i965/vec4: Add visitor support for nonconst ubo block indexing
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_visitor.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "glsl/ir_uniform.h"
26 extern "C" {
27 #include "program/sampler.h"
28 }
29
30 namespace brw {
31
32 vec4_instruction::vec4_instruction(vec4_visitor *v,
33 enum opcode opcode, const dst_reg &dst,
34 const src_reg &src0, const src_reg &src1,
35 const src_reg &src2)
36 {
37 this->opcode = opcode;
38 this->dst = dst;
39 this->src[0] = src0;
40 this->src[1] = src1;
41 this->src[2] = src2;
42 this->saturate = false;
43 this->force_writemask_all = false;
44 this->no_dd_clear = false;
45 this->no_dd_check = false;
46 this->writes_accumulator = false;
47 this->conditional_mod = BRW_CONDITIONAL_NONE;
48 this->texture_offset = 0;
49 this->target = 0;
50 this->shadow_compare = false;
51 this->ir = v->base_ir;
52 this->urb_write_flags = BRW_URB_WRITE_NO_FLAGS;
53 this->header_present = false;
54 this->mlen = 0;
55 this->base_mrf = 0;
56 this->offset = 0;
57 this->annotation = v->current_annotation;
58 }
59
60 vec4_instruction *
61 vec4_visitor::emit(vec4_instruction *inst)
62 {
63 this->instructions.push_tail(inst);
64
65 return inst;
66 }
67
68 vec4_instruction *
69 vec4_visitor::emit_before(vec4_instruction *inst, vec4_instruction *new_inst)
70 {
71 new_inst->ir = inst->ir;
72 new_inst->annotation = inst->annotation;
73
74 inst->insert_before(new_inst);
75
76 return inst;
77 }
78
79 vec4_instruction *
80 vec4_visitor::emit(enum opcode opcode, dst_reg dst,
81 src_reg src0, src_reg src1, src_reg src2)
82 {
83 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst,
84 src0, src1, src2));
85 }
86
87
88 vec4_instruction *
89 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
90 {
91 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0, src1));
92 }
93
94 vec4_instruction *
95 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
96 {
97 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0));
98 }
99
100 vec4_instruction *
101 vec4_visitor::emit(enum opcode opcode, dst_reg dst)
102 {
103 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst));
104 }
105
106 vec4_instruction *
107 vec4_visitor::emit(enum opcode opcode)
108 {
109 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst_reg()));
110 }
111
112 #define ALU1(op) \
113 vec4_instruction * \
114 vec4_visitor::op(const dst_reg &dst, const src_reg &src0) \
115 { \
116 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
117 src0); \
118 }
119
120 #define ALU2(op) \
121 vec4_instruction * \
122 vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
123 const src_reg &src1) \
124 { \
125 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
126 src0, src1); \
127 }
128
129 #define ALU2_ACC(op) \
130 vec4_instruction * \
131 vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
132 const src_reg &src1) \
133 { \
134 vec4_instruction *inst = new(mem_ctx) vec4_instruction(this, \
135 BRW_OPCODE_##op, dst, src0, src1); \
136 inst->writes_accumulator = true; \
137 return inst; \
138 }
139
140 #define ALU3(op) \
141 vec4_instruction * \
142 vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
143 const src_reg &src1, const src_reg &src2) \
144 { \
145 assert(brw->gen >= 6); \
146 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
147 src0, src1, src2); \
148 }
149
150 ALU1(NOT)
151 ALU1(MOV)
152 ALU1(FRC)
153 ALU1(RNDD)
154 ALU1(RNDE)
155 ALU1(RNDZ)
156 ALU1(F32TO16)
157 ALU1(F16TO32)
158 ALU2(ADD)
159 ALU2(MUL)
160 ALU2_ACC(MACH)
161 ALU2(AND)
162 ALU2(OR)
163 ALU2(XOR)
164 ALU2(DP3)
165 ALU2(DP4)
166 ALU2(DPH)
167 ALU2(SHL)
168 ALU2(SHR)
169 ALU2(ASR)
170 ALU3(LRP)
171 ALU1(BFREV)
172 ALU3(BFE)
173 ALU2(BFI1)
174 ALU3(BFI2)
175 ALU1(FBH)
176 ALU1(FBL)
177 ALU1(CBIT)
178 ALU3(MAD)
179 ALU2_ACC(ADDC)
180 ALU2_ACC(SUBB)
181 ALU2(MAC)
182
183 /** Gen4 predicated IF. */
184 vec4_instruction *
185 vec4_visitor::IF(enum brw_predicate predicate)
186 {
187 vec4_instruction *inst;
188
189 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF);
190 inst->predicate = predicate;
191
192 return inst;
193 }
194
195 /** Gen6 IF with embedded comparison. */
196 vec4_instruction *
197 vec4_visitor::IF(src_reg src0, src_reg src1,
198 enum brw_conditional_mod condition)
199 {
200 assert(brw->gen == 6);
201
202 vec4_instruction *inst;
203
204 resolve_ud_negate(&src0);
205 resolve_ud_negate(&src1);
206
207 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF, dst_null_d(),
208 src0, src1);
209 inst->conditional_mod = condition;
210
211 return inst;
212 }
213
214 /**
215 * CMP: Sets the low bit of the destination channels with the result
216 * of the comparison, while the upper bits are undefined, and updates
217 * the flag register with the packed 16 bits of the result.
218 */
219 vec4_instruction *
220 vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1,
221 enum brw_conditional_mod condition)
222 {
223 vec4_instruction *inst;
224
225 /* original gen4 does type conversion to the destination type
226 * before before comparison, producing garbage results for floating
227 * point comparisons.
228 */
229 if (brw->gen == 4) {
230 dst.type = src0.type;
231 if (dst.file == HW_REG)
232 dst.fixed_hw_reg.type = dst.type;
233 }
234
235 resolve_ud_negate(&src0);
236 resolve_ud_negate(&src1);
237
238 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_CMP, dst, src0, src1);
239 inst->conditional_mod = condition;
240
241 return inst;
242 }
243
244 vec4_instruction *
245 vec4_visitor::SCRATCH_READ(const dst_reg &dst, const src_reg &index)
246 {
247 vec4_instruction *inst;
248
249 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_GEN4_SCRATCH_READ,
250 dst, index);
251 inst->base_mrf = 14;
252 inst->mlen = 2;
253
254 return inst;
255 }
256
257 vec4_instruction *
258 vec4_visitor::SCRATCH_WRITE(const dst_reg &dst, const src_reg &src,
259 const src_reg &index)
260 {
261 vec4_instruction *inst;
262
263 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_GEN4_SCRATCH_WRITE,
264 dst, src, index);
265 inst->base_mrf = 13;
266 inst->mlen = 3;
267
268 return inst;
269 }
270
271 void
272 vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
273 {
274 static enum opcode dot_opcodes[] = {
275 BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
276 };
277
278 emit(dot_opcodes[elements - 2], dst, src0, src1);
279 }
280
281 src_reg
282 vec4_visitor::fix_3src_operand(src_reg src)
283 {
284 /* Using vec4 uniforms in SIMD4x2 programs is difficult. You'd like to be
285 * able to use vertical stride of zero to replicate the vec4 uniform, like
286 *
287 * g3<0;4,1>:f - [0, 4][1, 5][2, 6][3, 7]
288 *
289 * But you can't, since vertical stride is always four in three-source
290 * instructions. Instead, insert a MOV instruction to do the replication so
291 * that the three-source instruction can consume it.
292 */
293
294 /* The MOV is only needed if the source is a uniform or immediate. */
295 if (src.file != UNIFORM && src.file != IMM)
296 return src;
297
298 if (src.file == UNIFORM && brw_is_single_value_swizzle(src.swizzle))
299 return src;
300
301 dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
302 expanded.type = src.type;
303 emit(MOV(expanded, src));
304 return src_reg(expanded);
305 }
306
307 src_reg
308 vec4_visitor::fix_math_operand(src_reg src)
309 {
310 /* The gen6 math instruction ignores the source modifiers --
311 * swizzle, abs, negate, and at least some parts of the register
312 * region description.
313 *
314 * Rather than trying to enumerate all these cases, *always* expand the
315 * operand to a temp GRF for gen6.
316 *
317 * For gen7, keep the operand as-is, except if immediate, which gen7 still
318 * can't use.
319 */
320
321 if (brw->gen == 7 && src.file != IMM)
322 return src;
323
324 dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
325 expanded.type = src.type;
326 emit(MOV(expanded, src));
327 return src_reg(expanded);
328 }
329
330 void
331 vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
332 {
333 src = fix_math_operand(src);
334
335 if (brw->gen == 6 && dst.writemask != WRITEMASK_XYZW) {
336 /* The gen6 math instruction must be align1, so we can't do
337 * writemasks.
338 */
339 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
340
341 emit(opcode, temp_dst, src);
342
343 emit(MOV(dst, src_reg(temp_dst)));
344 } else {
345 emit(opcode, dst, src);
346 }
347 }
348
349 void
350 vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
351 {
352 vec4_instruction *inst = emit(opcode, dst, src);
353 inst->base_mrf = 1;
354 inst->mlen = 1;
355 }
356
357 void
358 vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
359 {
360 switch (opcode) {
361 case SHADER_OPCODE_RCP:
362 case SHADER_OPCODE_RSQ:
363 case SHADER_OPCODE_SQRT:
364 case SHADER_OPCODE_EXP2:
365 case SHADER_OPCODE_LOG2:
366 case SHADER_OPCODE_SIN:
367 case SHADER_OPCODE_COS:
368 break;
369 default:
370 unreachable("not reached: bad math opcode");
371 }
372
373 if (brw->gen >= 8) {
374 emit(opcode, dst, src);
375 } else if (brw->gen >= 6) {
376 emit_math1_gen6(opcode, dst, src);
377 } else {
378 emit_math1_gen4(opcode, dst, src);
379 }
380 }
381
382 void
383 vec4_visitor::emit_math2_gen6(enum opcode opcode,
384 dst_reg dst, src_reg src0, src_reg src1)
385 {
386 src0 = fix_math_operand(src0);
387 src1 = fix_math_operand(src1);
388
389 if (brw->gen == 6 && dst.writemask != WRITEMASK_XYZW) {
390 /* The gen6 math instruction must be align1, so we can't do
391 * writemasks.
392 */
393 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
394 temp_dst.type = dst.type;
395
396 emit(opcode, temp_dst, src0, src1);
397
398 emit(MOV(dst, src_reg(temp_dst)));
399 } else {
400 emit(opcode, dst, src0, src1);
401 }
402 }
403
404 void
405 vec4_visitor::emit_math2_gen4(enum opcode opcode,
406 dst_reg dst, src_reg src0, src_reg src1)
407 {
408 vec4_instruction *inst = emit(opcode, dst, src0, src1);
409 inst->base_mrf = 1;
410 inst->mlen = 2;
411 }
412
413 void
414 vec4_visitor::emit_math(enum opcode opcode,
415 dst_reg dst, src_reg src0, src_reg src1)
416 {
417 switch (opcode) {
418 case SHADER_OPCODE_POW:
419 case SHADER_OPCODE_INT_QUOTIENT:
420 case SHADER_OPCODE_INT_REMAINDER:
421 break;
422 default:
423 unreachable("not reached: unsupported binary math opcode");
424 }
425
426 if (brw->gen >= 8) {
427 emit(opcode, dst, src0, src1);
428 } else if (brw->gen >= 6) {
429 emit_math2_gen6(opcode, dst, src0, src1);
430 } else {
431 emit_math2_gen4(opcode, dst, src0, src1);
432 }
433 }
434
435 void
436 vec4_visitor::emit_pack_half_2x16(dst_reg dst, src_reg src0)
437 {
438 if (brw->gen < 7) {
439 unreachable("ir_unop_pack_half_2x16 should be lowered");
440 }
441
442 assert(dst.type == BRW_REGISTER_TYPE_UD);
443 assert(src0.type == BRW_REGISTER_TYPE_F);
444
445 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
446 *
447 * Because this instruction does not have a 16-bit floating-point type,
448 * the destination data type must be Word (W).
449 *
450 * The destination must be DWord-aligned and specify a horizontal stride
451 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
452 * each destination channel and the upper word is not modified.
453 *
454 * The above restriction implies that the f32to16 instruction must use
455 * align1 mode, because only in align1 mode is it possible to specify
456 * horizontal stride. We choose here to defy the hardware docs and emit
457 * align16 instructions.
458 *
459 * (I [chadv] did attempt to emit align1 instructions for VS f32to16
460 * instructions. I was partially successful in that the code passed all
461 * tests. However, the code was dubiously correct and fragile, and the
462 * tests were not harsh enough to probe that frailty. Not trusting the
463 * code, I chose instead to remain in align16 mode in defiance of the hw
464 * docs).
465 *
466 * I've [chadv] experimentally confirmed that, on gen7 hardware and the
467 * simulator, emitting a f32to16 in align16 mode with UD as destination
468 * data type is safe. The behavior differs from that specified in the PRM
469 * in that the upper word of each destination channel is cleared to 0.
470 */
471
472 dst_reg tmp_dst(this, glsl_type::uvec2_type);
473 src_reg tmp_src(tmp_dst);
474
475 #if 0
476 /* Verify the undocumented behavior on which the following instructions
477 * rely. If f32to16 fails to clear the upper word of the X and Y channels,
478 * then the result of the bit-or instruction below will be incorrect.
479 *
480 * You should inspect the disasm output in order to verify that the MOV is
481 * not optimized away.
482 */
483 emit(MOV(tmp_dst, src_reg(0x12345678u)));
484 #endif
485
486 /* Give tmp the form below, where "." means untouched.
487 *
488 * w z y x w z y x
489 * |.|.|0x0000hhhh|0x0000llll|.|.|0x0000hhhh|0x0000llll|
490 *
491 * That the upper word of each write-channel be 0 is required for the
492 * following bit-shift and bit-or instructions to work. Note that this
493 * relies on the undocumented hardware behavior mentioned above.
494 */
495 tmp_dst.writemask = WRITEMASK_XY;
496 emit(F32TO16(tmp_dst, src0));
497
498 /* Give the write-channels of dst the form:
499 * 0xhhhh0000
500 */
501 tmp_src.swizzle = BRW_SWIZZLE_YYYY;
502 emit(SHL(dst, tmp_src, src_reg(16u)));
503
504 /* Finally, give the write-channels of dst the form of packHalf2x16's
505 * output:
506 * 0xhhhhllll
507 */
508 tmp_src.swizzle = BRW_SWIZZLE_XXXX;
509 emit(OR(dst, src_reg(dst), tmp_src));
510 }
511
512 void
513 vec4_visitor::emit_unpack_half_2x16(dst_reg dst, src_reg src0)
514 {
515 if (brw->gen < 7) {
516 unreachable("ir_unop_unpack_half_2x16 should be lowered");
517 }
518
519 assert(dst.type == BRW_REGISTER_TYPE_F);
520 assert(src0.type == BRW_REGISTER_TYPE_UD);
521
522 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
523 *
524 * Because this instruction does not have a 16-bit floating-point type,
525 * the source data type must be Word (W). The destination type must be
526 * F (Float).
527 *
528 * To use W as the source data type, we must adjust horizontal strides,
529 * which is only possible in align1 mode. All my [chadv] attempts at
530 * emitting align1 instructions for unpackHalf2x16 failed to pass the
531 * Piglit tests, so I gave up.
532 *
533 * I've verified that, on gen7 hardware and the simulator, it is safe to
534 * emit f16to32 in align16 mode with UD as source data type.
535 */
536
537 dst_reg tmp_dst(this, glsl_type::uvec2_type);
538 src_reg tmp_src(tmp_dst);
539
540 tmp_dst.writemask = WRITEMASK_X;
541 emit(AND(tmp_dst, src0, src_reg(0xffffu)));
542
543 tmp_dst.writemask = WRITEMASK_Y;
544 emit(SHR(tmp_dst, src0, src_reg(16u)));
545
546 dst.writemask = WRITEMASK_XY;
547 emit(F16TO32(dst, tmp_src));
548 }
549
550 void
551 vec4_visitor::visit_instructions(const exec_list *list)
552 {
553 foreach_in_list(ir_instruction, ir, list) {
554 base_ir = ir;
555 ir->accept(this);
556 }
557 }
558
559
560 static int
561 type_size(const struct glsl_type *type)
562 {
563 unsigned int i;
564 int size;
565
566 switch (type->base_type) {
567 case GLSL_TYPE_UINT:
568 case GLSL_TYPE_INT:
569 case GLSL_TYPE_FLOAT:
570 case GLSL_TYPE_BOOL:
571 if (type->is_matrix()) {
572 return type->matrix_columns;
573 } else {
574 /* Regardless of size of vector, it gets a vec4. This is bad
575 * packing for things like floats, but otherwise arrays become a
576 * mess. Hopefully a later pass over the code can pack scalars
577 * down if appropriate.
578 */
579 return 1;
580 }
581 case GLSL_TYPE_ARRAY:
582 assert(type->length > 0);
583 return type_size(type->fields.array) * type->length;
584 case GLSL_TYPE_STRUCT:
585 size = 0;
586 for (i = 0; i < type->length; i++) {
587 size += type_size(type->fields.structure[i].type);
588 }
589 return size;
590 case GLSL_TYPE_SAMPLER:
591 /* Samplers take up one slot in UNIFORMS[], but they're baked in
592 * at link time.
593 */
594 return 1;
595 case GLSL_TYPE_ATOMIC_UINT:
596 return 0;
597 case GLSL_TYPE_IMAGE:
598 case GLSL_TYPE_VOID:
599 case GLSL_TYPE_ERROR:
600 case GLSL_TYPE_INTERFACE:
601 unreachable("not reached");
602 }
603
604 return 0;
605 }
606
607 int
608 vec4_visitor::virtual_grf_alloc(int size)
609 {
610 if (virtual_grf_array_size <= virtual_grf_count) {
611 if (virtual_grf_array_size == 0)
612 virtual_grf_array_size = 16;
613 else
614 virtual_grf_array_size *= 2;
615 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
616 virtual_grf_array_size);
617 virtual_grf_reg_map = reralloc(mem_ctx, virtual_grf_reg_map, int,
618 virtual_grf_array_size);
619 }
620 virtual_grf_reg_map[virtual_grf_count] = virtual_grf_reg_count;
621 virtual_grf_reg_count += size;
622 virtual_grf_sizes[virtual_grf_count] = size;
623 return virtual_grf_count++;
624 }
625
626 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
627 {
628 init();
629
630 this->file = GRF;
631 this->reg = v->virtual_grf_alloc(type_size(type));
632
633 if (type->is_array() || type->is_record()) {
634 this->swizzle = BRW_SWIZZLE_NOOP;
635 } else {
636 this->swizzle = swizzle_for_size(type->vector_elements);
637 }
638
639 this->type = brw_type_for_base_type(type);
640 }
641
642 dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
643 {
644 init();
645
646 this->file = GRF;
647 this->reg = v->virtual_grf_alloc(type_size(type));
648
649 if (type->is_array() || type->is_record()) {
650 this->writemask = WRITEMASK_XYZW;
651 } else {
652 this->writemask = (1 << type->vector_elements) - 1;
653 }
654
655 this->type = brw_type_for_base_type(type);
656 }
657
658 /* Our support for uniforms is piggy-backed on the struct
659 * gl_fragment_program, because that's where the values actually
660 * get stored, rather than in some global gl_shader_program uniform
661 * store.
662 */
663 void
664 vec4_visitor::setup_uniform_values(ir_variable *ir)
665 {
666 int namelen = strlen(ir->name);
667
668 /* The data for our (non-builtin) uniforms is stored in a series of
669 * gl_uniform_driver_storage structs for each subcomponent that
670 * glGetUniformLocation() could name. We know it's been set up in the same
671 * order we'd walk the type, so walk the list of storage and find anything
672 * with our name, or the prefix of a component that starts with our name.
673 */
674 for (unsigned u = 0; u < shader_prog->NumUserUniformStorage; u++) {
675 struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
676
677 if (strncmp(ir->name, storage->name, namelen) != 0 ||
678 (storage->name[namelen] != 0 &&
679 storage->name[namelen] != '.' &&
680 storage->name[namelen] != '[')) {
681 continue;
682 }
683
684 gl_constant_value *components = storage->storage;
685 unsigned vector_count = (MAX2(storage->array_elements, 1) *
686 storage->type->matrix_columns);
687
688 for (unsigned s = 0; s < vector_count; s++) {
689 assert(uniforms < uniform_array_size);
690 uniform_vector_size[uniforms] = storage->type->vector_elements;
691
692 int i;
693 for (i = 0; i < uniform_vector_size[uniforms]; i++) {
694 stage_prog_data->param[uniforms * 4 + i] = components;
695 components++;
696 }
697 for (; i < 4; i++) {
698 static gl_constant_value zero = { 0.0 };
699 stage_prog_data->param[uniforms * 4 + i] = &zero;
700 }
701
702 uniforms++;
703 }
704 }
705 }
706
707 void
708 vec4_visitor::setup_uniform_clipplane_values()
709 {
710 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
711
712 for (int i = 0; i < key->nr_userclip_plane_consts; ++i) {
713 assert(this->uniforms < uniform_array_size);
714 this->uniform_vector_size[this->uniforms] = 4;
715 this->userplane[i] = dst_reg(UNIFORM, this->uniforms);
716 this->userplane[i].type = BRW_REGISTER_TYPE_F;
717 for (int j = 0; j < 4; ++j) {
718 stage_prog_data->param[this->uniforms * 4 + j] =
719 (gl_constant_value *) &clip_planes[i][j];
720 }
721 ++this->uniforms;
722 }
723 }
724
725 /* Our support for builtin uniforms is even scarier than non-builtin.
726 * It sits on top of the PROG_STATE_VAR parameters that are
727 * automatically updated from GL context state.
728 */
729 void
730 vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
731 {
732 const ir_state_slot *const slots = ir->state_slots;
733 assert(ir->state_slots != NULL);
734
735 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
736 /* This state reference has already been setup by ir_to_mesa,
737 * but we'll get the same index back here. We can reference
738 * ParameterValues directly, since unlike brw_fs.cpp, we never
739 * add new state references during compile.
740 */
741 int index = _mesa_add_state_reference(this->prog->Parameters,
742 (gl_state_index *)slots[i].tokens);
743 gl_constant_value *values =
744 &this->prog->Parameters->ParameterValues[index][0];
745
746 assert(this->uniforms < uniform_array_size);
747 this->uniform_vector_size[this->uniforms] = 0;
748 /* Add each of the unique swizzled channels of the element.
749 * This will end up matching the size of the glsl_type of this field.
750 */
751 int last_swiz = -1;
752 for (unsigned int j = 0; j < 4; j++) {
753 int swiz = GET_SWZ(slots[i].swizzle, j);
754 last_swiz = swiz;
755
756 stage_prog_data->param[this->uniforms * 4 + j] = &values[swiz];
757 assert(this->uniforms < uniform_array_size);
758 if (swiz <= last_swiz)
759 this->uniform_vector_size[this->uniforms]++;
760 }
761 this->uniforms++;
762 }
763 }
764
765 dst_reg *
766 vec4_visitor::variable_storage(ir_variable *var)
767 {
768 return (dst_reg *)hash_table_find(this->variable_ht, var);
769 }
770
771 void
772 vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir,
773 enum brw_predicate *predicate)
774 {
775 ir_expression *expr = ir->as_expression();
776
777 *predicate = BRW_PREDICATE_NORMAL;
778
779 if (expr) {
780 src_reg op[2];
781 vec4_instruction *inst;
782
783 assert(expr->get_num_operands() <= 2);
784 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
785 expr->operands[i]->accept(this);
786 op[i] = this->result;
787
788 resolve_ud_negate(&op[i]);
789 }
790
791 switch (expr->operation) {
792 case ir_unop_logic_not:
793 inst = emit(AND(dst_null_d(), op[0], src_reg(1)));
794 inst->conditional_mod = BRW_CONDITIONAL_Z;
795 break;
796
797 case ir_binop_logic_xor:
798 inst = emit(XOR(dst_null_d(), op[0], op[1]));
799 inst->conditional_mod = BRW_CONDITIONAL_NZ;
800 break;
801
802 case ir_binop_logic_or:
803 inst = emit(OR(dst_null_d(), op[0], op[1]));
804 inst->conditional_mod = BRW_CONDITIONAL_NZ;
805 break;
806
807 case ir_binop_logic_and:
808 inst = emit(AND(dst_null_d(), op[0], op[1]));
809 inst->conditional_mod = BRW_CONDITIONAL_NZ;
810 break;
811
812 case ir_unop_f2b:
813 if (brw->gen >= 6) {
814 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
815 } else {
816 inst = emit(MOV(dst_null_f(), op[0]));
817 inst->conditional_mod = BRW_CONDITIONAL_NZ;
818 }
819 break;
820
821 case ir_unop_i2b:
822 if (brw->gen >= 6) {
823 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
824 } else {
825 inst = emit(MOV(dst_null_d(), op[0]));
826 inst->conditional_mod = BRW_CONDITIONAL_NZ;
827 }
828 break;
829
830 case ir_binop_all_equal:
831 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
832 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
833 break;
834
835 case ir_binop_any_nequal:
836 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
837 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
838 break;
839
840 case ir_unop_any:
841 inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
842 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
843 break;
844
845 case ir_binop_greater:
846 case ir_binop_gequal:
847 case ir_binop_less:
848 case ir_binop_lequal:
849 case ir_binop_equal:
850 case ir_binop_nequal:
851 emit(CMP(dst_null_d(), op[0], op[1],
852 brw_conditional_for_comparison(expr->operation)));
853 break;
854
855 default:
856 unreachable("not reached");
857 }
858 return;
859 }
860
861 ir->accept(this);
862
863 resolve_ud_negate(&this->result);
864
865 if (brw->gen >= 6) {
866 vec4_instruction *inst = emit(AND(dst_null_d(),
867 this->result, src_reg(1)));
868 inst->conditional_mod = BRW_CONDITIONAL_NZ;
869 } else {
870 vec4_instruction *inst = emit(MOV(dst_null_d(), this->result));
871 inst->conditional_mod = BRW_CONDITIONAL_NZ;
872 }
873 }
874
875 /**
876 * Emit a gen6 IF statement with the comparison folded into the IF
877 * instruction.
878 */
879 void
880 vec4_visitor::emit_if_gen6(ir_if *ir)
881 {
882 ir_expression *expr = ir->condition->as_expression();
883
884 if (expr) {
885 src_reg op[2];
886 dst_reg temp;
887
888 assert(expr->get_num_operands() <= 2);
889 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
890 expr->operands[i]->accept(this);
891 op[i] = this->result;
892 }
893
894 switch (expr->operation) {
895 case ir_unop_logic_not:
896 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z));
897 return;
898
899 case ir_binop_logic_xor:
900 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
901 return;
902
903 case ir_binop_logic_or:
904 temp = dst_reg(this, glsl_type::bool_type);
905 emit(OR(temp, op[0], op[1]));
906 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
907 return;
908
909 case ir_binop_logic_and:
910 temp = dst_reg(this, glsl_type::bool_type);
911 emit(AND(temp, op[0], op[1]));
912 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
913 return;
914
915 case ir_unop_f2b:
916 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
917 return;
918
919 case ir_unop_i2b:
920 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
921 return;
922
923 case ir_binop_greater:
924 case ir_binop_gequal:
925 case ir_binop_less:
926 case ir_binop_lequal:
927 case ir_binop_equal:
928 case ir_binop_nequal:
929 emit(IF(op[0], op[1],
930 brw_conditional_for_comparison(expr->operation)));
931 return;
932
933 case ir_binop_all_equal:
934 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
935 emit(IF(BRW_PREDICATE_ALIGN16_ALL4H));
936 return;
937
938 case ir_binop_any_nequal:
939 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
940 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
941 return;
942
943 case ir_unop_any:
944 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
945 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
946 return;
947
948 default:
949 unreachable("not reached");
950 }
951 return;
952 }
953
954 ir->condition->accept(this);
955
956 emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ));
957 }
958
959 void
960 vec4_visitor::visit(ir_variable *ir)
961 {
962 dst_reg *reg = NULL;
963
964 if (variable_storage(ir))
965 return;
966
967 switch (ir->data.mode) {
968 case ir_var_shader_in:
969 reg = new(mem_ctx) dst_reg(ATTR, ir->data.location);
970 break;
971
972 case ir_var_shader_out:
973 reg = new(mem_ctx) dst_reg(this, ir->type);
974
975 for (int i = 0; i < type_size(ir->type); i++) {
976 output_reg[ir->data.location + i] = *reg;
977 output_reg[ir->data.location + i].reg_offset = i;
978 output_reg[ir->data.location + i].type =
979 brw_type_for_base_type(ir->type->get_scalar_type());
980 output_reg_annotation[ir->data.location + i] = ir->name;
981 }
982 break;
983
984 case ir_var_auto:
985 case ir_var_temporary:
986 reg = new(mem_ctx) dst_reg(this, ir->type);
987 break;
988
989 case ir_var_uniform:
990 reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
991
992 /* Thanks to the lower_ubo_reference pass, we will see only
993 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
994 * variables, so no need for them to be in variable_ht.
995 *
996 * Atomic counters take no uniform storage, no need to do
997 * anything here.
998 */
999 if (ir->is_in_uniform_block() || ir->type->contains_atomic())
1000 return;
1001
1002 /* Track how big the whole uniform variable is, in case we need to put a
1003 * copy of its data into pull constants for array access.
1004 */
1005 assert(this->uniforms < uniform_array_size);
1006 this->uniform_size[this->uniforms] = type_size(ir->type);
1007
1008 if (!strncmp(ir->name, "gl_", 3)) {
1009 setup_builtin_uniform_values(ir);
1010 } else {
1011 setup_uniform_values(ir);
1012 }
1013 break;
1014
1015 case ir_var_system_value:
1016 reg = make_reg_for_system_value(ir);
1017 break;
1018
1019 default:
1020 unreachable("not reached");
1021 }
1022
1023 reg->type = brw_type_for_base_type(ir->type);
1024 hash_table_insert(this->variable_ht, reg, ir);
1025 }
1026
1027 void
1028 vec4_visitor::visit(ir_loop *ir)
1029 {
1030 /* We don't want debugging output to print the whole body of the
1031 * loop as the annotation.
1032 */
1033 this->base_ir = NULL;
1034
1035 emit(BRW_OPCODE_DO);
1036
1037 visit_instructions(&ir->body_instructions);
1038
1039 emit(BRW_OPCODE_WHILE);
1040 }
1041
1042 void
1043 vec4_visitor::visit(ir_loop_jump *ir)
1044 {
1045 switch (ir->mode) {
1046 case ir_loop_jump::jump_break:
1047 emit(BRW_OPCODE_BREAK);
1048 break;
1049 case ir_loop_jump::jump_continue:
1050 emit(BRW_OPCODE_CONTINUE);
1051 break;
1052 }
1053 }
1054
1055
1056 void
1057 vec4_visitor::visit(ir_function_signature *)
1058 {
1059 unreachable("not reached");
1060 }
1061
1062 void
1063 vec4_visitor::visit(ir_function *ir)
1064 {
1065 /* Ignore function bodies other than main() -- we shouldn't see calls to
1066 * them since they should all be inlined.
1067 */
1068 if (strcmp(ir->name, "main") == 0) {
1069 const ir_function_signature *sig;
1070 exec_list empty;
1071
1072 sig = ir->matching_signature(NULL, &empty, false);
1073
1074 assert(sig);
1075
1076 visit_instructions(&sig->body);
1077 }
1078 }
1079
1080 bool
1081 vec4_visitor::try_emit_sat(ir_expression *ir)
1082 {
1083 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1084 if (!sat_src)
1085 return false;
1086
1087 sat_src->accept(this);
1088 src_reg src = this->result;
1089
1090 this->result = src_reg(this, ir->type);
1091 vec4_instruction *inst;
1092 inst = emit(MOV(dst_reg(this->result), src));
1093 inst->saturate = true;
1094
1095 return true;
1096 }
1097
1098 bool
1099 vec4_visitor::try_emit_mad(ir_expression *ir)
1100 {
1101 /* 3-src instructions were introduced in gen6. */
1102 if (brw->gen < 6)
1103 return false;
1104
1105 /* MAD can only handle floating-point data. */
1106 if (ir->type->base_type != GLSL_TYPE_FLOAT)
1107 return false;
1108
1109 ir_rvalue *nonmul = ir->operands[1];
1110 ir_expression *mul = ir->operands[0]->as_expression();
1111
1112 if (!mul || mul->operation != ir_binop_mul) {
1113 nonmul = ir->operands[0];
1114 mul = ir->operands[1]->as_expression();
1115
1116 if (!mul || mul->operation != ir_binop_mul)
1117 return false;
1118 }
1119
1120 nonmul->accept(this);
1121 src_reg src0 = fix_3src_operand(this->result);
1122
1123 mul->operands[0]->accept(this);
1124 src_reg src1 = fix_3src_operand(this->result);
1125
1126 mul->operands[1]->accept(this);
1127 src_reg src2 = fix_3src_operand(this->result);
1128
1129 this->result = src_reg(this, ir->type);
1130 emit(BRW_OPCODE_MAD, dst_reg(this->result), src0, src1, src2);
1131
1132 return true;
1133 }
1134
1135 bool
1136 vec4_visitor::try_emit_b2f_of_compare(ir_expression *ir)
1137 {
1138 ir_expression *const cmp = ir->operands[0]->as_expression();
1139
1140 if (cmp == NULL)
1141 return false;
1142
1143 switch (cmp->operation) {
1144 case ir_binop_less:
1145 case ir_binop_greater:
1146 case ir_binop_lequal:
1147 case ir_binop_gequal:
1148 case ir_binop_equal:
1149 case ir_binop_nequal:
1150 break;
1151
1152 default:
1153 return false;
1154 }
1155
1156 cmp->operands[0]->accept(this);
1157 const src_reg cmp_src0 = this->result;
1158
1159 cmp->operands[1]->accept(this);
1160 const src_reg cmp_src1 = this->result;
1161
1162 this->result = src_reg(this, ir->type);
1163
1164 emit(CMP(dst_reg(this->result), cmp_src0, cmp_src1,
1165 brw_conditional_for_comparison(cmp->operation)));
1166
1167 /* If the comparison is false, this->result will just happen to be zero.
1168 */
1169 vec4_instruction *const inst = emit(BRW_OPCODE_SEL, dst_reg(this->result),
1170 this->result, src_reg(1.0f));
1171 inst->predicate = BRW_PREDICATE_NORMAL;
1172 inst->predicate_inverse = true;
1173
1174 return true;
1175 }
1176
1177 void
1178 vec4_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, dst_reg dst,
1179 src_reg src0, src_reg src1)
1180 {
1181 vec4_instruction *inst;
1182
1183 if (brw->gen >= 6) {
1184 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
1185 inst->conditional_mod = conditionalmod;
1186 } else {
1187 emit(CMP(dst, src0, src1, conditionalmod));
1188
1189 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
1190 inst->predicate = BRW_PREDICATE_NORMAL;
1191 }
1192 }
1193
1194 void
1195 vec4_visitor::emit_lrp(const dst_reg &dst,
1196 const src_reg &x, const src_reg &y, const src_reg &a)
1197 {
1198 if (brw->gen >= 6) {
1199 /* Note that the instruction's argument order is reversed from GLSL
1200 * and the IR.
1201 */
1202 emit(LRP(dst,
1203 fix_3src_operand(a), fix_3src_operand(y), fix_3src_operand(x)));
1204 } else {
1205 /* Earlier generations don't support three source operations, so we
1206 * need to emit x*(1-a) + y*a.
1207 */
1208 dst_reg y_times_a = dst_reg(this, glsl_type::vec4_type);
1209 dst_reg one_minus_a = dst_reg(this, glsl_type::vec4_type);
1210 dst_reg x_times_one_minus_a = dst_reg(this, glsl_type::vec4_type);
1211 y_times_a.writemask = dst.writemask;
1212 one_minus_a.writemask = dst.writemask;
1213 x_times_one_minus_a.writemask = dst.writemask;
1214
1215 emit(MUL(y_times_a, y, a));
1216 emit(ADD(one_minus_a, negate(a), src_reg(1.0f)));
1217 emit(MUL(x_times_one_minus_a, x, src_reg(one_minus_a)));
1218 emit(ADD(dst, src_reg(x_times_one_minus_a), src_reg(y_times_a)));
1219 }
1220 }
1221
1222 void
1223 vec4_visitor::visit(ir_expression *ir)
1224 {
1225 unsigned int operand;
1226 src_reg op[Elements(ir->operands)];
1227 src_reg result_src;
1228 dst_reg result_dst;
1229 vec4_instruction *inst;
1230
1231 if (try_emit_sat(ir))
1232 return;
1233
1234 if (ir->operation == ir_binop_add) {
1235 if (try_emit_mad(ir))
1236 return;
1237 }
1238
1239 if (ir->operation == ir_unop_b2f) {
1240 if (try_emit_b2f_of_compare(ir))
1241 return;
1242 }
1243
1244 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1245 this->result.file = BAD_FILE;
1246 ir->operands[operand]->accept(this);
1247 if (this->result.file == BAD_FILE) {
1248 fprintf(stderr, "Failed to get tree for expression operand:\n");
1249 ir->operands[operand]->fprint(stderr);
1250 exit(1);
1251 }
1252 op[operand] = this->result;
1253
1254 /* Matrix expression operands should have been broken down to vector
1255 * operations already.
1256 */
1257 assert(!ir->operands[operand]->type->is_matrix());
1258 }
1259
1260 int vector_elements = ir->operands[0]->type->vector_elements;
1261 if (ir->operands[1]) {
1262 vector_elements = MAX2(vector_elements,
1263 ir->operands[1]->type->vector_elements);
1264 }
1265
1266 this->result.file = BAD_FILE;
1267
1268 /* Storage for our result. Ideally for an assignment we'd be using
1269 * the actual storage for the result here, instead.
1270 */
1271 result_src = src_reg(this, ir->type);
1272 /* convenience for the emit functions below. */
1273 result_dst = dst_reg(result_src);
1274 /* If nothing special happens, this is the result. */
1275 this->result = result_src;
1276 /* Limit writes to the channels that will be used by result_src later.
1277 * This does limit this temp's use as a temporary for multi-instruction
1278 * sequences.
1279 */
1280 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1281
1282 switch (ir->operation) {
1283 case ir_unop_logic_not:
1284 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
1285 * ones complement of the whole register, not just bit 0.
1286 */
1287 emit(XOR(result_dst, op[0], src_reg(1)));
1288 break;
1289 case ir_unop_neg:
1290 op[0].negate = !op[0].negate;
1291 emit(MOV(result_dst, op[0]));
1292 break;
1293 case ir_unop_abs:
1294 op[0].abs = true;
1295 op[0].negate = false;
1296 emit(MOV(result_dst, op[0]));
1297 break;
1298
1299 case ir_unop_sign:
1300 if (ir->type->is_float()) {
1301 /* AND(val, 0x80000000) gives the sign bit.
1302 *
1303 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1304 * zero.
1305 */
1306 emit(CMP(dst_null_f(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
1307
1308 op[0].type = BRW_REGISTER_TYPE_UD;
1309 result_dst.type = BRW_REGISTER_TYPE_UD;
1310 emit(AND(result_dst, op[0], src_reg(0x80000000u)));
1311
1312 inst = emit(OR(result_dst, src_reg(result_dst), src_reg(0x3f800000u)));
1313 inst->predicate = BRW_PREDICATE_NORMAL;
1314
1315 this->result.type = BRW_REGISTER_TYPE_F;
1316 } else {
1317 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
1318 * -> non-negative val generates 0x00000000.
1319 * Predicated OR sets 1 if val is positive.
1320 */
1321 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_G));
1322
1323 emit(ASR(result_dst, op[0], src_reg(31)));
1324
1325 inst = emit(OR(result_dst, src_reg(result_dst), src_reg(1)));
1326 inst->predicate = BRW_PREDICATE_NORMAL;
1327 }
1328 break;
1329
1330 case ir_unop_rcp:
1331 emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
1332 break;
1333
1334 case ir_unop_exp2:
1335 emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
1336 break;
1337 case ir_unop_log2:
1338 emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
1339 break;
1340 case ir_unop_exp:
1341 case ir_unop_log:
1342 unreachable("not reached: should be handled by ir_explog_to_explog2");
1343 case ir_unop_sin:
1344 case ir_unop_sin_reduced:
1345 emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
1346 break;
1347 case ir_unop_cos:
1348 case ir_unop_cos_reduced:
1349 emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
1350 break;
1351
1352 case ir_unop_dFdx:
1353 case ir_unop_dFdx_coarse:
1354 case ir_unop_dFdx_fine:
1355 case ir_unop_dFdy:
1356 case ir_unop_dFdy_coarse:
1357 case ir_unop_dFdy_fine:
1358 unreachable("derivatives not valid in vertex shader");
1359
1360 case ir_unop_bitfield_reverse:
1361 emit(BFREV(result_dst, op[0]));
1362 break;
1363 case ir_unop_bit_count:
1364 emit(CBIT(result_dst, op[0]));
1365 break;
1366 case ir_unop_find_msb: {
1367 src_reg temp = src_reg(this, glsl_type::uint_type);
1368
1369 inst = emit(FBH(dst_reg(temp), op[0]));
1370 inst->dst.writemask = WRITEMASK_XYZW;
1371
1372 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1373 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1374 * subtract the result from 31 to convert the MSB count into an LSB count.
1375 */
1376
1377 /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
1378 temp.swizzle = BRW_SWIZZLE_NOOP;
1379 emit(MOV(result_dst, temp));
1380
1381 src_reg src_tmp = src_reg(result_dst);
1382 emit(CMP(dst_null_d(), src_tmp, src_reg(-1), BRW_CONDITIONAL_NZ));
1383
1384 src_tmp.negate = true;
1385 inst = emit(ADD(result_dst, src_tmp, src_reg(31)));
1386 inst->predicate = BRW_PREDICATE_NORMAL;
1387 break;
1388 }
1389 case ir_unop_find_lsb:
1390 emit(FBL(result_dst, op[0]));
1391 break;
1392
1393 case ir_unop_noise:
1394 unreachable("not reached: should be handled by lower_noise");
1395
1396 case ir_binop_add:
1397 emit(ADD(result_dst, op[0], op[1]));
1398 break;
1399 case ir_binop_sub:
1400 unreachable("not reached: should be handled by ir_sub_to_add_neg");
1401
1402 case ir_binop_mul:
1403 if (brw->gen < 8 && ir->type->is_integer()) {
1404 /* For integer multiplication, the MUL uses the low 16 bits of one of
1405 * the operands (src0 through SNB, src1 on IVB and later). The MACH
1406 * accumulates in the contribution of the upper 16 bits of that
1407 * operand. If we can determine that one of the args is in the low
1408 * 16 bits, though, we can just emit a single MUL.
1409 */
1410 if (ir->operands[0]->is_uint16_constant()) {
1411 if (brw->gen < 7)
1412 emit(MUL(result_dst, op[0], op[1]));
1413 else
1414 emit(MUL(result_dst, op[1], op[0]));
1415 } else if (ir->operands[1]->is_uint16_constant()) {
1416 if (brw->gen < 7)
1417 emit(MUL(result_dst, op[1], op[0]));
1418 else
1419 emit(MUL(result_dst, op[0], op[1]));
1420 } else {
1421 struct brw_reg acc = retype(brw_acc_reg(), result_dst.type);
1422
1423 emit(MUL(acc, op[0], op[1]));
1424 emit(MACH(dst_null_d(), op[0], op[1]));
1425 emit(MOV(result_dst, src_reg(acc)));
1426 }
1427 } else {
1428 emit(MUL(result_dst, op[0], op[1]));
1429 }
1430 break;
1431 case ir_binop_imul_high: {
1432 struct brw_reg acc = retype(brw_acc_reg(), result_dst.type);
1433
1434 emit(MUL(acc, op[0], op[1]));
1435 emit(MACH(result_dst, op[0], op[1]));
1436 break;
1437 }
1438 case ir_binop_div:
1439 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
1440 assert(ir->type->is_integer());
1441 emit_math(SHADER_OPCODE_INT_QUOTIENT, result_dst, op[0], op[1]);
1442 break;
1443 case ir_binop_carry: {
1444 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_UD);
1445
1446 emit(ADDC(dst_null_ud(), op[0], op[1]));
1447 emit(MOV(result_dst, src_reg(acc)));
1448 break;
1449 }
1450 case ir_binop_borrow: {
1451 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_UD);
1452
1453 emit(SUBB(dst_null_ud(), op[0], op[1]));
1454 emit(MOV(result_dst, src_reg(acc)));
1455 break;
1456 }
1457 case ir_binop_mod:
1458 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1459 assert(ir->type->is_integer());
1460 emit_math(SHADER_OPCODE_INT_REMAINDER, result_dst, op[0], op[1]);
1461 break;
1462
1463 case ir_binop_less:
1464 case ir_binop_greater:
1465 case ir_binop_lequal:
1466 case ir_binop_gequal:
1467 case ir_binop_equal:
1468 case ir_binop_nequal: {
1469 emit(CMP(result_dst, op[0], op[1],
1470 brw_conditional_for_comparison(ir->operation)));
1471 emit(AND(result_dst, result_src, src_reg(0x1)));
1472 break;
1473 }
1474
1475 case ir_binop_all_equal:
1476 /* "==" operator producing a scalar boolean. */
1477 if (ir->operands[0]->type->is_vector() ||
1478 ir->operands[1]->type->is_vector()) {
1479 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
1480 emit(MOV(result_dst, src_reg(0)));
1481 inst = emit(MOV(result_dst, src_reg(1)));
1482 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1483 } else {
1484 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z));
1485 emit(AND(result_dst, result_src, src_reg(0x1)));
1486 }
1487 break;
1488 case ir_binop_any_nequal:
1489 /* "!=" operator producing a scalar boolean. */
1490 if (ir->operands[0]->type->is_vector() ||
1491 ir->operands[1]->type->is_vector()) {
1492 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
1493
1494 emit(MOV(result_dst, src_reg(0)));
1495 inst = emit(MOV(result_dst, src_reg(1)));
1496 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1497 } else {
1498 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ));
1499 emit(AND(result_dst, result_src, src_reg(0x1)));
1500 }
1501 break;
1502
1503 case ir_unop_any:
1504 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
1505 emit(MOV(result_dst, src_reg(0)));
1506
1507 inst = emit(MOV(result_dst, src_reg(1)));
1508 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1509 break;
1510
1511 case ir_binop_logic_xor:
1512 emit(XOR(result_dst, op[0], op[1]));
1513 break;
1514
1515 case ir_binop_logic_or:
1516 emit(OR(result_dst, op[0], op[1]));
1517 break;
1518
1519 case ir_binop_logic_and:
1520 emit(AND(result_dst, op[0], op[1]));
1521 break;
1522
1523 case ir_binop_dot:
1524 assert(ir->operands[0]->type->is_vector());
1525 assert(ir->operands[0]->type == ir->operands[1]->type);
1526 emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
1527 break;
1528
1529 case ir_unop_sqrt:
1530 emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
1531 break;
1532 case ir_unop_rsq:
1533 emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
1534 break;
1535
1536 case ir_unop_bitcast_i2f:
1537 case ir_unop_bitcast_u2f:
1538 this->result = op[0];
1539 this->result.type = BRW_REGISTER_TYPE_F;
1540 break;
1541
1542 case ir_unop_bitcast_f2i:
1543 this->result = op[0];
1544 this->result.type = BRW_REGISTER_TYPE_D;
1545 break;
1546
1547 case ir_unop_bitcast_f2u:
1548 this->result = op[0];
1549 this->result.type = BRW_REGISTER_TYPE_UD;
1550 break;
1551
1552 case ir_unop_i2f:
1553 case ir_unop_i2u:
1554 case ir_unop_u2i:
1555 case ir_unop_u2f:
1556 case ir_unop_b2f:
1557 case ir_unop_b2i:
1558 case ir_unop_f2i:
1559 case ir_unop_f2u:
1560 emit(MOV(result_dst, op[0]));
1561 break;
1562 case ir_unop_f2b:
1563 case ir_unop_i2b: {
1564 emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
1565 emit(AND(result_dst, result_src, src_reg(1)));
1566 break;
1567 }
1568
1569 case ir_unop_trunc:
1570 emit(RNDZ(result_dst, op[0]));
1571 break;
1572 case ir_unop_ceil:
1573 op[0].negate = !op[0].negate;
1574 inst = emit(RNDD(result_dst, op[0]));
1575 this->result.negate = true;
1576 break;
1577 case ir_unop_floor:
1578 inst = emit(RNDD(result_dst, op[0]));
1579 break;
1580 case ir_unop_fract:
1581 inst = emit(FRC(result_dst, op[0]));
1582 break;
1583 case ir_unop_round_even:
1584 emit(RNDE(result_dst, op[0]));
1585 break;
1586
1587 case ir_binop_min:
1588 emit_minmax(BRW_CONDITIONAL_L, result_dst, op[0], op[1]);
1589 break;
1590 case ir_binop_max:
1591 emit_minmax(BRW_CONDITIONAL_G, result_dst, op[0], op[1]);
1592 break;
1593
1594 case ir_binop_pow:
1595 emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
1596 break;
1597
1598 case ir_unop_bit_not:
1599 inst = emit(NOT(result_dst, op[0]));
1600 break;
1601 case ir_binop_bit_and:
1602 inst = emit(AND(result_dst, op[0], op[1]));
1603 break;
1604 case ir_binop_bit_xor:
1605 inst = emit(XOR(result_dst, op[0], op[1]));
1606 break;
1607 case ir_binop_bit_or:
1608 inst = emit(OR(result_dst, op[0], op[1]));
1609 break;
1610
1611 case ir_binop_lshift:
1612 inst = emit(SHL(result_dst, op[0], op[1]));
1613 break;
1614
1615 case ir_binop_rshift:
1616 if (ir->type->base_type == GLSL_TYPE_INT)
1617 inst = emit(ASR(result_dst, op[0], op[1]));
1618 else
1619 inst = emit(SHR(result_dst, op[0], op[1]));
1620 break;
1621
1622 case ir_binop_bfm:
1623 emit(BFI1(result_dst, op[0], op[1]));
1624 break;
1625
1626 case ir_binop_ubo_load: {
1627 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
1628 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
1629 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
1630 src_reg offset;
1631
1632 /* Now, load the vector from that offset. */
1633 assert(ir->type->is_vector() || ir->type->is_scalar());
1634
1635 src_reg packed_consts = src_reg(this, glsl_type::vec4_type);
1636 packed_consts.type = result.type;
1637 src_reg surf_index;
1638
1639 if (const_uniform_block) {
1640 /* The block index is a constant, so just emit the binding table entry
1641 * as an immediate.
1642 */
1643 surf_index = src_reg(prog_data->base.binding_table.ubo_start +
1644 const_uniform_block->value.u[0]);
1645 } else {
1646 /* The block index is not a constant. Evaluate the index expression
1647 * per-channel and add the base UBO index; the generator will select
1648 * a value from any live channel.
1649 */
1650 surf_index = src_reg(this, glsl_type::uint_type);
1651 emit(ADD(dst_reg(surf_index), op[0],
1652 src_reg(prog_data->base.binding_table.ubo_start)));
1653
1654 /* Assume this may touch any UBO. It would be nice to provide
1655 * a tighter bound, but the array information is already lowered away.
1656 */
1657 brw_mark_surface_used(&prog_data->base,
1658 prog_data->base.binding_table.ubo_start +
1659 shader_prog->NumUniformBlocks - 1);
1660 }
1661
1662 if (const_offset_ir) {
1663 if (brw->gen >= 8) {
1664 /* Store the offset in a GRF so we can send-from-GRF. */
1665 offset = src_reg(this, glsl_type::int_type);
1666 emit(MOV(dst_reg(offset), src_reg(const_offset / 16)));
1667 } else {
1668 /* Immediates are fine on older generations since they'll be moved
1669 * to a (potentially fake) MRF at the generator level.
1670 */
1671 offset = src_reg(const_offset / 16);
1672 }
1673 } else {
1674 offset = src_reg(this, glsl_type::uint_type);
1675 emit(SHR(dst_reg(offset), op[1], src_reg(4)));
1676 }
1677
1678 if (brw->gen >= 7) {
1679 dst_reg grf_offset = dst_reg(this, glsl_type::int_type);
1680 grf_offset.type = offset.type;
1681
1682 emit(MOV(grf_offset, offset));
1683
1684 emit(new(mem_ctx) vec4_instruction(this,
1685 VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
1686 dst_reg(packed_consts),
1687 surf_index,
1688 src_reg(grf_offset)));
1689 } else {
1690 vec4_instruction *pull =
1691 emit(new(mem_ctx) vec4_instruction(this,
1692 VS_OPCODE_PULL_CONSTANT_LOAD,
1693 dst_reg(packed_consts),
1694 surf_index,
1695 offset));
1696 pull->base_mrf = 14;
1697 pull->mlen = 1;
1698 }
1699
1700 packed_consts.swizzle = swizzle_for_size(ir->type->vector_elements);
1701 packed_consts.swizzle += BRW_SWIZZLE4(const_offset % 16 / 4,
1702 const_offset % 16 / 4,
1703 const_offset % 16 / 4,
1704 const_offset % 16 / 4);
1705
1706 /* UBO bools are any nonzero int. We store bools as either 0 or 1. */
1707 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1708 emit(CMP(result_dst, packed_consts, src_reg(0u),
1709 BRW_CONDITIONAL_NZ));
1710 emit(AND(result_dst, result, src_reg(0x1)));
1711 } else {
1712 emit(MOV(result_dst, packed_consts));
1713 }
1714 break;
1715 }
1716
1717 case ir_binop_vector_extract:
1718 unreachable("should have been lowered by vec_index_to_cond_assign");
1719
1720 case ir_triop_fma:
1721 op[0] = fix_3src_operand(op[0]);
1722 op[1] = fix_3src_operand(op[1]);
1723 op[2] = fix_3src_operand(op[2]);
1724 /* Note that the instruction's argument order is reversed from GLSL
1725 * and the IR.
1726 */
1727 emit(MAD(result_dst, op[2], op[1], op[0]));
1728 break;
1729
1730 case ir_triop_lrp:
1731 emit_lrp(result_dst, op[0], op[1], op[2]);
1732 break;
1733
1734 case ir_triop_csel:
1735 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
1736 inst = emit(BRW_OPCODE_SEL, result_dst, op[1], op[2]);
1737 inst->predicate = BRW_PREDICATE_NORMAL;
1738 break;
1739
1740 case ir_triop_bfi:
1741 op[0] = fix_3src_operand(op[0]);
1742 op[1] = fix_3src_operand(op[1]);
1743 op[2] = fix_3src_operand(op[2]);
1744 emit(BFI2(result_dst, op[0], op[1], op[2]));
1745 break;
1746
1747 case ir_triop_bitfield_extract:
1748 op[0] = fix_3src_operand(op[0]);
1749 op[1] = fix_3src_operand(op[1]);
1750 op[2] = fix_3src_operand(op[2]);
1751 /* Note that the instruction's argument order is reversed from GLSL
1752 * and the IR.
1753 */
1754 emit(BFE(result_dst, op[2], op[1], op[0]));
1755 break;
1756
1757 case ir_triop_vector_insert:
1758 unreachable("should have been lowered by lower_vector_insert");
1759
1760 case ir_quadop_bitfield_insert:
1761 unreachable("not reached: should be handled by "
1762 "bitfield_insert_to_bfm_bfi\n");
1763
1764 case ir_quadop_vector:
1765 unreachable("not reached: should be handled by lower_quadop_vector");
1766
1767 case ir_unop_pack_half_2x16:
1768 emit_pack_half_2x16(result_dst, op[0]);
1769 break;
1770 case ir_unop_unpack_half_2x16:
1771 emit_unpack_half_2x16(result_dst, op[0]);
1772 break;
1773 case ir_unop_pack_snorm_2x16:
1774 case ir_unop_pack_snorm_4x8:
1775 case ir_unop_pack_unorm_2x16:
1776 case ir_unop_pack_unorm_4x8:
1777 case ir_unop_unpack_snorm_2x16:
1778 case ir_unop_unpack_snorm_4x8:
1779 case ir_unop_unpack_unorm_2x16:
1780 case ir_unop_unpack_unorm_4x8:
1781 unreachable("not reached: should be handled by lower_packing_builtins");
1782 case ir_unop_unpack_half_2x16_split_x:
1783 case ir_unop_unpack_half_2x16_split_y:
1784 case ir_binop_pack_half_2x16_split:
1785 case ir_unop_interpolate_at_centroid:
1786 case ir_binop_interpolate_at_sample:
1787 case ir_binop_interpolate_at_offset:
1788 unreachable("not reached: should not occur in vertex shader");
1789 case ir_binop_ldexp:
1790 unreachable("not reached: should be handled by ldexp_to_arith()");
1791 }
1792 }
1793
1794
1795 void
1796 vec4_visitor::visit(ir_swizzle *ir)
1797 {
1798 src_reg src;
1799 int i = 0;
1800 int swizzle[4];
1801
1802 /* Note that this is only swizzles in expressions, not those on the left
1803 * hand side of an assignment, which do write masking. See ir_assignment
1804 * for that.
1805 */
1806
1807 ir->val->accept(this);
1808 src = this->result;
1809 assert(src.file != BAD_FILE);
1810
1811 for (i = 0; i < ir->type->vector_elements; i++) {
1812 switch (i) {
1813 case 0:
1814 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
1815 break;
1816 case 1:
1817 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
1818 break;
1819 case 2:
1820 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
1821 break;
1822 case 3:
1823 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
1824 break;
1825 }
1826 }
1827 for (; i < 4; i++) {
1828 /* Replicate the last channel out. */
1829 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1830 }
1831
1832 src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1833
1834 this->result = src;
1835 }
1836
1837 void
1838 vec4_visitor::visit(ir_dereference_variable *ir)
1839 {
1840 const struct glsl_type *type = ir->type;
1841 dst_reg *reg = variable_storage(ir->var);
1842
1843 if (!reg) {
1844 fail("Failed to find variable storage for %s\n", ir->var->name);
1845 this->result = src_reg(brw_null_reg());
1846 return;
1847 }
1848
1849 this->result = src_reg(*reg);
1850
1851 /* System values get their swizzle from the dst_reg writemask */
1852 if (ir->var->data.mode == ir_var_system_value)
1853 return;
1854
1855 if (type->is_scalar() || type->is_vector() || type->is_matrix())
1856 this->result.swizzle = swizzle_for_size(type->vector_elements);
1857 }
1858
1859
1860 int
1861 vec4_visitor::compute_array_stride(ir_dereference_array *ir)
1862 {
1863 /* Under normal circumstances array elements are stored consecutively, so
1864 * the stride is equal to the size of the array element.
1865 */
1866 return type_size(ir->type);
1867 }
1868
1869
1870 void
1871 vec4_visitor::visit(ir_dereference_array *ir)
1872 {
1873 ir_constant *constant_index;
1874 src_reg src;
1875 int array_stride = compute_array_stride(ir);
1876
1877 constant_index = ir->array_index->constant_expression_value();
1878
1879 ir->array->accept(this);
1880 src = this->result;
1881
1882 if (constant_index) {
1883 src.reg_offset += constant_index->value.i[0] * array_stride;
1884 } else {
1885 /* Variable index array dereference. It eats the "vec4" of the
1886 * base of the array and an index that offsets the Mesa register
1887 * index.
1888 */
1889 ir->array_index->accept(this);
1890
1891 src_reg index_reg;
1892
1893 if (array_stride == 1) {
1894 index_reg = this->result;
1895 } else {
1896 index_reg = src_reg(this, glsl_type::int_type);
1897
1898 emit(MUL(dst_reg(index_reg), this->result, src_reg(array_stride)));
1899 }
1900
1901 if (src.reladdr) {
1902 src_reg temp = src_reg(this, glsl_type::int_type);
1903
1904 emit(ADD(dst_reg(temp), *src.reladdr, index_reg));
1905
1906 index_reg = temp;
1907 }
1908
1909 src.reladdr = ralloc(mem_ctx, src_reg);
1910 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1911 }
1912
1913 /* If the type is smaller than a vec4, replicate the last channel out. */
1914 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
1915 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1916 else
1917 src.swizzle = BRW_SWIZZLE_NOOP;
1918 src.type = brw_type_for_base_type(ir->type);
1919
1920 this->result = src;
1921 }
1922
1923 void
1924 vec4_visitor::visit(ir_dereference_record *ir)
1925 {
1926 unsigned int i;
1927 const glsl_type *struct_type = ir->record->type;
1928 int offset = 0;
1929
1930 ir->record->accept(this);
1931
1932 for (i = 0; i < struct_type->length; i++) {
1933 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1934 break;
1935 offset += type_size(struct_type->fields.structure[i].type);
1936 }
1937
1938 /* If the type is smaller than a vec4, replicate the last channel out. */
1939 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
1940 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1941 else
1942 this->result.swizzle = BRW_SWIZZLE_NOOP;
1943 this->result.type = brw_type_for_base_type(ir->type);
1944
1945 this->result.reg_offset += offset;
1946 }
1947
1948 /**
1949 * We want to be careful in assignment setup to hit the actual storage
1950 * instead of potentially using a temporary like we might with the
1951 * ir_dereference handler.
1952 */
1953 static dst_reg
1954 get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
1955 {
1956 /* The LHS must be a dereference. If the LHS is a variable indexed array
1957 * access of a vector, it must be separated into a series conditional moves
1958 * before reaching this point (see ir_vec_index_to_cond_assign).
1959 */
1960 assert(ir->as_dereference());
1961 ir_dereference_array *deref_array = ir->as_dereference_array();
1962 if (deref_array) {
1963 assert(!deref_array->array->type->is_vector());
1964 }
1965
1966 /* Use the rvalue deref handler for the most part. We'll ignore
1967 * swizzles in it and write swizzles using writemask, though.
1968 */
1969 ir->accept(v);
1970 return dst_reg(v->result);
1971 }
1972
1973 void
1974 vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src,
1975 const struct glsl_type *type,
1976 enum brw_predicate predicate)
1977 {
1978 if (type->base_type == GLSL_TYPE_STRUCT) {
1979 for (unsigned int i = 0; i < type->length; i++) {
1980 emit_block_move(dst, src, type->fields.structure[i].type, predicate);
1981 }
1982 return;
1983 }
1984
1985 if (type->is_array()) {
1986 for (unsigned int i = 0; i < type->length; i++) {
1987 emit_block_move(dst, src, type->fields.array, predicate);
1988 }
1989 return;
1990 }
1991
1992 if (type->is_matrix()) {
1993 const struct glsl_type *vec_type;
1994
1995 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
1996 type->vector_elements, 1);
1997
1998 for (int i = 0; i < type->matrix_columns; i++) {
1999 emit_block_move(dst, src, vec_type, predicate);
2000 }
2001 return;
2002 }
2003
2004 assert(type->is_scalar() || type->is_vector());
2005
2006 dst->type = brw_type_for_base_type(type);
2007 src->type = dst->type;
2008
2009 dst->writemask = (1 << type->vector_elements) - 1;
2010
2011 src->swizzle = swizzle_for_size(type->vector_elements);
2012
2013 vec4_instruction *inst = emit(MOV(*dst, *src));
2014 inst->predicate = predicate;
2015
2016 dst->reg_offset++;
2017 src->reg_offset++;
2018 }
2019
2020
2021 /* If the RHS processing resulted in an instruction generating a
2022 * temporary value, and it would be easy to rewrite the instruction to
2023 * generate its result right into the LHS instead, do so. This ends
2024 * up reliably removing instructions where it can be tricky to do so
2025 * later without real UD chain information.
2026 */
2027 bool
2028 vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
2029 dst_reg dst,
2030 src_reg src,
2031 vec4_instruction *pre_rhs_inst,
2032 vec4_instruction *last_rhs_inst)
2033 {
2034 /* This could be supported, but it would take more smarts. */
2035 if (ir->condition)
2036 return false;
2037
2038 if (pre_rhs_inst == last_rhs_inst)
2039 return false; /* No instructions generated to work with. */
2040
2041 /* Make sure the last instruction generated our source reg. */
2042 if (src.file != GRF ||
2043 src.file != last_rhs_inst->dst.file ||
2044 src.reg != last_rhs_inst->dst.reg ||
2045 src.reg_offset != last_rhs_inst->dst.reg_offset ||
2046 src.reladdr ||
2047 src.abs ||
2048 src.negate ||
2049 last_rhs_inst->predicate != BRW_PREDICATE_NONE)
2050 return false;
2051
2052 /* Check that that last instruction fully initialized the channels
2053 * we want to use, in the order we want to use them. We could
2054 * potentially reswizzle the operands of many instructions so that
2055 * we could handle out of order channels, but don't yet.
2056 */
2057
2058 for (unsigned i = 0; i < 4; i++) {
2059 if (dst.writemask & (1 << i)) {
2060 if (!(last_rhs_inst->dst.writemask & (1 << i)))
2061 return false;
2062
2063 if (BRW_GET_SWZ(src.swizzle, i) != i)
2064 return false;
2065 }
2066 }
2067
2068 /* Success! Rewrite the instruction. */
2069 last_rhs_inst->dst.file = dst.file;
2070 last_rhs_inst->dst.reg = dst.reg;
2071 last_rhs_inst->dst.reg_offset = dst.reg_offset;
2072 last_rhs_inst->dst.reladdr = dst.reladdr;
2073 last_rhs_inst->dst.writemask &= dst.writemask;
2074
2075 return true;
2076 }
2077
2078 void
2079 vec4_visitor::visit(ir_assignment *ir)
2080 {
2081 dst_reg dst = get_assignment_lhs(ir->lhs, this);
2082 enum brw_predicate predicate = BRW_PREDICATE_NONE;
2083
2084 if (!ir->lhs->type->is_scalar() &&
2085 !ir->lhs->type->is_vector()) {
2086 ir->rhs->accept(this);
2087 src_reg src = this->result;
2088
2089 if (ir->condition) {
2090 emit_bool_to_cond_code(ir->condition, &predicate);
2091 }
2092
2093 /* emit_block_move doesn't account for swizzles in the source register.
2094 * This should be ok, since the source register is a structure or an
2095 * array, and those can't be swizzled. But double-check to be sure.
2096 */
2097 assert(src.swizzle ==
2098 (ir->rhs->type->is_matrix()
2099 ? swizzle_for_size(ir->rhs->type->vector_elements)
2100 : BRW_SWIZZLE_NOOP));
2101
2102 emit_block_move(&dst, &src, ir->rhs->type, predicate);
2103 return;
2104 }
2105
2106 /* Now we're down to just a scalar/vector with writemasks. */
2107 int i;
2108
2109 vec4_instruction *pre_rhs_inst, *last_rhs_inst;
2110 pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
2111
2112 ir->rhs->accept(this);
2113
2114 last_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
2115
2116 src_reg src = this->result;
2117
2118 int swizzles[4];
2119 int first_enabled_chan = 0;
2120 int src_chan = 0;
2121
2122 assert(ir->lhs->type->is_vector() ||
2123 ir->lhs->type->is_scalar());
2124 dst.writemask = ir->write_mask;
2125
2126 for (int i = 0; i < 4; i++) {
2127 if (dst.writemask & (1 << i)) {
2128 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
2129 break;
2130 }
2131 }
2132
2133 /* Swizzle a small RHS vector into the channels being written.
2134 *
2135 * glsl ir treats write_mask as dictating how many channels are
2136 * present on the RHS while in our instructions we need to make
2137 * those channels appear in the slots of the vec4 they're written to.
2138 */
2139 for (int i = 0; i < 4; i++) {
2140 if (dst.writemask & (1 << i))
2141 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
2142 else
2143 swizzles[i] = first_enabled_chan;
2144 }
2145 src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
2146 swizzles[2], swizzles[3]);
2147
2148 if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) {
2149 return;
2150 }
2151
2152 if (ir->condition) {
2153 emit_bool_to_cond_code(ir->condition, &predicate);
2154 }
2155
2156 for (i = 0; i < type_size(ir->lhs->type); i++) {
2157 vec4_instruction *inst = emit(MOV(dst, src));
2158 inst->predicate = predicate;
2159
2160 dst.reg_offset++;
2161 src.reg_offset++;
2162 }
2163 }
2164
2165 void
2166 vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir)
2167 {
2168 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2169 foreach_in_list(ir_constant, field_value, &ir->components) {
2170 emit_constant_values(dst, field_value);
2171 }
2172 return;
2173 }
2174
2175 if (ir->type->is_array()) {
2176 for (unsigned int i = 0; i < ir->type->length; i++) {
2177 emit_constant_values(dst, ir->array_elements[i]);
2178 }
2179 return;
2180 }
2181
2182 if (ir->type->is_matrix()) {
2183 for (int i = 0; i < ir->type->matrix_columns; i++) {
2184 float *vec = &ir->value.f[i * ir->type->vector_elements];
2185
2186 for (int j = 0; j < ir->type->vector_elements; j++) {
2187 dst->writemask = 1 << j;
2188 dst->type = BRW_REGISTER_TYPE_F;
2189
2190 emit(MOV(*dst, src_reg(vec[j])));
2191 }
2192 dst->reg_offset++;
2193 }
2194 return;
2195 }
2196
2197 int remaining_writemask = (1 << ir->type->vector_elements) - 1;
2198
2199 for (int i = 0; i < ir->type->vector_elements; i++) {
2200 if (!(remaining_writemask & (1 << i)))
2201 continue;
2202
2203 dst->writemask = 1 << i;
2204 dst->type = brw_type_for_base_type(ir->type);
2205
2206 /* Find other components that match the one we're about to
2207 * write. Emits fewer instructions for things like vec4(0.5,
2208 * 1.5, 1.5, 1.5).
2209 */
2210 for (int j = i + 1; j < ir->type->vector_elements; j++) {
2211 if (ir->type->base_type == GLSL_TYPE_BOOL) {
2212 if (ir->value.b[i] == ir->value.b[j])
2213 dst->writemask |= (1 << j);
2214 } else {
2215 /* u, i, and f storage all line up, so no need for a
2216 * switch case for comparing each type.
2217 */
2218 if (ir->value.u[i] == ir->value.u[j])
2219 dst->writemask |= (1 << j);
2220 }
2221 }
2222
2223 switch (ir->type->base_type) {
2224 case GLSL_TYPE_FLOAT:
2225 emit(MOV(*dst, src_reg(ir->value.f[i])));
2226 break;
2227 case GLSL_TYPE_INT:
2228 emit(MOV(*dst, src_reg(ir->value.i[i])));
2229 break;
2230 case GLSL_TYPE_UINT:
2231 emit(MOV(*dst, src_reg(ir->value.u[i])));
2232 break;
2233 case GLSL_TYPE_BOOL:
2234 emit(MOV(*dst, src_reg(ir->value.b[i])));
2235 break;
2236 default:
2237 unreachable("Non-float/uint/int/bool constant");
2238 }
2239
2240 remaining_writemask &= ~dst->writemask;
2241 }
2242 dst->reg_offset++;
2243 }
2244
2245 void
2246 vec4_visitor::visit(ir_constant *ir)
2247 {
2248 dst_reg dst = dst_reg(this, ir->type);
2249 this->result = src_reg(dst);
2250
2251 emit_constant_values(&dst, ir);
2252 }
2253
2254 void
2255 vec4_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
2256 {
2257 ir_dereference *deref = static_cast<ir_dereference *>(
2258 ir->actual_parameters.get_head());
2259 ir_variable *location = deref->variable_referenced();
2260 unsigned surf_index = (prog_data->base.binding_table.abo_start +
2261 location->data.atomic.buffer_index);
2262
2263 /* Calculate the surface offset */
2264 src_reg offset(this, glsl_type::uint_type);
2265 ir_dereference_array *deref_array = deref->as_dereference_array();
2266 if (deref_array) {
2267 deref_array->array_index->accept(this);
2268
2269 src_reg tmp(this, glsl_type::uint_type);
2270 emit(MUL(dst_reg(tmp), this->result, ATOMIC_COUNTER_SIZE));
2271 emit(ADD(dst_reg(offset), tmp, location->data.atomic.offset));
2272 } else {
2273 offset = location->data.atomic.offset;
2274 }
2275
2276 /* Emit the appropriate machine instruction */
2277 const char *callee = ir->callee->function_name();
2278 dst_reg dst = get_assignment_lhs(ir->return_deref, this);
2279
2280 if (!strcmp("__intrinsic_atomic_read", callee)) {
2281 emit_untyped_surface_read(surf_index, dst, offset);
2282
2283 } else if (!strcmp("__intrinsic_atomic_increment", callee)) {
2284 emit_untyped_atomic(BRW_AOP_INC, surf_index, dst, offset,
2285 src_reg(), src_reg());
2286
2287 } else if (!strcmp("__intrinsic_atomic_predecrement", callee)) {
2288 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dst, offset,
2289 src_reg(), src_reg());
2290 }
2291 }
2292
2293 void
2294 vec4_visitor::visit(ir_call *ir)
2295 {
2296 const char *callee = ir->callee->function_name();
2297
2298 if (!strcmp("__intrinsic_atomic_read", callee) ||
2299 !strcmp("__intrinsic_atomic_increment", callee) ||
2300 !strcmp("__intrinsic_atomic_predecrement", callee)) {
2301 visit_atomic_counter_intrinsic(ir);
2302 } else {
2303 unreachable("Unsupported intrinsic.");
2304 }
2305 }
2306
2307 src_reg
2308 vec4_visitor::emit_mcs_fetch(ir_texture *ir, src_reg coordinate, uint32_t sampler)
2309 {
2310 vec4_instruction *inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXF_MCS);
2311 inst->base_mrf = 2;
2312 inst->mlen = 1;
2313 inst->dst = dst_reg(this, glsl_type::uvec4_type);
2314 inst->dst.writemask = WRITEMASK_XYZW;
2315
2316 inst->src[1] = src_reg(sampler);
2317
2318 /* parameters are: u, v, r, lod; lod will always be zero due to api restrictions */
2319 int param_base = inst->base_mrf;
2320 int coord_mask = (1 << ir->coordinate->type->vector_elements) - 1;
2321 int zero_mask = 0xf & ~coord_mask;
2322
2323 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask),
2324 coordinate));
2325
2326 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask),
2327 src_reg(0)));
2328
2329 emit(inst);
2330 return src_reg(inst->dst);
2331 }
2332
2333 void
2334 vec4_visitor::visit(ir_texture *ir)
2335 {
2336 uint32_t sampler =
2337 _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
2338
2339 /* When tg4 is used with the degenerate ZERO/ONE swizzles, don't bother
2340 * emitting anything other than setting up the constant result.
2341 */
2342 if (ir->op == ir_tg4) {
2343 ir_constant *chan = ir->lod_info.component->as_constant();
2344 int swiz = GET_SWZ(key->tex.swizzles[sampler], chan->value.i[0]);
2345 if (swiz == SWIZZLE_ZERO || swiz == SWIZZLE_ONE) {
2346 dst_reg result(this, ir->type);
2347 this->result = src_reg(result);
2348 emit(MOV(result, src_reg(swiz == SWIZZLE_ONE ? 1.0f : 0.0f)));
2349 return;
2350 }
2351 }
2352
2353 /* Should be lowered by do_lower_texture_projection */
2354 assert(!ir->projector);
2355
2356 /* Should be lowered */
2357 assert(!ir->offset || !ir->offset->type->is_array());
2358
2359 /* Generate code to compute all the subexpression trees. This has to be
2360 * done before loading any values into MRFs for the sampler message since
2361 * generating these values may involve SEND messages that need the MRFs.
2362 */
2363 src_reg coordinate;
2364 if (ir->coordinate) {
2365 ir->coordinate->accept(this);
2366 coordinate = this->result;
2367 }
2368
2369 src_reg shadow_comparitor;
2370 if (ir->shadow_comparitor) {
2371 ir->shadow_comparitor->accept(this);
2372 shadow_comparitor = this->result;
2373 }
2374
2375 bool has_nonconstant_offset = ir->offset && !ir->offset->as_constant();
2376 src_reg offset_value;
2377 if (has_nonconstant_offset) {
2378 ir->offset->accept(this);
2379 offset_value = src_reg(this->result);
2380 }
2381
2382 const glsl_type *lod_type = NULL, *sample_index_type = NULL;
2383 src_reg lod, dPdx, dPdy, sample_index, mcs;
2384 switch (ir->op) {
2385 case ir_tex:
2386 lod = src_reg(0.0f);
2387 lod_type = glsl_type::float_type;
2388 break;
2389 case ir_txf:
2390 case ir_txl:
2391 case ir_txs:
2392 ir->lod_info.lod->accept(this);
2393 lod = this->result;
2394 lod_type = ir->lod_info.lod->type;
2395 break;
2396 case ir_query_levels:
2397 lod = src_reg(0);
2398 lod_type = glsl_type::int_type;
2399 break;
2400 case ir_txf_ms:
2401 ir->lod_info.sample_index->accept(this);
2402 sample_index = this->result;
2403 sample_index_type = ir->lod_info.sample_index->type;
2404
2405 if (brw->gen >= 7 && key->tex.compressed_multisample_layout_mask & (1<<sampler))
2406 mcs = emit_mcs_fetch(ir, coordinate, sampler);
2407 else
2408 mcs = src_reg(0u);
2409 break;
2410 case ir_txd:
2411 ir->lod_info.grad.dPdx->accept(this);
2412 dPdx = this->result;
2413
2414 ir->lod_info.grad.dPdy->accept(this);
2415 dPdy = this->result;
2416
2417 lod_type = ir->lod_info.grad.dPdx->type;
2418 break;
2419 case ir_txb:
2420 case ir_lod:
2421 case ir_tg4:
2422 break;
2423 }
2424
2425 enum opcode opcode;
2426 switch (ir->op) {
2427 case ir_tex: opcode = SHADER_OPCODE_TXL; break;
2428 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
2429 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
2430 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
2431 case ir_txf_ms: opcode = SHADER_OPCODE_TXF_CMS; break;
2432 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
2433 case ir_tg4: opcode = has_nonconstant_offset
2434 ? SHADER_OPCODE_TG4_OFFSET : SHADER_OPCODE_TG4; break;
2435 case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
2436 case ir_txb:
2437 unreachable("TXB is not valid for vertex shaders.");
2438 case ir_lod:
2439 unreachable("LOD is not valid for vertex shaders.");
2440 default:
2441 unreachable("Unrecognized tex op");
2442 }
2443
2444 vec4_instruction *inst = new(mem_ctx) vec4_instruction(this, opcode);
2445
2446 if (ir->offset != NULL && ir->op != ir_txf)
2447 inst->texture_offset = brw_texture_offset(ctx, ir->offset->as_constant());
2448
2449 /* Stuff the channel select bits in the top of the texture offset */
2450 if (ir->op == ir_tg4)
2451 inst->texture_offset |= gather_channel(ir, sampler) << 16;
2452
2453 /* The message header is necessary for:
2454 * - Gen4 (always)
2455 * - Texel offsets
2456 * - Gather channel selection
2457 * - Sampler indices too large to fit in a 4-bit value.
2458 */
2459 inst->header_present =
2460 brw->gen < 5 || inst->texture_offset != 0 || ir->op == ir_tg4 ||
2461 sampler >= 16;
2462 inst->base_mrf = 2;
2463 inst->mlen = inst->header_present + 1; /* always at least one */
2464 inst->dst = dst_reg(this, ir->type);
2465 inst->dst.writemask = WRITEMASK_XYZW;
2466 inst->shadow_compare = ir->shadow_comparitor != NULL;
2467
2468 inst->src[1] = src_reg(sampler);
2469
2470 /* MRF for the first parameter */
2471 int param_base = inst->base_mrf + inst->header_present;
2472
2473 if (ir->op == ir_txs || ir->op == ir_query_levels) {
2474 int writemask = brw->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
2475 emit(MOV(dst_reg(MRF, param_base, lod_type, writemask), lod));
2476 } else {
2477 /* Load the coordinate */
2478 /* FINISHME: gl_clamp_mask and saturate */
2479 int coord_mask = (1 << ir->coordinate->type->vector_elements) - 1;
2480 int zero_mask = 0xf & ~coord_mask;
2481
2482 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask),
2483 coordinate));
2484
2485 if (zero_mask != 0) {
2486 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask),
2487 src_reg(0)));
2488 }
2489 /* Load the shadow comparitor */
2490 if (ir->shadow_comparitor && ir->op != ir_txd && (ir->op != ir_tg4 || !has_nonconstant_offset)) {
2491 emit(MOV(dst_reg(MRF, param_base + 1, ir->shadow_comparitor->type,
2492 WRITEMASK_X),
2493 shadow_comparitor));
2494 inst->mlen++;
2495 }
2496
2497 /* Load the LOD info */
2498 if (ir->op == ir_tex || ir->op == ir_txl) {
2499 int mrf, writemask;
2500 if (brw->gen >= 5) {
2501 mrf = param_base + 1;
2502 if (ir->shadow_comparitor) {
2503 writemask = WRITEMASK_Y;
2504 /* mlen already incremented */
2505 } else {
2506 writemask = WRITEMASK_X;
2507 inst->mlen++;
2508 }
2509 } else /* brw->gen == 4 */ {
2510 mrf = param_base;
2511 writemask = WRITEMASK_W;
2512 }
2513 emit(MOV(dst_reg(MRF, mrf, lod_type, writemask), lod));
2514 } else if (ir->op == ir_txf) {
2515 emit(MOV(dst_reg(MRF, param_base, lod_type, WRITEMASK_W), lod));
2516 } else if (ir->op == ir_txf_ms) {
2517 emit(MOV(dst_reg(MRF, param_base + 1, sample_index_type, WRITEMASK_X),
2518 sample_index));
2519 if (brw->gen >= 7)
2520 /* MCS data is in the first channel of `mcs`, but we need to get it into
2521 * the .y channel of the second vec4 of params, so replicate .x across
2522 * the whole vec4 and then mask off everything except .y
2523 */
2524 mcs.swizzle = BRW_SWIZZLE_XXXX;
2525 emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::uint_type, WRITEMASK_Y),
2526 mcs));
2527 inst->mlen++;
2528 } else if (ir->op == ir_txd) {
2529 const glsl_type *type = lod_type;
2530
2531 if (brw->gen >= 5) {
2532 dPdx.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
2533 dPdy.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
2534 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), dPdx));
2535 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), dPdy));
2536 inst->mlen++;
2537
2538 if (ir->type->vector_elements == 3 || ir->shadow_comparitor) {
2539 dPdx.swizzle = BRW_SWIZZLE_ZZZZ;
2540 dPdy.swizzle = BRW_SWIZZLE_ZZZZ;
2541 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), dPdx));
2542 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), dPdy));
2543 inst->mlen++;
2544
2545 if (ir->shadow_comparitor) {
2546 emit(MOV(dst_reg(MRF, param_base + 2,
2547 ir->shadow_comparitor->type, WRITEMASK_Z),
2548 shadow_comparitor));
2549 }
2550 }
2551 } else /* brw->gen == 4 */ {
2552 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), dPdx));
2553 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), dPdy));
2554 inst->mlen += 2;
2555 }
2556 } else if (ir->op == ir_tg4 && has_nonconstant_offset) {
2557 if (ir->shadow_comparitor) {
2558 emit(MOV(dst_reg(MRF, param_base, ir->shadow_comparitor->type, WRITEMASK_W),
2559 shadow_comparitor));
2560 }
2561
2562 emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::ivec2_type, WRITEMASK_XY),
2563 offset_value));
2564 inst->mlen++;
2565 }
2566 }
2567
2568 emit(inst);
2569
2570 /* fixup num layers (z) for cube arrays: hardware returns faces * layers;
2571 * spec requires layers.
2572 */
2573 if (ir->op == ir_txs) {
2574 glsl_type const *type = ir->sampler->type;
2575 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2576 type->sampler_array) {
2577 emit_math(SHADER_OPCODE_INT_QUOTIENT,
2578 writemask(inst->dst, WRITEMASK_Z),
2579 src_reg(inst->dst), src_reg(6));
2580 }
2581 }
2582
2583 if (brw->gen == 6 && ir->op == ir_tg4) {
2584 emit_gen6_gather_wa(key->tex.gen6_gather_wa[sampler], inst->dst);
2585 }
2586
2587 swizzle_result(ir, src_reg(inst->dst), sampler);
2588 }
2589
2590 /**
2591 * Apply workarounds for Gen6 gather with UINT/SINT
2592 */
2593 void
2594 vec4_visitor::emit_gen6_gather_wa(uint8_t wa, dst_reg dst)
2595 {
2596 if (!wa)
2597 return;
2598
2599 int width = (wa & WA_8BIT) ? 8 : 16;
2600 dst_reg dst_f = dst;
2601 dst_f.type = BRW_REGISTER_TYPE_F;
2602
2603 /* Convert from UNORM to UINT */
2604 emit(MUL(dst_f, src_reg(dst_f), src_reg((float)((1 << width) - 1))));
2605 emit(MOV(dst, src_reg(dst_f)));
2606
2607 if (wa & WA_SIGN) {
2608 /* Reinterpret the UINT value as a signed INT value by
2609 * shifting the sign bit into place, then shifting back
2610 * preserving sign.
2611 */
2612 emit(SHL(dst, src_reg(dst), src_reg(32 - width)));
2613 emit(ASR(dst, src_reg(dst), src_reg(32 - width)));
2614 }
2615 }
2616
2617 /**
2618 * Set up the gather channel based on the swizzle, for gather4.
2619 */
2620 uint32_t
2621 vec4_visitor::gather_channel(ir_texture *ir, uint32_t sampler)
2622 {
2623 ir_constant *chan = ir->lod_info.component->as_constant();
2624 int swiz = GET_SWZ(key->tex.swizzles[sampler], chan->value.i[0]);
2625 switch (swiz) {
2626 case SWIZZLE_X: return 0;
2627 case SWIZZLE_Y:
2628 /* gather4 sampler is broken for green channel on RG32F --
2629 * we must ask for blue instead.
2630 */
2631 if (key->tex.gather_channel_quirk_mask & (1<<sampler))
2632 return 2;
2633 return 1;
2634 case SWIZZLE_Z: return 2;
2635 case SWIZZLE_W: return 3;
2636 default:
2637 unreachable("Not reached"); /* zero, one swizzles handled already */
2638 }
2639 }
2640
2641 void
2642 vec4_visitor::swizzle_result(ir_texture *ir, src_reg orig_val, uint32_t sampler)
2643 {
2644 int s = key->tex.swizzles[sampler];
2645
2646 this->result = src_reg(this, ir->type);
2647 dst_reg swizzled_result(this->result);
2648
2649 if (ir->op == ir_query_levels) {
2650 /* # levels is in .w */
2651 orig_val.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
2652 emit(MOV(swizzled_result, orig_val));
2653 return;
2654 }
2655
2656 if (ir->op == ir_txs || ir->type == glsl_type::float_type
2657 || s == SWIZZLE_NOOP || ir->op == ir_tg4) {
2658 emit(MOV(swizzled_result, orig_val));
2659 return;
2660 }
2661
2662
2663 int zero_mask = 0, one_mask = 0, copy_mask = 0;
2664 int swizzle[4] = {0};
2665
2666 for (int i = 0; i < 4; i++) {
2667 switch (GET_SWZ(s, i)) {
2668 case SWIZZLE_ZERO:
2669 zero_mask |= (1 << i);
2670 break;
2671 case SWIZZLE_ONE:
2672 one_mask |= (1 << i);
2673 break;
2674 default:
2675 copy_mask |= (1 << i);
2676 swizzle[i] = GET_SWZ(s, i);
2677 break;
2678 }
2679 }
2680
2681 if (copy_mask) {
2682 orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2683 swizzled_result.writemask = copy_mask;
2684 emit(MOV(swizzled_result, orig_val));
2685 }
2686
2687 if (zero_mask) {
2688 swizzled_result.writemask = zero_mask;
2689 emit(MOV(swizzled_result, src_reg(0.0f)));
2690 }
2691
2692 if (one_mask) {
2693 swizzled_result.writemask = one_mask;
2694 emit(MOV(swizzled_result, src_reg(1.0f)));
2695 }
2696 }
2697
2698 void
2699 vec4_visitor::visit(ir_return *)
2700 {
2701 unreachable("not reached");
2702 }
2703
2704 void
2705 vec4_visitor::visit(ir_discard *)
2706 {
2707 unreachable("not reached");
2708 }
2709
2710 void
2711 vec4_visitor::visit(ir_if *ir)
2712 {
2713 /* Don't point the annotation at the if statement, because then it plus
2714 * the then and else blocks get printed.
2715 */
2716 this->base_ir = ir->condition;
2717
2718 if (brw->gen == 6) {
2719 emit_if_gen6(ir);
2720 } else {
2721 enum brw_predicate predicate;
2722 emit_bool_to_cond_code(ir->condition, &predicate);
2723 emit(IF(predicate));
2724 }
2725
2726 visit_instructions(&ir->then_instructions);
2727
2728 if (!ir->else_instructions.is_empty()) {
2729 this->base_ir = ir->condition;
2730 emit(BRW_OPCODE_ELSE);
2731
2732 visit_instructions(&ir->else_instructions);
2733 }
2734
2735 this->base_ir = ir->condition;
2736 emit(BRW_OPCODE_ENDIF);
2737 }
2738
2739 void
2740 vec4_visitor::visit(ir_emit_vertex *)
2741 {
2742 unreachable("not reached");
2743 }
2744
2745 void
2746 vec4_visitor::visit(ir_end_primitive *)
2747 {
2748 unreachable("not reached");
2749 }
2750
2751 void
2752 vec4_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
2753 dst_reg dst, src_reg offset,
2754 src_reg src0, src_reg src1)
2755 {
2756 unsigned mlen = 0;
2757
2758 /* Set the atomic operation offset. */
2759 emit(MOV(brw_writemask(brw_uvec_mrf(8, mlen, 0), WRITEMASK_X), offset));
2760 mlen++;
2761
2762 /* Set the atomic operation arguments. */
2763 if (src0.file != BAD_FILE) {
2764 emit(MOV(brw_writemask(brw_uvec_mrf(8, mlen, 0), WRITEMASK_X), src0));
2765 mlen++;
2766 }
2767
2768 if (src1.file != BAD_FILE) {
2769 emit(MOV(brw_writemask(brw_uvec_mrf(8, mlen, 0), WRITEMASK_X), src1));
2770 mlen++;
2771 }
2772
2773 /* Emit the instruction. Note that this maps to the normal SIMD8
2774 * untyped atomic message on Ivy Bridge, but that's OK because
2775 * unused channels will be masked out.
2776 */
2777 vec4_instruction *inst = emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst,
2778 src_reg(atomic_op), src_reg(surf_index));
2779 inst->base_mrf = 0;
2780 inst->mlen = mlen;
2781 }
2782
2783 void
2784 vec4_visitor::emit_untyped_surface_read(unsigned surf_index, dst_reg dst,
2785 src_reg offset)
2786 {
2787 /* Set the surface read offset. */
2788 emit(MOV(brw_writemask(brw_uvec_mrf(8, 0, 0), WRITEMASK_X), offset));
2789
2790 /* Emit the instruction. Note that this maps to the normal SIMD8
2791 * untyped surface read message, but that's OK because unused
2792 * channels will be masked out.
2793 */
2794 vec4_instruction *inst = emit(SHADER_OPCODE_UNTYPED_SURFACE_READ,
2795 dst, src_reg(surf_index));
2796 inst->base_mrf = 0;
2797 inst->mlen = 1;
2798 }
2799
2800 void
2801 vec4_visitor::emit_ndc_computation()
2802 {
2803 /* Get the position */
2804 src_reg pos = src_reg(output_reg[VARYING_SLOT_POS]);
2805
2806 /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
2807 dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
2808 output_reg[BRW_VARYING_SLOT_NDC] = ndc;
2809
2810 current_annotation = "NDC";
2811 dst_reg ndc_w = ndc;
2812 ndc_w.writemask = WRITEMASK_W;
2813 src_reg pos_w = pos;
2814 pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
2815 emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
2816
2817 dst_reg ndc_xyz = ndc;
2818 ndc_xyz.writemask = WRITEMASK_XYZ;
2819
2820 emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
2821 }
2822
2823 void
2824 vec4_visitor::emit_psiz_and_flags(struct brw_reg reg)
2825 {
2826 if (brw->gen < 6 &&
2827 ((prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) ||
2828 key->userclip_active || brw->has_negative_rhw_bug)) {
2829 dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
2830 dst_reg header1_w = header1;
2831 header1_w.writemask = WRITEMASK_W;
2832
2833 emit(MOV(header1, 0u));
2834
2835 if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
2836 src_reg psiz = src_reg(output_reg[VARYING_SLOT_PSIZ]);
2837
2838 current_annotation = "Point size";
2839 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
2840 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
2841 }
2842
2843 if (key->userclip_active) {
2844 current_annotation = "Clipping flags";
2845 dst_reg flags0 = dst_reg(this, glsl_type::uint_type);
2846 dst_reg flags1 = dst_reg(this, glsl_type::uint_type);
2847
2848 emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST0]), src_reg(0.0f), BRW_CONDITIONAL_L));
2849 emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags0, src_reg(0));
2850 emit(OR(header1_w, src_reg(header1_w), src_reg(flags0)));
2851
2852 emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST1]), src_reg(0.0f), BRW_CONDITIONAL_L));
2853 emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags1, src_reg(0));
2854 emit(SHL(flags1, src_reg(flags1), src_reg(4)));
2855 emit(OR(header1_w, src_reg(header1_w), src_reg(flags1)));
2856 }
2857
2858 /* i965 clipping workaround:
2859 * 1) Test for -ve rhw
2860 * 2) If set,
2861 * set ndc = (0,0,0,0)
2862 * set ucp[6] = 1
2863 *
2864 * Later, clipping will detect ucp[6] and ensure the primitive is
2865 * clipped against all fixed planes.
2866 */
2867 if (brw->has_negative_rhw_bug) {
2868 src_reg ndc_w = src_reg(output_reg[BRW_VARYING_SLOT_NDC]);
2869 ndc_w.swizzle = BRW_SWIZZLE_WWWW;
2870 emit(CMP(dst_null_f(), ndc_w, src_reg(0.0f), BRW_CONDITIONAL_L));
2871 vec4_instruction *inst;
2872 inst = emit(OR(header1_w, src_reg(header1_w), src_reg(1u << 6)));
2873 inst->predicate = BRW_PREDICATE_NORMAL;
2874 inst = emit(MOV(output_reg[BRW_VARYING_SLOT_NDC], src_reg(0.0f)));
2875 inst->predicate = BRW_PREDICATE_NORMAL;
2876 }
2877
2878 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
2879 } else if (brw->gen < 6) {
2880 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
2881 } else {
2882 emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
2883 if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
2884 emit(MOV(brw_writemask(reg, WRITEMASK_W),
2885 src_reg(output_reg[VARYING_SLOT_PSIZ])));
2886 }
2887 if (prog_data->vue_map.slots_valid & VARYING_BIT_LAYER) {
2888 emit(MOV(retype(brw_writemask(reg, WRITEMASK_Y), BRW_REGISTER_TYPE_D),
2889 src_reg(output_reg[VARYING_SLOT_LAYER])));
2890 }
2891 if (prog_data->vue_map.slots_valid & VARYING_BIT_VIEWPORT) {
2892 emit(MOV(retype(brw_writemask(reg, WRITEMASK_Z), BRW_REGISTER_TYPE_D),
2893 src_reg(output_reg[VARYING_SLOT_VIEWPORT])));
2894 }
2895 }
2896 }
2897
2898 void
2899 vec4_visitor::emit_clip_distances(dst_reg reg, int offset)
2900 {
2901 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
2902 *
2903 * "If a linked set of shaders forming the vertex stage contains no
2904 * static write to gl_ClipVertex or gl_ClipDistance, but the
2905 * application has requested clipping against user clip planes through
2906 * the API, then the coordinate written to gl_Position is used for
2907 * comparison against the user clip planes."
2908 *
2909 * This function is only called if the shader didn't write to
2910 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
2911 * if the user wrote to it; otherwise we use gl_Position.
2912 */
2913 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
2914 if (!(prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX)) {
2915 clip_vertex = VARYING_SLOT_POS;
2916 }
2917
2918 for (int i = 0; i + offset < key->nr_userclip_plane_consts && i < 4;
2919 ++i) {
2920 reg.writemask = 1 << i;
2921 emit(DP4(reg,
2922 src_reg(output_reg[clip_vertex]),
2923 src_reg(this->userplane[i + offset])));
2924 }
2925 }
2926
2927 void
2928 vec4_visitor::emit_generic_urb_slot(dst_reg reg, int varying)
2929 {
2930 assert (varying < VARYING_SLOT_MAX);
2931 reg.type = output_reg[varying].type;
2932 current_annotation = output_reg_annotation[varying];
2933 /* Copy the register, saturating if necessary */
2934 vec4_instruction *inst = emit(MOV(reg,
2935 src_reg(output_reg[varying])));
2936 if ((varying == VARYING_SLOT_COL0 ||
2937 varying == VARYING_SLOT_COL1 ||
2938 varying == VARYING_SLOT_BFC0 ||
2939 varying == VARYING_SLOT_BFC1) &&
2940 key->clamp_vertex_color) {
2941 inst->saturate = true;
2942 }
2943 }
2944
2945 void
2946 vec4_visitor::emit_urb_slot(int mrf, int varying)
2947 {
2948 struct brw_reg hw_reg = brw_message_reg(mrf);
2949 dst_reg reg = dst_reg(MRF, mrf);
2950 reg.type = BRW_REGISTER_TYPE_F;
2951
2952 switch (varying) {
2953 case VARYING_SLOT_PSIZ:
2954 /* PSIZ is always in slot 0, and is coupled with other flags. */
2955 current_annotation = "indices, point width, clip flags";
2956 emit_psiz_and_flags(hw_reg);
2957 break;
2958 case BRW_VARYING_SLOT_NDC:
2959 current_annotation = "NDC";
2960 emit(MOV(reg, src_reg(output_reg[BRW_VARYING_SLOT_NDC])));
2961 break;
2962 case VARYING_SLOT_POS:
2963 current_annotation = "gl_Position";
2964 emit(MOV(reg, src_reg(output_reg[VARYING_SLOT_POS])));
2965 break;
2966 case VARYING_SLOT_EDGE:
2967 /* This is present when doing unfilled polygons. We're supposed to copy
2968 * the edge flag from the user-provided vertex array
2969 * (glEdgeFlagPointer), or otherwise we'll copy from the current value
2970 * of that attribute (starts as 1.0f). This is then used in clipping to
2971 * determine which edges should be drawn as wireframe.
2972 */
2973 current_annotation = "edge flag";
2974 emit(MOV(reg, src_reg(dst_reg(ATTR, VERT_ATTRIB_EDGEFLAG,
2975 glsl_type::float_type, WRITEMASK_XYZW))));
2976 break;
2977 case BRW_VARYING_SLOT_PAD:
2978 /* No need to write to this slot */
2979 break;
2980 default:
2981 emit_generic_urb_slot(reg, varying);
2982 break;
2983 }
2984 }
2985
2986 static int
2987 align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
2988 {
2989 if (brw->gen >= 6) {
2990 /* URB data written (does not include the message header reg) must
2991 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
2992 * section 5.4.3.2.2: URB_INTERLEAVED.
2993 *
2994 * URB entries are allocated on a multiple of 1024 bits, so an
2995 * extra 128 bits written here to make the end align to 256 is
2996 * no problem.
2997 */
2998 if ((mlen % 2) != 1)
2999 mlen++;
3000 }
3001
3002 return mlen;
3003 }
3004
3005
3006 /**
3007 * Generates the VUE payload plus the necessary URB write instructions to
3008 * output it.
3009 *
3010 * The VUE layout is documented in Volume 2a.
3011 */
3012 void
3013 vec4_visitor::emit_vertex()
3014 {
3015 /* MRF 0 is reserved for the debugger, so start with message header
3016 * in MRF 1.
3017 */
3018 int base_mrf = 1;
3019 int mrf = base_mrf;
3020 /* In the process of generating our URB write message contents, we
3021 * may need to unspill a register or load from an array. Those
3022 * reads would use MRFs 14-15.
3023 */
3024 int max_usable_mrf = 13;
3025
3026 /* The following assertion verifies that max_usable_mrf causes an
3027 * even-numbered amount of URB write data, which will meet gen6's
3028 * requirements for length alignment.
3029 */
3030 assert ((max_usable_mrf - base_mrf) % 2 == 0);
3031
3032 /* First mrf is the g0-based message header containing URB handles and
3033 * such.
3034 */
3035 emit_urb_write_header(mrf++);
3036
3037 if (brw->gen < 6) {
3038 emit_ndc_computation();
3039 }
3040
3041 /* Lower legacy ff and ClipVertex clipping to clip distances */
3042 if (key->userclip_active && !prog->UsesClipDistanceOut) {
3043 current_annotation = "user clip distances";
3044
3045 output_reg[VARYING_SLOT_CLIP_DIST0] = dst_reg(this, glsl_type::vec4_type);
3046 output_reg[VARYING_SLOT_CLIP_DIST1] = dst_reg(this, glsl_type::vec4_type);
3047
3048 emit_clip_distances(output_reg[VARYING_SLOT_CLIP_DIST0], 0);
3049 emit_clip_distances(output_reg[VARYING_SLOT_CLIP_DIST1], 4);
3050 }
3051
3052 /* We may need to split this up into several URB writes, so do them in a
3053 * loop.
3054 */
3055 int slot = 0;
3056 bool complete = false;
3057 do {
3058 /* URB offset is in URB row increments, and each of our MRFs is half of
3059 * one of those, since we're doing interleaved writes.
3060 */
3061 int offset = slot / 2;
3062
3063 mrf = base_mrf + 1;
3064 for (; slot < prog_data->vue_map.num_slots; ++slot) {
3065 emit_urb_slot(mrf++, prog_data->vue_map.slot_to_varying[slot]);
3066
3067 /* If this was max_usable_mrf, we can't fit anything more into this
3068 * URB WRITE.
3069 */
3070 if (mrf > max_usable_mrf) {
3071 slot++;
3072 break;
3073 }
3074 }
3075
3076 complete = slot >= prog_data->vue_map.num_slots;
3077 current_annotation = "URB write";
3078 vec4_instruction *inst = emit_urb_write_opcode(complete);
3079 inst->base_mrf = base_mrf;
3080 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
3081 inst->offset += offset;
3082 } while(!complete);
3083 }
3084
3085
3086 src_reg
3087 vec4_visitor::get_scratch_offset(vec4_instruction *inst,
3088 src_reg *reladdr, int reg_offset)
3089 {
3090 /* Because we store the values to scratch interleaved like our
3091 * vertex data, we need to scale the vec4 index by 2.
3092 */
3093 int message_header_scale = 2;
3094
3095 /* Pre-gen6, the message header uses byte offsets instead of vec4
3096 * (16-byte) offset units.
3097 */
3098 if (brw->gen < 6)
3099 message_header_scale *= 16;
3100
3101 if (reladdr) {
3102 src_reg index = src_reg(this, glsl_type::int_type);
3103
3104 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
3105 emit_before(inst, MUL(dst_reg(index),
3106 index, src_reg(message_header_scale)));
3107
3108 return index;
3109 } else {
3110 return src_reg(reg_offset * message_header_scale);
3111 }
3112 }
3113
3114 src_reg
3115 vec4_visitor::get_pull_constant_offset(vec4_instruction *inst,
3116 src_reg *reladdr, int reg_offset)
3117 {
3118 if (reladdr) {
3119 src_reg index = src_reg(this, glsl_type::int_type);
3120
3121 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
3122
3123 /* Pre-gen6, the message header uses byte offsets instead of vec4
3124 * (16-byte) offset units.
3125 */
3126 if (brw->gen < 6) {
3127 emit_before(inst, MUL(dst_reg(index), index, src_reg(16)));
3128 }
3129
3130 return index;
3131 } else if (brw->gen >= 8) {
3132 /* Store the offset in a GRF so we can send-from-GRF. */
3133 src_reg offset = src_reg(this, glsl_type::int_type);
3134 emit_before(inst, MOV(dst_reg(offset), src_reg(reg_offset)));
3135 return offset;
3136 } else {
3137 int message_header_scale = brw->gen < 6 ? 16 : 1;
3138 return src_reg(reg_offset * message_header_scale);
3139 }
3140 }
3141
3142 /**
3143 * Emits an instruction before @inst to load the value named by @orig_src
3144 * from scratch space at @base_offset to @temp.
3145 *
3146 * @base_offset is measured in 32-byte units (the size of a register).
3147 */
3148 void
3149 vec4_visitor::emit_scratch_read(vec4_instruction *inst,
3150 dst_reg temp, src_reg orig_src,
3151 int base_offset)
3152 {
3153 int reg_offset = base_offset + orig_src.reg_offset;
3154 src_reg index = get_scratch_offset(inst, orig_src.reladdr, reg_offset);
3155
3156 emit_before(inst, SCRATCH_READ(temp, index));
3157 }
3158
3159 /**
3160 * Emits an instruction after @inst to store the value to be written
3161 * to @orig_dst to scratch space at @base_offset, from @temp.
3162 *
3163 * @base_offset is measured in 32-byte units (the size of a register).
3164 */
3165 void
3166 vec4_visitor::emit_scratch_write(vec4_instruction *inst, int base_offset)
3167 {
3168 int reg_offset = base_offset + inst->dst.reg_offset;
3169 src_reg index = get_scratch_offset(inst, inst->dst.reladdr, reg_offset);
3170
3171 /* Create a temporary register to store *inst's result in.
3172 *
3173 * We have to be careful in MOVing from our temporary result register in
3174 * the scratch write. If we swizzle from channels of the temporary that
3175 * weren't initialized, it will confuse live interval analysis, which will
3176 * make spilling fail to make progress.
3177 */
3178 src_reg temp = src_reg(this, glsl_type::vec4_type);
3179 temp.type = inst->dst.type;
3180 int first_writemask_chan = ffs(inst->dst.writemask) - 1;
3181 int swizzles[4];
3182 for (int i = 0; i < 4; i++)
3183 if (inst->dst.writemask & (1 << i))
3184 swizzles[i] = i;
3185 else
3186 swizzles[i] = first_writemask_chan;
3187 temp.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
3188 swizzles[2], swizzles[3]);
3189
3190 dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
3191 inst->dst.writemask));
3192 vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
3193 write->predicate = inst->predicate;
3194 write->ir = inst->ir;
3195 write->annotation = inst->annotation;
3196 inst->insert_after(write);
3197
3198 inst->dst.file = temp.file;
3199 inst->dst.reg = temp.reg;
3200 inst->dst.reg_offset = temp.reg_offset;
3201 inst->dst.reladdr = NULL;
3202 }
3203
3204 /**
3205 * We can't generally support array access in GRF space, because a
3206 * single instruction's destination can only span 2 contiguous
3207 * registers. So, we send all GRF arrays that get variable index
3208 * access to scratch space.
3209 */
3210 void
3211 vec4_visitor::move_grf_array_access_to_scratch()
3212 {
3213 int scratch_loc[this->virtual_grf_count];
3214
3215 for (int i = 0; i < this->virtual_grf_count; i++) {
3216 scratch_loc[i] = -1;
3217 }
3218
3219 /* First, calculate the set of virtual GRFs that need to be punted
3220 * to scratch due to having any array access on them, and where in
3221 * scratch.
3222 */
3223 foreach_in_list(vec4_instruction, inst, &instructions) {
3224 if (inst->dst.file == GRF && inst->dst.reladdr &&
3225 scratch_loc[inst->dst.reg] == -1) {
3226 scratch_loc[inst->dst.reg] = c->last_scratch;
3227 c->last_scratch += this->virtual_grf_sizes[inst->dst.reg];
3228 }
3229
3230 for (int i = 0 ; i < 3; i++) {
3231 src_reg *src = &inst->src[i];
3232
3233 if (src->file == GRF && src->reladdr &&
3234 scratch_loc[src->reg] == -1) {
3235 scratch_loc[src->reg] = c->last_scratch;
3236 c->last_scratch += this->virtual_grf_sizes[src->reg];
3237 }
3238 }
3239 }
3240
3241 /* Now, for anything that will be accessed through scratch, rewrite
3242 * it to load/store. Note that this is a _safe list walk, because
3243 * we may generate a new scratch_write instruction after the one
3244 * we're processing.
3245 */
3246 foreach_in_list_safe(vec4_instruction, inst, &instructions) {
3247 /* Set up the annotation tracking for new generated instructions. */
3248 base_ir = inst->ir;
3249 current_annotation = inst->annotation;
3250
3251 if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) {
3252 emit_scratch_write(inst, scratch_loc[inst->dst.reg]);
3253 }
3254
3255 for (int i = 0 ; i < 3; i++) {
3256 if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1)
3257 continue;
3258
3259 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
3260
3261 emit_scratch_read(inst, temp, inst->src[i],
3262 scratch_loc[inst->src[i].reg]);
3263
3264 inst->src[i].file = temp.file;
3265 inst->src[i].reg = temp.reg;
3266 inst->src[i].reg_offset = temp.reg_offset;
3267 inst->src[i].reladdr = NULL;
3268 }
3269 }
3270 }
3271
3272 /**
3273 * Emits an instruction before @inst to load the value named by @orig_src
3274 * from the pull constant buffer (surface) at @base_offset to @temp.
3275 */
3276 void
3277 vec4_visitor::emit_pull_constant_load(vec4_instruction *inst,
3278 dst_reg temp, src_reg orig_src,
3279 int base_offset)
3280 {
3281 int reg_offset = base_offset + orig_src.reg_offset;
3282 src_reg index = src_reg(prog_data->base.binding_table.pull_constants_start);
3283 src_reg offset = get_pull_constant_offset(inst, orig_src.reladdr, reg_offset);
3284 vec4_instruction *load;
3285
3286 if (brw->gen >= 7) {
3287 dst_reg grf_offset = dst_reg(this, glsl_type::int_type);
3288 grf_offset.type = offset.type;
3289 emit_before(inst, MOV(grf_offset, offset));
3290
3291 load = new(mem_ctx) vec4_instruction(this,
3292 VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
3293 temp, index, src_reg(grf_offset));
3294 } else {
3295 load = new(mem_ctx) vec4_instruction(this, VS_OPCODE_PULL_CONSTANT_LOAD,
3296 temp, index, offset);
3297 load->base_mrf = 14;
3298 load->mlen = 1;
3299 }
3300 emit_before(inst, load);
3301 }
3302
3303 /**
3304 * Implements array access of uniforms by inserting a
3305 * PULL_CONSTANT_LOAD instruction.
3306 *
3307 * Unlike temporary GRF array access (where we don't support it due to
3308 * the difficulty of doing relative addressing on instruction
3309 * destinations), we could potentially do array access of uniforms
3310 * that were loaded in GRF space as push constants. In real-world
3311 * usage we've seen, though, the arrays being used are always larger
3312 * than we could load as push constants, so just always move all
3313 * uniform array access out to a pull constant buffer.
3314 */
3315 void
3316 vec4_visitor::move_uniform_array_access_to_pull_constants()
3317 {
3318 int pull_constant_loc[this->uniforms];
3319
3320 for (int i = 0; i < this->uniforms; i++) {
3321 pull_constant_loc[i] = -1;
3322 }
3323
3324 /* Walk through and find array access of uniforms. Put a copy of that
3325 * uniform in the pull constant buffer.
3326 *
3327 * Note that we don't move constant-indexed accesses to arrays. No
3328 * testing has been done of the performance impact of this choice.
3329 */
3330 foreach_in_list_safe(vec4_instruction, inst, &instructions) {
3331 for (int i = 0 ; i < 3; i++) {
3332 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
3333 continue;
3334
3335 int uniform = inst->src[i].reg;
3336
3337 /* If this array isn't already present in the pull constant buffer,
3338 * add it.
3339 */
3340 if (pull_constant_loc[uniform] == -1) {
3341 const gl_constant_value **values =
3342 &stage_prog_data->param[uniform * 4];
3343
3344 pull_constant_loc[uniform] = stage_prog_data->nr_pull_params / 4;
3345
3346 assert(uniform < uniform_array_size);
3347 for (int j = 0; j < uniform_size[uniform] * 4; j++) {
3348 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++]
3349 = values[j];
3350 }
3351 }
3352
3353 /* Set up the annotation tracking for new generated instructions. */
3354 base_ir = inst->ir;
3355 current_annotation = inst->annotation;
3356
3357 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
3358
3359 emit_pull_constant_load(inst, temp, inst->src[i],
3360 pull_constant_loc[uniform]);
3361
3362 inst->src[i].file = temp.file;
3363 inst->src[i].reg = temp.reg;
3364 inst->src[i].reg_offset = temp.reg_offset;
3365 inst->src[i].reladdr = NULL;
3366 }
3367 }
3368
3369 /* Now there are no accesses of the UNIFORM file with a reladdr, so
3370 * no need to track them as larger-than-vec4 objects. This will be
3371 * relied on in cutting out unused uniform vectors from push
3372 * constants.
3373 */
3374 split_uniform_registers();
3375 }
3376
3377 void
3378 vec4_visitor::resolve_ud_negate(src_reg *reg)
3379 {
3380 if (reg->type != BRW_REGISTER_TYPE_UD ||
3381 !reg->negate)
3382 return;
3383
3384 src_reg temp = src_reg(this, glsl_type::uvec4_type);
3385 emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
3386 *reg = temp;
3387 }
3388
3389 vec4_visitor::vec4_visitor(struct brw_context *brw,
3390 struct brw_vec4_compile *c,
3391 struct gl_program *prog,
3392 const struct brw_vec4_prog_key *key,
3393 struct brw_vec4_prog_data *prog_data,
3394 struct gl_shader_program *shader_prog,
3395 gl_shader_stage stage,
3396 void *mem_ctx,
3397 bool debug_flag,
3398 bool no_spills,
3399 shader_time_shader_type st_base,
3400 shader_time_shader_type st_written,
3401 shader_time_shader_type st_reset)
3402 : backend_visitor(brw, shader_prog, prog, &prog_data->base, stage),
3403 c(c),
3404 key(key),
3405 prog_data(prog_data),
3406 sanity_param_count(0),
3407 fail_msg(NULL),
3408 first_non_payload_grf(0),
3409 need_all_constants_in_pull_buffer(false),
3410 debug_flag(debug_flag),
3411 no_spills(no_spills),
3412 st_base(st_base),
3413 st_written(st_written),
3414 st_reset(st_reset)
3415 {
3416 this->mem_ctx = mem_ctx;
3417 this->failed = false;
3418
3419 this->base_ir = NULL;
3420 this->current_annotation = NULL;
3421 memset(this->output_reg_annotation, 0, sizeof(this->output_reg_annotation));
3422
3423 this->variable_ht = hash_table_ctor(0,
3424 hash_table_pointer_hash,
3425 hash_table_pointer_compare);
3426
3427 this->virtual_grf_start = NULL;
3428 this->virtual_grf_end = NULL;
3429 this->virtual_grf_sizes = NULL;
3430 this->virtual_grf_count = 0;
3431 this->virtual_grf_reg_map = NULL;
3432 this->virtual_grf_reg_count = 0;
3433 this->virtual_grf_array_size = 0;
3434 this->live_intervals_valid = false;
3435
3436 this->max_grf = brw->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
3437
3438 this->uniforms = 0;
3439
3440 /* Initialize uniform_array_size to at least 1 because pre-gen6 VS requires
3441 * at least one. See setup_uniforms() in brw_vec4.cpp.
3442 */
3443 this->uniform_array_size = 1;
3444 if (prog_data) {
3445 this->uniform_array_size = MAX2(stage_prog_data->nr_params, 1);
3446 }
3447
3448 this->uniform_size = rzalloc_array(mem_ctx, int, this->uniform_array_size);
3449 this->uniform_vector_size = rzalloc_array(mem_ctx, int, this->uniform_array_size);
3450 }
3451
3452 vec4_visitor::~vec4_visitor()
3453 {
3454 hash_table_dtor(this->variable_ht);
3455 }
3456
3457
3458 void
3459 vec4_visitor::fail(const char *format, ...)
3460 {
3461 va_list va;
3462 char *msg;
3463
3464 if (failed)
3465 return;
3466
3467 failed = true;
3468
3469 va_start(va, format);
3470 msg = ralloc_vasprintf(mem_ctx, format, va);
3471 va_end(va);
3472 msg = ralloc_asprintf(mem_ctx, "vec4 compile failed: %s\n", msg);
3473
3474 this->fail_msg = msg;
3475
3476 if (debug_flag) {
3477 fprintf(stderr, "%s", msg);
3478 }
3479 }
3480
3481 } /* namespace brw */