i965/vs: Don't clobber sampler message MRFs with subexpressions.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_visitor.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 extern "C" {
26 #include "main/macros.h"
27 #include "program/prog_parameter.h"
28 #include "program/sampler.h"
29 }
30
31 namespace brw {
32
33 vec4_instruction::vec4_instruction(vec4_visitor *v,
34 enum opcode opcode, dst_reg dst,
35 src_reg src0, src_reg src1, src_reg src2)
36 {
37 this->opcode = opcode;
38 this->dst = dst;
39 this->src[0] = src0;
40 this->src[1] = src1;
41 this->src[2] = src2;
42 this->ir = v->base_ir;
43 this->annotation = v->current_annotation;
44 }
45
46 vec4_instruction *
47 vec4_visitor::emit(vec4_instruction *inst)
48 {
49 this->instructions.push_tail(inst);
50
51 return inst;
52 }
53
54 vec4_instruction *
55 vec4_visitor::emit_before(vec4_instruction *inst, vec4_instruction *new_inst)
56 {
57 new_inst->ir = inst->ir;
58 new_inst->annotation = inst->annotation;
59
60 inst->insert_before(new_inst);
61
62 return inst;
63 }
64
65 vec4_instruction *
66 vec4_visitor::emit(enum opcode opcode, dst_reg dst,
67 src_reg src0, src_reg src1, src_reg src2)
68 {
69 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst,
70 src0, src1, src2));
71 }
72
73
74 vec4_instruction *
75 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
76 {
77 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0, src1));
78 }
79
80 vec4_instruction *
81 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
82 {
83 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0));
84 }
85
86 vec4_instruction *
87 vec4_visitor::emit(enum opcode opcode)
88 {
89 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst_reg()));
90 }
91
92 #define ALU1(op) \
93 vec4_instruction * \
94 vec4_visitor::op(dst_reg dst, src_reg src0) \
95 { \
96 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
97 src0); \
98 }
99
100 #define ALU2(op) \
101 vec4_instruction * \
102 vec4_visitor::op(dst_reg dst, src_reg src0, src_reg src1) \
103 { \
104 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
105 src0, src1); \
106 }
107
108 ALU1(NOT)
109 ALU1(MOV)
110 ALU1(FRC)
111 ALU1(RNDD)
112 ALU1(RNDE)
113 ALU1(RNDZ)
114 ALU2(ADD)
115 ALU2(MUL)
116 ALU2(MACH)
117 ALU2(AND)
118 ALU2(OR)
119 ALU2(XOR)
120 ALU2(DP3)
121 ALU2(DP4)
122
123 /** Gen4 predicated IF. */
124 vec4_instruction *
125 vec4_visitor::IF(uint32_t predicate)
126 {
127 vec4_instruction *inst;
128
129 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF);
130 inst->predicate = predicate;
131
132 return inst;
133 }
134
135 /** Gen6+ IF with embedded comparison. */
136 vec4_instruction *
137 vec4_visitor::IF(src_reg src0, src_reg src1, uint32_t condition)
138 {
139 assert(intel->gen >= 6);
140
141 vec4_instruction *inst;
142
143 resolve_ud_negate(&src0);
144 resolve_ud_negate(&src1);
145
146 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF, dst_null_d(),
147 src0, src1);
148 inst->conditional_mod = condition;
149
150 return inst;
151 }
152
153 /**
154 * CMP: Sets the low bit of the destination channels with the result
155 * of the comparison, while the upper bits are undefined, and updates
156 * the flag register with the packed 16 bits of the result.
157 */
158 vec4_instruction *
159 vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1, uint32_t condition)
160 {
161 vec4_instruction *inst;
162
163 /* original gen4 does type conversion to the destination type
164 * before before comparison, producing garbage results for floating
165 * point comparisons.
166 */
167 if (intel->gen == 4) {
168 dst.type = src0.type;
169 if (dst.file == HW_REG)
170 dst.fixed_hw_reg.type = dst.type;
171 }
172
173 resolve_ud_negate(&src0);
174 resolve_ud_negate(&src1);
175
176 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_CMP, dst, src0, src1);
177 inst->conditional_mod = condition;
178
179 return inst;
180 }
181
182 vec4_instruction *
183 vec4_visitor::SCRATCH_READ(dst_reg dst, src_reg index)
184 {
185 vec4_instruction *inst;
186
187 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_READ,
188 dst, index);
189 inst->base_mrf = 14;
190 inst->mlen = 1;
191
192 return inst;
193 }
194
195 vec4_instruction *
196 vec4_visitor::SCRATCH_WRITE(dst_reg dst, src_reg src, src_reg index)
197 {
198 vec4_instruction *inst;
199
200 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_WRITE,
201 dst, src, index);
202 inst->base_mrf = 13;
203 inst->mlen = 2;
204
205 return inst;
206 }
207
208 void
209 vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
210 {
211 static enum opcode dot_opcodes[] = {
212 BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
213 };
214
215 emit(dot_opcodes[elements - 2], dst, src0, src1);
216 }
217
218 void
219 vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
220 {
221 /* The gen6 math instruction ignores the source modifiers --
222 * swizzle, abs, negate, and at least some parts of the register
223 * region description.
224 *
225 * While it would seem that this MOV could be avoided at this point
226 * in the case that the swizzle is matched up with the destination
227 * writemask, note that uniform packing and register allocation
228 * could rearrange our swizzle, so let's leave this matter up to
229 * copy propagation later.
230 */
231 src_reg temp_src = src_reg(this, glsl_type::vec4_type);
232 emit(MOV(dst_reg(temp_src), src));
233
234 if (dst.writemask != WRITEMASK_XYZW) {
235 /* The gen6 math instruction must be align1, so we can't do
236 * writemasks.
237 */
238 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
239
240 emit(opcode, temp_dst, temp_src);
241
242 emit(MOV(dst, src_reg(temp_dst)));
243 } else {
244 emit(opcode, dst, temp_src);
245 }
246 }
247
248 void
249 vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
250 {
251 vec4_instruction *inst = emit(opcode, dst, src);
252 inst->base_mrf = 1;
253 inst->mlen = 1;
254 }
255
256 void
257 vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
258 {
259 switch (opcode) {
260 case SHADER_OPCODE_RCP:
261 case SHADER_OPCODE_RSQ:
262 case SHADER_OPCODE_SQRT:
263 case SHADER_OPCODE_EXP2:
264 case SHADER_OPCODE_LOG2:
265 case SHADER_OPCODE_SIN:
266 case SHADER_OPCODE_COS:
267 break;
268 default:
269 assert(!"not reached: bad math opcode");
270 return;
271 }
272
273 if (intel->gen >= 7) {
274 emit(opcode, dst, src);
275 } else if (intel->gen == 6) {
276 return emit_math1_gen6(opcode, dst, src);
277 } else {
278 return emit_math1_gen4(opcode, dst, src);
279 }
280 }
281
282 void
283 vec4_visitor::emit_math2_gen6(enum opcode opcode,
284 dst_reg dst, src_reg src0, src_reg src1)
285 {
286 src_reg expanded;
287
288 /* The gen6 math instruction ignores the source modifiers --
289 * swizzle, abs, negate, and at least some parts of the register
290 * region description. Move the sources to temporaries to make it
291 * generally work.
292 */
293
294 expanded = src_reg(this, glsl_type::vec4_type);
295 expanded.type = src0.type;
296 emit(MOV(dst_reg(expanded), src0));
297 src0 = expanded;
298
299 expanded = src_reg(this, glsl_type::vec4_type);
300 expanded.type = src1.type;
301 emit(MOV(dst_reg(expanded), src1));
302 src1 = expanded;
303
304 if (dst.writemask != WRITEMASK_XYZW) {
305 /* The gen6 math instruction must be align1, so we can't do
306 * writemasks.
307 */
308 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
309 temp_dst.type = dst.type;
310
311 emit(opcode, temp_dst, src0, src1);
312
313 emit(MOV(dst, src_reg(temp_dst)));
314 } else {
315 emit(opcode, dst, src0, src1);
316 }
317 }
318
319 void
320 vec4_visitor::emit_math2_gen4(enum opcode opcode,
321 dst_reg dst, src_reg src0, src_reg src1)
322 {
323 vec4_instruction *inst = emit(opcode, dst, src0, src1);
324 inst->base_mrf = 1;
325 inst->mlen = 2;
326 }
327
328 void
329 vec4_visitor::emit_math(enum opcode opcode,
330 dst_reg dst, src_reg src0, src_reg src1)
331 {
332 switch (opcode) {
333 case SHADER_OPCODE_POW:
334 case SHADER_OPCODE_INT_QUOTIENT:
335 case SHADER_OPCODE_INT_REMAINDER:
336 break;
337 default:
338 assert(!"not reached: unsupported binary math opcode");
339 return;
340 }
341
342 if (intel->gen >= 7) {
343 emit(opcode, dst, src0, src1);
344 } else if (intel->gen == 6) {
345 return emit_math2_gen6(opcode, dst, src0, src1);
346 } else {
347 return emit_math2_gen4(opcode, dst, src0, src1);
348 }
349 }
350
351 void
352 vec4_visitor::visit_instructions(const exec_list *list)
353 {
354 foreach_list(node, list) {
355 ir_instruction *ir = (ir_instruction *)node;
356
357 base_ir = ir;
358 ir->accept(this);
359 }
360 }
361
362
363 static int
364 type_size(const struct glsl_type *type)
365 {
366 unsigned int i;
367 int size;
368
369 switch (type->base_type) {
370 case GLSL_TYPE_UINT:
371 case GLSL_TYPE_INT:
372 case GLSL_TYPE_FLOAT:
373 case GLSL_TYPE_BOOL:
374 if (type->is_matrix()) {
375 return type->matrix_columns;
376 } else {
377 /* Regardless of size of vector, it gets a vec4. This is bad
378 * packing for things like floats, but otherwise arrays become a
379 * mess. Hopefully a later pass over the code can pack scalars
380 * down if appropriate.
381 */
382 return 1;
383 }
384 case GLSL_TYPE_ARRAY:
385 assert(type->length > 0);
386 return type_size(type->fields.array) * type->length;
387 case GLSL_TYPE_STRUCT:
388 size = 0;
389 for (i = 0; i < type->length; i++) {
390 size += type_size(type->fields.structure[i].type);
391 }
392 return size;
393 case GLSL_TYPE_SAMPLER:
394 /* Samplers take up one slot in UNIFORMS[], but they're baked in
395 * at link time.
396 */
397 return 1;
398 default:
399 assert(0);
400 return 0;
401 }
402 }
403
404 int
405 vec4_visitor::virtual_grf_alloc(int size)
406 {
407 if (virtual_grf_array_size <= virtual_grf_count) {
408 if (virtual_grf_array_size == 0)
409 virtual_grf_array_size = 16;
410 else
411 virtual_grf_array_size *= 2;
412 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
413 virtual_grf_array_size);
414 virtual_grf_reg_map = reralloc(mem_ctx, virtual_grf_reg_map, int,
415 virtual_grf_array_size);
416 }
417 virtual_grf_reg_map[virtual_grf_count] = virtual_grf_reg_count;
418 virtual_grf_reg_count += size;
419 virtual_grf_sizes[virtual_grf_count] = size;
420 return virtual_grf_count++;
421 }
422
423 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
424 {
425 init();
426
427 this->file = GRF;
428 this->reg = v->virtual_grf_alloc(type_size(type));
429
430 if (type->is_array() || type->is_record()) {
431 this->swizzle = BRW_SWIZZLE_NOOP;
432 } else {
433 this->swizzle = swizzle_for_size(type->vector_elements);
434 }
435
436 this->type = brw_type_for_base_type(type);
437 }
438
439 dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
440 {
441 init();
442
443 this->file = GRF;
444 this->reg = v->virtual_grf_alloc(type_size(type));
445
446 if (type->is_array() || type->is_record()) {
447 this->writemask = WRITEMASK_XYZW;
448 } else {
449 this->writemask = (1 << type->vector_elements) - 1;
450 }
451
452 this->type = brw_type_for_base_type(type);
453 }
454
455 /* Our support for uniforms is piggy-backed on the struct
456 * gl_fragment_program, because that's where the values actually
457 * get stored, rather than in some global gl_shader_program uniform
458 * store.
459 */
460 int
461 vec4_visitor::setup_uniform_values(int loc, const glsl_type *type)
462 {
463 unsigned int offset = 0;
464 float *values = &this->vp->Base.Parameters->ParameterValues[loc][0].f;
465
466 if (type->is_matrix()) {
467 const glsl_type *column = type->column_type();
468
469 for (unsigned int i = 0; i < type->matrix_columns; i++) {
470 offset += setup_uniform_values(loc + offset, column);
471 }
472
473 return offset;
474 }
475
476 switch (type->base_type) {
477 case GLSL_TYPE_FLOAT:
478 case GLSL_TYPE_UINT:
479 case GLSL_TYPE_INT:
480 case GLSL_TYPE_BOOL:
481 for (unsigned int i = 0; i < type->vector_elements; i++) {
482 c->prog_data.param[this->uniforms * 4 + i] = &values[i];
483 }
484
485 /* Set up pad elements to get things aligned to a vec4 boundary. */
486 for (unsigned int i = type->vector_elements; i < 4; i++) {
487 static float zero = 0;
488
489 c->prog_data.param[this->uniforms * 4 + i] = &zero;
490 }
491
492 /* Track the size of this uniform vector, for future packing of
493 * uniforms.
494 */
495 this->uniform_vector_size[this->uniforms] = type->vector_elements;
496 this->uniforms++;
497
498 return 1;
499
500 case GLSL_TYPE_STRUCT:
501 for (unsigned int i = 0; i < type->length; i++) {
502 offset += setup_uniform_values(loc + offset,
503 type->fields.structure[i].type);
504 }
505 return offset;
506
507 case GLSL_TYPE_ARRAY:
508 for (unsigned int i = 0; i < type->length; i++) {
509 offset += setup_uniform_values(loc + offset, type->fields.array);
510 }
511 return offset;
512
513 case GLSL_TYPE_SAMPLER:
514 /* The sampler takes up a slot, but we don't use any values from it. */
515 return 1;
516
517 default:
518 assert(!"not reached");
519 return 0;
520 }
521 }
522
523 void
524 vec4_visitor::setup_uniform_clipplane_values()
525 {
526 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
527
528 /* Pre-Gen6, we compact clip planes. For example, if the user
529 * enables just clip planes 0, 1, and 3, we will enable clip planes
530 * 0, 1, and 2 in the hardware, and we'll move clip plane 3 to clip
531 * plane 2. This simplifies the implementation of the Gen6 clip
532 * thread.
533 *
534 * In Gen6 and later, we don't compact clip planes, because this
535 * simplifies the implementation of gl_ClipDistance.
536 */
537 int compacted_clipplane_index = 0;
538 for (int i = 0; i < c->key.nr_userclip_plane_consts; ++i) {
539 if (intel->gen < 6 &&
540 !(c->key.userclip_planes_enabled_gen_4_5 & (1 << i))) {
541 continue;
542 }
543 this->uniform_vector_size[this->uniforms] = 4;
544 this->userplane[compacted_clipplane_index] = dst_reg(UNIFORM, this->uniforms);
545 this->userplane[compacted_clipplane_index].type = BRW_REGISTER_TYPE_F;
546 for (int j = 0; j < 4; ++j) {
547 c->prog_data.param[this->uniforms * 4 + j] = &clip_planes[i][j];
548 }
549 ++compacted_clipplane_index;
550 ++this->uniforms;
551 }
552 }
553
554 /* Our support for builtin uniforms is even scarier than non-builtin.
555 * It sits on top of the PROG_STATE_VAR parameters that are
556 * automatically updated from GL context state.
557 */
558 void
559 vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
560 {
561 const ir_state_slot *const slots = ir->state_slots;
562 assert(ir->state_slots != NULL);
563
564 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
565 /* This state reference has already been setup by ir_to_mesa,
566 * but we'll get the same index back here. We can reference
567 * ParameterValues directly, since unlike brw_fs.cpp, we never
568 * add new state references during compile.
569 */
570 int index = _mesa_add_state_reference(this->vp->Base.Parameters,
571 (gl_state_index *)slots[i].tokens);
572 float *values = &this->vp->Base.Parameters->ParameterValues[index][0].f;
573
574 this->uniform_vector_size[this->uniforms] = 0;
575 /* Add each of the unique swizzled channels of the element.
576 * This will end up matching the size of the glsl_type of this field.
577 */
578 int last_swiz = -1;
579 for (unsigned int j = 0; j < 4; j++) {
580 int swiz = GET_SWZ(slots[i].swizzle, j);
581 last_swiz = swiz;
582
583 c->prog_data.param[this->uniforms * 4 + j] = &values[swiz];
584 if (swiz <= last_swiz)
585 this->uniform_vector_size[this->uniforms]++;
586 }
587 this->uniforms++;
588 }
589 }
590
591 dst_reg *
592 vec4_visitor::variable_storage(ir_variable *var)
593 {
594 return (dst_reg *)hash_table_find(this->variable_ht, var);
595 }
596
597 void
598 vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir, uint32_t *predicate)
599 {
600 ir_expression *expr = ir->as_expression();
601
602 *predicate = BRW_PREDICATE_NORMAL;
603
604 if (expr) {
605 src_reg op[2];
606 vec4_instruction *inst;
607
608 assert(expr->get_num_operands() <= 2);
609 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
610 expr->operands[i]->accept(this);
611 op[i] = this->result;
612
613 resolve_ud_negate(&op[i]);
614 }
615
616 switch (expr->operation) {
617 case ir_unop_logic_not:
618 inst = emit(AND(dst_null_d(), op[0], src_reg(1)));
619 inst->conditional_mod = BRW_CONDITIONAL_Z;
620 break;
621
622 case ir_binop_logic_xor:
623 inst = emit(XOR(dst_null_d(), op[0], op[1]));
624 inst->conditional_mod = BRW_CONDITIONAL_NZ;
625 break;
626
627 case ir_binop_logic_or:
628 inst = emit(OR(dst_null_d(), op[0], op[1]));
629 inst->conditional_mod = BRW_CONDITIONAL_NZ;
630 break;
631
632 case ir_binop_logic_and:
633 inst = emit(AND(dst_null_d(), op[0], op[1]));
634 inst->conditional_mod = BRW_CONDITIONAL_NZ;
635 break;
636
637 case ir_unop_f2b:
638 if (intel->gen >= 6) {
639 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
640 } else {
641 inst = emit(MOV(dst_null_f(), op[0]));
642 inst->conditional_mod = BRW_CONDITIONAL_NZ;
643 }
644 break;
645
646 case ir_unop_i2b:
647 if (intel->gen >= 6) {
648 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
649 } else {
650 inst = emit(MOV(dst_null_d(), op[0]));
651 inst->conditional_mod = BRW_CONDITIONAL_NZ;
652 }
653 break;
654
655 case ir_binop_all_equal:
656 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
657 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
658 break;
659
660 case ir_binop_any_nequal:
661 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
662 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
663 break;
664
665 case ir_unop_any:
666 inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
667 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
668 break;
669
670 case ir_binop_greater:
671 case ir_binop_gequal:
672 case ir_binop_less:
673 case ir_binop_lequal:
674 case ir_binop_equal:
675 case ir_binop_nequal:
676 emit(CMP(dst_null_d(), op[0], op[1],
677 brw_conditional_for_comparison(expr->operation)));
678 break;
679
680 default:
681 assert(!"not reached");
682 break;
683 }
684 return;
685 }
686
687 ir->accept(this);
688
689 resolve_ud_negate(&this->result);
690
691 if (intel->gen >= 6) {
692 vec4_instruction *inst = emit(AND(dst_null_d(),
693 this->result, src_reg(1)));
694 inst->conditional_mod = BRW_CONDITIONAL_NZ;
695 } else {
696 vec4_instruction *inst = emit(MOV(dst_null_d(), this->result));
697 inst->conditional_mod = BRW_CONDITIONAL_NZ;
698 }
699 }
700
701 /**
702 * Emit a gen6 IF statement with the comparison folded into the IF
703 * instruction.
704 */
705 void
706 vec4_visitor::emit_if_gen6(ir_if *ir)
707 {
708 ir_expression *expr = ir->condition->as_expression();
709
710 if (expr) {
711 src_reg op[2];
712 dst_reg temp;
713
714 assert(expr->get_num_operands() <= 2);
715 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
716 expr->operands[i]->accept(this);
717 op[i] = this->result;
718 }
719
720 switch (expr->operation) {
721 case ir_unop_logic_not:
722 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z));
723 return;
724
725 case ir_binop_logic_xor:
726 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
727 return;
728
729 case ir_binop_logic_or:
730 temp = dst_reg(this, glsl_type::bool_type);
731 emit(OR(temp, op[0], op[1]));
732 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
733 return;
734
735 case ir_binop_logic_and:
736 temp = dst_reg(this, glsl_type::bool_type);
737 emit(AND(temp, op[0], op[1]));
738 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
739 return;
740
741 case ir_unop_f2b:
742 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
743 return;
744
745 case ir_unop_i2b:
746 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
747 return;
748
749 case ir_binop_greater:
750 case ir_binop_gequal:
751 case ir_binop_less:
752 case ir_binop_lequal:
753 case ir_binop_equal:
754 case ir_binop_nequal:
755 emit(IF(op[0], op[1],
756 brw_conditional_for_comparison(expr->operation)));
757 return;
758
759 case ir_binop_all_equal:
760 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
761 emit(IF(BRW_PREDICATE_ALIGN16_ALL4H));
762 return;
763
764 case ir_binop_any_nequal:
765 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
766 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
767 return;
768
769 case ir_unop_any:
770 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
771 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
772 return;
773
774 default:
775 assert(!"not reached");
776 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
777 return;
778 }
779 return;
780 }
781
782 ir->condition->accept(this);
783
784 emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ));
785 }
786
787 void
788 vec4_visitor::visit(ir_variable *ir)
789 {
790 dst_reg *reg = NULL;
791
792 if (variable_storage(ir))
793 return;
794
795 switch (ir->mode) {
796 case ir_var_in:
797 reg = new(mem_ctx) dst_reg(ATTR, ir->location);
798
799 /* Do GL_FIXED rescaling for GLES2.0. Our GL_FIXED attributes
800 * come in as floating point conversions of the integer values.
801 */
802 for (int i = ir->location; i < ir->location + type_size(ir->type); i++) {
803 if (!c->key.gl_fixed_input_size[i])
804 continue;
805
806 dst_reg dst = *reg;
807 dst.type = brw_type_for_base_type(ir->type);
808 dst.writemask = (1 << c->key.gl_fixed_input_size[i]) - 1;
809 emit(MUL(dst, src_reg(dst), src_reg(1.0f / 65536.0f)));
810 }
811 break;
812
813 case ir_var_out:
814 reg = new(mem_ctx) dst_reg(this, ir->type);
815
816 for (int i = 0; i < type_size(ir->type); i++) {
817 output_reg[ir->location + i] = *reg;
818 output_reg[ir->location + i].reg_offset = i;
819 output_reg[ir->location + i].type =
820 brw_type_for_base_type(ir->type->get_scalar_type());
821 output_reg_annotation[ir->location + i] = ir->name;
822 }
823 break;
824
825 case ir_var_auto:
826 case ir_var_temporary:
827 reg = new(mem_ctx) dst_reg(this, ir->type);
828 break;
829
830 case ir_var_uniform:
831 reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
832
833 /* Track how big the whole uniform variable is, in case we need to put a
834 * copy of its data into pull constants for array access.
835 */
836 this->uniform_size[this->uniforms] = type_size(ir->type);
837
838 if (!strncmp(ir->name, "gl_", 3)) {
839 setup_builtin_uniform_values(ir);
840 } else {
841 setup_uniform_values(ir->location, ir->type);
842 }
843 break;
844
845 case ir_var_system_value:
846 /* VertexID is stored by the VF as the last vertex element, but
847 * we don't represent it with a flag in inputs_read, so we call
848 * it VERT_ATTRIB_MAX, which setup_attributes() picks up on.
849 */
850 reg = new(mem_ctx) dst_reg(ATTR, VERT_ATTRIB_MAX);
851 prog_data->uses_vertexid = true;
852
853 switch (ir->location) {
854 case SYSTEM_VALUE_VERTEX_ID:
855 reg->writemask = WRITEMASK_X;
856 break;
857 case SYSTEM_VALUE_INSTANCE_ID:
858 reg->writemask = WRITEMASK_Y;
859 break;
860 default:
861 assert(!"not reached");
862 break;
863 }
864 break;
865
866 default:
867 assert(!"not reached");
868 }
869
870 reg->type = brw_type_for_base_type(ir->type);
871 hash_table_insert(this->variable_ht, reg, ir);
872 }
873
874 void
875 vec4_visitor::visit(ir_loop *ir)
876 {
877 dst_reg counter;
878
879 /* We don't want debugging output to print the whole body of the
880 * loop as the annotation.
881 */
882 this->base_ir = NULL;
883
884 if (ir->counter != NULL) {
885 this->base_ir = ir->counter;
886 ir->counter->accept(this);
887 counter = *(variable_storage(ir->counter));
888
889 if (ir->from != NULL) {
890 this->base_ir = ir->from;
891 ir->from->accept(this);
892
893 emit(MOV(counter, this->result));
894 }
895 }
896
897 emit(BRW_OPCODE_DO);
898
899 if (ir->to) {
900 this->base_ir = ir->to;
901 ir->to->accept(this);
902
903 emit(CMP(dst_null_d(), src_reg(counter), this->result,
904 brw_conditional_for_comparison(ir->cmp)));
905
906 vec4_instruction *inst = emit(BRW_OPCODE_BREAK);
907 inst->predicate = BRW_PREDICATE_NORMAL;
908 }
909
910 visit_instructions(&ir->body_instructions);
911
912
913 if (ir->increment) {
914 this->base_ir = ir->increment;
915 ir->increment->accept(this);
916 emit(ADD(counter, src_reg(counter), this->result));
917 }
918
919 emit(BRW_OPCODE_WHILE);
920 }
921
922 void
923 vec4_visitor::visit(ir_loop_jump *ir)
924 {
925 switch (ir->mode) {
926 case ir_loop_jump::jump_break:
927 emit(BRW_OPCODE_BREAK);
928 break;
929 case ir_loop_jump::jump_continue:
930 emit(BRW_OPCODE_CONTINUE);
931 break;
932 }
933 }
934
935
936 void
937 vec4_visitor::visit(ir_function_signature *ir)
938 {
939 assert(0);
940 (void)ir;
941 }
942
943 void
944 vec4_visitor::visit(ir_function *ir)
945 {
946 /* Ignore function bodies other than main() -- we shouldn't see calls to
947 * them since they should all be inlined.
948 */
949 if (strcmp(ir->name, "main") == 0) {
950 const ir_function_signature *sig;
951 exec_list empty;
952
953 sig = ir->matching_signature(&empty);
954
955 assert(sig);
956
957 visit_instructions(&sig->body);
958 }
959 }
960
961 bool
962 vec4_visitor::try_emit_sat(ir_expression *ir)
963 {
964 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
965 if (!sat_src)
966 return false;
967
968 sat_src->accept(this);
969 src_reg src = this->result;
970
971 this->result = src_reg(this, ir->type);
972 vec4_instruction *inst;
973 inst = emit(MOV(dst_reg(this->result), src));
974 inst->saturate = true;
975
976 return true;
977 }
978
979 void
980 vec4_visitor::emit_bool_comparison(unsigned int op,
981 dst_reg dst, src_reg src0, src_reg src1)
982 {
983 /* original gen4 does destination conversion before comparison. */
984 if (intel->gen < 5)
985 dst.type = src0.type;
986
987 emit(CMP(dst, src0, src1, brw_conditional_for_comparison(op)));
988
989 dst.type = BRW_REGISTER_TYPE_D;
990 emit(AND(dst, src_reg(dst), src_reg(0x1)));
991 }
992
993 void
994 vec4_visitor::visit(ir_expression *ir)
995 {
996 unsigned int operand;
997 src_reg op[Elements(ir->operands)];
998 src_reg result_src;
999 dst_reg result_dst;
1000 vec4_instruction *inst;
1001
1002 if (try_emit_sat(ir))
1003 return;
1004
1005 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1006 this->result.file = BAD_FILE;
1007 ir->operands[operand]->accept(this);
1008 if (this->result.file == BAD_FILE) {
1009 printf("Failed to get tree for expression operand:\n");
1010 ir->operands[operand]->print();
1011 exit(1);
1012 }
1013 op[operand] = this->result;
1014
1015 /* Matrix expression operands should have been broken down to vector
1016 * operations already.
1017 */
1018 assert(!ir->operands[operand]->type->is_matrix());
1019 }
1020
1021 int vector_elements = ir->operands[0]->type->vector_elements;
1022 if (ir->operands[1]) {
1023 vector_elements = MAX2(vector_elements,
1024 ir->operands[1]->type->vector_elements);
1025 }
1026
1027 this->result.file = BAD_FILE;
1028
1029 /* Storage for our result. Ideally for an assignment we'd be using
1030 * the actual storage for the result here, instead.
1031 */
1032 result_src = src_reg(this, ir->type);
1033 /* convenience for the emit functions below. */
1034 result_dst = dst_reg(result_src);
1035 /* If nothing special happens, this is the result. */
1036 this->result = result_src;
1037 /* Limit writes to the channels that will be used by result_src later.
1038 * This does limit this temp's use as a temporary for multi-instruction
1039 * sequences.
1040 */
1041 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1042
1043 switch (ir->operation) {
1044 case ir_unop_logic_not:
1045 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
1046 * ones complement of the whole register, not just bit 0.
1047 */
1048 emit(XOR(result_dst, op[0], src_reg(1)));
1049 break;
1050 case ir_unop_neg:
1051 op[0].negate = !op[0].negate;
1052 this->result = op[0];
1053 break;
1054 case ir_unop_abs:
1055 op[0].abs = true;
1056 op[0].negate = false;
1057 this->result = op[0];
1058 break;
1059
1060 case ir_unop_sign:
1061 emit(MOV(result_dst, src_reg(0.0f)));
1062
1063 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_G));
1064 inst = emit(MOV(result_dst, src_reg(1.0f)));
1065 inst->predicate = BRW_PREDICATE_NORMAL;
1066
1067 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_L));
1068 inst = emit(MOV(result_dst, src_reg(-1.0f)));
1069 inst->predicate = BRW_PREDICATE_NORMAL;
1070
1071 break;
1072
1073 case ir_unop_rcp:
1074 emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
1075 break;
1076
1077 case ir_unop_exp2:
1078 emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
1079 break;
1080 case ir_unop_log2:
1081 emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
1082 break;
1083 case ir_unop_exp:
1084 case ir_unop_log:
1085 assert(!"not reached: should be handled by ir_explog_to_explog2");
1086 break;
1087 case ir_unop_sin:
1088 case ir_unop_sin_reduced:
1089 emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
1090 break;
1091 case ir_unop_cos:
1092 case ir_unop_cos_reduced:
1093 emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
1094 break;
1095
1096 case ir_unop_dFdx:
1097 case ir_unop_dFdy:
1098 assert(!"derivatives not valid in vertex shader");
1099 break;
1100
1101 case ir_unop_noise:
1102 assert(!"not reached: should be handled by lower_noise");
1103 break;
1104
1105 case ir_binop_add:
1106 emit(ADD(result_dst, op[0], op[1]));
1107 break;
1108 case ir_binop_sub:
1109 assert(!"not reached: should be handled by ir_sub_to_add_neg");
1110 break;
1111
1112 case ir_binop_mul:
1113 if (ir->type->is_integer()) {
1114 /* For integer multiplication, the MUL uses the low 16 bits
1115 * of one of the operands (src0 on gen6, src1 on gen7). The
1116 * MACH accumulates in the contribution of the upper 16 bits
1117 * of that operand.
1118 *
1119 * FINISHME: Emit just the MUL if we know an operand is small
1120 * enough.
1121 */
1122 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
1123
1124 emit(MUL(acc, op[0], op[1]));
1125 emit(MACH(dst_null_d(), op[0], op[1]));
1126 emit(MOV(result_dst, src_reg(acc)));
1127 } else {
1128 emit(MUL(result_dst, op[0], op[1]));
1129 }
1130 break;
1131 case ir_binop_div:
1132 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
1133 assert(ir->type->is_integer());
1134 emit_math(SHADER_OPCODE_INT_QUOTIENT, result_dst, op[0], op[1]);
1135 break;
1136 case ir_binop_mod:
1137 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1138 assert(ir->type->is_integer());
1139 emit_math(SHADER_OPCODE_INT_REMAINDER, result_dst, op[0], op[1]);
1140 break;
1141
1142 case ir_binop_less:
1143 case ir_binop_greater:
1144 case ir_binop_lequal:
1145 case ir_binop_gequal:
1146 case ir_binop_equal:
1147 case ir_binop_nequal: {
1148 emit(CMP(result_dst, op[0], op[1],
1149 brw_conditional_for_comparison(ir->operation)));
1150 emit(AND(result_dst, result_src, src_reg(0x1)));
1151 break;
1152 }
1153
1154 case ir_binop_all_equal:
1155 /* "==" operator producing a scalar boolean. */
1156 if (ir->operands[0]->type->is_vector() ||
1157 ir->operands[1]->type->is_vector()) {
1158 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
1159 emit(MOV(result_dst, src_reg(0)));
1160 inst = emit(MOV(result_dst, src_reg(1)));
1161 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1162 } else {
1163 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z));
1164 emit(AND(result_dst, result_src, src_reg(0x1)));
1165 }
1166 break;
1167 case ir_binop_any_nequal:
1168 /* "!=" operator producing a scalar boolean. */
1169 if (ir->operands[0]->type->is_vector() ||
1170 ir->operands[1]->type->is_vector()) {
1171 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
1172
1173 emit(MOV(result_dst, src_reg(0)));
1174 inst = emit(MOV(result_dst, src_reg(1)));
1175 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1176 } else {
1177 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ));
1178 emit(AND(result_dst, result_src, src_reg(0x1)));
1179 }
1180 break;
1181
1182 case ir_unop_any:
1183 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
1184 emit(MOV(result_dst, src_reg(0)));
1185
1186 inst = emit(MOV(result_dst, src_reg(1)));
1187 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1188 break;
1189
1190 case ir_binop_logic_xor:
1191 emit(XOR(result_dst, op[0], op[1]));
1192 break;
1193
1194 case ir_binop_logic_or:
1195 emit(OR(result_dst, op[0], op[1]));
1196 break;
1197
1198 case ir_binop_logic_and:
1199 emit(AND(result_dst, op[0], op[1]));
1200 break;
1201
1202 case ir_binop_dot:
1203 assert(ir->operands[0]->type->is_vector());
1204 assert(ir->operands[0]->type == ir->operands[1]->type);
1205 emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
1206 break;
1207
1208 case ir_unop_sqrt:
1209 emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
1210 break;
1211 case ir_unop_rsq:
1212 emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
1213 break;
1214
1215 case ir_unop_bitcast_i2f:
1216 case ir_unop_bitcast_u2f:
1217 this->result = op[0];
1218 this->result.type = BRW_REGISTER_TYPE_F;
1219 break;
1220
1221 case ir_unop_bitcast_f2i:
1222 this->result = op[0];
1223 this->result.type = BRW_REGISTER_TYPE_D;
1224 break;
1225
1226 case ir_unop_bitcast_f2u:
1227 this->result = op[0];
1228 this->result.type = BRW_REGISTER_TYPE_UD;
1229 break;
1230
1231 case ir_unop_i2f:
1232 case ir_unop_i2u:
1233 case ir_unop_u2i:
1234 case ir_unop_u2f:
1235 case ir_unop_b2f:
1236 case ir_unop_b2i:
1237 case ir_unop_f2i:
1238 case ir_unop_f2u:
1239 emit(MOV(result_dst, op[0]));
1240 break;
1241 case ir_unop_f2b:
1242 case ir_unop_i2b: {
1243 emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
1244 emit(AND(result_dst, result_src, src_reg(1)));
1245 break;
1246 }
1247
1248 case ir_unop_trunc:
1249 emit(RNDZ(result_dst, op[0]));
1250 break;
1251 case ir_unop_ceil:
1252 op[0].negate = !op[0].negate;
1253 inst = emit(RNDD(result_dst, op[0]));
1254 this->result.negate = true;
1255 break;
1256 case ir_unop_floor:
1257 inst = emit(RNDD(result_dst, op[0]));
1258 break;
1259 case ir_unop_fract:
1260 inst = emit(FRC(result_dst, op[0]));
1261 break;
1262 case ir_unop_round_even:
1263 emit(RNDE(result_dst, op[0]));
1264 break;
1265
1266 case ir_binop_min:
1267 if (intel->gen >= 6) {
1268 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1269 inst->conditional_mod = BRW_CONDITIONAL_L;
1270 } else {
1271 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_L));
1272
1273 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1274 inst->predicate = BRW_PREDICATE_NORMAL;
1275 }
1276 break;
1277 case ir_binop_max:
1278 if (intel->gen >= 6) {
1279 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1280 inst->conditional_mod = BRW_CONDITIONAL_G;
1281 } else {
1282 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_G));
1283
1284 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1285 inst->predicate = BRW_PREDICATE_NORMAL;
1286 }
1287 break;
1288
1289 case ir_binop_pow:
1290 emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
1291 break;
1292
1293 case ir_unop_bit_not:
1294 inst = emit(NOT(result_dst, op[0]));
1295 break;
1296 case ir_binop_bit_and:
1297 inst = emit(AND(result_dst, op[0], op[1]));
1298 break;
1299 case ir_binop_bit_xor:
1300 inst = emit(XOR(result_dst, op[0], op[1]));
1301 break;
1302 case ir_binop_bit_or:
1303 inst = emit(OR(result_dst, op[0], op[1]));
1304 break;
1305
1306 case ir_binop_lshift:
1307 inst = emit(BRW_OPCODE_SHL, result_dst, op[0], op[1]);
1308 break;
1309
1310 case ir_binop_rshift:
1311 if (ir->type->base_type == GLSL_TYPE_INT)
1312 inst = emit(BRW_OPCODE_ASR, result_dst, op[0], op[1]);
1313 else
1314 inst = emit(BRW_OPCODE_SHR, result_dst, op[0], op[1]);
1315 break;
1316
1317 case ir_quadop_vector:
1318 assert(!"not reached: should be handled by lower_quadop_vector");
1319 break;
1320 }
1321 }
1322
1323
1324 void
1325 vec4_visitor::visit(ir_swizzle *ir)
1326 {
1327 src_reg src;
1328 int i = 0;
1329 int swizzle[4];
1330
1331 /* Note that this is only swizzles in expressions, not those on the left
1332 * hand side of an assignment, which do write masking. See ir_assignment
1333 * for that.
1334 */
1335
1336 ir->val->accept(this);
1337 src = this->result;
1338 assert(src.file != BAD_FILE);
1339
1340 for (i = 0; i < ir->type->vector_elements; i++) {
1341 switch (i) {
1342 case 0:
1343 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
1344 break;
1345 case 1:
1346 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
1347 break;
1348 case 2:
1349 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
1350 break;
1351 case 3:
1352 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
1353 break;
1354 }
1355 }
1356 for (; i < 4; i++) {
1357 /* Replicate the last channel out. */
1358 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1359 }
1360
1361 src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1362
1363 this->result = src;
1364 }
1365
1366 void
1367 vec4_visitor::visit(ir_dereference_variable *ir)
1368 {
1369 const struct glsl_type *type = ir->type;
1370 dst_reg *reg = variable_storage(ir->var);
1371
1372 if (!reg) {
1373 fail("Failed to find variable storage for %s\n", ir->var->name);
1374 this->result = src_reg(brw_null_reg());
1375 return;
1376 }
1377
1378 this->result = src_reg(*reg);
1379
1380 /* System values get their swizzle from the dst_reg writemask */
1381 if (ir->var->mode == ir_var_system_value)
1382 return;
1383
1384 if (type->is_scalar() || type->is_vector() || type->is_matrix())
1385 this->result.swizzle = swizzle_for_size(type->vector_elements);
1386 }
1387
1388 void
1389 vec4_visitor::visit(ir_dereference_array *ir)
1390 {
1391 ir_constant *constant_index;
1392 src_reg src;
1393 int element_size = type_size(ir->type);
1394
1395 constant_index = ir->array_index->constant_expression_value();
1396
1397 ir->array->accept(this);
1398 src = this->result;
1399
1400 if (constant_index) {
1401 src.reg_offset += constant_index->value.i[0] * element_size;
1402 } else {
1403 /* Variable index array dereference. It eats the "vec4" of the
1404 * base of the array and an index that offsets the Mesa register
1405 * index.
1406 */
1407 ir->array_index->accept(this);
1408
1409 src_reg index_reg;
1410
1411 if (element_size == 1) {
1412 index_reg = this->result;
1413 } else {
1414 index_reg = src_reg(this, glsl_type::int_type);
1415
1416 emit(MUL(dst_reg(index_reg), this->result, src_reg(element_size)));
1417 }
1418
1419 if (src.reladdr) {
1420 src_reg temp = src_reg(this, glsl_type::int_type);
1421
1422 emit(ADD(dst_reg(temp), *src.reladdr, index_reg));
1423
1424 index_reg = temp;
1425 }
1426
1427 src.reladdr = ralloc(mem_ctx, src_reg);
1428 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1429 }
1430
1431 /* If the type is smaller than a vec4, replicate the last channel out. */
1432 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
1433 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1434 else
1435 src.swizzle = BRW_SWIZZLE_NOOP;
1436 src.type = brw_type_for_base_type(ir->type);
1437
1438 this->result = src;
1439 }
1440
1441 void
1442 vec4_visitor::visit(ir_dereference_record *ir)
1443 {
1444 unsigned int i;
1445 const glsl_type *struct_type = ir->record->type;
1446 int offset = 0;
1447
1448 ir->record->accept(this);
1449
1450 for (i = 0; i < struct_type->length; i++) {
1451 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1452 break;
1453 offset += type_size(struct_type->fields.structure[i].type);
1454 }
1455
1456 /* If the type is smaller than a vec4, replicate the last channel out. */
1457 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
1458 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1459 else
1460 this->result.swizzle = BRW_SWIZZLE_NOOP;
1461 this->result.type = brw_type_for_base_type(ir->type);
1462
1463 this->result.reg_offset += offset;
1464 }
1465
1466 /**
1467 * We want to be careful in assignment setup to hit the actual storage
1468 * instead of potentially using a temporary like we might with the
1469 * ir_dereference handler.
1470 */
1471 static dst_reg
1472 get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
1473 {
1474 /* The LHS must be a dereference. If the LHS is a variable indexed array
1475 * access of a vector, it must be separated into a series conditional moves
1476 * before reaching this point (see ir_vec_index_to_cond_assign).
1477 */
1478 assert(ir->as_dereference());
1479 ir_dereference_array *deref_array = ir->as_dereference_array();
1480 if (deref_array) {
1481 assert(!deref_array->array->type->is_vector());
1482 }
1483
1484 /* Use the rvalue deref handler for the most part. We'll ignore
1485 * swizzles in it and write swizzles using writemask, though.
1486 */
1487 ir->accept(v);
1488 return dst_reg(v->result);
1489 }
1490
1491 void
1492 vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src,
1493 const struct glsl_type *type, uint32_t predicate)
1494 {
1495 if (type->base_type == GLSL_TYPE_STRUCT) {
1496 for (unsigned int i = 0; i < type->length; i++) {
1497 emit_block_move(dst, src, type->fields.structure[i].type, predicate);
1498 }
1499 return;
1500 }
1501
1502 if (type->is_array()) {
1503 for (unsigned int i = 0; i < type->length; i++) {
1504 emit_block_move(dst, src, type->fields.array, predicate);
1505 }
1506 return;
1507 }
1508
1509 if (type->is_matrix()) {
1510 const struct glsl_type *vec_type;
1511
1512 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
1513 type->vector_elements, 1);
1514
1515 for (int i = 0; i < type->matrix_columns; i++) {
1516 emit_block_move(dst, src, vec_type, predicate);
1517 }
1518 return;
1519 }
1520
1521 assert(type->is_scalar() || type->is_vector());
1522
1523 dst->type = brw_type_for_base_type(type);
1524 src->type = dst->type;
1525
1526 dst->writemask = (1 << type->vector_elements) - 1;
1527
1528 src->swizzle = swizzle_for_size(type->vector_elements);
1529
1530 vec4_instruction *inst = emit(MOV(*dst, *src));
1531 inst->predicate = predicate;
1532
1533 dst->reg_offset++;
1534 src->reg_offset++;
1535 }
1536
1537
1538 /* If the RHS processing resulted in an instruction generating a
1539 * temporary value, and it would be easy to rewrite the instruction to
1540 * generate its result right into the LHS instead, do so. This ends
1541 * up reliably removing instructions where it can be tricky to do so
1542 * later without real UD chain information.
1543 */
1544 bool
1545 vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1546 dst_reg dst,
1547 src_reg src,
1548 vec4_instruction *pre_rhs_inst,
1549 vec4_instruction *last_rhs_inst)
1550 {
1551 /* This could be supported, but it would take more smarts. */
1552 if (ir->condition)
1553 return false;
1554
1555 if (pre_rhs_inst == last_rhs_inst)
1556 return false; /* No instructions generated to work with. */
1557
1558 /* Make sure the last instruction generated our source reg. */
1559 if (src.file != GRF ||
1560 src.file != last_rhs_inst->dst.file ||
1561 src.reg != last_rhs_inst->dst.reg ||
1562 src.reg_offset != last_rhs_inst->dst.reg_offset ||
1563 src.reladdr ||
1564 src.abs ||
1565 src.negate ||
1566 last_rhs_inst->predicate != BRW_PREDICATE_NONE)
1567 return false;
1568
1569 /* Check that that last instruction fully initialized the channels
1570 * we want to use, in the order we want to use them. We could
1571 * potentially reswizzle the operands of many instructions so that
1572 * we could handle out of order channels, but don't yet.
1573 */
1574
1575 for (unsigned i = 0; i < 4; i++) {
1576 if (dst.writemask & (1 << i)) {
1577 if (!(last_rhs_inst->dst.writemask & (1 << i)))
1578 return false;
1579
1580 if (BRW_GET_SWZ(src.swizzle, i) != i)
1581 return false;
1582 }
1583 }
1584
1585 /* Success! Rewrite the instruction. */
1586 last_rhs_inst->dst.file = dst.file;
1587 last_rhs_inst->dst.reg = dst.reg;
1588 last_rhs_inst->dst.reg_offset = dst.reg_offset;
1589 last_rhs_inst->dst.reladdr = dst.reladdr;
1590 last_rhs_inst->dst.writemask &= dst.writemask;
1591
1592 return true;
1593 }
1594
1595 void
1596 vec4_visitor::visit(ir_assignment *ir)
1597 {
1598 dst_reg dst = get_assignment_lhs(ir->lhs, this);
1599 uint32_t predicate = BRW_PREDICATE_NONE;
1600
1601 if (!ir->lhs->type->is_scalar() &&
1602 !ir->lhs->type->is_vector()) {
1603 ir->rhs->accept(this);
1604 src_reg src = this->result;
1605
1606 if (ir->condition) {
1607 emit_bool_to_cond_code(ir->condition, &predicate);
1608 }
1609
1610 /* emit_block_move doesn't account for swizzles in the source register.
1611 * This should be ok, since the source register is a structure or an
1612 * array, and those can't be swizzled. But double-check to be sure.
1613 */
1614 assert(src.swizzle ==
1615 (ir->rhs->type->is_matrix()
1616 ? swizzle_for_size(ir->rhs->type->vector_elements)
1617 : BRW_SWIZZLE_NOOP));
1618
1619 emit_block_move(&dst, &src, ir->rhs->type, predicate);
1620 return;
1621 }
1622
1623 /* Now we're down to just a scalar/vector with writemasks. */
1624 int i;
1625
1626 vec4_instruction *pre_rhs_inst, *last_rhs_inst;
1627 pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1628
1629 ir->rhs->accept(this);
1630
1631 last_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1632
1633 src_reg src = this->result;
1634
1635 int swizzles[4];
1636 int first_enabled_chan = 0;
1637 int src_chan = 0;
1638
1639 assert(ir->lhs->type->is_vector() ||
1640 ir->lhs->type->is_scalar());
1641 dst.writemask = ir->write_mask;
1642
1643 for (int i = 0; i < 4; i++) {
1644 if (dst.writemask & (1 << i)) {
1645 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
1646 break;
1647 }
1648 }
1649
1650 /* Swizzle a small RHS vector into the channels being written.
1651 *
1652 * glsl ir treats write_mask as dictating how many channels are
1653 * present on the RHS while in our instructions we need to make
1654 * those channels appear in the slots of the vec4 they're written to.
1655 */
1656 for (int i = 0; i < 4; i++) {
1657 if (dst.writemask & (1 << i))
1658 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
1659 else
1660 swizzles[i] = first_enabled_chan;
1661 }
1662 src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
1663 swizzles[2], swizzles[3]);
1664
1665 if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) {
1666 return;
1667 }
1668
1669 if (ir->condition) {
1670 emit_bool_to_cond_code(ir->condition, &predicate);
1671 }
1672
1673 for (i = 0; i < type_size(ir->lhs->type); i++) {
1674 vec4_instruction *inst = emit(MOV(dst, src));
1675 inst->predicate = predicate;
1676
1677 dst.reg_offset++;
1678 src.reg_offset++;
1679 }
1680 }
1681
1682 void
1683 vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir)
1684 {
1685 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1686 foreach_list(node, &ir->components) {
1687 ir_constant *field_value = (ir_constant *)node;
1688
1689 emit_constant_values(dst, field_value);
1690 }
1691 return;
1692 }
1693
1694 if (ir->type->is_array()) {
1695 for (unsigned int i = 0; i < ir->type->length; i++) {
1696 emit_constant_values(dst, ir->array_elements[i]);
1697 }
1698 return;
1699 }
1700
1701 if (ir->type->is_matrix()) {
1702 for (int i = 0; i < ir->type->matrix_columns; i++) {
1703 float *vec = &ir->value.f[i * ir->type->vector_elements];
1704
1705 for (int j = 0; j < ir->type->vector_elements; j++) {
1706 dst->writemask = 1 << j;
1707 dst->type = BRW_REGISTER_TYPE_F;
1708
1709 emit(MOV(*dst, src_reg(vec[j])));
1710 }
1711 dst->reg_offset++;
1712 }
1713 return;
1714 }
1715
1716 int remaining_writemask = (1 << ir->type->vector_elements) - 1;
1717
1718 for (int i = 0; i < ir->type->vector_elements; i++) {
1719 if (!(remaining_writemask & (1 << i)))
1720 continue;
1721
1722 dst->writemask = 1 << i;
1723 dst->type = brw_type_for_base_type(ir->type);
1724
1725 /* Find other components that match the one we're about to
1726 * write. Emits fewer instructions for things like vec4(0.5,
1727 * 1.5, 1.5, 1.5).
1728 */
1729 for (int j = i + 1; j < ir->type->vector_elements; j++) {
1730 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1731 if (ir->value.b[i] == ir->value.b[j])
1732 dst->writemask |= (1 << j);
1733 } else {
1734 /* u, i, and f storage all line up, so no need for a
1735 * switch case for comparing each type.
1736 */
1737 if (ir->value.u[i] == ir->value.u[j])
1738 dst->writemask |= (1 << j);
1739 }
1740 }
1741
1742 switch (ir->type->base_type) {
1743 case GLSL_TYPE_FLOAT:
1744 emit(MOV(*dst, src_reg(ir->value.f[i])));
1745 break;
1746 case GLSL_TYPE_INT:
1747 emit(MOV(*dst, src_reg(ir->value.i[i])));
1748 break;
1749 case GLSL_TYPE_UINT:
1750 emit(MOV(*dst, src_reg(ir->value.u[i])));
1751 break;
1752 case GLSL_TYPE_BOOL:
1753 emit(MOV(*dst, src_reg(ir->value.b[i])));
1754 break;
1755 default:
1756 assert(!"Non-float/uint/int/bool constant");
1757 break;
1758 }
1759
1760 remaining_writemask &= ~dst->writemask;
1761 }
1762 dst->reg_offset++;
1763 }
1764
1765 void
1766 vec4_visitor::visit(ir_constant *ir)
1767 {
1768 dst_reg dst = dst_reg(this, ir->type);
1769 this->result = src_reg(dst);
1770
1771 emit_constant_values(&dst, ir);
1772 }
1773
1774 void
1775 vec4_visitor::visit(ir_call *ir)
1776 {
1777 assert(!"not reached");
1778 }
1779
1780 void
1781 vec4_visitor::visit(ir_texture *ir)
1782 {
1783 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &vp->Base);
1784 sampler = vp->Base.SamplerUnits[sampler];
1785
1786 /* Should be lowered by do_lower_texture_projection */
1787 assert(!ir->projector);
1788
1789 /* Generate code to compute all the subexpression trees. This has to be
1790 * done before loading any values into MRFs for the sampler message since
1791 * generating these values may involve SEND messages that need the MRFs.
1792 */
1793 src_reg coordinate;
1794 if (ir->coordinate) {
1795 ir->coordinate->accept(this);
1796 coordinate = this->result;
1797 }
1798
1799 src_reg shadow_comparitor;
1800 if (ir->shadow_comparitor) {
1801 ir->shadow_comparitor->accept(this);
1802 shadow_comparitor = this->result;
1803 }
1804
1805 src_reg lod, dPdx, dPdy;
1806 switch (ir->op) {
1807 case ir_txf:
1808 case ir_txl:
1809 case ir_txs:
1810 ir->lod_info.lod->accept(this);
1811 lod = this->result;
1812 break;
1813 case ir_txd:
1814 ir->lod_info.grad.dPdx->accept(this);
1815 dPdx = this->result;
1816
1817 ir->lod_info.grad.dPdy->accept(this);
1818 dPdy = this->result;
1819 break;
1820 case ir_tex:
1821 case ir_txb:
1822 break;
1823 }
1824
1825 vec4_instruction *inst = NULL;
1826 switch (ir->op) {
1827 case ir_tex:
1828 case ir_txl:
1829 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXL);
1830 break;
1831 case ir_txd:
1832 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXD);
1833 break;
1834 case ir_txf:
1835 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXF);
1836 break;
1837 case ir_txs:
1838 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXS);
1839 break;
1840 case ir_txb:
1841 assert(!"TXB is not valid for vertex shaders.");
1842 }
1843
1844 /* Texel offsets go in the message header; Gen4 also requires headers. */
1845 inst->header_present = ir->offset || intel->gen < 5;
1846 inst->base_mrf = 2;
1847 inst->mlen = inst->header_present + 1; /* always at least one */
1848 inst->sampler = sampler;
1849 inst->dst = dst_reg(this, ir->type);
1850 inst->shadow_compare = ir->shadow_comparitor != NULL;
1851
1852 if (ir->offset != NULL && ir->op != ir_txf)
1853 inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1854
1855 /* MRF for the first parameter */
1856 int param_base = inst->base_mrf + inst->header_present;
1857
1858 if (ir->op == ir_txs) {
1859 int writemask = intel->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
1860 emit(MOV(dst_reg(MRF, param_base, ir->lod_info.lod->type, writemask),
1861 lod));
1862 } else {
1863 int i, coord_mask = 0, zero_mask = 0;
1864 /* Load the coordinate */
1865 /* FINISHME: gl_clamp_mask and saturate */
1866 for (i = 0; i < ir->coordinate->type->vector_elements; i++)
1867 coord_mask |= (1 << i);
1868 for (; i < 4; i++)
1869 zero_mask |= (1 << i);
1870
1871 if (ir->offset && ir->op == ir_txf) {
1872 /* It appears that the ld instruction used for txf does its
1873 * address bounds check before adding in the offset. To work
1874 * around this, just add the integer offset to the integer
1875 * texel coordinate, and don't put the offset in the header.
1876 */
1877 ir_constant *offset = ir->offset->as_constant();
1878 assert(offset);
1879
1880 for (int j = 0; j < ir->coordinate->type->vector_elements; j++) {
1881 src_reg src = coordinate;
1882 src.swizzle = BRW_SWIZZLE4(BRW_GET_SWZ(src.swizzle, j),
1883 BRW_GET_SWZ(src.swizzle, j),
1884 BRW_GET_SWZ(src.swizzle, j),
1885 BRW_GET_SWZ(src.swizzle, j));
1886 emit(ADD(dst_reg(MRF, param_base, ir->coordinate->type, 1 << j),
1887 src, offset->value.i[j]));
1888 }
1889 } else {
1890 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask),
1891 coordinate));
1892 }
1893 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask),
1894 src_reg(0)));
1895 /* Load the shadow comparitor */
1896 if (ir->shadow_comparitor) {
1897 emit(MOV(dst_reg(MRF, param_base + 1, ir->shadow_comparitor->type,
1898 WRITEMASK_X),
1899 shadow_comparitor));
1900 inst->mlen++;
1901 }
1902
1903 /* Load the LOD info */
1904 if (ir->op == ir_txl) {
1905 int mrf, writemask;
1906 if (intel->gen >= 5) {
1907 mrf = param_base + 1;
1908 if (ir->shadow_comparitor) {
1909 writemask = WRITEMASK_Y;
1910 /* mlen already incremented */
1911 } else {
1912 writemask = WRITEMASK_X;
1913 inst->mlen++;
1914 }
1915 } else /* intel->gen == 4 */ {
1916 mrf = param_base;
1917 writemask = WRITEMASK_Z;
1918 }
1919 emit(MOV(dst_reg(MRF, mrf, ir->lod_info.lod->type, writemask), lod));
1920 } else if (ir->op == ir_txf) {
1921 emit(MOV(dst_reg(MRF, param_base, ir->lod_info.lod->type, WRITEMASK_W),
1922 lod));
1923 } else if (ir->op == ir_txd) {
1924 const glsl_type *type = ir->lod_info.grad.dPdx->type;
1925
1926 if (intel->gen >= 5) {
1927 dPdx.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1928 dPdy.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1929 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), dPdx));
1930 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), dPdy));
1931 inst->mlen++;
1932
1933 if (ir->type->vector_elements == 3) {
1934 dPdx.swizzle = BRW_SWIZZLE_ZZZZ;
1935 dPdy.swizzle = BRW_SWIZZLE_ZZZZ;
1936 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), dPdx));
1937 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), dPdy));
1938 inst->mlen++;
1939 }
1940 } else /* intel->gen == 4 */ {
1941 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), dPdx));
1942 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), dPdy));
1943 inst->mlen += 2;
1944 }
1945 }
1946 }
1947
1948 emit(inst);
1949
1950 swizzle_result(ir, src_reg(inst->dst), sampler);
1951 }
1952
1953 void
1954 vec4_visitor::swizzle_result(ir_texture *ir, src_reg orig_val, int sampler)
1955 {
1956 this->result = orig_val;
1957
1958 int s = c->key.tex.swizzles[sampler];
1959
1960 if (ir->op == ir_txs || ir->type == glsl_type::float_type
1961 || s == SWIZZLE_NOOP)
1962 return;
1963
1964 int zero_mask = 0, one_mask = 0, copy_mask = 0;
1965 int swizzle[4];
1966
1967 for (int i = 0; i < 4; i++) {
1968 switch (GET_SWZ(s, i)) {
1969 case SWIZZLE_ZERO:
1970 zero_mask |= (1 << i);
1971 break;
1972 case SWIZZLE_ONE:
1973 one_mask |= (1 << i);
1974 break;
1975 default:
1976 copy_mask |= (1 << i);
1977 swizzle[i] = GET_SWZ(s, i);
1978 break;
1979 }
1980 }
1981
1982 this->result = src_reg(this, ir->type);
1983 dst_reg swizzled_result(this->result);
1984
1985 if (copy_mask) {
1986 orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1987 swizzled_result.writemask = copy_mask;
1988 emit(MOV(swizzled_result, orig_val));
1989 }
1990
1991 if (zero_mask) {
1992 swizzled_result.writemask = zero_mask;
1993 emit(MOV(swizzled_result, src_reg(0.0f)));
1994 }
1995
1996 if (one_mask) {
1997 swizzled_result.writemask = one_mask;
1998 emit(MOV(swizzled_result, src_reg(1.0f)));
1999 }
2000 }
2001
2002 void
2003 vec4_visitor::visit(ir_return *ir)
2004 {
2005 assert(!"not reached");
2006 }
2007
2008 void
2009 vec4_visitor::visit(ir_discard *ir)
2010 {
2011 assert(!"not reached");
2012 }
2013
2014 void
2015 vec4_visitor::visit(ir_if *ir)
2016 {
2017 /* Don't point the annotation at the if statement, because then it plus
2018 * the then and else blocks get printed.
2019 */
2020 this->base_ir = ir->condition;
2021
2022 if (intel->gen == 6) {
2023 emit_if_gen6(ir);
2024 } else {
2025 uint32_t predicate;
2026 emit_bool_to_cond_code(ir->condition, &predicate);
2027 emit(IF(predicate));
2028 }
2029
2030 visit_instructions(&ir->then_instructions);
2031
2032 if (!ir->else_instructions.is_empty()) {
2033 this->base_ir = ir->condition;
2034 emit(BRW_OPCODE_ELSE);
2035
2036 visit_instructions(&ir->else_instructions);
2037 }
2038
2039 this->base_ir = ir->condition;
2040 emit(BRW_OPCODE_ENDIF);
2041 }
2042
2043 void
2044 vec4_visitor::emit_ndc_computation()
2045 {
2046 /* Get the position */
2047 src_reg pos = src_reg(output_reg[VERT_RESULT_HPOS]);
2048
2049 /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
2050 dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
2051 output_reg[BRW_VERT_RESULT_NDC] = ndc;
2052
2053 current_annotation = "NDC";
2054 dst_reg ndc_w = ndc;
2055 ndc_w.writemask = WRITEMASK_W;
2056 src_reg pos_w = pos;
2057 pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
2058 emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
2059
2060 dst_reg ndc_xyz = ndc;
2061 ndc_xyz.writemask = WRITEMASK_XYZ;
2062
2063 emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
2064 }
2065
2066 void
2067 vec4_visitor::emit_psiz_and_flags(struct brw_reg reg)
2068 {
2069 if (intel->gen < 6 &&
2070 ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
2071 c->key.userclip_active || brw->has_negative_rhw_bug)) {
2072 dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
2073 dst_reg header1_w = header1;
2074 header1_w.writemask = WRITEMASK_W;
2075 GLuint i;
2076
2077 emit(MOV(header1, 0u));
2078
2079 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2080 src_reg psiz = src_reg(output_reg[VERT_RESULT_PSIZ]);
2081
2082 current_annotation = "Point size";
2083 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
2084 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
2085 }
2086
2087 current_annotation = "Clipping flags";
2088 for (i = 0; i < c->key.nr_userclip_plane_consts; i++) {
2089 vec4_instruction *inst;
2090
2091 inst = emit(DP4(dst_null_f(), src_reg(output_reg[VERT_RESULT_HPOS]),
2092 src_reg(this->userplane[i])));
2093 inst->conditional_mod = BRW_CONDITIONAL_L;
2094
2095 inst = emit(OR(header1_w, src_reg(header1_w), 1u << i));
2096 inst->predicate = BRW_PREDICATE_NORMAL;
2097 }
2098
2099 /* i965 clipping workaround:
2100 * 1) Test for -ve rhw
2101 * 2) If set,
2102 * set ndc = (0,0,0,0)
2103 * set ucp[6] = 1
2104 *
2105 * Later, clipping will detect ucp[6] and ensure the primitive is
2106 * clipped against all fixed planes.
2107 */
2108 if (brw->has_negative_rhw_bug) {
2109 #if 0
2110 /* FINISHME */
2111 brw_CMP(p,
2112 vec8(brw_null_reg()),
2113 BRW_CONDITIONAL_L,
2114 brw_swizzle1(output_reg[BRW_VERT_RESULT_NDC], 3),
2115 brw_imm_f(0));
2116
2117 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
2118 brw_MOV(p, output_reg[BRW_VERT_RESULT_NDC], brw_imm_f(0));
2119 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2120 #endif
2121 }
2122
2123 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
2124 } else if (intel->gen < 6) {
2125 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
2126 } else {
2127 emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
2128 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2129 emit(MOV(brw_writemask(reg, WRITEMASK_W),
2130 src_reg(output_reg[VERT_RESULT_PSIZ])));
2131 }
2132 }
2133 }
2134
2135 void
2136 vec4_visitor::emit_clip_distances(struct brw_reg reg, int offset)
2137 {
2138 if (intel->gen < 6) {
2139 /* Clip distance slots are set aside in gen5, but they are not used. It
2140 * is not clear whether we actually need to set aside space for them,
2141 * but the performance cost is negligible.
2142 */
2143 return;
2144 }
2145
2146 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
2147 *
2148 * "If a linked set of shaders forming the vertex stage contains no
2149 * static write to gl_ClipVertex or gl_ClipDistance, but the
2150 * application has requested clipping against user clip planes through
2151 * the API, then the coordinate written to gl_Position is used for
2152 * comparison against the user clip planes."
2153 *
2154 * This function is only called if the shader didn't write to
2155 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
2156 * if the user wrote to it; otherwise we use gl_Position.
2157 */
2158 gl_vert_result clip_vertex = VERT_RESULT_CLIP_VERTEX;
2159 if (!(c->prog_data.outputs_written
2160 & BITFIELD64_BIT(VERT_RESULT_CLIP_VERTEX))) {
2161 clip_vertex = VERT_RESULT_HPOS;
2162 }
2163
2164 for (int i = 0; i + offset < c->key.nr_userclip_plane_consts && i < 4;
2165 ++i) {
2166 emit(DP4(dst_reg(brw_writemask(reg, 1 << i)),
2167 src_reg(output_reg[clip_vertex]),
2168 src_reg(this->userplane[i + offset])));
2169 }
2170 }
2171
2172 void
2173 vec4_visitor::emit_generic_urb_slot(dst_reg reg, int vert_result)
2174 {
2175 assert (vert_result < VERT_RESULT_MAX);
2176 reg.type = output_reg[vert_result].type;
2177 current_annotation = output_reg_annotation[vert_result];
2178 /* Copy the register, saturating if necessary */
2179 vec4_instruction *inst = emit(MOV(reg,
2180 src_reg(output_reg[vert_result])));
2181 if ((vert_result == VERT_RESULT_COL0 ||
2182 vert_result == VERT_RESULT_COL1 ||
2183 vert_result == VERT_RESULT_BFC0 ||
2184 vert_result == VERT_RESULT_BFC1) &&
2185 c->key.clamp_vertex_color) {
2186 inst->saturate = true;
2187 }
2188 }
2189
2190 void
2191 vec4_visitor::emit_urb_slot(int mrf, int vert_result)
2192 {
2193 struct brw_reg hw_reg = brw_message_reg(mrf);
2194 dst_reg reg = dst_reg(MRF, mrf);
2195 reg.type = BRW_REGISTER_TYPE_F;
2196
2197 switch (vert_result) {
2198 case VERT_RESULT_PSIZ:
2199 /* PSIZ is always in slot 0, and is coupled with other flags. */
2200 current_annotation = "indices, point width, clip flags";
2201 emit_psiz_and_flags(hw_reg);
2202 break;
2203 case BRW_VERT_RESULT_NDC:
2204 current_annotation = "NDC";
2205 emit(MOV(reg, src_reg(output_reg[BRW_VERT_RESULT_NDC])));
2206 break;
2207 case BRW_VERT_RESULT_HPOS_DUPLICATE:
2208 case VERT_RESULT_HPOS:
2209 current_annotation = "gl_Position";
2210 emit(MOV(reg, src_reg(output_reg[VERT_RESULT_HPOS])));
2211 break;
2212 case VERT_RESULT_CLIP_DIST0:
2213 case VERT_RESULT_CLIP_DIST1:
2214 if (this->c->key.uses_clip_distance) {
2215 emit_generic_urb_slot(reg, vert_result);
2216 } else {
2217 current_annotation = "user clip distances";
2218 emit_clip_distances(hw_reg, (vert_result - VERT_RESULT_CLIP_DIST0) * 4);
2219 }
2220 break;
2221 case BRW_VERT_RESULT_PAD:
2222 /* No need to write to this slot */
2223 break;
2224 default:
2225 emit_generic_urb_slot(reg, vert_result);
2226 break;
2227 }
2228 }
2229
2230 static int
2231 align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
2232 {
2233 struct intel_context *intel = &brw->intel;
2234
2235 if (intel->gen >= 6) {
2236 /* URB data written (does not include the message header reg) must
2237 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
2238 * section 5.4.3.2.2: URB_INTERLEAVED.
2239 *
2240 * URB entries are allocated on a multiple of 1024 bits, so an
2241 * extra 128 bits written here to make the end align to 256 is
2242 * no problem.
2243 */
2244 if ((mlen % 2) != 1)
2245 mlen++;
2246 }
2247
2248 return mlen;
2249 }
2250
2251 /**
2252 * Generates the VUE payload plus the 1 or 2 URB write instructions to
2253 * complete the VS thread.
2254 *
2255 * The VUE layout is documented in Volume 2a.
2256 */
2257 void
2258 vec4_visitor::emit_urb_writes()
2259 {
2260 /* MRF 0 is reserved for the debugger, so start with message header
2261 * in MRF 1.
2262 */
2263 int base_mrf = 1;
2264 int mrf = base_mrf;
2265 /* In the process of generating our URB write message contents, we
2266 * may need to unspill a register or load from an array. Those
2267 * reads would use MRFs 14-15.
2268 */
2269 int max_usable_mrf = 13;
2270
2271 /* The following assertion verifies that max_usable_mrf causes an
2272 * even-numbered amount of URB write data, which will meet gen6's
2273 * requirements for length alignment.
2274 */
2275 assert ((max_usable_mrf - base_mrf) % 2 == 0);
2276
2277 /* FINISHME: edgeflag */
2278
2279 /* First mrf is the g0-based message header containing URB handles and such,
2280 * which is implied in VS_OPCODE_URB_WRITE.
2281 */
2282 mrf++;
2283
2284 if (intel->gen < 6) {
2285 emit_ndc_computation();
2286 }
2287
2288 /* Set up the VUE data for the first URB write */
2289 int slot;
2290 for (slot = 0; slot < c->prog_data.vue_map.num_slots; ++slot) {
2291 emit_urb_slot(mrf++, c->prog_data.vue_map.slot_to_vert_result[slot]);
2292
2293 /* If this was max_usable_mrf, we can't fit anything more into this URB
2294 * WRITE.
2295 */
2296 if (mrf > max_usable_mrf) {
2297 slot++;
2298 break;
2299 }
2300 }
2301
2302 current_annotation = "URB write";
2303 vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
2304 inst->base_mrf = base_mrf;
2305 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2306 inst->eot = (slot >= c->prog_data.vue_map.num_slots);
2307
2308 /* Optional second URB write */
2309 if (!inst->eot) {
2310 mrf = base_mrf + 1;
2311
2312 for (; slot < c->prog_data.vue_map.num_slots; ++slot) {
2313 assert(mrf < max_usable_mrf);
2314
2315 emit_urb_slot(mrf++, c->prog_data.vue_map.slot_to_vert_result[slot]);
2316 }
2317
2318 current_annotation = "URB write";
2319 inst = emit(VS_OPCODE_URB_WRITE);
2320 inst->base_mrf = base_mrf;
2321 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2322 inst->eot = true;
2323 /* URB destination offset. In the previous write, we got MRFs
2324 * 2-13 minus the one header MRF, so 12 regs. URB offset is in
2325 * URB row increments, and each of our MRFs is half of one of
2326 * those, since we're doing interleaved writes.
2327 */
2328 inst->offset = (max_usable_mrf - base_mrf) / 2;
2329 }
2330 }
2331
2332 src_reg
2333 vec4_visitor::get_scratch_offset(vec4_instruction *inst,
2334 src_reg *reladdr, int reg_offset)
2335 {
2336 /* Because we store the values to scratch interleaved like our
2337 * vertex data, we need to scale the vec4 index by 2.
2338 */
2339 int message_header_scale = 2;
2340
2341 /* Pre-gen6, the message header uses byte offsets instead of vec4
2342 * (16-byte) offset units.
2343 */
2344 if (intel->gen < 6)
2345 message_header_scale *= 16;
2346
2347 if (reladdr) {
2348 src_reg index = src_reg(this, glsl_type::int_type);
2349
2350 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2351 emit_before(inst, MUL(dst_reg(index),
2352 index, src_reg(message_header_scale)));
2353
2354 return index;
2355 } else {
2356 return src_reg(reg_offset * message_header_scale);
2357 }
2358 }
2359
2360 src_reg
2361 vec4_visitor::get_pull_constant_offset(vec4_instruction *inst,
2362 src_reg *reladdr, int reg_offset)
2363 {
2364 if (reladdr) {
2365 src_reg index = src_reg(this, glsl_type::int_type);
2366
2367 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2368
2369 /* Pre-gen6, the message header uses byte offsets instead of vec4
2370 * (16-byte) offset units.
2371 */
2372 if (intel->gen < 6) {
2373 emit_before(inst, MUL(dst_reg(index), index, src_reg(16)));
2374 }
2375
2376 return index;
2377 } else {
2378 int message_header_scale = intel->gen < 6 ? 16 : 1;
2379 return src_reg(reg_offset * message_header_scale);
2380 }
2381 }
2382
2383 /**
2384 * Emits an instruction before @inst to load the value named by @orig_src
2385 * from scratch space at @base_offset to @temp.
2386 */
2387 void
2388 vec4_visitor::emit_scratch_read(vec4_instruction *inst,
2389 dst_reg temp, src_reg orig_src,
2390 int base_offset)
2391 {
2392 int reg_offset = base_offset + orig_src.reg_offset;
2393 src_reg index = get_scratch_offset(inst, orig_src.reladdr, reg_offset);
2394
2395 emit_before(inst, SCRATCH_READ(temp, index));
2396 }
2397
2398 /**
2399 * Emits an instruction after @inst to store the value to be written
2400 * to @orig_dst to scratch space at @base_offset, from @temp.
2401 */
2402 void
2403 vec4_visitor::emit_scratch_write(vec4_instruction *inst,
2404 src_reg temp, dst_reg orig_dst,
2405 int base_offset)
2406 {
2407 int reg_offset = base_offset + orig_dst.reg_offset;
2408 src_reg index = get_scratch_offset(inst, orig_dst.reladdr, reg_offset);
2409
2410 dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
2411 orig_dst.writemask));
2412 vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
2413 write->predicate = inst->predicate;
2414 write->ir = inst->ir;
2415 write->annotation = inst->annotation;
2416 inst->insert_after(write);
2417 }
2418
2419 /**
2420 * We can't generally support array access in GRF space, because a
2421 * single instruction's destination can only span 2 contiguous
2422 * registers. So, we send all GRF arrays that get variable index
2423 * access to scratch space.
2424 */
2425 void
2426 vec4_visitor::move_grf_array_access_to_scratch()
2427 {
2428 int scratch_loc[this->virtual_grf_count];
2429
2430 for (int i = 0; i < this->virtual_grf_count; i++) {
2431 scratch_loc[i] = -1;
2432 }
2433
2434 /* First, calculate the set of virtual GRFs that need to be punted
2435 * to scratch due to having any array access on them, and where in
2436 * scratch.
2437 */
2438 foreach_list(node, &this->instructions) {
2439 vec4_instruction *inst = (vec4_instruction *)node;
2440
2441 if (inst->dst.file == GRF && inst->dst.reladdr &&
2442 scratch_loc[inst->dst.reg] == -1) {
2443 scratch_loc[inst->dst.reg] = c->last_scratch;
2444 c->last_scratch += this->virtual_grf_sizes[inst->dst.reg] * 8 * 4;
2445 }
2446
2447 for (int i = 0 ; i < 3; i++) {
2448 src_reg *src = &inst->src[i];
2449
2450 if (src->file == GRF && src->reladdr &&
2451 scratch_loc[src->reg] == -1) {
2452 scratch_loc[src->reg] = c->last_scratch;
2453 c->last_scratch += this->virtual_grf_sizes[src->reg] * 8 * 4;
2454 }
2455 }
2456 }
2457
2458 /* Now, for anything that will be accessed through scratch, rewrite
2459 * it to load/store. Note that this is a _safe list walk, because
2460 * we may generate a new scratch_write instruction after the one
2461 * we're processing.
2462 */
2463 foreach_list_safe(node, &this->instructions) {
2464 vec4_instruction *inst = (vec4_instruction *)node;
2465
2466 /* Set up the annotation tracking for new generated instructions. */
2467 base_ir = inst->ir;
2468 current_annotation = inst->annotation;
2469
2470 if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) {
2471 src_reg temp = src_reg(this, glsl_type::vec4_type);
2472
2473 emit_scratch_write(inst, temp, inst->dst, scratch_loc[inst->dst.reg]);
2474
2475 inst->dst.file = temp.file;
2476 inst->dst.reg = temp.reg;
2477 inst->dst.reg_offset = temp.reg_offset;
2478 inst->dst.reladdr = NULL;
2479 }
2480
2481 for (int i = 0 ; i < 3; i++) {
2482 if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1)
2483 continue;
2484
2485 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2486
2487 emit_scratch_read(inst, temp, inst->src[i],
2488 scratch_loc[inst->src[i].reg]);
2489
2490 inst->src[i].file = temp.file;
2491 inst->src[i].reg = temp.reg;
2492 inst->src[i].reg_offset = temp.reg_offset;
2493 inst->src[i].reladdr = NULL;
2494 }
2495 }
2496 }
2497
2498 /**
2499 * Emits an instruction before @inst to load the value named by @orig_src
2500 * from the pull constant buffer (surface) at @base_offset to @temp.
2501 */
2502 void
2503 vec4_visitor::emit_pull_constant_load(vec4_instruction *inst,
2504 dst_reg temp, src_reg orig_src,
2505 int base_offset)
2506 {
2507 int reg_offset = base_offset + orig_src.reg_offset;
2508 src_reg index = get_pull_constant_offset(inst, orig_src.reladdr, reg_offset);
2509 vec4_instruction *load;
2510
2511 load = new(mem_ctx) vec4_instruction(this, VS_OPCODE_PULL_CONSTANT_LOAD,
2512 temp, index);
2513 load->base_mrf = 14;
2514 load->mlen = 1;
2515 emit_before(inst, load);
2516 }
2517
2518 /**
2519 * Implements array access of uniforms by inserting a
2520 * PULL_CONSTANT_LOAD instruction.
2521 *
2522 * Unlike temporary GRF array access (where we don't support it due to
2523 * the difficulty of doing relative addressing on instruction
2524 * destinations), we could potentially do array access of uniforms
2525 * that were loaded in GRF space as push constants. In real-world
2526 * usage we've seen, though, the arrays being used are always larger
2527 * than we could load as push constants, so just always move all
2528 * uniform array access out to a pull constant buffer.
2529 */
2530 void
2531 vec4_visitor::move_uniform_array_access_to_pull_constants()
2532 {
2533 int pull_constant_loc[this->uniforms];
2534
2535 for (int i = 0; i < this->uniforms; i++) {
2536 pull_constant_loc[i] = -1;
2537 }
2538
2539 /* Walk through and find array access of uniforms. Put a copy of that
2540 * uniform in the pull constant buffer.
2541 *
2542 * Note that we don't move constant-indexed accesses to arrays. No
2543 * testing has been done of the performance impact of this choice.
2544 */
2545 foreach_list_safe(node, &this->instructions) {
2546 vec4_instruction *inst = (vec4_instruction *)node;
2547
2548 for (int i = 0 ; i < 3; i++) {
2549 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
2550 continue;
2551
2552 int uniform = inst->src[i].reg;
2553
2554 /* If this array isn't already present in the pull constant buffer,
2555 * add it.
2556 */
2557 if (pull_constant_loc[uniform] == -1) {
2558 const float **values = &prog_data->param[uniform * 4];
2559
2560 pull_constant_loc[uniform] = prog_data->nr_pull_params / 4;
2561
2562 for (int j = 0; j < uniform_size[uniform] * 4; j++) {
2563 prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
2564 }
2565 }
2566
2567 /* Set up the annotation tracking for new generated instructions. */
2568 base_ir = inst->ir;
2569 current_annotation = inst->annotation;
2570
2571 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2572
2573 emit_pull_constant_load(inst, temp, inst->src[i],
2574 pull_constant_loc[uniform]);
2575
2576 inst->src[i].file = temp.file;
2577 inst->src[i].reg = temp.reg;
2578 inst->src[i].reg_offset = temp.reg_offset;
2579 inst->src[i].reladdr = NULL;
2580 }
2581 }
2582
2583 /* Now there are no accesses of the UNIFORM file with a reladdr, so
2584 * no need to track them as larger-than-vec4 objects. This will be
2585 * relied on in cutting out unused uniform vectors from push
2586 * constants.
2587 */
2588 split_uniform_registers();
2589 }
2590
2591 void
2592 vec4_visitor::resolve_ud_negate(src_reg *reg)
2593 {
2594 if (reg->type != BRW_REGISTER_TYPE_UD ||
2595 !reg->negate)
2596 return;
2597
2598 src_reg temp = src_reg(this, glsl_type::uvec4_type);
2599 emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
2600 *reg = temp;
2601 }
2602
2603 vec4_visitor::vec4_visitor(struct brw_vs_compile *c,
2604 struct gl_shader_program *prog,
2605 struct brw_shader *shader)
2606 {
2607 this->c = c;
2608 this->p = &c->func;
2609 this->brw = p->brw;
2610 this->intel = &brw->intel;
2611 this->ctx = &intel->ctx;
2612 this->prog = prog;
2613 this->shader = shader;
2614
2615 this->mem_ctx = ralloc_context(NULL);
2616 this->failed = false;
2617
2618 this->base_ir = NULL;
2619 this->current_annotation = NULL;
2620
2621 this->c = c;
2622 this->vp = (struct gl_vertex_program *)
2623 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
2624 this->prog_data = &c->prog_data;
2625
2626 this->variable_ht = hash_table_ctor(0,
2627 hash_table_pointer_hash,
2628 hash_table_pointer_compare);
2629
2630 this->virtual_grf_def = NULL;
2631 this->virtual_grf_use = NULL;
2632 this->virtual_grf_sizes = NULL;
2633 this->virtual_grf_count = 0;
2634 this->virtual_grf_reg_map = NULL;
2635 this->virtual_grf_reg_count = 0;
2636 this->virtual_grf_array_size = 0;
2637 this->live_intervals_valid = false;
2638
2639 this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2640
2641 this->uniforms = 0;
2642 }
2643
2644 vec4_visitor::~vec4_visitor()
2645 {
2646 ralloc_free(this->mem_ctx);
2647 hash_table_dtor(this->variable_ht);
2648 }
2649
2650
2651 void
2652 vec4_visitor::fail(const char *format, ...)
2653 {
2654 va_list va;
2655 char *msg;
2656
2657 if (failed)
2658 return;
2659
2660 failed = true;
2661
2662 va_start(va, format);
2663 msg = ralloc_vasprintf(mem_ctx, format, va);
2664 va_end(va);
2665 msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg);
2666
2667 this->fail_msg = msg;
2668
2669 if (INTEL_DEBUG & DEBUG_VS) {
2670 fprintf(stderr, "%s", msg);
2671 }
2672 }
2673
2674 } /* namespace brw */