i965: Assert that the 4x8 pack/unpack operations have been lowered
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_visitor.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "glsl/ir_uniform.h"
26 extern "C" {
27 #include "main/context.h"
28 #include "main/macros.h"
29 #include "program/prog_parameter.h"
30 #include "program/sampler.h"
31 }
32
33 namespace brw {
34
35 vec4_instruction::vec4_instruction(vec4_visitor *v,
36 enum opcode opcode, dst_reg dst,
37 src_reg src0, src_reg src1, src_reg src2)
38 {
39 this->opcode = opcode;
40 this->dst = dst;
41 this->src[0] = src0;
42 this->src[1] = src1;
43 this->src[2] = src2;
44 this->ir = v->base_ir;
45 this->annotation = v->current_annotation;
46 }
47
48 vec4_instruction *
49 vec4_visitor::emit(vec4_instruction *inst)
50 {
51 this->instructions.push_tail(inst);
52
53 return inst;
54 }
55
56 vec4_instruction *
57 vec4_visitor::emit_before(vec4_instruction *inst, vec4_instruction *new_inst)
58 {
59 new_inst->ir = inst->ir;
60 new_inst->annotation = inst->annotation;
61
62 inst->insert_before(new_inst);
63
64 return inst;
65 }
66
67 vec4_instruction *
68 vec4_visitor::emit(enum opcode opcode, dst_reg dst,
69 src_reg src0, src_reg src1, src_reg src2)
70 {
71 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst,
72 src0, src1, src2));
73 }
74
75
76 vec4_instruction *
77 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
78 {
79 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0, src1));
80 }
81
82 vec4_instruction *
83 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
84 {
85 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0));
86 }
87
88 vec4_instruction *
89 vec4_visitor::emit(enum opcode opcode)
90 {
91 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst_reg()));
92 }
93
94 #define ALU1(op) \
95 vec4_instruction * \
96 vec4_visitor::op(dst_reg dst, src_reg src0) \
97 { \
98 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
99 src0); \
100 }
101
102 #define ALU2(op) \
103 vec4_instruction * \
104 vec4_visitor::op(dst_reg dst, src_reg src0, src_reg src1) \
105 { \
106 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
107 src0, src1); \
108 }
109
110 ALU1(NOT)
111 ALU1(MOV)
112 ALU1(FRC)
113 ALU1(RNDD)
114 ALU1(RNDE)
115 ALU1(RNDZ)
116 ALU1(F32TO16)
117 ALU1(F16TO32)
118 ALU2(ADD)
119 ALU2(MUL)
120 ALU2(MACH)
121 ALU2(AND)
122 ALU2(OR)
123 ALU2(XOR)
124 ALU2(DP3)
125 ALU2(DP4)
126 ALU2(DPH)
127 ALU2(SHL)
128 ALU2(SHR)
129 ALU2(ASR)
130
131 /** Gen4 predicated IF. */
132 vec4_instruction *
133 vec4_visitor::IF(uint32_t predicate)
134 {
135 vec4_instruction *inst;
136
137 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF);
138 inst->predicate = predicate;
139
140 return inst;
141 }
142
143 /** Gen6+ IF with embedded comparison. */
144 vec4_instruction *
145 vec4_visitor::IF(src_reg src0, src_reg src1, uint32_t condition)
146 {
147 assert(intel->gen >= 6);
148
149 vec4_instruction *inst;
150
151 resolve_ud_negate(&src0);
152 resolve_ud_negate(&src1);
153
154 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF, dst_null_d(),
155 src0, src1);
156 inst->conditional_mod = condition;
157
158 return inst;
159 }
160
161 /**
162 * CMP: Sets the low bit of the destination channels with the result
163 * of the comparison, while the upper bits are undefined, and updates
164 * the flag register with the packed 16 bits of the result.
165 */
166 vec4_instruction *
167 vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1, uint32_t condition)
168 {
169 vec4_instruction *inst;
170
171 /* original gen4 does type conversion to the destination type
172 * before before comparison, producing garbage results for floating
173 * point comparisons.
174 */
175 if (intel->gen == 4) {
176 dst.type = src0.type;
177 if (dst.file == HW_REG)
178 dst.fixed_hw_reg.type = dst.type;
179 }
180
181 resolve_ud_negate(&src0);
182 resolve_ud_negate(&src1);
183
184 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_CMP, dst, src0, src1);
185 inst->conditional_mod = condition;
186
187 return inst;
188 }
189
190 vec4_instruction *
191 vec4_visitor::SCRATCH_READ(dst_reg dst, src_reg index)
192 {
193 vec4_instruction *inst;
194
195 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_READ,
196 dst, index);
197 inst->base_mrf = 14;
198 inst->mlen = 2;
199
200 return inst;
201 }
202
203 vec4_instruction *
204 vec4_visitor::SCRATCH_WRITE(dst_reg dst, src_reg src, src_reg index)
205 {
206 vec4_instruction *inst;
207
208 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_WRITE,
209 dst, src, index);
210 inst->base_mrf = 13;
211 inst->mlen = 3;
212
213 return inst;
214 }
215
216 void
217 vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
218 {
219 static enum opcode dot_opcodes[] = {
220 BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
221 };
222
223 emit(dot_opcodes[elements - 2], dst, src0, src1);
224 }
225
226 src_reg
227 vec4_visitor::fix_math_operand(src_reg src)
228 {
229 /* The gen6 math instruction ignores the source modifiers --
230 * swizzle, abs, negate, and at least some parts of the register
231 * region description.
232 *
233 * Rather than trying to enumerate all these cases, *always* expand the
234 * operand to a temp GRF for gen6.
235 *
236 * For gen7, keep the operand as-is, except if immediate, which gen7 still
237 * can't use.
238 */
239
240 if (intel->gen == 7 && src.file != IMM)
241 return src;
242
243 dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
244 expanded.type = src.type;
245 emit(MOV(expanded, src));
246 return src_reg(expanded);
247 }
248
249 void
250 vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
251 {
252 src = fix_math_operand(src);
253
254 if (dst.writemask != WRITEMASK_XYZW) {
255 /* The gen6 math instruction must be align1, so we can't do
256 * writemasks.
257 */
258 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
259
260 emit(opcode, temp_dst, src);
261
262 emit(MOV(dst, src_reg(temp_dst)));
263 } else {
264 emit(opcode, dst, src);
265 }
266 }
267
268 void
269 vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
270 {
271 vec4_instruction *inst = emit(opcode, dst, src);
272 inst->base_mrf = 1;
273 inst->mlen = 1;
274 }
275
276 void
277 vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
278 {
279 switch (opcode) {
280 case SHADER_OPCODE_RCP:
281 case SHADER_OPCODE_RSQ:
282 case SHADER_OPCODE_SQRT:
283 case SHADER_OPCODE_EXP2:
284 case SHADER_OPCODE_LOG2:
285 case SHADER_OPCODE_SIN:
286 case SHADER_OPCODE_COS:
287 break;
288 default:
289 assert(!"not reached: bad math opcode");
290 return;
291 }
292
293 if (intel->gen >= 6) {
294 return emit_math1_gen6(opcode, dst, src);
295 } else {
296 return emit_math1_gen4(opcode, dst, src);
297 }
298 }
299
300 void
301 vec4_visitor::emit_math2_gen6(enum opcode opcode,
302 dst_reg dst, src_reg src0, src_reg src1)
303 {
304 src0 = fix_math_operand(src0);
305 src1 = fix_math_operand(src1);
306
307 if (dst.writemask != WRITEMASK_XYZW) {
308 /* The gen6 math instruction must be align1, so we can't do
309 * writemasks.
310 */
311 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
312 temp_dst.type = dst.type;
313
314 emit(opcode, temp_dst, src0, src1);
315
316 emit(MOV(dst, src_reg(temp_dst)));
317 } else {
318 emit(opcode, dst, src0, src1);
319 }
320 }
321
322 void
323 vec4_visitor::emit_math2_gen4(enum opcode opcode,
324 dst_reg dst, src_reg src0, src_reg src1)
325 {
326 vec4_instruction *inst = emit(opcode, dst, src0, src1);
327 inst->base_mrf = 1;
328 inst->mlen = 2;
329 }
330
331 void
332 vec4_visitor::emit_math(enum opcode opcode,
333 dst_reg dst, src_reg src0, src_reg src1)
334 {
335 switch (opcode) {
336 case SHADER_OPCODE_POW:
337 case SHADER_OPCODE_INT_QUOTIENT:
338 case SHADER_OPCODE_INT_REMAINDER:
339 break;
340 default:
341 assert(!"not reached: unsupported binary math opcode");
342 return;
343 }
344
345 if (intel->gen >= 6) {
346 return emit_math2_gen6(opcode, dst, src0, src1);
347 } else {
348 return emit_math2_gen4(opcode, dst, src0, src1);
349 }
350 }
351
352 void
353 vec4_visitor::emit_pack_half_2x16(dst_reg dst, src_reg src0)
354 {
355 if (intel->gen < 7)
356 assert(!"ir_unop_pack_half_2x16 should be lowered");
357
358 assert(dst.type == BRW_REGISTER_TYPE_UD);
359 assert(src0.type == BRW_REGISTER_TYPE_F);
360
361 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
362 *
363 * Because this instruction does not have a 16-bit floating-point type,
364 * the destination data type must be Word (W).
365 *
366 * The destination must be DWord-aligned and specify a horizontal stride
367 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
368 * each destination channel and the upper word is not modified.
369 *
370 * The above restriction implies that the f32to16 instruction must use
371 * align1 mode, because only in align1 mode is it possible to specify
372 * horizontal stride. We choose here to defy the hardware docs and emit
373 * align16 instructions.
374 *
375 * (I [chadv] did attempt to emit align1 instructions for VS f32to16
376 * instructions. I was partially successful in that the code passed all
377 * tests. However, the code was dubiously correct and fragile, and the
378 * tests were not harsh enough to probe that frailty. Not trusting the
379 * code, I chose instead to remain in align16 mode in defiance of the hw
380 * docs).
381 *
382 * I've [chadv] experimentally confirmed that, on gen7 hardware and the
383 * simulator, emitting a f32to16 in align16 mode with UD as destination
384 * data type is safe. The behavior differs from that specified in the PRM
385 * in that the upper word of each destination channel is cleared to 0.
386 */
387
388 dst_reg tmp_dst(this, glsl_type::uvec2_type);
389 src_reg tmp_src(tmp_dst);
390
391 #if 0
392 /* Verify the undocumented behavior on which the following instructions
393 * rely. If f32to16 fails to clear the upper word of the X and Y channels,
394 * then the result of the bit-or instruction below will be incorrect.
395 *
396 * You should inspect the disasm output in order to verify that the MOV is
397 * not optimized away.
398 */
399 emit(MOV(tmp_dst, src_reg(0x12345678u)));
400 #endif
401
402 /* Give tmp the form below, where "." means untouched.
403 *
404 * w z y x w z y x
405 * |.|.|0x0000hhhh|0x0000llll|.|.|0x0000hhhh|0x0000llll|
406 *
407 * That the upper word of each write-channel be 0 is required for the
408 * following bit-shift and bit-or instructions to work. Note that this
409 * relies on the undocumented hardware behavior mentioned above.
410 */
411 tmp_dst.writemask = WRITEMASK_XY;
412 emit(F32TO16(tmp_dst, src0));
413
414 /* Give the write-channels of dst the form:
415 * 0xhhhh0000
416 */
417 tmp_src.swizzle = SWIZZLE_Y;
418 emit(SHL(dst, tmp_src, src_reg(16u)));
419
420 /* Finally, give the write-channels of dst the form of packHalf2x16's
421 * output:
422 * 0xhhhhllll
423 */
424 tmp_src.swizzle = SWIZZLE_X;
425 emit(OR(dst, src_reg(dst), tmp_src));
426 }
427
428 void
429 vec4_visitor::emit_unpack_half_2x16(dst_reg dst, src_reg src0)
430 {
431 if (intel->gen < 7)
432 assert(!"ir_unop_unpack_half_2x16 should be lowered");
433
434 assert(dst.type == BRW_REGISTER_TYPE_F);
435 assert(src0.type == BRW_REGISTER_TYPE_UD);
436
437 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
438 *
439 * Because this instruction does not have a 16-bit floating-point type,
440 * the source data type must be Word (W). The destination type must be
441 * F (Float).
442 *
443 * To use W as the source data type, we must adjust horizontal strides,
444 * which is only possible in align1 mode. All my [chadv] attempts at
445 * emitting align1 instructions for unpackHalf2x16 failed to pass the
446 * Piglit tests, so I gave up.
447 *
448 * I've verified that, on gen7 hardware and the simulator, it is safe to
449 * emit f16to32 in align16 mode with UD as source data type.
450 */
451
452 dst_reg tmp_dst(this, glsl_type::uvec2_type);
453 src_reg tmp_src(tmp_dst);
454
455 tmp_dst.writemask = WRITEMASK_X;
456 emit(AND(tmp_dst, src0, src_reg(0xffffu)));
457
458 tmp_dst.writemask = WRITEMASK_Y;
459 emit(SHR(tmp_dst, src0, src_reg(16u)));
460
461 dst.writemask = WRITEMASK_XY;
462 emit(F16TO32(dst, tmp_src));
463 }
464
465 void
466 vec4_visitor::visit_instructions(const exec_list *list)
467 {
468 foreach_list(node, list) {
469 ir_instruction *ir = (ir_instruction *)node;
470
471 base_ir = ir;
472 ir->accept(this);
473 }
474 }
475
476
477 static int
478 type_size(const struct glsl_type *type)
479 {
480 unsigned int i;
481 int size;
482
483 switch (type->base_type) {
484 case GLSL_TYPE_UINT:
485 case GLSL_TYPE_INT:
486 case GLSL_TYPE_FLOAT:
487 case GLSL_TYPE_BOOL:
488 if (type->is_matrix()) {
489 return type->matrix_columns;
490 } else {
491 /* Regardless of size of vector, it gets a vec4. This is bad
492 * packing for things like floats, but otherwise arrays become a
493 * mess. Hopefully a later pass over the code can pack scalars
494 * down if appropriate.
495 */
496 return 1;
497 }
498 case GLSL_TYPE_ARRAY:
499 assert(type->length > 0);
500 return type_size(type->fields.array) * type->length;
501 case GLSL_TYPE_STRUCT:
502 size = 0;
503 for (i = 0; i < type->length; i++) {
504 size += type_size(type->fields.structure[i].type);
505 }
506 return size;
507 case GLSL_TYPE_SAMPLER:
508 /* Samplers take up one slot in UNIFORMS[], but they're baked in
509 * at link time.
510 */
511 return 1;
512 case GLSL_TYPE_VOID:
513 case GLSL_TYPE_ERROR:
514 case GLSL_TYPE_INTERFACE:
515 assert(0);
516 break;
517 }
518
519 return 0;
520 }
521
522 int
523 vec4_visitor::virtual_grf_alloc(int size)
524 {
525 if (virtual_grf_array_size <= virtual_grf_count) {
526 if (virtual_grf_array_size == 0)
527 virtual_grf_array_size = 16;
528 else
529 virtual_grf_array_size *= 2;
530 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
531 virtual_grf_array_size);
532 virtual_grf_reg_map = reralloc(mem_ctx, virtual_grf_reg_map, int,
533 virtual_grf_array_size);
534 }
535 virtual_grf_reg_map[virtual_grf_count] = virtual_grf_reg_count;
536 virtual_grf_reg_count += size;
537 virtual_grf_sizes[virtual_grf_count] = size;
538 return virtual_grf_count++;
539 }
540
541 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
542 {
543 init();
544
545 this->file = GRF;
546 this->reg = v->virtual_grf_alloc(type_size(type));
547
548 if (type->is_array() || type->is_record()) {
549 this->swizzle = BRW_SWIZZLE_NOOP;
550 } else {
551 this->swizzle = swizzle_for_size(type->vector_elements);
552 }
553
554 this->type = brw_type_for_base_type(type);
555 }
556
557 dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
558 {
559 init();
560
561 this->file = GRF;
562 this->reg = v->virtual_grf_alloc(type_size(type));
563
564 if (type->is_array() || type->is_record()) {
565 this->writemask = WRITEMASK_XYZW;
566 } else {
567 this->writemask = (1 << type->vector_elements) - 1;
568 }
569
570 this->type = brw_type_for_base_type(type);
571 }
572
573 /* Our support for uniforms is piggy-backed on the struct
574 * gl_fragment_program, because that's where the values actually
575 * get stored, rather than in some global gl_shader_program uniform
576 * store.
577 */
578 void
579 vec4_visitor::setup_uniform_values(ir_variable *ir)
580 {
581 int namelen = strlen(ir->name);
582
583 /* The data for our (non-builtin) uniforms is stored in a series of
584 * gl_uniform_driver_storage structs for each subcomponent that
585 * glGetUniformLocation() could name. We know it's been set up in the same
586 * order we'd walk the type, so walk the list of storage and find anything
587 * with our name, or the prefix of a component that starts with our name.
588 */
589 for (unsigned u = 0; u < prog->NumUserUniformStorage; u++) {
590 struct gl_uniform_storage *storage = &prog->UniformStorage[u];
591
592 if (strncmp(ir->name, storage->name, namelen) != 0 ||
593 (storage->name[namelen] != 0 &&
594 storage->name[namelen] != '.' &&
595 storage->name[namelen] != '[')) {
596 continue;
597 }
598
599 gl_constant_value *components = storage->storage;
600 unsigned vector_count = (MAX2(storage->array_elements, 1) *
601 storage->type->matrix_columns);
602
603 for (unsigned s = 0; s < vector_count; s++) {
604 uniform_vector_size[uniforms] = storage->type->vector_elements;
605
606 int i;
607 for (i = 0; i < uniform_vector_size[uniforms]; i++) {
608 c->prog_data.param[uniforms * 4 + i] = &components->f;
609 components++;
610 }
611 for (; i < 4; i++) {
612 static float zero = 0;
613 c->prog_data.param[uniforms * 4 + i] = &zero;
614 }
615
616 uniforms++;
617 }
618 }
619 }
620
621 void
622 vec4_visitor::setup_uniform_clipplane_values()
623 {
624 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
625
626 if (intel->gen < 6) {
627 /* Pre-Gen6, we compact clip planes. For example, if the user
628 * enables just clip planes 0, 1, and 3, we will enable clip planes
629 * 0, 1, and 2 in the hardware, and we'll move clip plane 3 to clip
630 * plane 2. This simplifies the implementation of the Gen6 clip
631 * thread.
632 */
633 int compacted_clipplane_index = 0;
634 for (int i = 0; i < MAX_CLIP_PLANES; ++i) {
635 if (!(c->key.userclip_planes_enabled_gen_4_5 & (1 << i)))
636 continue;
637
638 this->uniform_vector_size[this->uniforms] = 4;
639 this->userplane[compacted_clipplane_index] = dst_reg(UNIFORM, this->uniforms);
640 this->userplane[compacted_clipplane_index].type = BRW_REGISTER_TYPE_F;
641 for (int j = 0; j < 4; ++j) {
642 c->prog_data.param[this->uniforms * 4 + j] = &clip_planes[i][j];
643 }
644 ++compacted_clipplane_index;
645 ++this->uniforms;
646 }
647 } else {
648 /* In Gen6 and later, we don't compact clip planes, because this
649 * simplifies the implementation of gl_ClipDistance.
650 */
651 for (int i = 0; i < c->key.nr_userclip_plane_consts; ++i) {
652 this->uniform_vector_size[this->uniforms] = 4;
653 this->userplane[i] = dst_reg(UNIFORM, this->uniforms);
654 this->userplane[i].type = BRW_REGISTER_TYPE_F;
655 for (int j = 0; j < 4; ++j) {
656 c->prog_data.param[this->uniforms * 4 + j] = &clip_planes[i][j];
657 }
658 ++this->uniforms;
659 }
660 }
661 }
662
663 /* Our support for builtin uniforms is even scarier than non-builtin.
664 * It sits on top of the PROG_STATE_VAR parameters that are
665 * automatically updated from GL context state.
666 */
667 void
668 vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
669 {
670 const ir_state_slot *const slots = ir->state_slots;
671 assert(ir->state_slots != NULL);
672
673 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
674 /* This state reference has already been setup by ir_to_mesa,
675 * but we'll get the same index back here. We can reference
676 * ParameterValues directly, since unlike brw_fs.cpp, we never
677 * add new state references during compile.
678 */
679 int index = _mesa_add_state_reference(this->vp->Base.Parameters,
680 (gl_state_index *)slots[i].tokens);
681 float *values = &this->vp->Base.Parameters->ParameterValues[index][0].f;
682
683 this->uniform_vector_size[this->uniforms] = 0;
684 /* Add each of the unique swizzled channels of the element.
685 * This will end up matching the size of the glsl_type of this field.
686 */
687 int last_swiz = -1;
688 for (unsigned int j = 0; j < 4; j++) {
689 int swiz = GET_SWZ(slots[i].swizzle, j);
690 last_swiz = swiz;
691
692 c->prog_data.param[this->uniforms * 4 + j] = &values[swiz];
693 if (swiz <= last_swiz)
694 this->uniform_vector_size[this->uniforms]++;
695 }
696 this->uniforms++;
697 }
698 }
699
700 dst_reg *
701 vec4_visitor::variable_storage(ir_variable *var)
702 {
703 return (dst_reg *)hash_table_find(this->variable_ht, var);
704 }
705
706 void
707 vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir, uint32_t *predicate)
708 {
709 ir_expression *expr = ir->as_expression();
710
711 *predicate = BRW_PREDICATE_NORMAL;
712
713 if (expr) {
714 src_reg op[2];
715 vec4_instruction *inst;
716
717 assert(expr->get_num_operands() <= 2);
718 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
719 expr->operands[i]->accept(this);
720 op[i] = this->result;
721
722 resolve_ud_negate(&op[i]);
723 }
724
725 switch (expr->operation) {
726 case ir_unop_logic_not:
727 inst = emit(AND(dst_null_d(), op[0], src_reg(1)));
728 inst->conditional_mod = BRW_CONDITIONAL_Z;
729 break;
730
731 case ir_binop_logic_xor:
732 inst = emit(XOR(dst_null_d(), op[0], op[1]));
733 inst->conditional_mod = BRW_CONDITIONAL_NZ;
734 break;
735
736 case ir_binop_logic_or:
737 inst = emit(OR(dst_null_d(), op[0], op[1]));
738 inst->conditional_mod = BRW_CONDITIONAL_NZ;
739 break;
740
741 case ir_binop_logic_and:
742 inst = emit(AND(dst_null_d(), op[0], op[1]));
743 inst->conditional_mod = BRW_CONDITIONAL_NZ;
744 break;
745
746 case ir_unop_f2b:
747 if (intel->gen >= 6) {
748 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
749 } else {
750 inst = emit(MOV(dst_null_f(), op[0]));
751 inst->conditional_mod = BRW_CONDITIONAL_NZ;
752 }
753 break;
754
755 case ir_unop_i2b:
756 if (intel->gen >= 6) {
757 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
758 } else {
759 inst = emit(MOV(dst_null_d(), op[0]));
760 inst->conditional_mod = BRW_CONDITIONAL_NZ;
761 }
762 break;
763
764 case ir_binop_all_equal:
765 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
766 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
767 break;
768
769 case ir_binop_any_nequal:
770 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
771 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
772 break;
773
774 case ir_unop_any:
775 inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
776 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
777 break;
778
779 case ir_binop_greater:
780 case ir_binop_gequal:
781 case ir_binop_less:
782 case ir_binop_lequal:
783 case ir_binop_equal:
784 case ir_binop_nequal:
785 emit(CMP(dst_null_d(), op[0], op[1],
786 brw_conditional_for_comparison(expr->operation)));
787 break;
788
789 default:
790 assert(!"not reached");
791 break;
792 }
793 return;
794 }
795
796 ir->accept(this);
797
798 resolve_ud_negate(&this->result);
799
800 if (intel->gen >= 6) {
801 vec4_instruction *inst = emit(AND(dst_null_d(),
802 this->result, src_reg(1)));
803 inst->conditional_mod = BRW_CONDITIONAL_NZ;
804 } else {
805 vec4_instruction *inst = emit(MOV(dst_null_d(), this->result));
806 inst->conditional_mod = BRW_CONDITIONAL_NZ;
807 }
808 }
809
810 /**
811 * Emit a gen6 IF statement with the comparison folded into the IF
812 * instruction.
813 */
814 void
815 vec4_visitor::emit_if_gen6(ir_if *ir)
816 {
817 ir_expression *expr = ir->condition->as_expression();
818
819 if (expr) {
820 src_reg op[2];
821 dst_reg temp;
822
823 assert(expr->get_num_operands() <= 2);
824 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
825 expr->operands[i]->accept(this);
826 op[i] = this->result;
827 }
828
829 switch (expr->operation) {
830 case ir_unop_logic_not:
831 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z));
832 return;
833
834 case ir_binop_logic_xor:
835 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
836 return;
837
838 case ir_binop_logic_or:
839 temp = dst_reg(this, glsl_type::bool_type);
840 emit(OR(temp, op[0], op[1]));
841 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
842 return;
843
844 case ir_binop_logic_and:
845 temp = dst_reg(this, glsl_type::bool_type);
846 emit(AND(temp, op[0], op[1]));
847 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
848 return;
849
850 case ir_unop_f2b:
851 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
852 return;
853
854 case ir_unop_i2b:
855 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
856 return;
857
858 case ir_binop_greater:
859 case ir_binop_gequal:
860 case ir_binop_less:
861 case ir_binop_lequal:
862 case ir_binop_equal:
863 case ir_binop_nequal:
864 emit(IF(op[0], op[1],
865 brw_conditional_for_comparison(expr->operation)));
866 return;
867
868 case ir_binop_all_equal:
869 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
870 emit(IF(BRW_PREDICATE_ALIGN16_ALL4H));
871 return;
872
873 case ir_binop_any_nequal:
874 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
875 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
876 return;
877
878 case ir_unop_any:
879 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
880 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
881 return;
882
883 default:
884 assert(!"not reached");
885 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
886 return;
887 }
888 return;
889 }
890
891 ir->condition->accept(this);
892
893 emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ));
894 }
895
896 static dst_reg
897 with_writemask(dst_reg const & r, int mask)
898 {
899 dst_reg result = r;
900 result.writemask = mask;
901 return result;
902 }
903
904 void
905 vec4_visitor::emit_attribute_fixups()
906 {
907 dst_reg sign_recovery_shift;
908 dst_reg normalize_factor;
909 dst_reg es3_normalize_factor;
910
911 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
912 if (prog_data->inputs_read & BITFIELD64_BIT(i)) {
913 uint8_t wa_flags = c->key.gl_attrib_wa_flags[i];
914 dst_reg reg(ATTR, i);
915 dst_reg reg_d = reg;
916 reg_d.type = BRW_REGISTER_TYPE_D;
917 dst_reg reg_ud = reg;
918 reg_ud.type = BRW_REGISTER_TYPE_UD;
919
920 /* Do GL_FIXED rescaling for GLES2.0. Our GL_FIXED attributes
921 * come in as floating point conversions of the integer values.
922 */
923 if (wa_flags & BRW_ATTRIB_WA_COMPONENT_MASK) {
924 dst_reg dst = reg;
925 dst.type = brw_type_for_base_type(glsl_type::vec4_type);
926 dst.writemask = (1 << (wa_flags & BRW_ATTRIB_WA_COMPONENT_MASK)) - 1;
927 emit(MUL(dst, src_reg(dst), src_reg(1.0f / 65536.0f)));
928 }
929
930 /* Do sign recovery for 2101010 formats if required. */
931 if (wa_flags & BRW_ATTRIB_WA_SIGN) {
932 if (sign_recovery_shift.file == BAD_FILE) {
933 /* shift constant: <22,22,22,30> */
934 sign_recovery_shift = dst_reg(this, glsl_type::uvec4_type);
935 emit(MOV(with_writemask(sign_recovery_shift, WRITEMASK_XYZ), src_reg(22u)));
936 emit(MOV(with_writemask(sign_recovery_shift, WRITEMASK_W), src_reg(30u)));
937 }
938
939 emit(SHL(reg_ud, src_reg(reg_ud), src_reg(sign_recovery_shift)));
940 emit(ASR(reg_d, src_reg(reg_d), src_reg(sign_recovery_shift)));
941 }
942
943 /* Apply BGRA swizzle if required. */
944 if (wa_flags & BRW_ATTRIB_WA_BGRA) {
945 src_reg temp = src_reg(reg);
946 temp.swizzle = BRW_SWIZZLE4(2,1,0,3);
947 emit(MOV(reg, temp));
948 }
949
950 if (wa_flags & BRW_ATTRIB_WA_NORMALIZE) {
951 /* ES 3.0 has different rules for converting signed normalized
952 * fixed-point numbers than desktop GL.
953 */
954 if (_mesa_is_gles3(ctx) && (wa_flags & BRW_ATTRIB_WA_SIGN)) {
955 /* According to equation 2.2 of the ES 3.0 specification,
956 * signed normalization conversion is done by:
957 *
958 * f = c / (2^(b-1)-1)
959 */
960 if (es3_normalize_factor.file == BAD_FILE) {
961 /* mul constant: 1 / (2^(b-1) - 1) */
962 es3_normalize_factor = dst_reg(this, glsl_type::vec4_type);
963 emit(MOV(with_writemask(es3_normalize_factor, WRITEMASK_XYZ),
964 src_reg(1.0f / ((1<<9) - 1))));
965 emit(MOV(with_writemask(es3_normalize_factor, WRITEMASK_W),
966 src_reg(1.0f / ((1<<1) - 1))));
967 }
968
969 dst_reg dst = reg;
970 dst.type = brw_type_for_base_type(glsl_type::vec4_type);
971 emit(MOV(dst, src_reg(reg_d)));
972 emit(MUL(dst, src_reg(dst), src_reg(es3_normalize_factor)));
973 emit_minmax(BRW_CONDITIONAL_G, dst, src_reg(dst), src_reg(-1.0f));
974 } else {
975 /* The following equations are from the OpenGL 3.2 specification:
976 *
977 * 2.1 unsigned normalization
978 * f = c/(2^n-1)
979 *
980 * 2.2 signed normalization
981 * f = (2c+1)/(2^n-1)
982 *
983 * Both of these share a common divisor, which is represented by
984 * "normalize_factor" in the code below.
985 */
986 if (normalize_factor.file == BAD_FILE) {
987 /* 1 / (2^b - 1) for b=<10,10,10,2> */
988 normalize_factor = dst_reg(this, glsl_type::vec4_type);
989 emit(MOV(with_writemask(normalize_factor, WRITEMASK_XYZ),
990 src_reg(1.0f / ((1<<10) - 1))));
991 emit(MOV(with_writemask(normalize_factor, WRITEMASK_W),
992 src_reg(1.0f / ((1<<2) - 1))));
993 }
994
995 dst_reg dst = reg;
996 dst.type = brw_type_for_base_type(glsl_type::vec4_type);
997 emit(MOV(dst, src_reg((wa_flags & BRW_ATTRIB_WA_SIGN) ? reg_d : reg_ud)));
998
999 /* For signed normalization, we want the numerator to be 2c+1. */
1000 if (wa_flags & BRW_ATTRIB_WA_SIGN) {
1001 emit(MUL(dst, src_reg(dst), src_reg(2.0f)));
1002 emit(ADD(dst, src_reg(dst), src_reg(1.0f)));
1003 }
1004
1005 emit(MUL(dst, src_reg(dst), src_reg(normalize_factor)));
1006 }
1007 }
1008
1009 if (wa_flags & BRW_ATTRIB_WA_SCALE) {
1010 dst_reg dst = reg;
1011 dst.type = brw_type_for_base_type(glsl_type::vec4_type);
1012 emit(MOV(dst, src_reg((wa_flags & BRW_ATTRIB_WA_SIGN) ? reg_d : reg_ud)));
1013 }
1014 }
1015 }
1016 }
1017
1018 void
1019 vec4_visitor::visit(ir_variable *ir)
1020 {
1021 dst_reg *reg = NULL;
1022
1023 if (variable_storage(ir))
1024 return;
1025
1026 switch (ir->mode) {
1027 case ir_var_shader_in:
1028 reg = new(mem_ctx) dst_reg(ATTR, ir->location);
1029 break;
1030
1031 case ir_var_shader_out:
1032 reg = new(mem_ctx) dst_reg(this, ir->type);
1033
1034 for (int i = 0; i < type_size(ir->type); i++) {
1035 output_reg[ir->location + i] = *reg;
1036 output_reg[ir->location + i].reg_offset = i;
1037 output_reg[ir->location + i].type =
1038 brw_type_for_base_type(ir->type->get_scalar_type());
1039 output_reg_annotation[ir->location + i] = ir->name;
1040 }
1041 break;
1042
1043 case ir_var_auto:
1044 case ir_var_temporary:
1045 reg = new(mem_ctx) dst_reg(this, ir->type);
1046 break;
1047
1048 case ir_var_uniform:
1049 reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
1050
1051 /* Thanks to the lower_ubo_reference pass, we will see only
1052 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
1053 * variables, so no need for them to be in variable_ht.
1054 */
1055 if (ir->is_in_uniform_block())
1056 return;
1057
1058 /* Track how big the whole uniform variable is, in case we need to put a
1059 * copy of its data into pull constants for array access.
1060 */
1061 this->uniform_size[this->uniforms] = type_size(ir->type);
1062
1063 if (!strncmp(ir->name, "gl_", 3)) {
1064 setup_builtin_uniform_values(ir);
1065 } else {
1066 setup_uniform_values(ir);
1067 }
1068 break;
1069
1070 case ir_var_system_value:
1071 /* VertexID is stored by the VF as the last vertex element, but
1072 * we don't represent it with a flag in inputs_read, so we call
1073 * it VERT_ATTRIB_MAX, which setup_attributes() picks up on.
1074 */
1075 reg = new(mem_ctx) dst_reg(ATTR, VERT_ATTRIB_MAX);
1076 prog_data->uses_vertexid = true;
1077
1078 switch (ir->location) {
1079 case SYSTEM_VALUE_VERTEX_ID:
1080 reg->writemask = WRITEMASK_X;
1081 break;
1082 case SYSTEM_VALUE_INSTANCE_ID:
1083 reg->writemask = WRITEMASK_Y;
1084 break;
1085 default:
1086 assert(!"not reached");
1087 break;
1088 }
1089 break;
1090
1091 default:
1092 assert(!"not reached");
1093 }
1094
1095 reg->type = brw_type_for_base_type(ir->type);
1096 hash_table_insert(this->variable_ht, reg, ir);
1097 }
1098
1099 void
1100 vec4_visitor::visit(ir_loop *ir)
1101 {
1102 dst_reg counter;
1103
1104 /* We don't want debugging output to print the whole body of the
1105 * loop as the annotation.
1106 */
1107 this->base_ir = NULL;
1108
1109 if (ir->counter != NULL) {
1110 this->base_ir = ir->counter;
1111 ir->counter->accept(this);
1112 counter = *(variable_storage(ir->counter));
1113
1114 if (ir->from != NULL) {
1115 this->base_ir = ir->from;
1116 ir->from->accept(this);
1117
1118 emit(MOV(counter, this->result));
1119 }
1120 }
1121
1122 emit(BRW_OPCODE_DO);
1123
1124 if (ir->to) {
1125 this->base_ir = ir->to;
1126 ir->to->accept(this);
1127
1128 emit(CMP(dst_null_d(), src_reg(counter), this->result,
1129 brw_conditional_for_comparison(ir->cmp)));
1130
1131 vec4_instruction *inst = emit(BRW_OPCODE_BREAK);
1132 inst->predicate = BRW_PREDICATE_NORMAL;
1133 }
1134
1135 visit_instructions(&ir->body_instructions);
1136
1137
1138 if (ir->increment) {
1139 this->base_ir = ir->increment;
1140 ir->increment->accept(this);
1141 emit(ADD(counter, src_reg(counter), this->result));
1142 }
1143
1144 emit(BRW_OPCODE_WHILE);
1145 }
1146
1147 void
1148 vec4_visitor::visit(ir_loop_jump *ir)
1149 {
1150 switch (ir->mode) {
1151 case ir_loop_jump::jump_break:
1152 emit(BRW_OPCODE_BREAK);
1153 break;
1154 case ir_loop_jump::jump_continue:
1155 emit(BRW_OPCODE_CONTINUE);
1156 break;
1157 }
1158 }
1159
1160
1161 void
1162 vec4_visitor::visit(ir_function_signature *ir)
1163 {
1164 assert(0);
1165 (void)ir;
1166 }
1167
1168 void
1169 vec4_visitor::visit(ir_function *ir)
1170 {
1171 /* Ignore function bodies other than main() -- we shouldn't see calls to
1172 * them since they should all be inlined.
1173 */
1174 if (strcmp(ir->name, "main") == 0) {
1175 const ir_function_signature *sig;
1176 exec_list empty;
1177
1178 sig = ir->matching_signature(&empty);
1179
1180 assert(sig);
1181
1182 visit_instructions(&sig->body);
1183 }
1184 }
1185
1186 bool
1187 vec4_visitor::try_emit_sat(ir_expression *ir)
1188 {
1189 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1190 if (!sat_src)
1191 return false;
1192
1193 sat_src->accept(this);
1194 src_reg src = this->result;
1195
1196 this->result = src_reg(this, ir->type);
1197 vec4_instruction *inst;
1198 inst = emit(MOV(dst_reg(this->result), src));
1199 inst->saturate = true;
1200
1201 return true;
1202 }
1203
1204 void
1205 vec4_visitor::emit_bool_comparison(unsigned int op,
1206 dst_reg dst, src_reg src0, src_reg src1)
1207 {
1208 /* original gen4 does destination conversion before comparison. */
1209 if (intel->gen < 5)
1210 dst.type = src0.type;
1211
1212 emit(CMP(dst, src0, src1, brw_conditional_for_comparison(op)));
1213
1214 dst.type = BRW_REGISTER_TYPE_D;
1215 emit(AND(dst, src_reg(dst), src_reg(0x1)));
1216 }
1217
1218 void
1219 vec4_visitor::emit_minmax(uint32_t conditionalmod, dst_reg dst,
1220 src_reg src0, src_reg src1)
1221 {
1222 vec4_instruction *inst;
1223
1224 if (intel->gen >= 6) {
1225 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
1226 inst->conditional_mod = conditionalmod;
1227 } else {
1228 emit(CMP(dst, src0, src1, conditionalmod));
1229
1230 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
1231 inst->predicate = BRW_PREDICATE_NORMAL;
1232 }
1233 }
1234
1235 void
1236 vec4_visitor::visit(ir_expression *ir)
1237 {
1238 unsigned int operand;
1239 src_reg op[Elements(ir->operands)];
1240 src_reg result_src;
1241 dst_reg result_dst;
1242 vec4_instruction *inst;
1243
1244 if (try_emit_sat(ir))
1245 return;
1246
1247 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1248 this->result.file = BAD_FILE;
1249 ir->operands[operand]->accept(this);
1250 if (this->result.file == BAD_FILE) {
1251 printf("Failed to get tree for expression operand:\n");
1252 ir->operands[operand]->print();
1253 exit(1);
1254 }
1255 op[operand] = this->result;
1256
1257 /* Matrix expression operands should have been broken down to vector
1258 * operations already.
1259 */
1260 assert(!ir->operands[operand]->type->is_matrix());
1261 }
1262
1263 int vector_elements = ir->operands[0]->type->vector_elements;
1264 if (ir->operands[1]) {
1265 vector_elements = MAX2(vector_elements,
1266 ir->operands[1]->type->vector_elements);
1267 }
1268
1269 this->result.file = BAD_FILE;
1270
1271 /* Storage for our result. Ideally for an assignment we'd be using
1272 * the actual storage for the result here, instead.
1273 */
1274 result_src = src_reg(this, ir->type);
1275 /* convenience for the emit functions below. */
1276 result_dst = dst_reg(result_src);
1277 /* If nothing special happens, this is the result. */
1278 this->result = result_src;
1279 /* Limit writes to the channels that will be used by result_src later.
1280 * This does limit this temp's use as a temporary for multi-instruction
1281 * sequences.
1282 */
1283 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1284
1285 switch (ir->operation) {
1286 case ir_unop_logic_not:
1287 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
1288 * ones complement of the whole register, not just bit 0.
1289 */
1290 emit(XOR(result_dst, op[0], src_reg(1)));
1291 break;
1292 case ir_unop_neg:
1293 op[0].negate = !op[0].negate;
1294 this->result = op[0];
1295 break;
1296 case ir_unop_abs:
1297 op[0].abs = true;
1298 op[0].negate = false;
1299 this->result = op[0];
1300 break;
1301
1302 case ir_unop_sign:
1303 emit(MOV(result_dst, src_reg(0.0f)));
1304
1305 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_G));
1306 inst = emit(MOV(result_dst, src_reg(1.0f)));
1307 inst->predicate = BRW_PREDICATE_NORMAL;
1308
1309 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_L));
1310 inst = emit(MOV(result_dst, src_reg(-1.0f)));
1311 inst->predicate = BRW_PREDICATE_NORMAL;
1312
1313 break;
1314
1315 case ir_unop_rcp:
1316 emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
1317 break;
1318
1319 case ir_unop_exp2:
1320 emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
1321 break;
1322 case ir_unop_log2:
1323 emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
1324 break;
1325 case ir_unop_exp:
1326 case ir_unop_log:
1327 assert(!"not reached: should be handled by ir_explog_to_explog2");
1328 break;
1329 case ir_unop_sin:
1330 case ir_unop_sin_reduced:
1331 emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
1332 break;
1333 case ir_unop_cos:
1334 case ir_unop_cos_reduced:
1335 emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
1336 break;
1337
1338 case ir_unop_dFdx:
1339 case ir_unop_dFdy:
1340 assert(!"derivatives not valid in vertex shader");
1341 break;
1342
1343 case ir_unop_noise:
1344 assert(!"not reached: should be handled by lower_noise");
1345 break;
1346
1347 case ir_binop_add:
1348 emit(ADD(result_dst, op[0], op[1]));
1349 break;
1350 case ir_binop_sub:
1351 assert(!"not reached: should be handled by ir_sub_to_add_neg");
1352 break;
1353
1354 case ir_binop_mul:
1355 if (ir->type->is_integer()) {
1356 /* For integer multiplication, the MUL uses the low 16 bits
1357 * of one of the operands (src0 on gen6, src1 on gen7). The
1358 * MACH accumulates in the contribution of the upper 16 bits
1359 * of that operand.
1360 *
1361 * FINISHME: Emit just the MUL if we know an operand is small
1362 * enough.
1363 */
1364 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
1365
1366 emit(MUL(acc, op[0], op[1]));
1367 emit(MACH(dst_null_d(), op[0], op[1]));
1368 emit(MOV(result_dst, src_reg(acc)));
1369 } else {
1370 emit(MUL(result_dst, op[0], op[1]));
1371 }
1372 break;
1373 case ir_binop_div:
1374 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
1375 assert(ir->type->is_integer());
1376 emit_math(SHADER_OPCODE_INT_QUOTIENT, result_dst, op[0], op[1]);
1377 break;
1378 case ir_binop_mod:
1379 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1380 assert(ir->type->is_integer());
1381 emit_math(SHADER_OPCODE_INT_REMAINDER, result_dst, op[0], op[1]);
1382 break;
1383
1384 case ir_binop_less:
1385 case ir_binop_greater:
1386 case ir_binop_lequal:
1387 case ir_binop_gequal:
1388 case ir_binop_equal:
1389 case ir_binop_nequal: {
1390 emit(CMP(result_dst, op[0], op[1],
1391 brw_conditional_for_comparison(ir->operation)));
1392 emit(AND(result_dst, result_src, src_reg(0x1)));
1393 break;
1394 }
1395
1396 case ir_binop_all_equal:
1397 /* "==" operator producing a scalar boolean. */
1398 if (ir->operands[0]->type->is_vector() ||
1399 ir->operands[1]->type->is_vector()) {
1400 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
1401 emit(MOV(result_dst, src_reg(0)));
1402 inst = emit(MOV(result_dst, src_reg(1)));
1403 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1404 } else {
1405 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z));
1406 emit(AND(result_dst, result_src, src_reg(0x1)));
1407 }
1408 break;
1409 case ir_binop_any_nequal:
1410 /* "!=" operator producing a scalar boolean. */
1411 if (ir->operands[0]->type->is_vector() ||
1412 ir->operands[1]->type->is_vector()) {
1413 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
1414
1415 emit(MOV(result_dst, src_reg(0)));
1416 inst = emit(MOV(result_dst, src_reg(1)));
1417 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1418 } else {
1419 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ));
1420 emit(AND(result_dst, result_src, src_reg(0x1)));
1421 }
1422 break;
1423
1424 case ir_unop_any:
1425 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
1426 emit(MOV(result_dst, src_reg(0)));
1427
1428 inst = emit(MOV(result_dst, src_reg(1)));
1429 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1430 break;
1431
1432 case ir_binop_logic_xor:
1433 emit(XOR(result_dst, op[0], op[1]));
1434 break;
1435
1436 case ir_binop_logic_or:
1437 emit(OR(result_dst, op[0], op[1]));
1438 break;
1439
1440 case ir_binop_logic_and:
1441 emit(AND(result_dst, op[0], op[1]));
1442 break;
1443
1444 case ir_binop_dot:
1445 assert(ir->operands[0]->type->is_vector());
1446 assert(ir->operands[0]->type == ir->operands[1]->type);
1447 emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
1448 break;
1449
1450 case ir_unop_sqrt:
1451 emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
1452 break;
1453 case ir_unop_rsq:
1454 emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
1455 break;
1456
1457 case ir_unop_bitcast_i2f:
1458 case ir_unop_bitcast_u2f:
1459 this->result = op[0];
1460 this->result.type = BRW_REGISTER_TYPE_F;
1461 break;
1462
1463 case ir_unop_bitcast_f2i:
1464 this->result = op[0];
1465 this->result.type = BRW_REGISTER_TYPE_D;
1466 break;
1467
1468 case ir_unop_bitcast_f2u:
1469 this->result = op[0];
1470 this->result.type = BRW_REGISTER_TYPE_UD;
1471 break;
1472
1473 case ir_unop_i2f:
1474 case ir_unop_i2u:
1475 case ir_unop_u2i:
1476 case ir_unop_u2f:
1477 case ir_unop_b2f:
1478 case ir_unop_b2i:
1479 case ir_unop_f2i:
1480 case ir_unop_f2u:
1481 emit(MOV(result_dst, op[0]));
1482 break;
1483 case ir_unop_f2b:
1484 case ir_unop_i2b: {
1485 emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
1486 emit(AND(result_dst, result_src, src_reg(1)));
1487 break;
1488 }
1489
1490 case ir_unop_trunc:
1491 emit(RNDZ(result_dst, op[0]));
1492 break;
1493 case ir_unop_ceil:
1494 op[0].negate = !op[0].negate;
1495 inst = emit(RNDD(result_dst, op[0]));
1496 this->result.negate = true;
1497 break;
1498 case ir_unop_floor:
1499 inst = emit(RNDD(result_dst, op[0]));
1500 break;
1501 case ir_unop_fract:
1502 inst = emit(FRC(result_dst, op[0]));
1503 break;
1504 case ir_unop_round_even:
1505 emit(RNDE(result_dst, op[0]));
1506 break;
1507
1508 case ir_binop_min:
1509 emit_minmax(BRW_CONDITIONAL_L, result_dst, op[0], op[1]);
1510 break;
1511 case ir_binop_max:
1512 emit_minmax(BRW_CONDITIONAL_G, result_dst, op[0], op[1]);
1513 break;
1514
1515 case ir_binop_pow:
1516 emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
1517 break;
1518
1519 case ir_unop_bit_not:
1520 inst = emit(NOT(result_dst, op[0]));
1521 break;
1522 case ir_binop_bit_and:
1523 inst = emit(AND(result_dst, op[0], op[1]));
1524 break;
1525 case ir_binop_bit_xor:
1526 inst = emit(XOR(result_dst, op[0], op[1]));
1527 break;
1528 case ir_binop_bit_or:
1529 inst = emit(OR(result_dst, op[0], op[1]));
1530 break;
1531
1532 case ir_binop_lshift:
1533 inst = emit(SHL(result_dst, op[0], op[1]));
1534 break;
1535
1536 case ir_binop_rshift:
1537 if (ir->type->base_type == GLSL_TYPE_INT)
1538 inst = emit(ASR(result_dst, op[0], op[1]));
1539 else
1540 inst = emit(SHR(result_dst, op[0], op[1]));
1541 break;
1542
1543 case ir_binop_ubo_load: {
1544 ir_constant *uniform_block = ir->operands[0]->as_constant();
1545 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
1546 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
1547 src_reg offset = op[1];
1548
1549 /* Now, load the vector from that offset. */
1550 assert(ir->type->is_vector() || ir->type->is_scalar());
1551
1552 src_reg packed_consts = src_reg(this, glsl_type::vec4_type);
1553 packed_consts.type = result.type;
1554 src_reg surf_index =
1555 src_reg(SURF_INDEX_VS_UBO(uniform_block->value.u[0]));
1556 if (const_offset_ir) {
1557 offset = src_reg(const_offset / 16);
1558 } else {
1559 emit(SHR(dst_reg(offset), offset, src_reg(4)));
1560 }
1561
1562 vec4_instruction *pull =
1563 emit(new(mem_ctx) vec4_instruction(this,
1564 VS_OPCODE_PULL_CONSTANT_LOAD,
1565 dst_reg(packed_consts),
1566 surf_index,
1567 offset));
1568 pull->base_mrf = 14;
1569 pull->mlen = 1;
1570
1571 packed_consts.swizzle = swizzle_for_size(ir->type->vector_elements);
1572 packed_consts.swizzle += BRW_SWIZZLE4(const_offset % 16 / 4,
1573 const_offset % 16 / 4,
1574 const_offset % 16 / 4,
1575 const_offset % 16 / 4);
1576
1577 /* UBO bools are any nonzero int. We store bools as either 0 or 1. */
1578 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1579 emit(CMP(result_dst, packed_consts, src_reg(0u),
1580 BRW_CONDITIONAL_NZ));
1581 emit(AND(result_dst, result, src_reg(0x1)));
1582 } else {
1583 emit(MOV(result_dst, packed_consts));
1584 }
1585 break;
1586 }
1587
1588 case ir_quadop_vector:
1589 assert(!"not reached: should be handled by lower_quadop_vector");
1590 break;
1591
1592 case ir_unop_pack_half_2x16:
1593 emit_pack_half_2x16(result_dst, op[0]);
1594 break;
1595 case ir_unop_unpack_half_2x16:
1596 emit_unpack_half_2x16(result_dst, op[0]);
1597 break;
1598 case ir_unop_pack_snorm_2x16:
1599 case ir_unop_pack_snorm_4x8:
1600 case ir_unop_pack_unorm_2x16:
1601 case ir_unop_pack_unorm_4x8:
1602 case ir_unop_unpack_snorm_2x16:
1603 case ir_unop_unpack_snorm_4x8:
1604 case ir_unop_unpack_unorm_2x16:
1605 case ir_unop_unpack_unorm_4x8:
1606 assert(!"not reached: should be handled by lower_packing_builtins");
1607 break;
1608 case ir_unop_unpack_half_2x16_split_x:
1609 case ir_unop_unpack_half_2x16_split_y:
1610 case ir_binop_pack_half_2x16_split:
1611 assert(!"not reached: should not occur in vertex shader");
1612 break;
1613 }
1614 }
1615
1616
1617 void
1618 vec4_visitor::visit(ir_swizzle *ir)
1619 {
1620 src_reg src;
1621 int i = 0;
1622 int swizzle[4];
1623
1624 /* Note that this is only swizzles in expressions, not those on the left
1625 * hand side of an assignment, which do write masking. See ir_assignment
1626 * for that.
1627 */
1628
1629 ir->val->accept(this);
1630 src = this->result;
1631 assert(src.file != BAD_FILE);
1632
1633 for (i = 0; i < ir->type->vector_elements; i++) {
1634 switch (i) {
1635 case 0:
1636 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
1637 break;
1638 case 1:
1639 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
1640 break;
1641 case 2:
1642 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
1643 break;
1644 case 3:
1645 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
1646 break;
1647 }
1648 }
1649 for (; i < 4; i++) {
1650 /* Replicate the last channel out. */
1651 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1652 }
1653
1654 src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1655
1656 this->result = src;
1657 }
1658
1659 void
1660 vec4_visitor::visit(ir_dereference_variable *ir)
1661 {
1662 const struct glsl_type *type = ir->type;
1663 dst_reg *reg = variable_storage(ir->var);
1664
1665 if (!reg) {
1666 fail("Failed to find variable storage for %s\n", ir->var->name);
1667 this->result = src_reg(brw_null_reg());
1668 return;
1669 }
1670
1671 this->result = src_reg(*reg);
1672
1673 /* System values get their swizzle from the dst_reg writemask */
1674 if (ir->var->mode == ir_var_system_value)
1675 return;
1676
1677 if (type->is_scalar() || type->is_vector() || type->is_matrix())
1678 this->result.swizzle = swizzle_for_size(type->vector_elements);
1679 }
1680
1681 void
1682 vec4_visitor::visit(ir_dereference_array *ir)
1683 {
1684 ir_constant *constant_index;
1685 src_reg src;
1686 int element_size = type_size(ir->type);
1687
1688 constant_index = ir->array_index->constant_expression_value();
1689
1690 ir->array->accept(this);
1691 src = this->result;
1692
1693 if (constant_index) {
1694 src.reg_offset += constant_index->value.i[0] * element_size;
1695 } else {
1696 /* Variable index array dereference. It eats the "vec4" of the
1697 * base of the array and an index that offsets the Mesa register
1698 * index.
1699 */
1700 ir->array_index->accept(this);
1701
1702 src_reg index_reg;
1703
1704 if (element_size == 1) {
1705 index_reg = this->result;
1706 } else {
1707 index_reg = src_reg(this, glsl_type::int_type);
1708
1709 emit(MUL(dst_reg(index_reg), this->result, src_reg(element_size)));
1710 }
1711
1712 if (src.reladdr) {
1713 src_reg temp = src_reg(this, glsl_type::int_type);
1714
1715 emit(ADD(dst_reg(temp), *src.reladdr, index_reg));
1716
1717 index_reg = temp;
1718 }
1719
1720 src.reladdr = ralloc(mem_ctx, src_reg);
1721 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1722 }
1723
1724 /* If the type is smaller than a vec4, replicate the last channel out. */
1725 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
1726 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1727 else
1728 src.swizzle = BRW_SWIZZLE_NOOP;
1729 src.type = brw_type_for_base_type(ir->type);
1730
1731 this->result = src;
1732 }
1733
1734 void
1735 vec4_visitor::visit(ir_dereference_record *ir)
1736 {
1737 unsigned int i;
1738 const glsl_type *struct_type = ir->record->type;
1739 int offset = 0;
1740
1741 ir->record->accept(this);
1742
1743 for (i = 0; i < struct_type->length; i++) {
1744 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1745 break;
1746 offset += type_size(struct_type->fields.structure[i].type);
1747 }
1748
1749 /* If the type is smaller than a vec4, replicate the last channel out. */
1750 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
1751 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1752 else
1753 this->result.swizzle = BRW_SWIZZLE_NOOP;
1754 this->result.type = brw_type_for_base_type(ir->type);
1755
1756 this->result.reg_offset += offset;
1757 }
1758
1759 /**
1760 * We want to be careful in assignment setup to hit the actual storage
1761 * instead of potentially using a temporary like we might with the
1762 * ir_dereference handler.
1763 */
1764 static dst_reg
1765 get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
1766 {
1767 /* The LHS must be a dereference. If the LHS is a variable indexed array
1768 * access of a vector, it must be separated into a series conditional moves
1769 * before reaching this point (see ir_vec_index_to_cond_assign).
1770 */
1771 assert(ir->as_dereference());
1772 ir_dereference_array *deref_array = ir->as_dereference_array();
1773 if (deref_array) {
1774 assert(!deref_array->array->type->is_vector());
1775 }
1776
1777 /* Use the rvalue deref handler for the most part. We'll ignore
1778 * swizzles in it and write swizzles using writemask, though.
1779 */
1780 ir->accept(v);
1781 return dst_reg(v->result);
1782 }
1783
1784 void
1785 vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src,
1786 const struct glsl_type *type, uint32_t predicate)
1787 {
1788 if (type->base_type == GLSL_TYPE_STRUCT) {
1789 for (unsigned int i = 0; i < type->length; i++) {
1790 emit_block_move(dst, src, type->fields.structure[i].type, predicate);
1791 }
1792 return;
1793 }
1794
1795 if (type->is_array()) {
1796 for (unsigned int i = 0; i < type->length; i++) {
1797 emit_block_move(dst, src, type->fields.array, predicate);
1798 }
1799 return;
1800 }
1801
1802 if (type->is_matrix()) {
1803 const struct glsl_type *vec_type;
1804
1805 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
1806 type->vector_elements, 1);
1807
1808 for (int i = 0; i < type->matrix_columns; i++) {
1809 emit_block_move(dst, src, vec_type, predicate);
1810 }
1811 return;
1812 }
1813
1814 assert(type->is_scalar() || type->is_vector());
1815
1816 dst->type = brw_type_for_base_type(type);
1817 src->type = dst->type;
1818
1819 dst->writemask = (1 << type->vector_elements) - 1;
1820
1821 src->swizzle = swizzle_for_size(type->vector_elements);
1822
1823 vec4_instruction *inst = emit(MOV(*dst, *src));
1824 inst->predicate = predicate;
1825
1826 dst->reg_offset++;
1827 src->reg_offset++;
1828 }
1829
1830
1831 /* If the RHS processing resulted in an instruction generating a
1832 * temporary value, and it would be easy to rewrite the instruction to
1833 * generate its result right into the LHS instead, do so. This ends
1834 * up reliably removing instructions where it can be tricky to do so
1835 * later without real UD chain information.
1836 */
1837 bool
1838 vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1839 dst_reg dst,
1840 src_reg src,
1841 vec4_instruction *pre_rhs_inst,
1842 vec4_instruction *last_rhs_inst)
1843 {
1844 /* This could be supported, but it would take more smarts. */
1845 if (ir->condition)
1846 return false;
1847
1848 if (pre_rhs_inst == last_rhs_inst)
1849 return false; /* No instructions generated to work with. */
1850
1851 /* Make sure the last instruction generated our source reg. */
1852 if (src.file != GRF ||
1853 src.file != last_rhs_inst->dst.file ||
1854 src.reg != last_rhs_inst->dst.reg ||
1855 src.reg_offset != last_rhs_inst->dst.reg_offset ||
1856 src.reladdr ||
1857 src.abs ||
1858 src.negate ||
1859 last_rhs_inst->predicate != BRW_PREDICATE_NONE)
1860 return false;
1861
1862 /* Check that that last instruction fully initialized the channels
1863 * we want to use, in the order we want to use them. We could
1864 * potentially reswizzle the operands of many instructions so that
1865 * we could handle out of order channels, but don't yet.
1866 */
1867
1868 for (unsigned i = 0; i < 4; i++) {
1869 if (dst.writemask & (1 << i)) {
1870 if (!(last_rhs_inst->dst.writemask & (1 << i)))
1871 return false;
1872
1873 if (BRW_GET_SWZ(src.swizzle, i) != i)
1874 return false;
1875 }
1876 }
1877
1878 /* Success! Rewrite the instruction. */
1879 last_rhs_inst->dst.file = dst.file;
1880 last_rhs_inst->dst.reg = dst.reg;
1881 last_rhs_inst->dst.reg_offset = dst.reg_offset;
1882 last_rhs_inst->dst.reladdr = dst.reladdr;
1883 last_rhs_inst->dst.writemask &= dst.writemask;
1884
1885 return true;
1886 }
1887
1888 void
1889 vec4_visitor::visit(ir_assignment *ir)
1890 {
1891 dst_reg dst = get_assignment_lhs(ir->lhs, this);
1892 uint32_t predicate = BRW_PREDICATE_NONE;
1893
1894 if (!ir->lhs->type->is_scalar() &&
1895 !ir->lhs->type->is_vector()) {
1896 ir->rhs->accept(this);
1897 src_reg src = this->result;
1898
1899 if (ir->condition) {
1900 emit_bool_to_cond_code(ir->condition, &predicate);
1901 }
1902
1903 /* emit_block_move doesn't account for swizzles in the source register.
1904 * This should be ok, since the source register is a structure or an
1905 * array, and those can't be swizzled. But double-check to be sure.
1906 */
1907 assert(src.swizzle ==
1908 (ir->rhs->type->is_matrix()
1909 ? swizzle_for_size(ir->rhs->type->vector_elements)
1910 : BRW_SWIZZLE_NOOP));
1911
1912 emit_block_move(&dst, &src, ir->rhs->type, predicate);
1913 return;
1914 }
1915
1916 /* Now we're down to just a scalar/vector with writemasks. */
1917 int i;
1918
1919 vec4_instruction *pre_rhs_inst, *last_rhs_inst;
1920 pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1921
1922 ir->rhs->accept(this);
1923
1924 last_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1925
1926 src_reg src = this->result;
1927
1928 int swizzles[4];
1929 int first_enabled_chan = 0;
1930 int src_chan = 0;
1931
1932 assert(ir->lhs->type->is_vector() ||
1933 ir->lhs->type->is_scalar());
1934 dst.writemask = ir->write_mask;
1935
1936 for (int i = 0; i < 4; i++) {
1937 if (dst.writemask & (1 << i)) {
1938 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
1939 break;
1940 }
1941 }
1942
1943 /* Swizzle a small RHS vector into the channels being written.
1944 *
1945 * glsl ir treats write_mask as dictating how many channels are
1946 * present on the RHS while in our instructions we need to make
1947 * those channels appear in the slots of the vec4 they're written to.
1948 */
1949 for (int i = 0; i < 4; i++) {
1950 if (dst.writemask & (1 << i))
1951 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
1952 else
1953 swizzles[i] = first_enabled_chan;
1954 }
1955 src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
1956 swizzles[2], swizzles[3]);
1957
1958 if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) {
1959 return;
1960 }
1961
1962 if (ir->condition) {
1963 emit_bool_to_cond_code(ir->condition, &predicate);
1964 }
1965
1966 for (i = 0; i < type_size(ir->lhs->type); i++) {
1967 vec4_instruction *inst = emit(MOV(dst, src));
1968 inst->predicate = predicate;
1969
1970 dst.reg_offset++;
1971 src.reg_offset++;
1972 }
1973 }
1974
1975 void
1976 vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir)
1977 {
1978 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1979 foreach_list(node, &ir->components) {
1980 ir_constant *field_value = (ir_constant *)node;
1981
1982 emit_constant_values(dst, field_value);
1983 }
1984 return;
1985 }
1986
1987 if (ir->type->is_array()) {
1988 for (unsigned int i = 0; i < ir->type->length; i++) {
1989 emit_constant_values(dst, ir->array_elements[i]);
1990 }
1991 return;
1992 }
1993
1994 if (ir->type->is_matrix()) {
1995 for (int i = 0; i < ir->type->matrix_columns; i++) {
1996 float *vec = &ir->value.f[i * ir->type->vector_elements];
1997
1998 for (int j = 0; j < ir->type->vector_elements; j++) {
1999 dst->writemask = 1 << j;
2000 dst->type = BRW_REGISTER_TYPE_F;
2001
2002 emit(MOV(*dst, src_reg(vec[j])));
2003 }
2004 dst->reg_offset++;
2005 }
2006 return;
2007 }
2008
2009 int remaining_writemask = (1 << ir->type->vector_elements) - 1;
2010
2011 for (int i = 0; i < ir->type->vector_elements; i++) {
2012 if (!(remaining_writemask & (1 << i)))
2013 continue;
2014
2015 dst->writemask = 1 << i;
2016 dst->type = brw_type_for_base_type(ir->type);
2017
2018 /* Find other components that match the one we're about to
2019 * write. Emits fewer instructions for things like vec4(0.5,
2020 * 1.5, 1.5, 1.5).
2021 */
2022 for (int j = i + 1; j < ir->type->vector_elements; j++) {
2023 if (ir->type->base_type == GLSL_TYPE_BOOL) {
2024 if (ir->value.b[i] == ir->value.b[j])
2025 dst->writemask |= (1 << j);
2026 } else {
2027 /* u, i, and f storage all line up, so no need for a
2028 * switch case for comparing each type.
2029 */
2030 if (ir->value.u[i] == ir->value.u[j])
2031 dst->writemask |= (1 << j);
2032 }
2033 }
2034
2035 switch (ir->type->base_type) {
2036 case GLSL_TYPE_FLOAT:
2037 emit(MOV(*dst, src_reg(ir->value.f[i])));
2038 break;
2039 case GLSL_TYPE_INT:
2040 emit(MOV(*dst, src_reg(ir->value.i[i])));
2041 break;
2042 case GLSL_TYPE_UINT:
2043 emit(MOV(*dst, src_reg(ir->value.u[i])));
2044 break;
2045 case GLSL_TYPE_BOOL:
2046 emit(MOV(*dst, src_reg(ir->value.b[i])));
2047 break;
2048 default:
2049 assert(!"Non-float/uint/int/bool constant");
2050 break;
2051 }
2052
2053 remaining_writemask &= ~dst->writemask;
2054 }
2055 dst->reg_offset++;
2056 }
2057
2058 void
2059 vec4_visitor::visit(ir_constant *ir)
2060 {
2061 dst_reg dst = dst_reg(this, ir->type);
2062 this->result = src_reg(dst);
2063
2064 emit_constant_values(&dst, ir);
2065 }
2066
2067 void
2068 vec4_visitor::visit(ir_call *ir)
2069 {
2070 assert(!"not reached");
2071 }
2072
2073 void
2074 vec4_visitor::visit(ir_texture *ir)
2075 {
2076 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &vp->Base);
2077
2078 /* Should be lowered by do_lower_texture_projection */
2079 assert(!ir->projector);
2080
2081 /* Generate code to compute all the subexpression trees. This has to be
2082 * done before loading any values into MRFs for the sampler message since
2083 * generating these values may involve SEND messages that need the MRFs.
2084 */
2085 src_reg coordinate;
2086 if (ir->coordinate) {
2087 ir->coordinate->accept(this);
2088 coordinate = this->result;
2089 }
2090
2091 src_reg shadow_comparitor;
2092 if (ir->shadow_comparitor) {
2093 ir->shadow_comparitor->accept(this);
2094 shadow_comparitor = this->result;
2095 }
2096
2097 const glsl_type *lod_type;
2098 src_reg lod, dPdx, dPdy;
2099 switch (ir->op) {
2100 case ir_tex:
2101 lod = src_reg(0.0f);
2102 lod_type = glsl_type::float_type;
2103 break;
2104 case ir_txf:
2105 case ir_txl:
2106 case ir_txs:
2107 ir->lod_info.lod->accept(this);
2108 lod = this->result;
2109 lod_type = ir->lod_info.lod->type;
2110 break;
2111 case ir_txd:
2112 ir->lod_info.grad.dPdx->accept(this);
2113 dPdx = this->result;
2114
2115 ir->lod_info.grad.dPdy->accept(this);
2116 dPdy = this->result;
2117
2118 lod_type = ir->lod_info.grad.dPdx->type;
2119 break;
2120 case ir_txb:
2121 break;
2122 }
2123
2124 vec4_instruction *inst = NULL;
2125 switch (ir->op) {
2126 case ir_tex:
2127 case ir_txl:
2128 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXL);
2129 break;
2130 case ir_txd:
2131 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXD);
2132 break;
2133 case ir_txf:
2134 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXF);
2135 break;
2136 case ir_txs:
2137 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXS);
2138 break;
2139 case ir_txb:
2140 assert(!"TXB is not valid for vertex shaders.");
2141 }
2142
2143 bool use_texture_offset = ir->offset != NULL && ir->op != ir_txf;
2144
2145 /* Texel offsets go in the message header; Gen4 also requires headers. */
2146 inst->header_present = use_texture_offset || intel->gen < 5;
2147 inst->base_mrf = 2;
2148 inst->mlen = inst->header_present + 1; /* always at least one */
2149 inst->sampler = sampler;
2150 inst->dst = dst_reg(this, ir->type);
2151 inst->dst.writemask = WRITEMASK_XYZW;
2152 inst->shadow_compare = ir->shadow_comparitor != NULL;
2153
2154 if (use_texture_offset)
2155 inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
2156
2157 /* MRF for the first parameter */
2158 int param_base = inst->base_mrf + inst->header_present;
2159
2160 if (ir->op == ir_txs) {
2161 int writemask = intel->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
2162 emit(MOV(dst_reg(MRF, param_base, lod_type, writemask), lod));
2163 } else {
2164 int i, coord_mask = 0, zero_mask = 0;
2165 /* Load the coordinate */
2166 /* FINISHME: gl_clamp_mask and saturate */
2167 for (i = 0; i < ir->coordinate->type->vector_elements; i++)
2168 coord_mask |= (1 << i);
2169 for (; i < 4; i++)
2170 zero_mask |= (1 << i);
2171
2172 if (ir->offset && ir->op == ir_txf) {
2173 /* It appears that the ld instruction used for txf does its
2174 * address bounds check before adding in the offset. To work
2175 * around this, just add the integer offset to the integer
2176 * texel coordinate, and don't put the offset in the header.
2177 */
2178 ir_constant *offset = ir->offset->as_constant();
2179 assert(offset);
2180
2181 for (int j = 0; j < ir->coordinate->type->vector_elements; j++) {
2182 src_reg src = coordinate;
2183 src.swizzle = BRW_SWIZZLE4(BRW_GET_SWZ(src.swizzle, j),
2184 BRW_GET_SWZ(src.swizzle, j),
2185 BRW_GET_SWZ(src.swizzle, j),
2186 BRW_GET_SWZ(src.swizzle, j));
2187 emit(ADD(dst_reg(MRF, param_base, ir->coordinate->type, 1 << j),
2188 src, offset->value.i[j]));
2189 }
2190 } else {
2191 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask),
2192 coordinate));
2193 }
2194 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask),
2195 src_reg(0)));
2196 /* Load the shadow comparitor */
2197 if (ir->shadow_comparitor) {
2198 emit(MOV(dst_reg(MRF, param_base + 1, ir->shadow_comparitor->type,
2199 WRITEMASK_X),
2200 shadow_comparitor));
2201 inst->mlen++;
2202 }
2203
2204 /* Load the LOD info */
2205 if (ir->op == ir_tex || ir->op == ir_txl) {
2206 int mrf, writemask;
2207 if (intel->gen >= 5) {
2208 mrf = param_base + 1;
2209 if (ir->shadow_comparitor) {
2210 writemask = WRITEMASK_Y;
2211 /* mlen already incremented */
2212 } else {
2213 writemask = WRITEMASK_X;
2214 inst->mlen++;
2215 }
2216 } else /* intel->gen == 4 */ {
2217 mrf = param_base;
2218 writemask = WRITEMASK_Z;
2219 }
2220 emit(MOV(dst_reg(MRF, mrf, lod_type, writemask), lod));
2221 } else if (ir->op == ir_txf) {
2222 emit(MOV(dst_reg(MRF, param_base, lod_type, WRITEMASK_W),
2223 lod));
2224 } else if (ir->op == ir_txd) {
2225 const glsl_type *type = lod_type;
2226
2227 if (intel->gen >= 5) {
2228 dPdx.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
2229 dPdy.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
2230 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), dPdx));
2231 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), dPdy));
2232 inst->mlen++;
2233
2234 if (ir->type->vector_elements == 3) {
2235 dPdx.swizzle = BRW_SWIZZLE_ZZZZ;
2236 dPdy.swizzle = BRW_SWIZZLE_ZZZZ;
2237 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), dPdx));
2238 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), dPdy));
2239 inst->mlen++;
2240 }
2241 } else /* intel->gen == 4 */ {
2242 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), dPdx));
2243 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), dPdy));
2244 inst->mlen += 2;
2245 }
2246 }
2247 }
2248
2249 emit(inst);
2250
2251 /* fixup num layers (z) for cube arrays: hardware returns faces * layers;
2252 * spec requires layers.
2253 */
2254 if (ir->op == ir_txs) {
2255 glsl_type const *type = ir->sampler->type;
2256 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2257 type->sampler_array) {
2258 emit_math(SHADER_OPCODE_INT_QUOTIENT,
2259 with_writemask(inst->dst, WRITEMASK_Z),
2260 src_reg(inst->dst), src_reg(6));
2261 }
2262 }
2263
2264 swizzle_result(ir, src_reg(inst->dst), sampler);
2265 }
2266
2267 void
2268 vec4_visitor::swizzle_result(ir_texture *ir, src_reg orig_val, int sampler)
2269 {
2270 int s = c->key.tex.swizzles[sampler];
2271
2272 this->result = src_reg(this, ir->type);
2273 dst_reg swizzled_result(this->result);
2274
2275 if (ir->op == ir_txs || ir->type == glsl_type::float_type
2276 || s == SWIZZLE_NOOP) {
2277 emit(MOV(swizzled_result, orig_val));
2278 return;
2279 }
2280
2281 int zero_mask = 0, one_mask = 0, copy_mask = 0;
2282 int swizzle[4];
2283
2284 for (int i = 0; i < 4; i++) {
2285 switch (GET_SWZ(s, i)) {
2286 case SWIZZLE_ZERO:
2287 zero_mask |= (1 << i);
2288 break;
2289 case SWIZZLE_ONE:
2290 one_mask |= (1 << i);
2291 break;
2292 default:
2293 copy_mask |= (1 << i);
2294 swizzle[i] = GET_SWZ(s, i);
2295 break;
2296 }
2297 }
2298
2299 if (copy_mask) {
2300 orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2301 swizzled_result.writemask = copy_mask;
2302 emit(MOV(swizzled_result, orig_val));
2303 }
2304
2305 if (zero_mask) {
2306 swizzled_result.writemask = zero_mask;
2307 emit(MOV(swizzled_result, src_reg(0.0f)));
2308 }
2309
2310 if (one_mask) {
2311 swizzled_result.writemask = one_mask;
2312 emit(MOV(swizzled_result, src_reg(1.0f)));
2313 }
2314 }
2315
2316 void
2317 vec4_visitor::visit(ir_return *ir)
2318 {
2319 assert(!"not reached");
2320 }
2321
2322 void
2323 vec4_visitor::visit(ir_discard *ir)
2324 {
2325 assert(!"not reached");
2326 }
2327
2328 void
2329 vec4_visitor::visit(ir_if *ir)
2330 {
2331 /* Don't point the annotation at the if statement, because then it plus
2332 * the then and else blocks get printed.
2333 */
2334 this->base_ir = ir->condition;
2335
2336 if (intel->gen == 6) {
2337 emit_if_gen6(ir);
2338 } else {
2339 uint32_t predicate;
2340 emit_bool_to_cond_code(ir->condition, &predicate);
2341 emit(IF(predicate));
2342 }
2343
2344 visit_instructions(&ir->then_instructions);
2345
2346 if (!ir->else_instructions.is_empty()) {
2347 this->base_ir = ir->condition;
2348 emit(BRW_OPCODE_ELSE);
2349
2350 visit_instructions(&ir->else_instructions);
2351 }
2352
2353 this->base_ir = ir->condition;
2354 emit(BRW_OPCODE_ENDIF);
2355 }
2356
2357 void
2358 vec4_visitor::emit_ndc_computation()
2359 {
2360 /* Get the position */
2361 src_reg pos = src_reg(output_reg[VERT_RESULT_HPOS]);
2362
2363 /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
2364 dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
2365 output_reg[BRW_VERT_RESULT_NDC] = ndc;
2366
2367 current_annotation = "NDC";
2368 dst_reg ndc_w = ndc;
2369 ndc_w.writemask = WRITEMASK_W;
2370 src_reg pos_w = pos;
2371 pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
2372 emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
2373
2374 dst_reg ndc_xyz = ndc;
2375 ndc_xyz.writemask = WRITEMASK_XYZ;
2376
2377 emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
2378 }
2379
2380 void
2381 vec4_visitor::emit_psiz_and_flags(struct brw_reg reg)
2382 {
2383 if (intel->gen < 6 &&
2384 ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
2385 c->key.userclip_active || brw->has_negative_rhw_bug)) {
2386 dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
2387 dst_reg header1_w = header1;
2388 header1_w.writemask = WRITEMASK_W;
2389 GLuint i;
2390
2391 emit(MOV(header1, 0u));
2392
2393 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2394 src_reg psiz = src_reg(output_reg[VERT_RESULT_PSIZ]);
2395
2396 current_annotation = "Point size";
2397 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
2398 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
2399 }
2400
2401 current_annotation = "Clipping flags";
2402 for (i = 0; i < c->key.nr_userclip_plane_consts; i++) {
2403 vec4_instruction *inst;
2404
2405 inst = emit(DP4(dst_null_f(), src_reg(output_reg[VERT_RESULT_HPOS]),
2406 src_reg(this->userplane[i])));
2407 inst->conditional_mod = BRW_CONDITIONAL_L;
2408
2409 inst = emit(OR(header1_w, src_reg(header1_w), 1u << i));
2410 inst->predicate = BRW_PREDICATE_NORMAL;
2411 }
2412
2413 /* i965 clipping workaround:
2414 * 1) Test for -ve rhw
2415 * 2) If set,
2416 * set ndc = (0,0,0,0)
2417 * set ucp[6] = 1
2418 *
2419 * Later, clipping will detect ucp[6] and ensure the primitive is
2420 * clipped against all fixed planes.
2421 */
2422 if (brw->has_negative_rhw_bug) {
2423 #if 0
2424 /* FINISHME */
2425 brw_CMP(p,
2426 vec8(brw_null_reg()),
2427 BRW_CONDITIONAL_L,
2428 brw_swizzle1(output_reg[BRW_VERT_RESULT_NDC], 3),
2429 brw_imm_f(0));
2430
2431 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
2432 brw_MOV(p, output_reg[BRW_VERT_RESULT_NDC], brw_imm_f(0));
2433 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2434 #endif
2435 }
2436
2437 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
2438 } else if (intel->gen < 6) {
2439 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
2440 } else {
2441 emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
2442 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2443 emit(MOV(brw_writemask(reg, WRITEMASK_W),
2444 src_reg(output_reg[VERT_RESULT_PSIZ])));
2445 }
2446 }
2447 }
2448
2449 void
2450 vec4_visitor::emit_clip_distances(struct brw_reg reg, int offset)
2451 {
2452 if (intel->gen < 6) {
2453 /* Clip distance slots are set aside in gen5, but they are not used. It
2454 * is not clear whether we actually need to set aside space for them,
2455 * but the performance cost is negligible.
2456 */
2457 return;
2458 }
2459
2460 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
2461 *
2462 * "If a linked set of shaders forming the vertex stage contains no
2463 * static write to gl_ClipVertex or gl_ClipDistance, but the
2464 * application has requested clipping against user clip planes through
2465 * the API, then the coordinate written to gl_Position is used for
2466 * comparison against the user clip planes."
2467 *
2468 * This function is only called if the shader didn't write to
2469 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
2470 * if the user wrote to it; otherwise we use gl_Position.
2471 */
2472 gl_vert_result clip_vertex = VERT_RESULT_CLIP_VERTEX;
2473 if (!(c->prog_data.outputs_written
2474 & BITFIELD64_BIT(VERT_RESULT_CLIP_VERTEX))) {
2475 clip_vertex = VERT_RESULT_HPOS;
2476 }
2477
2478 for (int i = 0; i + offset < c->key.nr_userclip_plane_consts && i < 4;
2479 ++i) {
2480 emit(DP4(dst_reg(brw_writemask(reg, 1 << i)),
2481 src_reg(output_reg[clip_vertex]),
2482 src_reg(this->userplane[i + offset])));
2483 }
2484 }
2485
2486 void
2487 vec4_visitor::emit_generic_urb_slot(dst_reg reg, int vert_result)
2488 {
2489 assert (vert_result < VERT_RESULT_MAX);
2490 reg.type = output_reg[vert_result].type;
2491 current_annotation = output_reg_annotation[vert_result];
2492 /* Copy the register, saturating if necessary */
2493 vec4_instruction *inst = emit(MOV(reg,
2494 src_reg(output_reg[vert_result])));
2495 if ((vert_result == VERT_RESULT_COL0 ||
2496 vert_result == VERT_RESULT_COL1 ||
2497 vert_result == VERT_RESULT_BFC0 ||
2498 vert_result == VERT_RESULT_BFC1) &&
2499 c->key.clamp_vertex_color) {
2500 inst->saturate = true;
2501 }
2502 }
2503
2504 void
2505 vec4_visitor::emit_urb_slot(int mrf, int vert_result)
2506 {
2507 struct brw_reg hw_reg = brw_message_reg(mrf);
2508 dst_reg reg = dst_reg(MRF, mrf);
2509 reg.type = BRW_REGISTER_TYPE_F;
2510
2511 switch (vert_result) {
2512 case VERT_RESULT_PSIZ:
2513 /* PSIZ is always in slot 0, and is coupled with other flags. */
2514 current_annotation = "indices, point width, clip flags";
2515 emit_psiz_and_flags(hw_reg);
2516 break;
2517 case BRW_VERT_RESULT_NDC:
2518 current_annotation = "NDC";
2519 emit(MOV(reg, src_reg(output_reg[BRW_VERT_RESULT_NDC])));
2520 break;
2521 case BRW_VERT_RESULT_HPOS_DUPLICATE:
2522 case VERT_RESULT_HPOS:
2523 current_annotation = "gl_Position";
2524 emit(MOV(reg, src_reg(output_reg[VERT_RESULT_HPOS])));
2525 break;
2526 case VERT_RESULT_CLIP_DIST0:
2527 case VERT_RESULT_CLIP_DIST1:
2528 if (this->c->key.uses_clip_distance) {
2529 emit_generic_urb_slot(reg, vert_result);
2530 } else {
2531 current_annotation = "user clip distances";
2532 emit_clip_distances(hw_reg, (vert_result - VERT_RESULT_CLIP_DIST0) * 4);
2533 }
2534 break;
2535 case VERT_RESULT_EDGE:
2536 /* This is present when doing unfilled polygons. We're supposed to copy
2537 * the edge flag from the user-provided vertex array
2538 * (glEdgeFlagPointer), or otherwise we'll copy from the current value
2539 * of that attribute (starts as 1.0f). This is then used in clipping to
2540 * determine which edges should be drawn as wireframe.
2541 */
2542 current_annotation = "edge flag";
2543 emit(MOV(reg, src_reg(dst_reg(ATTR, VERT_ATTRIB_EDGEFLAG,
2544 glsl_type::float_type, WRITEMASK_XYZW))));
2545 break;
2546 case BRW_VERT_RESULT_PAD:
2547 /* No need to write to this slot */
2548 break;
2549 default:
2550 emit_generic_urb_slot(reg, vert_result);
2551 break;
2552 }
2553 }
2554
2555 static int
2556 align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
2557 {
2558 struct intel_context *intel = &brw->intel;
2559
2560 if (intel->gen >= 6) {
2561 /* URB data written (does not include the message header reg) must
2562 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
2563 * section 5.4.3.2.2: URB_INTERLEAVED.
2564 *
2565 * URB entries are allocated on a multiple of 1024 bits, so an
2566 * extra 128 bits written here to make the end align to 256 is
2567 * no problem.
2568 */
2569 if ((mlen % 2) != 1)
2570 mlen++;
2571 }
2572
2573 return mlen;
2574 }
2575
2576 /**
2577 * Generates the VUE payload plus the 1 or 2 URB write instructions to
2578 * complete the VS thread.
2579 *
2580 * The VUE layout is documented in Volume 2a.
2581 */
2582 void
2583 vec4_visitor::emit_urb_writes()
2584 {
2585 /* MRF 0 is reserved for the debugger, so start with message header
2586 * in MRF 1.
2587 */
2588 int base_mrf = 1;
2589 int mrf = base_mrf;
2590 /* In the process of generating our URB write message contents, we
2591 * may need to unspill a register or load from an array. Those
2592 * reads would use MRFs 14-15.
2593 */
2594 int max_usable_mrf = 13;
2595
2596 /* The following assertion verifies that max_usable_mrf causes an
2597 * even-numbered amount of URB write data, which will meet gen6's
2598 * requirements for length alignment.
2599 */
2600 assert ((max_usable_mrf - base_mrf) % 2 == 0);
2601
2602 /* First mrf is the g0-based message header containing URB handles and such,
2603 * which is implied in VS_OPCODE_URB_WRITE.
2604 */
2605 mrf++;
2606
2607 if (intel->gen < 6) {
2608 emit_ndc_computation();
2609 }
2610
2611 /* Set up the VUE data for the first URB write */
2612 int slot;
2613 for (slot = 0; slot < c->prog_data.vue_map.num_slots; ++slot) {
2614 emit_urb_slot(mrf++, c->prog_data.vue_map.slot_to_vert_result[slot]);
2615
2616 /* If this was max_usable_mrf, we can't fit anything more into this URB
2617 * WRITE.
2618 */
2619 if (mrf > max_usable_mrf) {
2620 slot++;
2621 break;
2622 }
2623 }
2624
2625 current_annotation = "URB write";
2626 vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
2627 inst->base_mrf = base_mrf;
2628 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2629 inst->eot = (slot >= c->prog_data.vue_map.num_slots);
2630
2631 /* Optional second URB write */
2632 if (!inst->eot) {
2633 mrf = base_mrf + 1;
2634
2635 for (; slot < c->prog_data.vue_map.num_slots; ++slot) {
2636 assert(mrf < max_usable_mrf);
2637
2638 emit_urb_slot(mrf++, c->prog_data.vue_map.slot_to_vert_result[slot]);
2639 }
2640
2641 current_annotation = "URB write";
2642 inst = emit(VS_OPCODE_URB_WRITE);
2643 inst->base_mrf = base_mrf;
2644 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2645 inst->eot = true;
2646 /* URB destination offset. In the previous write, we got MRFs
2647 * 2-13 minus the one header MRF, so 12 regs. URB offset is in
2648 * URB row increments, and each of our MRFs is half of one of
2649 * those, since we're doing interleaved writes.
2650 */
2651 inst->offset = (max_usable_mrf - base_mrf) / 2;
2652 }
2653 }
2654
2655 src_reg
2656 vec4_visitor::get_scratch_offset(vec4_instruction *inst,
2657 src_reg *reladdr, int reg_offset)
2658 {
2659 /* Because we store the values to scratch interleaved like our
2660 * vertex data, we need to scale the vec4 index by 2.
2661 */
2662 int message_header_scale = 2;
2663
2664 /* Pre-gen6, the message header uses byte offsets instead of vec4
2665 * (16-byte) offset units.
2666 */
2667 if (intel->gen < 6)
2668 message_header_scale *= 16;
2669
2670 if (reladdr) {
2671 src_reg index = src_reg(this, glsl_type::int_type);
2672
2673 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2674 emit_before(inst, MUL(dst_reg(index),
2675 index, src_reg(message_header_scale)));
2676
2677 return index;
2678 } else {
2679 return src_reg(reg_offset * message_header_scale);
2680 }
2681 }
2682
2683 src_reg
2684 vec4_visitor::get_pull_constant_offset(vec4_instruction *inst,
2685 src_reg *reladdr, int reg_offset)
2686 {
2687 if (reladdr) {
2688 src_reg index = src_reg(this, glsl_type::int_type);
2689
2690 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2691
2692 /* Pre-gen6, the message header uses byte offsets instead of vec4
2693 * (16-byte) offset units.
2694 */
2695 if (intel->gen < 6) {
2696 emit_before(inst, MUL(dst_reg(index), index, src_reg(16)));
2697 }
2698
2699 return index;
2700 } else {
2701 int message_header_scale = intel->gen < 6 ? 16 : 1;
2702 return src_reg(reg_offset * message_header_scale);
2703 }
2704 }
2705
2706 /**
2707 * Emits an instruction before @inst to load the value named by @orig_src
2708 * from scratch space at @base_offset to @temp.
2709 *
2710 * @base_offset is measured in 32-byte units (the size of a register).
2711 */
2712 void
2713 vec4_visitor::emit_scratch_read(vec4_instruction *inst,
2714 dst_reg temp, src_reg orig_src,
2715 int base_offset)
2716 {
2717 int reg_offset = base_offset + orig_src.reg_offset;
2718 src_reg index = get_scratch_offset(inst, orig_src.reladdr, reg_offset);
2719
2720 emit_before(inst, SCRATCH_READ(temp, index));
2721 }
2722
2723 /**
2724 * Emits an instruction after @inst to store the value to be written
2725 * to @orig_dst to scratch space at @base_offset, from @temp.
2726 *
2727 * @base_offset is measured in 32-byte units (the size of a register).
2728 */
2729 void
2730 vec4_visitor::emit_scratch_write(vec4_instruction *inst, int base_offset)
2731 {
2732 int reg_offset = base_offset + inst->dst.reg_offset;
2733 src_reg index = get_scratch_offset(inst, inst->dst.reladdr, reg_offset);
2734
2735 /* Create a temporary register to store *inst's result in.
2736 *
2737 * We have to be careful in MOVing from our temporary result register in
2738 * the scratch write. If we swizzle from channels of the temporary that
2739 * weren't initialized, it will confuse live interval analysis, which will
2740 * make spilling fail to make progress.
2741 */
2742 src_reg temp = src_reg(this, glsl_type::vec4_type);
2743 temp.type = inst->dst.type;
2744 int first_writemask_chan = ffs(inst->dst.writemask) - 1;
2745 int swizzles[4];
2746 for (int i = 0; i < 4; i++)
2747 if (inst->dst.writemask & (1 << i))
2748 swizzles[i] = i;
2749 else
2750 swizzles[i] = first_writemask_chan;
2751 temp.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
2752 swizzles[2], swizzles[3]);
2753
2754 dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
2755 inst->dst.writemask));
2756 vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
2757 write->predicate = inst->predicate;
2758 write->ir = inst->ir;
2759 write->annotation = inst->annotation;
2760 inst->insert_after(write);
2761
2762 inst->dst.file = temp.file;
2763 inst->dst.reg = temp.reg;
2764 inst->dst.reg_offset = temp.reg_offset;
2765 inst->dst.reladdr = NULL;
2766 }
2767
2768 /**
2769 * We can't generally support array access in GRF space, because a
2770 * single instruction's destination can only span 2 contiguous
2771 * registers. So, we send all GRF arrays that get variable index
2772 * access to scratch space.
2773 */
2774 void
2775 vec4_visitor::move_grf_array_access_to_scratch()
2776 {
2777 int scratch_loc[this->virtual_grf_count];
2778
2779 for (int i = 0; i < this->virtual_grf_count; i++) {
2780 scratch_loc[i] = -1;
2781 }
2782
2783 /* First, calculate the set of virtual GRFs that need to be punted
2784 * to scratch due to having any array access on them, and where in
2785 * scratch.
2786 */
2787 foreach_list(node, &this->instructions) {
2788 vec4_instruction *inst = (vec4_instruction *)node;
2789
2790 if (inst->dst.file == GRF && inst->dst.reladdr &&
2791 scratch_loc[inst->dst.reg] == -1) {
2792 scratch_loc[inst->dst.reg] = c->last_scratch;
2793 c->last_scratch += this->virtual_grf_sizes[inst->dst.reg];
2794 }
2795
2796 for (int i = 0 ; i < 3; i++) {
2797 src_reg *src = &inst->src[i];
2798
2799 if (src->file == GRF && src->reladdr &&
2800 scratch_loc[src->reg] == -1) {
2801 scratch_loc[src->reg] = c->last_scratch;
2802 c->last_scratch += this->virtual_grf_sizes[src->reg];
2803 }
2804 }
2805 }
2806
2807 /* Now, for anything that will be accessed through scratch, rewrite
2808 * it to load/store. Note that this is a _safe list walk, because
2809 * we may generate a new scratch_write instruction after the one
2810 * we're processing.
2811 */
2812 foreach_list_safe(node, &this->instructions) {
2813 vec4_instruction *inst = (vec4_instruction *)node;
2814
2815 /* Set up the annotation tracking for new generated instructions. */
2816 base_ir = inst->ir;
2817 current_annotation = inst->annotation;
2818
2819 if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) {
2820 emit_scratch_write(inst, scratch_loc[inst->dst.reg]);
2821 }
2822
2823 for (int i = 0 ; i < 3; i++) {
2824 if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1)
2825 continue;
2826
2827 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2828
2829 emit_scratch_read(inst, temp, inst->src[i],
2830 scratch_loc[inst->src[i].reg]);
2831
2832 inst->src[i].file = temp.file;
2833 inst->src[i].reg = temp.reg;
2834 inst->src[i].reg_offset = temp.reg_offset;
2835 inst->src[i].reladdr = NULL;
2836 }
2837 }
2838 }
2839
2840 /**
2841 * Emits an instruction before @inst to load the value named by @orig_src
2842 * from the pull constant buffer (surface) at @base_offset to @temp.
2843 */
2844 void
2845 vec4_visitor::emit_pull_constant_load(vec4_instruction *inst,
2846 dst_reg temp, src_reg orig_src,
2847 int base_offset)
2848 {
2849 int reg_offset = base_offset + orig_src.reg_offset;
2850 src_reg index = src_reg((unsigned)SURF_INDEX_VERT_CONST_BUFFER);
2851 src_reg offset = get_pull_constant_offset(inst, orig_src.reladdr, reg_offset);
2852 vec4_instruction *load;
2853
2854 load = new(mem_ctx) vec4_instruction(this, VS_OPCODE_PULL_CONSTANT_LOAD,
2855 temp, index, offset);
2856 load->base_mrf = 14;
2857 load->mlen = 1;
2858 emit_before(inst, load);
2859 }
2860
2861 /**
2862 * Implements array access of uniforms by inserting a
2863 * PULL_CONSTANT_LOAD instruction.
2864 *
2865 * Unlike temporary GRF array access (where we don't support it due to
2866 * the difficulty of doing relative addressing on instruction
2867 * destinations), we could potentially do array access of uniforms
2868 * that were loaded in GRF space as push constants. In real-world
2869 * usage we've seen, though, the arrays being used are always larger
2870 * than we could load as push constants, so just always move all
2871 * uniform array access out to a pull constant buffer.
2872 */
2873 void
2874 vec4_visitor::move_uniform_array_access_to_pull_constants()
2875 {
2876 int pull_constant_loc[this->uniforms];
2877
2878 for (int i = 0; i < this->uniforms; i++) {
2879 pull_constant_loc[i] = -1;
2880 }
2881
2882 /* Walk through and find array access of uniforms. Put a copy of that
2883 * uniform in the pull constant buffer.
2884 *
2885 * Note that we don't move constant-indexed accesses to arrays. No
2886 * testing has been done of the performance impact of this choice.
2887 */
2888 foreach_list_safe(node, &this->instructions) {
2889 vec4_instruction *inst = (vec4_instruction *)node;
2890
2891 for (int i = 0 ; i < 3; i++) {
2892 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
2893 continue;
2894
2895 int uniform = inst->src[i].reg;
2896
2897 /* If this array isn't already present in the pull constant buffer,
2898 * add it.
2899 */
2900 if (pull_constant_loc[uniform] == -1) {
2901 const float **values = &prog_data->param[uniform * 4];
2902
2903 pull_constant_loc[uniform] = prog_data->nr_pull_params / 4;
2904
2905 for (int j = 0; j < uniform_size[uniform] * 4; j++) {
2906 prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
2907 }
2908 }
2909
2910 /* Set up the annotation tracking for new generated instructions. */
2911 base_ir = inst->ir;
2912 current_annotation = inst->annotation;
2913
2914 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2915
2916 emit_pull_constant_load(inst, temp, inst->src[i],
2917 pull_constant_loc[uniform]);
2918
2919 inst->src[i].file = temp.file;
2920 inst->src[i].reg = temp.reg;
2921 inst->src[i].reg_offset = temp.reg_offset;
2922 inst->src[i].reladdr = NULL;
2923 }
2924 }
2925
2926 /* Now there are no accesses of the UNIFORM file with a reladdr, so
2927 * no need to track them as larger-than-vec4 objects. This will be
2928 * relied on in cutting out unused uniform vectors from push
2929 * constants.
2930 */
2931 split_uniform_registers();
2932 }
2933
2934 void
2935 vec4_visitor::resolve_ud_negate(src_reg *reg)
2936 {
2937 if (reg->type != BRW_REGISTER_TYPE_UD ||
2938 !reg->negate)
2939 return;
2940
2941 src_reg temp = src_reg(this, glsl_type::uvec4_type);
2942 emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
2943 *reg = temp;
2944 }
2945
2946 vec4_visitor::vec4_visitor(struct brw_context *brw,
2947 struct brw_vs_compile *c,
2948 struct gl_shader_program *prog,
2949 struct brw_shader *shader,
2950 void *mem_ctx)
2951 {
2952 this->c = c;
2953 this->brw = brw;
2954 this->intel = &brw->intel;
2955 this->ctx = &intel->ctx;
2956 this->prog = prog;
2957 this->shader = shader;
2958
2959 this->mem_ctx = mem_ctx;
2960 this->failed = false;
2961
2962 this->base_ir = NULL;
2963 this->current_annotation = NULL;
2964 memset(this->output_reg_annotation, 0, sizeof(this->output_reg_annotation));
2965
2966 this->c = c;
2967 this->vp = &c->vp->program;
2968 this->prog_data = &c->prog_data;
2969
2970 this->variable_ht = hash_table_ctor(0,
2971 hash_table_pointer_hash,
2972 hash_table_pointer_compare);
2973
2974 this->virtual_grf_def = NULL;
2975 this->virtual_grf_use = NULL;
2976 this->virtual_grf_sizes = NULL;
2977 this->virtual_grf_count = 0;
2978 this->virtual_grf_reg_map = NULL;
2979 this->virtual_grf_reg_count = 0;
2980 this->virtual_grf_array_size = 0;
2981 this->live_intervals_valid = false;
2982
2983 this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2984
2985 this->uniforms = 0;
2986 }
2987
2988 vec4_visitor::~vec4_visitor()
2989 {
2990 hash_table_dtor(this->variable_ht);
2991 }
2992
2993
2994 void
2995 vec4_visitor::fail(const char *format, ...)
2996 {
2997 va_list va;
2998 char *msg;
2999
3000 if (failed)
3001 return;
3002
3003 failed = true;
3004
3005 va_start(va, format);
3006 msg = ralloc_vasprintf(mem_ctx, format, va);
3007 va_end(va);
3008 msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg);
3009
3010 this->fail_msg = msg;
3011
3012 if (INTEL_DEBUG & DEBUG_VS) {
3013 fprintf(stderr, "%s", msg);
3014 }
3015 }
3016
3017 } /* namespace brw */