389 for (i = 0; i < type->length; i++) {
390 size += type_size(type->fields.structure[i].type);
391 }
392 return size;
393 case GLSL_TYPE_SAMPLER:
394 /* Samplers take up one slot in UNIFORMS[], but they're baked in
395 * at link time.
396 */
397 return 1;
398 default:
399 assert(0);
400 return 0;
401 }
402 }
403
404 int
405 vec4_visitor::virtual_grf_alloc(int size)
406 {
407 if (virtual_grf_array_size <= virtual_grf_count) {
408 if (virtual_grf_array_size == 0)
409 virtual_grf_array_size = 16;
410 else
411 virtual_grf_array_size *= 2;
412 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
413 virtual_grf_array_size);
414 virtual_grf_reg_map = reralloc(mem_ctx, virtual_grf_reg_map, int,
415 virtual_grf_array_size);
416 }
417 virtual_grf_reg_map[virtual_grf_count] = virtual_grf_reg_count;
418 virtual_grf_reg_count += size;
419 virtual_grf_sizes[virtual_grf_count] = size;
420 return virtual_grf_count++;
421 }
422
423 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
424 {
425 init();
426
427 this->file = GRF;
428 this->reg = v->virtual_grf_alloc(type_size(type));
429
430 if (type->is_array() || type->is_record()) {
431 this->swizzle = BRW_SWIZZLE_NOOP;
432 } else {
433 this->swizzle = swizzle_for_size(type->vector_elements);
434 }
435
436 this->type = brw_type_for_base_type(type);
437 }
438
439 dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
440 {
441 init();
442
443 this->file = GRF;
444 this->reg = v->virtual_grf_alloc(type_size(type));
445
446 if (type->is_array() || type->is_record()) {
447 this->writemask = WRITEMASK_XYZW;
448 } else {
449 this->writemask = (1 << type->vector_elements) - 1;
450 }
451
452 this->type = brw_type_for_base_type(type);
453 }
454
455 /* Our support for uniforms is piggy-backed on the struct
456 * gl_fragment_program, because that's where the values actually
457 * get stored, rather than in some global gl_shader_program uniform
458 * store.
459 */
460 int
461 vec4_visitor::setup_uniform_values(int loc, const glsl_type *type)
462 {
463 unsigned int offset = 0;
464 float *values = &this->vp->Base.Parameters->ParameterValues[loc][0].f;
465
466 if (type->is_matrix()) {
467 const glsl_type *column = type->column_type();
468
469 for (unsigned int i = 0; i < type->matrix_columns; i++) {
470 offset += setup_uniform_values(loc + offset, column);
471 }
472
473 return offset;
474 }
475
476 switch (type->base_type) {
477 case GLSL_TYPE_FLOAT:
478 case GLSL_TYPE_UINT:
479 case GLSL_TYPE_INT:
480 case GLSL_TYPE_BOOL:
481 for (unsigned int i = 0; i < type->vector_elements; i++) {
482 c->prog_data.param[this->uniforms * 4 + i] = &values[i];
483 }
484
485 /* Set up pad elements to get things aligned to a vec4 boundary. */
486 for (unsigned int i = type->vector_elements; i < 4; i++) {
487 static float zero = 0;
488
489 c->prog_data.param[this->uniforms * 4 + i] = &zero;
490 }
491
492 /* Track the size of this uniform vector, for future packing of
493 * uniforms.
494 */
495 this->uniform_vector_size[this->uniforms] = type->vector_elements;
496 this->uniforms++;
497
498 return 1;
499
500 case GLSL_TYPE_STRUCT:
501 for (unsigned int i = 0; i < type->length; i++) {
502 offset += setup_uniform_values(loc + offset,
503 type->fields.structure[i].type);
504 }
505 return offset;
506
507 case GLSL_TYPE_ARRAY:
508 for (unsigned int i = 0; i < type->length; i++) {
509 offset += setup_uniform_values(loc + offset, type->fields.array);
510 }
511 return offset;
512
513 case GLSL_TYPE_SAMPLER:
514 /* The sampler takes up a slot, but we don't use any values from it. */
515 return 1;
516
517 default:
518 assert(!"not reached");
519 return 0;
520 }
521 }
522
523 void
524 vec4_visitor::setup_uniform_clipplane_values()
525 {
526 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
527
528 /* Pre-Gen6, we compact clip planes. For example, if the user
529 * enables just clip planes 0, 1, and 3, we will enable clip planes
530 * 0, 1, and 2 in the hardware, and we'll move clip plane 3 to clip
531 * plane 2. This simplifies the implementation of the Gen6 clip
532 * thread.
533 *
534 * In Gen6 and later, we don't compact clip planes, because this
535 * simplifies the implementation of gl_ClipDistance.
536 */
537 int compacted_clipplane_index = 0;
538 for (int i = 0; i < c->key.nr_userclip_plane_consts; ++i) {
539 if (intel->gen < 6 &&
540 !(c->key.userclip_planes_enabled_gen_4_5 & (1 << i))) {
541 continue;
542 }
543 this->uniform_vector_size[this->uniforms] = 4;
544 this->userplane[compacted_clipplane_index] = dst_reg(UNIFORM, this->uniforms);
545 this->userplane[compacted_clipplane_index].type = BRW_REGISTER_TYPE_F;
546 for (int j = 0; j < 4; ++j) {
547 c->prog_data.param[this->uniforms * 4 + j] = &clip_planes[i][j];
548 }
549 ++compacted_clipplane_index;
550 ++this->uniforms;
551 }
552 }
553
554 /* Our support for builtin uniforms is even scarier than non-builtin.
555 * It sits on top of the PROG_STATE_VAR parameters that are
556 * automatically updated from GL context state.
557 */
558 void
559 vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
560 {
561 const ir_state_slot *const slots = ir->state_slots;
562 assert(ir->state_slots != NULL);
563
564 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
565 /* This state reference has already been setup by ir_to_mesa,
566 * but we'll get the same index back here. We can reference
567 * ParameterValues directly, since unlike brw_fs.cpp, we never
568 * add new state references during compile.
569 */
570 int index = _mesa_add_state_reference(this->vp->Base.Parameters,
571 (gl_state_index *)slots[i].tokens);
572 float *values = &this->vp->Base.Parameters->ParameterValues[index][0].f;
573
574 this->uniform_vector_size[this->uniforms] = 0;
575 /* Add each of the unique swizzled channels of the element.
576 * This will end up matching the size of the glsl_type of this field.
577 */
578 int last_swiz = -1;
579 for (unsigned int j = 0; j < 4; j++) {
580 int swiz = GET_SWZ(slots[i].swizzle, j);
581 last_swiz = swiz;
582
583 c->prog_data.param[this->uniforms * 4 + j] = &values[swiz];
584 if (swiz <= last_swiz)
585 this->uniform_vector_size[this->uniforms]++;
586 }
587 this->uniforms++;
588 }
589 }
590
591 dst_reg *
592 vec4_visitor::variable_storage(ir_variable *var)
593 {
594 return (dst_reg *)hash_table_find(this->variable_ht, var);
595 }
596
597 void
598 vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir, uint32_t *predicate)
599 {
600 ir_expression *expr = ir->as_expression();
601
602 *predicate = BRW_PREDICATE_NORMAL;
603
604 if (expr) {
605 src_reg op[2];
606 vec4_instruction *inst;
607
608 assert(expr->get_num_operands() <= 2);
609 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
610 expr->operands[i]->accept(this);
611 op[i] = this->result;
612
613 resolve_ud_negate(&op[i]);
614 }
615
616 switch (expr->operation) {
617 case ir_unop_logic_not:
618 inst = emit(AND(dst_null_d(), op[0], src_reg(1)));
619 inst->conditional_mod = BRW_CONDITIONAL_Z;
620 break;
621
622 case ir_binop_logic_xor:
623 inst = emit(XOR(dst_null_d(), op[0], op[1]));
624 inst->conditional_mod = BRW_CONDITIONAL_NZ;
625 break;
626
627 case ir_binop_logic_or:
628 inst = emit(OR(dst_null_d(), op[0], op[1]));
629 inst->conditional_mod = BRW_CONDITIONAL_NZ;
630 break;
631
632 case ir_binop_logic_and:
633 inst = emit(AND(dst_null_d(), op[0], op[1]));
634 inst->conditional_mod = BRW_CONDITIONAL_NZ;
635 break;
636
637 case ir_unop_f2b:
638 if (intel->gen >= 6) {
639 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
640 } else {
641 inst = emit(MOV(dst_null_f(), op[0]));
642 inst->conditional_mod = BRW_CONDITIONAL_NZ;
643 }
644 break;
645
646 case ir_unop_i2b:
647 if (intel->gen >= 6) {
648 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
649 } else {
650 inst = emit(MOV(dst_null_d(), op[0]));
651 inst->conditional_mod = BRW_CONDITIONAL_NZ;
652 }
653 break;
654
655 case ir_binop_all_equal:
656 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
657 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
658 break;
659
660 case ir_binop_any_nequal:
661 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
662 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
663 break;
664
665 case ir_unop_any:
666 inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
667 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
668 break;
669
670 case ir_binop_greater:
671 case ir_binop_gequal:
672 case ir_binop_less:
673 case ir_binop_lequal:
674 case ir_binop_equal:
675 case ir_binop_nequal:
676 emit(CMP(dst_null_d(), op[0], op[1],
677 brw_conditional_for_comparison(expr->operation)));
678 break;
679
680 default:
681 assert(!"not reached");
682 break;
683 }
684 return;
685 }
686
687 ir->accept(this);
688
689 resolve_ud_negate(&this->result);
690
691 if (intel->gen >= 6) {
692 vec4_instruction *inst = emit(AND(dst_null_d(),
693 this->result, src_reg(1)));
694 inst->conditional_mod = BRW_CONDITIONAL_NZ;
695 } else {
696 vec4_instruction *inst = emit(MOV(dst_null_d(), this->result));
697 inst->conditional_mod = BRW_CONDITIONAL_NZ;
698 }
699 }
700
701 /**
702 * Emit a gen6 IF statement with the comparison folded into the IF
703 * instruction.
704 */
705 void
706 vec4_visitor::emit_if_gen6(ir_if *ir)
707 {
708 ir_expression *expr = ir->condition->as_expression();
709
710 if (expr) {
711 src_reg op[2];
712 dst_reg temp;
713
714 assert(expr->get_num_operands() <= 2);
715 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
716 expr->operands[i]->accept(this);
717 op[i] = this->result;
718 }
719
720 switch (expr->operation) {
721 case ir_unop_logic_not:
722 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z));
723 return;
724
725 case ir_binop_logic_xor:
726 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
727 return;
728
729 case ir_binop_logic_or:
730 temp = dst_reg(this, glsl_type::bool_type);
731 emit(OR(temp, op[0], op[1]));
732 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
733 return;
734
735 case ir_binop_logic_and:
736 temp = dst_reg(this, glsl_type::bool_type);
737 emit(AND(temp, op[0], op[1]));
738 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
739 return;
740
741 case ir_unop_f2b:
742 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
743 return;
744
745 case ir_unop_i2b:
746 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
747 return;
748
749 case ir_binop_greater:
750 case ir_binop_gequal:
751 case ir_binop_less:
752 case ir_binop_lequal:
753 case ir_binop_equal:
754 case ir_binop_nequal:
755 emit(IF(op[0], op[1],
756 brw_conditional_for_comparison(expr->operation)));
757 return;
758
759 case ir_binop_all_equal:
760 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
761 emit(IF(BRW_PREDICATE_ALIGN16_ALL4H));
762 return;
763
764 case ir_binop_any_nequal:
765 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
766 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
767 return;
768
769 case ir_unop_any:
770 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
771 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
772 return;
773
774 default:
775 assert(!"not reached");
776 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
777 return;
778 }
779 return;
780 }
781
782 ir->condition->accept(this);
783
784 emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ));
785 }
786
787 void
788 vec4_visitor::visit(ir_variable *ir)
789 {
790 dst_reg *reg = NULL;
791
792 if (variable_storage(ir))
793 return;
794
795 switch (ir->mode) {
796 case ir_var_in:
797 reg = new(mem_ctx) dst_reg(ATTR, ir->location);
798
799 /* Do GL_FIXED rescaling for GLES2.0. Our GL_FIXED attributes
800 * come in as floating point conversions of the integer values.
801 */
802 for (int i = ir->location; i < ir->location + type_size(ir->type); i++) {
803 if (!c->key.gl_fixed_input_size[i])
804 continue;
805
806 dst_reg dst = *reg;
807 dst.type = brw_type_for_base_type(ir->type);
808 dst.writemask = (1 << c->key.gl_fixed_input_size[i]) - 1;
809 emit(MUL(dst, src_reg(dst), src_reg(1.0f / 65536.0f)));
810 }
811 break;
812
813 case ir_var_out:
814 reg = new(mem_ctx) dst_reg(this, ir->type);
815
816 for (int i = 0; i < type_size(ir->type); i++) {
817 output_reg[ir->location + i] = *reg;
818 output_reg[ir->location + i].reg_offset = i;
819 output_reg[ir->location + i].type =
820 brw_type_for_base_type(ir->type->get_scalar_type());
821 output_reg_annotation[ir->location + i] = ir->name;
822 }
823 break;
824
825 case ir_var_auto:
826 case ir_var_temporary:
827 reg = new(mem_ctx) dst_reg(this, ir->type);
828 break;
829
830 case ir_var_uniform:
831 reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
832
833 /* Thanks to the lower_ubo_reference pass, we will see only
834 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
835 * variables, so no need for them to be in variable_ht.
836 */
837 if (ir->uniform_block != -1)
838 return;
839
840 /* Track how big the whole uniform variable is, in case we need to put a
841 * copy of its data into pull constants for array access.
842 */
843 this->uniform_size[this->uniforms] = type_size(ir->type);
844
845 if (!strncmp(ir->name, "gl_", 3)) {
846 setup_builtin_uniform_values(ir);
847 } else {
848 setup_uniform_values(ir->location, ir->type);
849 }
850 break;
851
852 case ir_var_system_value:
853 /* VertexID is stored by the VF as the last vertex element, but
854 * we don't represent it with a flag in inputs_read, so we call
855 * it VERT_ATTRIB_MAX, which setup_attributes() picks up on.
856 */
857 reg = new(mem_ctx) dst_reg(ATTR, VERT_ATTRIB_MAX);
858 prog_data->uses_vertexid = true;
859
860 switch (ir->location) {
861 case SYSTEM_VALUE_VERTEX_ID:
862 reg->writemask = WRITEMASK_X;
863 break;
864 case SYSTEM_VALUE_INSTANCE_ID:
865 reg->writemask = WRITEMASK_Y;
866 break;
867 default:
868 assert(!"not reached");
869 break;
870 }
871 break;
872
873 default:
874 assert(!"not reached");
875 }
876
877 reg->type = brw_type_for_base_type(ir->type);
878 hash_table_insert(this->variable_ht, reg, ir);
879 }
880
881 void
882 vec4_visitor::visit(ir_loop *ir)
883 {
884 dst_reg counter;
885
886 /* We don't want debugging output to print the whole body of the
887 * loop as the annotation.
888 */
889 this->base_ir = NULL;
890
891 if (ir->counter != NULL) {
892 this->base_ir = ir->counter;
893 ir->counter->accept(this);
894 counter = *(variable_storage(ir->counter));
895
896 if (ir->from != NULL) {
897 this->base_ir = ir->from;
898 ir->from->accept(this);
899
900 emit(MOV(counter, this->result));
901 }
902 }
903
904 emit(BRW_OPCODE_DO);
905
906 if (ir->to) {
907 this->base_ir = ir->to;
908 ir->to->accept(this);
909
910 emit(CMP(dst_null_d(), src_reg(counter), this->result,
911 brw_conditional_for_comparison(ir->cmp)));
912
913 vec4_instruction *inst = emit(BRW_OPCODE_BREAK);
914 inst->predicate = BRW_PREDICATE_NORMAL;
915 }
916
917 visit_instructions(&ir->body_instructions);
918
919
920 if (ir->increment) {
921 this->base_ir = ir->increment;
922 ir->increment->accept(this);
923 emit(ADD(counter, src_reg(counter), this->result));
924 }
925
926 emit(BRW_OPCODE_WHILE);
927 }
928
929 void
930 vec4_visitor::visit(ir_loop_jump *ir)
931 {
932 switch (ir->mode) {
933 case ir_loop_jump::jump_break:
934 emit(BRW_OPCODE_BREAK);
935 break;
936 case ir_loop_jump::jump_continue:
937 emit(BRW_OPCODE_CONTINUE);
938 break;
939 }
940 }
941
942
943 void
944 vec4_visitor::visit(ir_function_signature *ir)
945 {
946 assert(0);
947 (void)ir;
948 }
949
950 void
951 vec4_visitor::visit(ir_function *ir)
952 {
953 /* Ignore function bodies other than main() -- we shouldn't see calls to
954 * them since they should all be inlined.
955 */
956 if (strcmp(ir->name, "main") == 0) {
957 const ir_function_signature *sig;
958 exec_list empty;
959
960 sig = ir->matching_signature(&empty);
961
962 assert(sig);
963
964 visit_instructions(&sig->body);
965 }
966 }
967
968 bool
969 vec4_visitor::try_emit_sat(ir_expression *ir)
970 {
971 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
972 if (!sat_src)
973 return false;
974
975 sat_src->accept(this);
976 src_reg src = this->result;
977
978 this->result = src_reg(this, ir->type);
979 vec4_instruction *inst;
980 inst = emit(MOV(dst_reg(this->result), src));
981 inst->saturate = true;
982
983 return true;
984 }
985
986 void
987 vec4_visitor::emit_bool_comparison(unsigned int op,
988 dst_reg dst, src_reg src0, src_reg src1)
989 {
990 /* original gen4 does destination conversion before comparison. */
991 if (intel->gen < 5)
992 dst.type = src0.type;
993
994 emit(CMP(dst, src0, src1, brw_conditional_for_comparison(op)));
995
996 dst.type = BRW_REGISTER_TYPE_D;
997 emit(AND(dst, src_reg(dst), src_reg(0x1)));
998 }
999
1000 void
1001 vec4_visitor::visit(ir_expression *ir)
1002 {
1003 unsigned int operand;
1004 src_reg op[Elements(ir->operands)];
1005 src_reg result_src;
1006 dst_reg result_dst;
1007 vec4_instruction *inst;
1008
1009 if (try_emit_sat(ir))
1010 return;
1011
1012 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1013 this->result.file = BAD_FILE;
1014 ir->operands[operand]->accept(this);
1015 if (this->result.file == BAD_FILE) {
1016 printf("Failed to get tree for expression operand:\n");
1017 ir->operands[operand]->print();
1018 exit(1);
1019 }
1020 op[operand] = this->result;
1021
1022 /* Matrix expression operands should have been broken down to vector
1023 * operations already.
1024 */
1025 assert(!ir->operands[operand]->type->is_matrix());
1026 }
1027
1028 int vector_elements = ir->operands[0]->type->vector_elements;
1029 if (ir->operands[1]) {
1030 vector_elements = MAX2(vector_elements,
1031 ir->operands[1]->type->vector_elements);
1032 }
1033
1034 this->result.file = BAD_FILE;
1035
1036 /* Storage for our result. Ideally for an assignment we'd be using
1037 * the actual storage for the result here, instead.
1038 */
1039 result_src = src_reg(this, ir->type);
1040 /* convenience for the emit functions below. */
1041 result_dst = dst_reg(result_src);
1042 /* If nothing special happens, this is the result. */
1043 this->result = result_src;
1044 /* Limit writes to the channels that will be used by result_src later.
1045 * This does limit this temp's use as a temporary for multi-instruction
1046 * sequences.
1047 */
1048 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1049
1050 switch (ir->operation) {
1051 case ir_unop_logic_not:
1052 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
1053 * ones complement of the whole register, not just bit 0.
1054 */
1055 emit(XOR(result_dst, op[0], src_reg(1)));
1056 break;
1057 case ir_unop_neg:
1058 op[0].negate = !op[0].negate;
1059 this->result = op[0];
1060 break;
1061 case ir_unop_abs:
1062 op[0].abs = true;
1063 op[0].negate = false;
1064 this->result = op[0];
1065 break;
1066
1067 case ir_unop_sign:
1068 emit(MOV(result_dst, src_reg(0.0f)));
1069
1070 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_G));
1071 inst = emit(MOV(result_dst, src_reg(1.0f)));
1072 inst->predicate = BRW_PREDICATE_NORMAL;
1073
1074 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_L));
1075 inst = emit(MOV(result_dst, src_reg(-1.0f)));
1076 inst->predicate = BRW_PREDICATE_NORMAL;
1077
1078 break;
1079
1080 case ir_unop_rcp:
1081 emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
1082 break;
1083
1084 case ir_unop_exp2:
1085 emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
1086 break;
1087 case ir_unop_log2:
1088 emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
1089 break;
1090 case ir_unop_exp:
1091 case ir_unop_log:
1092 assert(!"not reached: should be handled by ir_explog_to_explog2");
1093 break;
1094 case ir_unop_sin:
1095 case ir_unop_sin_reduced:
1096 emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
1097 break;
1098 case ir_unop_cos:
1099 case ir_unop_cos_reduced:
1100 emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
1101 break;
1102
1103 case ir_unop_dFdx:
1104 case ir_unop_dFdy:
1105 assert(!"derivatives not valid in vertex shader");
1106 break;
1107
1108 case ir_unop_noise:
1109 assert(!"not reached: should be handled by lower_noise");
1110 break;
1111
1112 case ir_binop_add:
1113 emit(ADD(result_dst, op[0], op[1]));
1114 break;
1115 case ir_binop_sub:
1116 assert(!"not reached: should be handled by ir_sub_to_add_neg");
1117 break;
1118
1119 case ir_binop_mul:
1120 if (ir->type->is_integer()) {
1121 /* For integer multiplication, the MUL uses the low 16 bits
1122 * of one of the operands (src0 on gen6, src1 on gen7). The
1123 * MACH accumulates in the contribution of the upper 16 bits
1124 * of that operand.
1125 *
1126 * FINISHME: Emit just the MUL if we know an operand is small
1127 * enough.
1128 */
1129 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
1130
1131 emit(MUL(acc, op[0], op[1]));
1132 emit(MACH(dst_null_d(), op[0], op[1]));
1133 emit(MOV(result_dst, src_reg(acc)));
1134 } else {
1135 emit(MUL(result_dst, op[0], op[1]));
1136 }
1137 break;
1138 case ir_binop_div:
1139 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
1140 assert(ir->type->is_integer());
1141 emit_math(SHADER_OPCODE_INT_QUOTIENT, result_dst, op[0], op[1]);
1142 break;
1143 case ir_binop_mod:
1144 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1145 assert(ir->type->is_integer());
1146 emit_math(SHADER_OPCODE_INT_REMAINDER, result_dst, op[0], op[1]);
1147 break;
1148
1149 case ir_binop_less:
1150 case ir_binop_greater:
1151 case ir_binop_lequal:
1152 case ir_binop_gequal:
1153 case ir_binop_equal:
1154 case ir_binop_nequal: {
1155 emit(CMP(result_dst, op[0], op[1],
1156 brw_conditional_for_comparison(ir->operation)));
1157 emit(AND(result_dst, result_src, src_reg(0x1)));
1158 break;
1159 }
1160
1161 case ir_binop_all_equal:
1162 /* "==" operator producing a scalar boolean. */
1163 if (ir->operands[0]->type->is_vector() ||
1164 ir->operands[1]->type->is_vector()) {
1165 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
1166 emit(MOV(result_dst, src_reg(0)));
1167 inst = emit(MOV(result_dst, src_reg(1)));
1168 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1169 } else {
1170 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z));
1171 emit(AND(result_dst, result_src, src_reg(0x1)));
1172 }
1173 break;
1174 case ir_binop_any_nequal:
1175 /* "!=" operator producing a scalar boolean. */
1176 if (ir->operands[0]->type->is_vector() ||
1177 ir->operands[1]->type->is_vector()) {
1178 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
1179
1180 emit(MOV(result_dst, src_reg(0)));
1181 inst = emit(MOV(result_dst, src_reg(1)));
1182 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1183 } else {
1184 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ));
1185 emit(AND(result_dst, result_src, src_reg(0x1)));
1186 }
1187 break;
1188
1189 case ir_unop_any:
1190 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
1191 emit(MOV(result_dst, src_reg(0)));
1192
1193 inst = emit(MOV(result_dst, src_reg(1)));
1194 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1195 break;
1196
1197 case ir_binop_logic_xor:
1198 emit(XOR(result_dst, op[0], op[1]));
1199 break;
1200
1201 case ir_binop_logic_or:
1202 emit(OR(result_dst, op[0], op[1]));
1203 break;
1204
1205 case ir_binop_logic_and:
1206 emit(AND(result_dst, op[0], op[1]));
1207 break;
1208
1209 case ir_binop_dot:
1210 assert(ir->operands[0]->type->is_vector());
1211 assert(ir->operands[0]->type == ir->operands[1]->type);
1212 emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
1213 break;
1214
1215 case ir_unop_sqrt:
1216 emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
1217 break;
1218 case ir_unop_rsq:
1219 emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
1220 break;
1221
1222 case ir_unop_bitcast_i2f:
1223 case ir_unop_bitcast_u2f:
1224 this->result = op[0];
1225 this->result.type = BRW_REGISTER_TYPE_F;
1226 break;
1227
1228 case ir_unop_bitcast_f2i:
1229 this->result = op[0];
1230 this->result.type = BRW_REGISTER_TYPE_D;
1231 break;
1232
1233 case ir_unop_bitcast_f2u:
1234 this->result = op[0];
1235 this->result.type = BRW_REGISTER_TYPE_UD;
1236 break;
1237
1238 case ir_unop_i2f:
1239 case ir_unop_i2u:
1240 case ir_unop_u2i:
1241 case ir_unop_u2f:
1242 case ir_unop_b2f:
1243 case ir_unop_b2i:
1244 case ir_unop_f2i:
1245 case ir_unop_f2u:
1246 emit(MOV(result_dst, op[0]));
1247 break;
1248 case ir_unop_f2b:
1249 case ir_unop_i2b: {
1250 emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
1251 emit(AND(result_dst, result_src, src_reg(1)));
1252 break;
1253 }
1254
1255 case ir_unop_trunc:
1256 emit(RNDZ(result_dst, op[0]));
1257 break;
1258 case ir_unop_ceil:
1259 op[0].negate = !op[0].negate;
1260 inst = emit(RNDD(result_dst, op[0]));
1261 this->result.negate = true;
1262 break;
1263 case ir_unop_floor:
1264 inst = emit(RNDD(result_dst, op[0]));
1265 break;
1266 case ir_unop_fract:
1267 inst = emit(FRC(result_dst, op[0]));
1268 break;
1269 case ir_unop_round_even:
1270 emit(RNDE(result_dst, op[0]));
1271 break;
1272
1273 case ir_binop_min:
1274 if (intel->gen >= 6) {
1275 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1276 inst->conditional_mod = BRW_CONDITIONAL_L;
1277 } else {
1278 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_L));
1279
1280 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1281 inst->predicate = BRW_PREDICATE_NORMAL;
1282 }
1283 break;
1284 case ir_binop_max:
1285 if (intel->gen >= 6) {
1286 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1287 inst->conditional_mod = BRW_CONDITIONAL_G;
1288 } else {
1289 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_G));
1290
1291 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1292 inst->predicate = BRW_PREDICATE_NORMAL;
1293 }
1294 break;
1295
1296 case ir_binop_pow:
1297 emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
1298 break;
1299
1300 case ir_unop_bit_not:
1301 inst = emit(NOT(result_dst, op[0]));
1302 break;
1303 case ir_binop_bit_and:
1304 inst = emit(AND(result_dst, op[0], op[1]));
1305 break;
1306 case ir_binop_bit_xor:
1307 inst = emit(XOR(result_dst, op[0], op[1]));
1308 break;
1309 case ir_binop_bit_or:
1310 inst = emit(OR(result_dst, op[0], op[1]));
1311 break;
1312
1313 case ir_binop_lshift:
1314 inst = emit(BRW_OPCODE_SHL, result_dst, op[0], op[1]);
1315 break;
1316
1317 case ir_binop_rshift:
1318 if (ir->type->base_type == GLSL_TYPE_INT)
1319 inst = emit(BRW_OPCODE_ASR, result_dst, op[0], op[1]);
1320 else
1321 inst = emit(BRW_OPCODE_SHR, result_dst, op[0], op[1]);
1322 break;
1323
1324 case ir_binop_ubo_load: {
1325 ir_constant *uniform_block = ir->operands[0]->as_constant();
1326 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
1327 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
1328 src_reg offset = op[1];
1329
1330 /* Now, load the vector from that offset. */
1331 assert(ir->type->is_vector() || ir->type->is_scalar());
1332
1333 src_reg packed_consts = src_reg(this, glsl_type::vec4_type);
1334 packed_consts.type = result.type;
1335 src_reg surf_index =
1336 src_reg(SURF_INDEX_VS_UBO(uniform_block->value.u[0]));
1337 if (const_offset_ir) {
1338 offset = src_reg(const_offset / 16);
1339 } else {
1340 emit(BRW_OPCODE_SHR, dst_reg(offset), offset, src_reg(4));
1341 }
1342
1343 vec4_instruction *pull =
1344 emit(new(mem_ctx) vec4_instruction(this,
1345 VS_OPCODE_PULL_CONSTANT_LOAD,
1346 dst_reg(packed_consts),
1347 surf_index,
1348 offset));
1349 pull->base_mrf = 14;
1350 pull->mlen = 1;
1351
1352 packed_consts.swizzle = swizzle_for_size(ir->type->vector_elements);
1353 packed_consts.swizzle += BRW_SWIZZLE4(const_offset % 16 / 4,
1354 const_offset % 16 / 4,
1355 const_offset % 16 / 4,
1356 const_offset % 16 / 4);
1357
1358 /* UBO bools are any nonzero int. We store bools as either 0 or 1. */
1359 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1360 emit(CMP(result_dst, packed_consts, src_reg(0u),
1361 BRW_CONDITIONAL_NZ));
1362 emit(AND(result_dst, result, src_reg(0x1)));
1363 } else {
1364 emit(MOV(result_dst, packed_consts));
1365 }
1366 break;
1367 }
1368
1369 case ir_quadop_vector:
1370 assert(!"not reached: should be handled by lower_quadop_vector");
1371 break;
1372 }
1373 }
1374
1375
1376 void
1377 vec4_visitor::visit(ir_swizzle *ir)
1378 {
1379 src_reg src;
1380 int i = 0;
1381 int swizzle[4];
1382
1383 /* Note that this is only swizzles in expressions, not those on the left
1384 * hand side of an assignment, which do write masking. See ir_assignment
1385 * for that.
1386 */
1387
1388 ir->val->accept(this);
1389 src = this->result;
1390 assert(src.file != BAD_FILE);
1391
1392 for (i = 0; i < ir->type->vector_elements; i++) {
1393 switch (i) {
1394 case 0:
1395 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
1396 break;
1397 case 1:
1398 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
1399 break;
1400 case 2:
1401 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
1402 break;
1403 case 3:
1404 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
1405 break;
1406 }
1407 }
1408 for (; i < 4; i++) {
1409 /* Replicate the last channel out. */
1410 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1411 }
1412
1413 src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1414
1415 this->result = src;
1416 }
1417
1418 void
1419 vec4_visitor::visit(ir_dereference_variable *ir)
1420 {
1421 const struct glsl_type *type = ir->type;
1422 dst_reg *reg = variable_storage(ir->var);
1423
1424 if (!reg) {
1425 fail("Failed to find variable storage for %s\n", ir->var->name);
1426 this->result = src_reg(brw_null_reg());
1427 return;
1428 }
1429
1430 this->result = src_reg(*reg);
1431
1432 /* System values get their swizzle from the dst_reg writemask */
1433 if (ir->var->mode == ir_var_system_value)
1434 return;
1435
1436 if (type->is_scalar() || type->is_vector() || type->is_matrix())
1437 this->result.swizzle = swizzle_for_size(type->vector_elements);
1438 }
1439
1440 void
1441 vec4_visitor::visit(ir_dereference_array *ir)
1442 {
1443 ir_constant *constant_index;
1444 src_reg src;
1445 int element_size = type_size(ir->type);
1446
1447 constant_index = ir->array_index->constant_expression_value();
1448
1449 ir->array->accept(this);
1450 src = this->result;
1451
1452 if (constant_index) {
1453 src.reg_offset += constant_index->value.i[0] * element_size;
1454 } else {
1455 /* Variable index array dereference. It eats the "vec4" of the
1456 * base of the array and an index that offsets the Mesa register
1457 * index.
1458 */
1459 ir->array_index->accept(this);
1460
1461 src_reg index_reg;
1462
1463 if (element_size == 1) {
1464 index_reg = this->result;
1465 } else {
1466 index_reg = src_reg(this, glsl_type::int_type);
1467
1468 emit(MUL(dst_reg(index_reg), this->result, src_reg(element_size)));
1469 }
1470
1471 if (src.reladdr) {
1472 src_reg temp = src_reg(this, glsl_type::int_type);
1473
1474 emit(ADD(dst_reg(temp), *src.reladdr, index_reg));
1475
1476 index_reg = temp;
1477 }
1478
1479 src.reladdr = ralloc(mem_ctx, src_reg);
1480 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1481 }
1482
1483 /* If the type is smaller than a vec4, replicate the last channel out. */
1484 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
1485 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1486 else
1487 src.swizzle = BRW_SWIZZLE_NOOP;
1488 src.type = brw_type_for_base_type(ir->type);
1489
1490 this->result = src;
1491 }
1492
1493 void
1494 vec4_visitor::visit(ir_dereference_record *ir)
1495 {
1496 unsigned int i;
1497 const glsl_type *struct_type = ir->record->type;
1498 int offset = 0;
1499
1500 ir->record->accept(this);
1501
1502 for (i = 0; i < struct_type->length; i++) {
1503 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1504 break;
1505 offset += type_size(struct_type->fields.structure[i].type);
1506 }
1507
1508 /* If the type is smaller than a vec4, replicate the last channel out. */
1509 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
1510 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1511 else
1512 this->result.swizzle = BRW_SWIZZLE_NOOP;
1513 this->result.type = brw_type_for_base_type(ir->type);
1514
1515 this->result.reg_offset += offset;
1516 }
1517
1518 /**
1519 * We want to be careful in assignment setup to hit the actual storage
1520 * instead of potentially using a temporary like we might with the
1521 * ir_dereference handler.
1522 */
1523 static dst_reg
1524 get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
1525 {
1526 /* The LHS must be a dereference. If the LHS is a variable indexed array
1527 * access of a vector, it must be separated into a series conditional moves
1528 * before reaching this point (see ir_vec_index_to_cond_assign).
1529 */
1530 assert(ir->as_dereference());
1531 ir_dereference_array *deref_array = ir->as_dereference_array();
1532 if (deref_array) {
1533 assert(!deref_array->array->type->is_vector());
1534 }
1535
1536 /* Use the rvalue deref handler for the most part. We'll ignore
1537 * swizzles in it and write swizzles using writemask, though.
1538 */
1539 ir->accept(v);
1540 return dst_reg(v->result);
1541 }
1542
1543 void
1544 vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src,
1545 const struct glsl_type *type, uint32_t predicate)
1546 {
1547 if (type->base_type == GLSL_TYPE_STRUCT) {
1548 for (unsigned int i = 0; i < type->length; i++) {
1549 emit_block_move(dst, src, type->fields.structure[i].type, predicate);
1550 }
1551 return;
1552 }
1553
1554 if (type->is_array()) {
1555 for (unsigned int i = 0; i < type->length; i++) {
1556 emit_block_move(dst, src, type->fields.array, predicate);
1557 }
1558 return;
1559 }
1560
1561 if (type->is_matrix()) {
1562 const struct glsl_type *vec_type;
1563
1564 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
1565 type->vector_elements, 1);
1566
1567 for (int i = 0; i < type->matrix_columns; i++) {
1568 emit_block_move(dst, src, vec_type, predicate);
1569 }
1570 return;
1571 }
1572
1573 assert(type->is_scalar() || type->is_vector());
1574
1575 dst->type = brw_type_for_base_type(type);
1576 src->type = dst->type;
1577
1578 dst->writemask = (1 << type->vector_elements) - 1;
1579
1580 src->swizzle = swizzle_for_size(type->vector_elements);
1581
1582 vec4_instruction *inst = emit(MOV(*dst, *src));
1583 inst->predicate = predicate;
1584
1585 dst->reg_offset++;
1586 src->reg_offset++;
1587 }
1588
1589
1590 /* If the RHS processing resulted in an instruction generating a
1591 * temporary value, and it would be easy to rewrite the instruction to
1592 * generate its result right into the LHS instead, do so. This ends
1593 * up reliably removing instructions where it can be tricky to do so
1594 * later without real UD chain information.
1595 */
1596 bool
1597 vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1598 dst_reg dst,
1599 src_reg src,
1600 vec4_instruction *pre_rhs_inst,
1601 vec4_instruction *last_rhs_inst)
1602 {
1603 /* This could be supported, but it would take more smarts. */
1604 if (ir->condition)
1605 return false;
1606
1607 if (pre_rhs_inst == last_rhs_inst)
1608 return false; /* No instructions generated to work with. */
1609
1610 /* Make sure the last instruction generated our source reg. */
1611 if (src.file != GRF ||
1612 src.file != last_rhs_inst->dst.file ||
1613 src.reg != last_rhs_inst->dst.reg ||
1614 src.reg_offset != last_rhs_inst->dst.reg_offset ||
1615 src.reladdr ||
1616 src.abs ||
1617 src.negate ||
1618 last_rhs_inst->predicate != BRW_PREDICATE_NONE)
1619 return false;
1620
1621 /* Check that that last instruction fully initialized the channels
1622 * we want to use, in the order we want to use them. We could
1623 * potentially reswizzle the operands of many instructions so that
1624 * we could handle out of order channels, but don't yet.
1625 */
1626
1627 for (unsigned i = 0; i < 4; i++) {
1628 if (dst.writemask & (1 << i)) {
1629 if (!(last_rhs_inst->dst.writemask & (1 << i)))
1630 return false;
1631
1632 if (BRW_GET_SWZ(src.swizzle, i) != i)
1633 return false;
1634 }
1635 }
1636
1637 /* Success! Rewrite the instruction. */
1638 last_rhs_inst->dst.file = dst.file;
1639 last_rhs_inst->dst.reg = dst.reg;
1640 last_rhs_inst->dst.reg_offset = dst.reg_offset;
1641 last_rhs_inst->dst.reladdr = dst.reladdr;
1642 last_rhs_inst->dst.writemask &= dst.writemask;
1643
1644 return true;
1645 }
1646
1647 void
1648 vec4_visitor::visit(ir_assignment *ir)
1649 {
1650 dst_reg dst = get_assignment_lhs(ir->lhs, this);
1651 uint32_t predicate = BRW_PREDICATE_NONE;
1652
1653 if (!ir->lhs->type->is_scalar() &&
1654 !ir->lhs->type->is_vector()) {
1655 ir->rhs->accept(this);
1656 src_reg src = this->result;
1657
1658 if (ir->condition) {
1659 emit_bool_to_cond_code(ir->condition, &predicate);
1660 }
1661
1662 /* emit_block_move doesn't account for swizzles in the source register.
1663 * This should be ok, since the source register is a structure or an
1664 * array, and those can't be swizzled. But double-check to be sure.
1665 */
1666 assert(src.swizzle ==
1667 (ir->rhs->type->is_matrix()
1668 ? swizzle_for_size(ir->rhs->type->vector_elements)
1669 : BRW_SWIZZLE_NOOP));
1670
1671 emit_block_move(&dst, &src, ir->rhs->type, predicate);
1672 return;
1673 }
1674
1675 /* Now we're down to just a scalar/vector with writemasks. */
1676 int i;
1677
1678 vec4_instruction *pre_rhs_inst, *last_rhs_inst;
1679 pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1680
1681 ir->rhs->accept(this);
1682
1683 last_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1684
1685 src_reg src = this->result;
1686
1687 int swizzles[4];
1688 int first_enabled_chan = 0;
1689 int src_chan = 0;
1690
1691 assert(ir->lhs->type->is_vector() ||
1692 ir->lhs->type->is_scalar());
1693 dst.writemask = ir->write_mask;
1694
1695 for (int i = 0; i < 4; i++) {
1696 if (dst.writemask & (1 << i)) {
1697 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
1698 break;
1699 }
1700 }
1701
1702 /* Swizzle a small RHS vector into the channels being written.
1703 *
1704 * glsl ir treats write_mask as dictating how many channels are
1705 * present on the RHS while in our instructions we need to make
1706 * those channels appear in the slots of the vec4 they're written to.
1707 */
1708 for (int i = 0; i < 4; i++) {
1709 if (dst.writemask & (1 << i))
1710 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
1711 else
1712 swizzles[i] = first_enabled_chan;
1713 }
1714 src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
1715 swizzles[2], swizzles[3]);
1716
1717 if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) {
1718 return;
1719 }
1720
1721 if (ir->condition) {
1722 emit_bool_to_cond_code(ir->condition, &predicate);
1723 }
1724
1725 for (i = 0; i < type_size(ir->lhs->type); i++) {
1726 vec4_instruction *inst = emit(MOV(dst, src));
1727 inst->predicate = predicate;
1728
1729 dst.reg_offset++;
1730 src.reg_offset++;
1731 }
1732 }
1733
1734 void
1735 vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir)
1736 {
1737 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1738 foreach_list(node, &ir->components) {
1739 ir_constant *field_value = (ir_constant *)node;
1740
1741 emit_constant_values(dst, field_value);
1742 }
1743 return;
1744 }
1745
1746 if (ir->type->is_array()) {
1747 for (unsigned int i = 0; i < ir->type->length; i++) {
1748 emit_constant_values(dst, ir->array_elements[i]);
1749 }
1750 return;
1751 }
1752
1753 if (ir->type->is_matrix()) {
1754 for (int i = 0; i < ir->type->matrix_columns; i++) {
1755 float *vec = &ir->value.f[i * ir->type->vector_elements];
1756
1757 for (int j = 0; j < ir->type->vector_elements; j++) {
1758 dst->writemask = 1 << j;
1759 dst->type = BRW_REGISTER_TYPE_F;
1760
1761 emit(MOV(*dst, src_reg(vec[j])));
1762 }
1763 dst->reg_offset++;
1764 }
1765 return;
1766 }
1767
1768 int remaining_writemask = (1 << ir->type->vector_elements) - 1;
1769
1770 for (int i = 0; i < ir->type->vector_elements; i++) {
1771 if (!(remaining_writemask & (1 << i)))
1772 continue;
1773
1774 dst->writemask = 1 << i;
1775 dst->type = brw_type_for_base_type(ir->type);
1776
1777 /* Find other components that match the one we're about to
1778 * write. Emits fewer instructions for things like vec4(0.5,
1779 * 1.5, 1.5, 1.5).
1780 */
1781 for (int j = i + 1; j < ir->type->vector_elements; j++) {
1782 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1783 if (ir->value.b[i] == ir->value.b[j])
1784 dst->writemask |= (1 << j);
1785 } else {
1786 /* u, i, and f storage all line up, so no need for a
1787 * switch case for comparing each type.
1788 */
1789 if (ir->value.u[i] == ir->value.u[j])
1790 dst->writemask |= (1 << j);
1791 }
1792 }
1793
1794 switch (ir->type->base_type) {
1795 case GLSL_TYPE_FLOAT:
1796 emit(MOV(*dst, src_reg(ir->value.f[i])));
1797 break;
1798 case GLSL_TYPE_INT:
1799 emit(MOV(*dst, src_reg(ir->value.i[i])));
1800 break;
1801 case GLSL_TYPE_UINT:
1802 emit(MOV(*dst, src_reg(ir->value.u[i])));
1803 break;
1804 case GLSL_TYPE_BOOL:
1805 emit(MOV(*dst, src_reg(ir->value.b[i])));
1806 break;
1807 default:
1808 assert(!"Non-float/uint/int/bool constant");
1809 break;
1810 }
1811
1812 remaining_writemask &= ~dst->writemask;
1813 }
1814 dst->reg_offset++;
1815 }
1816
1817 void
1818 vec4_visitor::visit(ir_constant *ir)
1819 {
1820 dst_reg dst = dst_reg(this, ir->type);
1821 this->result = src_reg(dst);
1822
1823 emit_constant_values(&dst, ir);
1824 }
1825
1826 void
1827 vec4_visitor::visit(ir_call *ir)
1828 {
1829 assert(!"not reached");
1830 }
1831
1832 void
1833 vec4_visitor::visit(ir_texture *ir)
1834 {
1835 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &vp->Base);
1836
1837 /* Should be lowered by do_lower_texture_projection */
1838 assert(!ir->projector);
1839
1840 /* Generate code to compute all the subexpression trees. This has to be
1841 * done before loading any values into MRFs for the sampler message since
1842 * generating these values may involve SEND messages that need the MRFs.
1843 */
1844 src_reg coordinate;
1845 if (ir->coordinate) {
1846 ir->coordinate->accept(this);
1847 coordinate = this->result;
1848 }
1849
1850 src_reg shadow_comparitor;
1851 if (ir->shadow_comparitor) {
1852 ir->shadow_comparitor->accept(this);
1853 shadow_comparitor = this->result;
1854 }
1855
1856 src_reg lod, dPdx, dPdy;
1857 switch (ir->op) {
1858 case ir_txf:
1859 case ir_txl:
1860 case ir_txs:
1861 ir->lod_info.lod->accept(this);
1862 lod = this->result;
1863 break;
1864 case ir_txd:
1865 ir->lod_info.grad.dPdx->accept(this);
1866 dPdx = this->result;
1867
1868 ir->lod_info.grad.dPdy->accept(this);
1869 dPdy = this->result;
1870 break;
1871 case ir_tex:
1872 case ir_txb:
1873 break;
1874 }
1875
1876 vec4_instruction *inst = NULL;
1877 switch (ir->op) {
1878 case ir_tex:
1879 case ir_txl:
1880 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXL);
1881 break;
1882 case ir_txd:
1883 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXD);
1884 break;
1885 case ir_txf:
1886 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXF);
1887 break;
1888 case ir_txs:
1889 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXS);
1890 break;
1891 case ir_txb:
1892 assert(!"TXB is not valid for vertex shaders.");
1893 }
1894
1895 /* Texel offsets go in the message header; Gen4 also requires headers. */
1896 inst->header_present = ir->offset || intel->gen < 5;
1897 inst->base_mrf = 2;
1898 inst->mlen = inst->header_present + 1; /* always at least one */
1899 inst->sampler = sampler;
1900 inst->dst = dst_reg(this, ir->type);
1901 inst->shadow_compare = ir->shadow_comparitor != NULL;
1902
1903 if (ir->offset != NULL && ir->op != ir_txf)
1904 inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1905
1906 /* MRF for the first parameter */
1907 int param_base = inst->base_mrf + inst->header_present;
1908
1909 if (ir->op == ir_txs) {
1910 int writemask = intel->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
1911 emit(MOV(dst_reg(MRF, param_base, ir->lod_info.lod->type, writemask),
1912 lod));
1913 } else {
1914 int i, coord_mask = 0, zero_mask = 0;
1915 /* Load the coordinate */
1916 /* FINISHME: gl_clamp_mask and saturate */
1917 for (i = 0; i < ir->coordinate->type->vector_elements; i++)
1918 coord_mask |= (1 << i);
1919 for (; i < 4; i++)
1920 zero_mask |= (1 << i);
1921
1922 if (ir->offset && ir->op == ir_txf) {
1923 /* It appears that the ld instruction used for txf does its
1924 * address bounds check before adding in the offset. To work
1925 * around this, just add the integer offset to the integer
1926 * texel coordinate, and don't put the offset in the header.
1927 */
1928 ir_constant *offset = ir->offset->as_constant();
1929 assert(offset);
1930
1931 for (int j = 0; j < ir->coordinate->type->vector_elements; j++) {
1932 src_reg src = coordinate;
1933 src.swizzle = BRW_SWIZZLE4(BRW_GET_SWZ(src.swizzle, j),
1934 BRW_GET_SWZ(src.swizzle, j),
1935 BRW_GET_SWZ(src.swizzle, j),
1936 BRW_GET_SWZ(src.swizzle, j));
1937 emit(ADD(dst_reg(MRF, param_base, ir->coordinate->type, 1 << j),
1938 src, offset->value.i[j]));
1939 }
1940 } else {
1941 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask),
1942 coordinate));
1943 }
1944 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask),
1945 src_reg(0)));
1946 /* Load the shadow comparitor */
1947 if (ir->shadow_comparitor) {
1948 emit(MOV(dst_reg(MRF, param_base + 1, ir->shadow_comparitor->type,
1949 WRITEMASK_X),
1950 shadow_comparitor));
1951 inst->mlen++;
1952 }
1953
1954 /* Load the LOD info */
1955 if (ir->op == ir_txl) {
1956 int mrf, writemask;
1957 if (intel->gen >= 5) {
1958 mrf = param_base + 1;
1959 if (ir->shadow_comparitor) {
1960 writemask = WRITEMASK_Y;
1961 /* mlen already incremented */
1962 } else {
1963 writemask = WRITEMASK_X;
1964 inst->mlen++;
1965 }
1966 } else /* intel->gen == 4 */ {
1967 mrf = param_base;
1968 writemask = WRITEMASK_Z;
1969 }
1970 emit(MOV(dst_reg(MRF, mrf, ir->lod_info.lod->type, writemask), lod));
1971 } else if (ir->op == ir_txf) {
1972 emit(MOV(dst_reg(MRF, param_base, ir->lod_info.lod->type, WRITEMASK_W),
1973 lod));
1974 } else if (ir->op == ir_txd) {
1975 const glsl_type *type = ir->lod_info.grad.dPdx->type;
1976
1977 if (intel->gen >= 5) {
1978 dPdx.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1979 dPdy.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1980 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), dPdx));
1981 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), dPdy));
1982 inst->mlen++;
1983
1984 if (ir->type->vector_elements == 3) {
1985 dPdx.swizzle = BRW_SWIZZLE_ZZZZ;
1986 dPdy.swizzle = BRW_SWIZZLE_ZZZZ;
1987 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), dPdx));
1988 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), dPdy));
1989 inst->mlen++;
1990 }
1991 } else /* intel->gen == 4 */ {
1992 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), dPdx));
1993 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), dPdy));
1994 inst->mlen += 2;
1995 }
1996 }
1997 }
1998
1999 emit(inst);
2000
2001 swizzle_result(ir, src_reg(inst->dst), sampler);
2002 }
2003
2004 void
2005 vec4_visitor::swizzle_result(ir_texture *ir, src_reg orig_val, int sampler)
2006 {
2007 this->result = orig_val;
2008
2009 int s = c->key.tex.swizzles[sampler];
2010
2011 if (ir->op == ir_txs || ir->type == glsl_type::float_type
2012 || s == SWIZZLE_NOOP)
2013 return;
2014
2015 int zero_mask = 0, one_mask = 0, copy_mask = 0;
2016 int swizzle[4];
2017
2018 for (int i = 0; i < 4; i++) {
2019 switch (GET_SWZ(s, i)) {
2020 case SWIZZLE_ZERO:
2021 zero_mask |= (1 << i);
2022 break;
2023 case SWIZZLE_ONE:
2024 one_mask |= (1 << i);
2025 break;
2026 default:
2027 copy_mask |= (1 << i);
2028 swizzle[i] = GET_SWZ(s, i);
2029 break;
2030 }
2031 }
2032
2033 this->result = src_reg(this, ir->type);
2034 dst_reg swizzled_result(this->result);
2035
2036 if (copy_mask) {
2037 orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2038 swizzled_result.writemask = copy_mask;
2039 emit(MOV(swizzled_result, orig_val));
2040 }
2041
2042 if (zero_mask) {
2043 swizzled_result.writemask = zero_mask;
2044 emit(MOV(swizzled_result, src_reg(0.0f)));
2045 }
2046
2047 if (one_mask) {
2048 swizzled_result.writemask = one_mask;
2049 emit(MOV(swizzled_result, src_reg(1.0f)));
2050 }
2051 }
2052
2053 void
2054 vec4_visitor::visit(ir_return *ir)
2055 {
2056 assert(!"not reached");
2057 }
2058
2059 void
2060 vec4_visitor::visit(ir_discard *ir)
2061 {
2062 assert(!"not reached");
2063 }
2064
2065 void
2066 vec4_visitor::visit(ir_if *ir)
2067 {
2068 /* Don't point the annotation at the if statement, because then it plus
2069 * the then and else blocks get printed.
2070 */
2071 this->base_ir = ir->condition;
2072
2073 if (intel->gen == 6) {
2074 emit_if_gen6(ir);
2075 } else {
2076 uint32_t predicate;
2077 emit_bool_to_cond_code(ir->condition, &predicate);
2078 emit(IF(predicate));
2079 }
2080
2081 visit_instructions(&ir->then_instructions);
2082
2083 if (!ir->else_instructions.is_empty()) {
2084 this->base_ir = ir->condition;
2085 emit(BRW_OPCODE_ELSE);
2086
2087 visit_instructions(&ir->else_instructions);
2088 }
2089
2090 this->base_ir = ir->condition;
2091 emit(BRW_OPCODE_ENDIF);
2092 }
2093
2094 void
2095 vec4_visitor::emit_ndc_computation()
2096 {
2097 /* Get the position */
2098 src_reg pos = src_reg(output_reg[VERT_RESULT_HPOS]);
2099
2100 /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
2101 dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
2102 output_reg[BRW_VERT_RESULT_NDC] = ndc;
2103
2104 current_annotation = "NDC";
2105 dst_reg ndc_w = ndc;
2106 ndc_w.writemask = WRITEMASK_W;
2107 src_reg pos_w = pos;
2108 pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
2109 emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
2110
2111 dst_reg ndc_xyz = ndc;
2112 ndc_xyz.writemask = WRITEMASK_XYZ;
2113
2114 emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
2115 }
2116
2117 void
2118 vec4_visitor::emit_psiz_and_flags(struct brw_reg reg)
2119 {
2120 if (intel->gen < 6 &&
2121 ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
2122 c->key.userclip_active || brw->has_negative_rhw_bug)) {
2123 dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
2124 dst_reg header1_w = header1;
2125 header1_w.writemask = WRITEMASK_W;
2126 GLuint i;
2127
2128 emit(MOV(header1, 0u));
2129
2130 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2131 src_reg psiz = src_reg(output_reg[VERT_RESULT_PSIZ]);
2132
2133 current_annotation = "Point size";
2134 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
2135 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
2136 }
2137
2138 current_annotation = "Clipping flags";
2139 for (i = 0; i < c->key.nr_userclip_plane_consts; i++) {
2140 vec4_instruction *inst;
2141
2142 inst = emit(DP4(dst_null_f(), src_reg(output_reg[VERT_RESULT_HPOS]),
2143 src_reg(this->userplane[i])));
2144 inst->conditional_mod = BRW_CONDITIONAL_L;
2145
2146 inst = emit(OR(header1_w, src_reg(header1_w), 1u << i));
2147 inst->predicate = BRW_PREDICATE_NORMAL;
2148 }
2149
2150 /* i965 clipping workaround:
2151 * 1) Test for -ve rhw
2152 * 2) If set,
2153 * set ndc = (0,0,0,0)
2154 * set ucp[6] = 1
2155 *
2156 * Later, clipping will detect ucp[6] and ensure the primitive is
2157 * clipped against all fixed planes.
2158 */
2159 if (brw->has_negative_rhw_bug) {
2160 #if 0
2161 /* FINISHME */
2162 brw_CMP(p,
2163 vec8(brw_null_reg()),
2164 BRW_CONDITIONAL_L,
2165 brw_swizzle1(output_reg[BRW_VERT_RESULT_NDC], 3),
2166 brw_imm_f(0));
2167
2168 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
2169 brw_MOV(p, output_reg[BRW_VERT_RESULT_NDC], brw_imm_f(0));
2170 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2171 #endif
2172 }
2173
2174 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
2175 } else if (intel->gen < 6) {
2176 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
2177 } else {
2178 emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
2179 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2180 emit(MOV(brw_writemask(reg, WRITEMASK_W),
2181 src_reg(output_reg[VERT_RESULT_PSIZ])));
2182 }
2183 }
2184 }
2185
2186 void
2187 vec4_visitor::emit_clip_distances(struct brw_reg reg, int offset)
2188 {
2189 if (intel->gen < 6) {
2190 /* Clip distance slots are set aside in gen5, but they are not used. It
2191 * is not clear whether we actually need to set aside space for them,
2192 * but the performance cost is negligible.
2193 */
2194 return;
2195 }
2196
2197 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
2198 *
2199 * "If a linked set of shaders forming the vertex stage contains no
2200 * static write to gl_ClipVertex or gl_ClipDistance, but the
2201 * application has requested clipping against user clip planes through
2202 * the API, then the coordinate written to gl_Position is used for
2203 * comparison against the user clip planes."
2204 *
2205 * This function is only called if the shader didn't write to
2206 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
2207 * if the user wrote to it; otherwise we use gl_Position.
2208 */
2209 gl_vert_result clip_vertex = VERT_RESULT_CLIP_VERTEX;
2210 if (!(c->prog_data.outputs_written
2211 & BITFIELD64_BIT(VERT_RESULT_CLIP_VERTEX))) {
2212 clip_vertex = VERT_RESULT_HPOS;
2213 }
2214
2215 for (int i = 0; i + offset < c->key.nr_userclip_plane_consts && i < 4;
2216 ++i) {
2217 emit(DP4(dst_reg(brw_writemask(reg, 1 << i)),
2218 src_reg(output_reg[clip_vertex]),
2219 src_reg(this->userplane[i + offset])));
2220 }
2221 }
2222
2223 void
2224 vec4_visitor::emit_generic_urb_slot(dst_reg reg, int vert_result)
2225 {
2226 assert (vert_result < VERT_RESULT_MAX);
2227 reg.type = output_reg[vert_result].type;
2228 current_annotation = output_reg_annotation[vert_result];
2229 /* Copy the register, saturating if necessary */
2230 vec4_instruction *inst = emit(MOV(reg,
2231 src_reg(output_reg[vert_result])));
2232 if ((vert_result == VERT_RESULT_COL0 ||
2233 vert_result == VERT_RESULT_COL1 ||
2234 vert_result == VERT_RESULT_BFC0 ||
2235 vert_result == VERT_RESULT_BFC1) &&
2236 c->key.clamp_vertex_color) {
2237 inst->saturate = true;
2238 }
2239 }
2240
2241 void
2242 vec4_visitor::emit_urb_slot(int mrf, int vert_result)
2243 {
2244 struct brw_reg hw_reg = brw_message_reg(mrf);
2245 dst_reg reg = dst_reg(MRF, mrf);
2246 reg.type = BRW_REGISTER_TYPE_F;
2247
2248 switch (vert_result) {
2249 case VERT_RESULT_PSIZ:
2250 /* PSIZ is always in slot 0, and is coupled with other flags. */
2251 current_annotation = "indices, point width, clip flags";
2252 emit_psiz_and_flags(hw_reg);
2253 break;
2254 case BRW_VERT_RESULT_NDC:
2255 current_annotation = "NDC";
2256 emit(MOV(reg, src_reg(output_reg[BRW_VERT_RESULT_NDC])));
2257 break;
2258 case BRW_VERT_RESULT_HPOS_DUPLICATE:
2259 case VERT_RESULT_HPOS:
2260 current_annotation = "gl_Position";
2261 emit(MOV(reg, src_reg(output_reg[VERT_RESULT_HPOS])));
2262 break;
2263 case VERT_RESULT_CLIP_DIST0:
2264 case VERT_RESULT_CLIP_DIST1:
2265 if (this->c->key.uses_clip_distance) {
2266 emit_generic_urb_slot(reg, vert_result);
2267 } else {
2268 current_annotation = "user clip distances";
2269 emit_clip_distances(hw_reg, (vert_result - VERT_RESULT_CLIP_DIST0) * 4);
2270 }
2271 break;
2272 case VERT_RESULT_EDGE:
2273 /* This is present when doing unfilled polygons. We're supposed to copy
2274 * the edge flag from the user-provided vertex array
2275 * (glEdgeFlagPointer), or otherwise we'll copy from the current value
2276 * of that attribute (starts as 1.0f). This is then used in clipping to
2277 * determine which edges should be drawn as wireframe.
2278 */
2279 current_annotation = "edge flag";
2280 emit(MOV(reg, src_reg(dst_reg(ATTR, VERT_ATTRIB_EDGEFLAG,
2281 glsl_type::float_type, WRITEMASK_XYZW))));
2282 break;
2283 case BRW_VERT_RESULT_PAD:
2284 /* No need to write to this slot */
2285 break;
2286 default:
2287 emit_generic_urb_slot(reg, vert_result);
2288 break;
2289 }
2290 }
2291
2292 static int
2293 align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
2294 {
2295 struct intel_context *intel = &brw->intel;
2296
2297 if (intel->gen >= 6) {
2298 /* URB data written (does not include the message header reg) must
2299 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
2300 * section 5.4.3.2.2: URB_INTERLEAVED.
2301 *
2302 * URB entries are allocated on a multiple of 1024 bits, so an
2303 * extra 128 bits written here to make the end align to 256 is
2304 * no problem.
2305 */
2306 if ((mlen % 2) != 1)
2307 mlen++;
2308 }
2309
2310 return mlen;
2311 }
2312
2313 /**
2314 * Generates the VUE payload plus the 1 or 2 URB write instructions to
2315 * complete the VS thread.
2316 *
2317 * The VUE layout is documented in Volume 2a.
2318 */
2319 void
2320 vec4_visitor::emit_urb_writes()
2321 {
2322 /* MRF 0 is reserved for the debugger, so start with message header
2323 * in MRF 1.
2324 */
2325 int base_mrf = 1;
2326 int mrf = base_mrf;
2327 /* In the process of generating our URB write message contents, we
2328 * may need to unspill a register or load from an array. Those
2329 * reads would use MRFs 14-15.
2330 */
2331 int max_usable_mrf = 13;
2332
2333 /* The following assertion verifies that max_usable_mrf causes an
2334 * even-numbered amount of URB write data, which will meet gen6's
2335 * requirements for length alignment.
2336 */
2337 assert ((max_usable_mrf - base_mrf) % 2 == 0);
2338
2339 /* First mrf is the g0-based message header containing URB handles and such,
2340 * which is implied in VS_OPCODE_URB_WRITE.
2341 */
2342 mrf++;
2343
2344 if (intel->gen < 6) {
2345 emit_ndc_computation();
2346 }
2347
2348 /* Set up the VUE data for the first URB write */
2349 int slot;
2350 for (slot = 0; slot < c->prog_data.vue_map.num_slots; ++slot) {
2351 emit_urb_slot(mrf++, c->prog_data.vue_map.slot_to_vert_result[slot]);
2352
2353 /* If this was max_usable_mrf, we can't fit anything more into this URB
2354 * WRITE.
2355 */
2356 if (mrf > max_usable_mrf) {
2357 slot++;
2358 break;
2359 }
2360 }
2361
2362 current_annotation = "URB write";
2363 vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
2364 inst->base_mrf = base_mrf;
2365 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2366 inst->eot = (slot >= c->prog_data.vue_map.num_slots);
2367
2368 /* Optional second URB write */
2369 if (!inst->eot) {
2370 mrf = base_mrf + 1;
2371
2372 for (; slot < c->prog_data.vue_map.num_slots; ++slot) {
2373 assert(mrf < max_usable_mrf);
2374
2375 emit_urb_slot(mrf++, c->prog_data.vue_map.slot_to_vert_result[slot]);
2376 }
2377
2378 current_annotation = "URB write";
2379 inst = emit(VS_OPCODE_URB_WRITE);
2380 inst->base_mrf = base_mrf;
2381 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2382 inst->eot = true;
2383 /* URB destination offset. In the previous write, we got MRFs
2384 * 2-13 minus the one header MRF, so 12 regs. URB offset is in
2385 * URB row increments, and each of our MRFs is half of one of
2386 * those, since we're doing interleaved writes.
2387 */
2388 inst->offset = (max_usable_mrf - base_mrf) / 2;
2389 }
2390 }
2391
2392 src_reg
2393 vec4_visitor::get_scratch_offset(vec4_instruction *inst,
2394 src_reg *reladdr, int reg_offset)
2395 {
2396 /* Because we store the values to scratch interleaved like our
2397 * vertex data, we need to scale the vec4 index by 2.
2398 */
2399 int message_header_scale = 2;
2400
2401 /* Pre-gen6, the message header uses byte offsets instead of vec4
2402 * (16-byte) offset units.
2403 */
2404 if (intel->gen < 6)
2405 message_header_scale *= 16;
2406
2407 if (reladdr) {
2408 src_reg index = src_reg(this, glsl_type::int_type);
2409
2410 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2411 emit_before(inst, MUL(dst_reg(index),
2412 index, src_reg(message_header_scale)));
2413
2414 return index;
2415 } else {
2416 return src_reg(reg_offset * message_header_scale);
2417 }
2418 }
2419
2420 src_reg
2421 vec4_visitor::get_pull_constant_offset(vec4_instruction *inst,
2422 src_reg *reladdr, int reg_offset)
2423 {
2424 if (reladdr) {
2425 src_reg index = src_reg(this, glsl_type::int_type);
2426
2427 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2428
2429 /* Pre-gen6, the message header uses byte offsets instead of vec4
2430 * (16-byte) offset units.
2431 */
2432 if (intel->gen < 6) {
2433 emit_before(inst, MUL(dst_reg(index), index, src_reg(16)));
2434 }
2435
2436 return index;
2437 } else {
2438 int message_header_scale = intel->gen < 6 ? 16 : 1;
2439 return src_reg(reg_offset * message_header_scale);
2440 }
2441 }
2442
2443 /**
2444 * Emits an instruction before @inst to load the value named by @orig_src
2445 * from scratch space at @base_offset to @temp.
2446 *
2447 * @base_offset is measured in 32-byte units (the size of a register).
2448 */
2449 void
2450 vec4_visitor::emit_scratch_read(vec4_instruction *inst,
2451 dst_reg temp, src_reg orig_src,
2452 int base_offset)
2453 {
2454 int reg_offset = base_offset + orig_src.reg_offset;
2455 src_reg index = get_scratch_offset(inst, orig_src.reladdr, reg_offset);
2456
2457 emit_before(inst, SCRATCH_READ(temp, index));
2458 }
2459
2460 /**
2461 * Emits an instruction after @inst to store the value to be written
2462 * to @orig_dst to scratch space at @base_offset, from @temp.
2463 *
2464 * @base_offset is measured in 32-byte units (the size of a register).
2465 */
2466 void
2467 vec4_visitor::emit_scratch_write(vec4_instruction *inst,
2468 src_reg temp, dst_reg orig_dst,
2469 int base_offset)
2470 {
2471 int reg_offset = base_offset + orig_dst.reg_offset;
2472 src_reg index = get_scratch_offset(inst, orig_dst.reladdr, reg_offset);
2473
2474 dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
2475 orig_dst.writemask));
2476 vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
2477 write->predicate = inst->predicate;
2478 write->ir = inst->ir;
2479 write->annotation = inst->annotation;
2480 inst->insert_after(write);
2481 }
2482
2483 /**
2484 * We can't generally support array access in GRF space, because a
2485 * single instruction's destination can only span 2 contiguous
2486 * registers. So, we send all GRF arrays that get variable index
2487 * access to scratch space.
2488 */
2489 void
2490 vec4_visitor::move_grf_array_access_to_scratch()
2491 {
2492 int scratch_loc[this->virtual_grf_count];
2493
2494 for (int i = 0; i < this->virtual_grf_count; i++) {
2495 scratch_loc[i] = -1;
2496 }
2497
2498 /* First, calculate the set of virtual GRFs that need to be punted
2499 * to scratch due to having any array access on them, and where in
2500 * scratch.
2501 */
2502 foreach_list(node, &this->instructions) {
2503 vec4_instruction *inst = (vec4_instruction *)node;
2504
2505 if (inst->dst.file == GRF && inst->dst.reladdr &&
2506 scratch_loc[inst->dst.reg] == -1) {
2507 scratch_loc[inst->dst.reg] = c->last_scratch;
2508 c->last_scratch += this->virtual_grf_sizes[inst->dst.reg];
2509 }
2510
2511 for (int i = 0 ; i < 3; i++) {
2512 src_reg *src = &inst->src[i];
2513
2514 if (src->file == GRF && src->reladdr &&
2515 scratch_loc[src->reg] == -1) {
2516 scratch_loc[src->reg] = c->last_scratch;
2517 c->last_scratch += this->virtual_grf_sizes[src->reg];
2518 }
2519 }
2520 }
2521
2522 /* Now, for anything that will be accessed through scratch, rewrite
2523 * it to load/store. Note that this is a _safe list walk, because
2524 * we may generate a new scratch_write instruction after the one
2525 * we're processing.
2526 */
2527 foreach_list_safe(node, &this->instructions) {
2528 vec4_instruction *inst = (vec4_instruction *)node;
2529
2530 /* Set up the annotation tracking for new generated instructions. */
2531 base_ir = inst->ir;
2532 current_annotation = inst->annotation;
2533
2534 if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) {
2535 src_reg temp = src_reg(this, glsl_type::vec4_type);
2536
2537 emit_scratch_write(inst, temp, inst->dst, scratch_loc[inst->dst.reg]);
2538
2539 inst->dst.file = temp.file;
2540 inst->dst.reg = temp.reg;
2541 inst->dst.reg_offset = temp.reg_offset;
2542 inst->dst.reladdr = NULL;
2543 }
2544
2545 for (int i = 0 ; i < 3; i++) {
2546 if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1)
2547 continue;
2548
2549 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2550
2551 emit_scratch_read(inst, temp, inst->src[i],
2552 scratch_loc[inst->src[i].reg]);
2553
2554 inst->src[i].file = temp.file;
2555 inst->src[i].reg = temp.reg;
2556 inst->src[i].reg_offset = temp.reg_offset;
2557 inst->src[i].reladdr = NULL;
2558 }
2559 }
2560 }
2561
2562 /**
2563 * Emits an instruction before @inst to load the value named by @orig_src
2564 * from the pull constant buffer (surface) at @base_offset to @temp.
2565 */
2566 void
2567 vec4_visitor::emit_pull_constant_load(vec4_instruction *inst,
2568 dst_reg temp, src_reg orig_src,
2569 int base_offset)
2570 {
2571 int reg_offset = base_offset + orig_src.reg_offset;
2572 src_reg index = src_reg((unsigned)SURF_INDEX_VERT_CONST_BUFFER);
2573 src_reg offset = get_pull_constant_offset(inst, orig_src.reladdr, reg_offset);
2574 vec4_instruction *load;
2575
2576 load = new(mem_ctx) vec4_instruction(this, VS_OPCODE_PULL_CONSTANT_LOAD,
2577 temp, index, offset);
2578 load->base_mrf = 14;
2579 load->mlen = 1;
2580 emit_before(inst, load);
2581 }
2582
2583 /**
2584 * Implements array access of uniforms by inserting a
2585 * PULL_CONSTANT_LOAD instruction.
2586 *
2587 * Unlike temporary GRF array access (where we don't support it due to
2588 * the difficulty of doing relative addressing on instruction
2589 * destinations), we could potentially do array access of uniforms
2590 * that were loaded in GRF space as push constants. In real-world
2591 * usage we've seen, though, the arrays being used are always larger
2592 * than we could load as push constants, so just always move all
2593 * uniform array access out to a pull constant buffer.
2594 */
2595 void
2596 vec4_visitor::move_uniform_array_access_to_pull_constants()
2597 {
2598 int pull_constant_loc[this->uniforms];
2599
2600 for (int i = 0; i < this->uniforms; i++) {
2601 pull_constant_loc[i] = -1;
2602 }
2603
2604 /* Walk through and find array access of uniforms. Put a copy of that
2605 * uniform in the pull constant buffer.
2606 *
2607 * Note that we don't move constant-indexed accesses to arrays. No
2608 * testing has been done of the performance impact of this choice.
2609 */
2610 foreach_list_safe(node, &this->instructions) {
2611 vec4_instruction *inst = (vec4_instruction *)node;
2612
2613 for (int i = 0 ; i < 3; i++) {
2614 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
2615 continue;
2616
2617 int uniform = inst->src[i].reg;
2618
2619 /* If this array isn't already present in the pull constant buffer,
2620 * add it.
2621 */
2622 if (pull_constant_loc[uniform] == -1) {
2623 const float **values = &prog_data->param[uniform * 4];
2624
2625 pull_constant_loc[uniform] = prog_data->nr_pull_params / 4;
2626
2627 for (int j = 0; j < uniform_size[uniform] * 4; j++) {
2628 prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
2629 }
2630 }
2631
2632 /* Set up the annotation tracking for new generated instructions. */
2633 base_ir = inst->ir;
2634 current_annotation = inst->annotation;
2635
2636 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2637
2638 emit_pull_constant_load(inst, temp, inst->src[i],
2639 pull_constant_loc[uniform]);
2640
2641 inst->src[i].file = temp.file;
2642 inst->src[i].reg = temp.reg;
2643 inst->src[i].reg_offset = temp.reg_offset;
2644 inst->src[i].reladdr = NULL;
2645 }
2646 }
2647
2648 /* Now there are no accesses of the UNIFORM file with a reladdr, so
2649 * no need to track them as larger-than-vec4 objects. This will be
2650 * relied on in cutting out unused uniform vectors from push
2651 * constants.
2652 */
2653 split_uniform_registers();
2654 }
2655
2656 void
2657 vec4_visitor::resolve_ud_negate(src_reg *reg)
2658 {
2659 if (reg->type != BRW_REGISTER_TYPE_UD ||
2660 !reg->negate)
2661 return;
2662
2663 src_reg temp = src_reg(this, glsl_type::uvec4_type);
2664 emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
2665 *reg = temp;
2666 }
2667
2668 vec4_visitor::vec4_visitor(struct brw_vs_compile *c,
2669 struct gl_shader_program *prog,
2670 struct brw_shader *shader)
2671 {
2672 this->c = c;
2673 this->p = &c->func;
2674 this->brw = p->brw;
2675 this->intel = &brw->intel;
2676 this->ctx = &intel->ctx;
2677 this->prog = prog;
2678 this->shader = shader;
2679
2680 this->mem_ctx = ralloc_context(NULL);
2681 this->failed = false;
2682
2683 this->base_ir = NULL;
2684 this->current_annotation = NULL;
2685
2686 this->c = c;
2687 this->vp = (struct gl_vertex_program *)
2688 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
2689 this->prog_data = &c->prog_data;
2690
2691 this->variable_ht = hash_table_ctor(0,
2692 hash_table_pointer_hash,
2693 hash_table_pointer_compare);
2694
2695 this->virtual_grf_def = NULL;
2696 this->virtual_grf_use = NULL;
2697 this->virtual_grf_sizes = NULL;
2698 this->virtual_grf_count = 0;
2699 this->virtual_grf_reg_map = NULL;
2700 this->virtual_grf_reg_count = 0;
2701 this->virtual_grf_array_size = 0;
2702 this->live_intervals_valid = false;
2703
2704 this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2705
2706 this->uniforms = 0;
2707 }
2708
2709 vec4_visitor::~vec4_visitor()
2710 {
2711 ralloc_free(this->mem_ctx);
2712 hash_table_dtor(this->variable_ht);
2713 }
2714
2715
2716 void
2717 vec4_visitor::fail(const char *format, ...)
2718 {
2719 va_list va;
2720 char *msg;
2721
2722 if (failed)
2723 return;
2724
2725 failed = true;
2726
2727 va_start(va, format);
2728 msg = ralloc_vasprintf(mem_ctx, format, va);
2729 va_end(va);
2730 msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg);
2731
2732 this->fail_msg = msg;
2733
2734 if (INTEL_DEBUG & DEBUG_VS) {
2735 fprintf(stderr, "%s", msg);
2736 }
2737 }
2738
2739 } /* namespace brw */