i965: Remove fixed_hw_reg field from backend_reg.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_visitor.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_cfg.h"
26 #include "glsl/ir_uniform.h"
27 #include "program/sampler.h"
28
29 namespace brw {
30
31 vec4_instruction::vec4_instruction(enum opcode opcode, const dst_reg &dst,
32 const src_reg &src0, const src_reg &src1,
33 const src_reg &src2)
34 {
35 this->opcode = opcode;
36 this->dst = dst;
37 this->src[0] = src0;
38 this->src[1] = src1;
39 this->src[2] = src2;
40 this->saturate = false;
41 this->force_writemask_all = false;
42 this->no_dd_clear = false;
43 this->no_dd_check = false;
44 this->writes_accumulator = false;
45 this->conditional_mod = BRW_CONDITIONAL_NONE;
46 this->predicate = BRW_PREDICATE_NONE;
47 this->predicate_inverse = false;
48 this->target = 0;
49 this->regs_written = (dst.file == BAD_FILE ? 0 : 1);
50 this->shadow_compare = false;
51 this->ir = NULL;
52 this->urb_write_flags = BRW_URB_WRITE_NO_FLAGS;
53 this->header_size = 0;
54 this->flag_subreg = 0;
55 this->mlen = 0;
56 this->base_mrf = 0;
57 this->offset = 0;
58 this->annotation = NULL;
59 }
60
61 vec4_instruction *
62 vec4_visitor::emit(vec4_instruction *inst)
63 {
64 inst->ir = this->base_ir;
65 inst->annotation = this->current_annotation;
66
67 this->instructions.push_tail(inst);
68
69 return inst;
70 }
71
72 vec4_instruction *
73 vec4_visitor::emit_before(bblock_t *block, vec4_instruction *inst,
74 vec4_instruction *new_inst)
75 {
76 new_inst->ir = inst->ir;
77 new_inst->annotation = inst->annotation;
78
79 inst->insert_before(block, new_inst);
80
81 return inst;
82 }
83
84 vec4_instruction *
85 vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
86 const src_reg &src1, const src_reg &src2)
87 {
88 return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0, src1, src2));
89 }
90
91
92 vec4_instruction *
93 vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
94 const src_reg &src1)
95 {
96 return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0, src1));
97 }
98
99 vec4_instruction *
100 vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0)
101 {
102 return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0));
103 }
104
105 vec4_instruction *
106 vec4_visitor::emit(enum opcode opcode, const dst_reg &dst)
107 {
108 return emit(new(mem_ctx) vec4_instruction(opcode, dst));
109 }
110
111 vec4_instruction *
112 vec4_visitor::emit(enum opcode opcode)
113 {
114 return emit(new(mem_ctx) vec4_instruction(opcode, dst_reg()));
115 }
116
117 #define ALU1(op) \
118 vec4_instruction * \
119 vec4_visitor::op(const dst_reg &dst, const src_reg &src0) \
120 { \
121 return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, src0); \
122 }
123
124 #define ALU2(op) \
125 vec4_instruction * \
126 vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
127 const src_reg &src1) \
128 { \
129 return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, \
130 src0, src1); \
131 }
132
133 #define ALU2_ACC(op) \
134 vec4_instruction * \
135 vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
136 const src_reg &src1) \
137 { \
138 vec4_instruction *inst = new(mem_ctx) vec4_instruction( \
139 BRW_OPCODE_##op, dst, src0, src1); \
140 inst->writes_accumulator = true; \
141 return inst; \
142 }
143
144 #define ALU3(op) \
145 vec4_instruction * \
146 vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
147 const src_reg &src1, const src_reg &src2) \
148 { \
149 assert(devinfo->gen >= 6); \
150 return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, \
151 src0, src1, src2); \
152 }
153
154 ALU1(NOT)
155 ALU1(MOV)
156 ALU1(FRC)
157 ALU1(RNDD)
158 ALU1(RNDE)
159 ALU1(RNDZ)
160 ALU1(F32TO16)
161 ALU1(F16TO32)
162 ALU2(ADD)
163 ALU2(MUL)
164 ALU2_ACC(MACH)
165 ALU2(AND)
166 ALU2(OR)
167 ALU2(XOR)
168 ALU2(DP3)
169 ALU2(DP4)
170 ALU2(DPH)
171 ALU2(SHL)
172 ALU2(SHR)
173 ALU2(ASR)
174 ALU3(LRP)
175 ALU1(BFREV)
176 ALU3(BFE)
177 ALU2(BFI1)
178 ALU3(BFI2)
179 ALU1(FBH)
180 ALU1(FBL)
181 ALU1(CBIT)
182 ALU3(MAD)
183 ALU2_ACC(ADDC)
184 ALU2_ACC(SUBB)
185 ALU2(MAC)
186
187 /** Gen4 predicated IF. */
188 vec4_instruction *
189 vec4_visitor::IF(enum brw_predicate predicate)
190 {
191 vec4_instruction *inst;
192
193 inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_IF);
194 inst->predicate = predicate;
195
196 return inst;
197 }
198
199 /** Gen6 IF with embedded comparison. */
200 vec4_instruction *
201 vec4_visitor::IF(src_reg src0, src_reg src1,
202 enum brw_conditional_mod condition)
203 {
204 assert(devinfo->gen == 6);
205
206 vec4_instruction *inst;
207
208 resolve_ud_negate(&src0);
209 resolve_ud_negate(&src1);
210
211 inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_IF, dst_null_d(),
212 src0, src1);
213 inst->conditional_mod = condition;
214
215 return inst;
216 }
217
218 /**
219 * CMP: Sets the low bit of the destination channels with the result
220 * of the comparison, while the upper bits are undefined, and updates
221 * the flag register with the packed 16 bits of the result.
222 */
223 vec4_instruction *
224 vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1,
225 enum brw_conditional_mod condition)
226 {
227 vec4_instruction *inst;
228
229 /* Take the instruction:
230 *
231 * CMP null<d> src0<f> src1<f>
232 *
233 * Original gen4 does type conversion to the destination type before
234 * comparison, producing garbage results for floating point comparisons.
235 *
236 * The destination type doesn't matter on newer generations, so we set the
237 * type to match src0 so we can compact the instruction.
238 */
239 dst.type = src0.type;
240
241 resolve_ud_negate(&src0);
242 resolve_ud_negate(&src1);
243
244 inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_CMP, dst, src0, src1);
245 inst->conditional_mod = condition;
246
247 return inst;
248 }
249
250 vec4_instruction *
251 vec4_visitor::SCRATCH_READ(const dst_reg &dst, const src_reg &index)
252 {
253 vec4_instruction *inst;
254
255 inst = new(mem_ctx) vec4_instruction(SHADER_OPCODE_GEN4_SCRATCH_READ,
256 dst, index);
257 inst->base_mrf = FIRST_SPILL_MRF(devinfo->gen) + 1;
258 inst->mlen = 2;
259
260 return inst;
261 }
262
263 vec4_instruction *
264 vec4_visitor::SCRATCH_WRITE(const dst_reg &dst, const src_reg &src,
265 const src_reg &index)
266 {
267 vec4_instruction *inst;
268
269 inst = new(mem_ctx) vec4_instruction(SHADER_OPCODE_GEN4_SCRATCH_WRITE,
270 dst, src, index);
271 inst->base_mrf = FIRST_SPILL_MRF(devinfo->gen);
272 inst->mlen = 3;
273
274 return inst;
275 }
276
277 src_reg
278 vec4_visitor::fix_3src_operand(const src_reg &src)
279 {
280 /* Using vec4 uniforms in SIMD4x2 programs is difficult. You'd like to be
281 * able to use vertical stride of zero to replicate the vec4 uniform, like
282 *
283 * g3<0;4,1>:f - [0, 4][1, 5][2, 6][3, 7]
284 *
285 * But you can't, since vertical stride is always four in three-source
286 * instructions. Instead, insert a MOV instruction to do the replication so
287 * that the three-source instruction can consume it.
288 */
289
290 /* The MOV is only needed if the source is a uniform or immediate. */
291 if (src.file != UNIFORM && src.file != IMM)
292 return src;
293
294 if (src.file == UNIFORM && brw_is_single_value_swizzle(src.swizzle))
295 return src;
296
297 dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
298 expanded.type = src.type;
299 emit(VEC4_OPCODE_UNPACK_UNIFORM, expanded, src);
300 return src_reg(expanded);
301 }
302
303 src_reg
304 vec4_visitor::resolve_source_modifiers(const src_reg &src)
305 {
306 if (!src.abs && !src.negate)
307 return src;
308
309 dst_reg resolved = dst_reg(this, glsl_type::ivec4_type);
310 resolved.type = src.type;
311 emit(MOV(resolved, src));
312
313 return src_reg(resolved);
314 }
315
316 src_reg
317 vec4_visitor::fix_math_operand(const src_reg &src)
318 {
319 if (devinfo->gen < 6 || devinfo->gen >= 8 || src.file == BAD_FILE)
320 return src;
321
322 /* The gen6 math instruction ignores the source modifiers --
323 * swizzle, abs, negate, and at least some parts of the register
324 * region description.
325 *
326 * Rather than trying to enumerate all these cases, *always* expand the
327 * operand to a temp GRF for gen6.
328 *
329 * For gen7, keep the operand as-is, except if immediate, which gen7 still
330 * can't use.
331 */
332
333 if (devinfo->gen == 7 && src.file != IMM)
334 return src;
335
336 dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
337 expanded.type = src.type;
338 emit(MOV(expanded, src));
339 return src_reg(expanded);
340 }
341
342 vec4_instruction *
343 vec4_visitor::emit_math(enum opcode opcode,
344 const dst_reg &dst,
345 const src_reg &src0, const src_reg &src1)
346 {
347 vec4_instruction *math =
348 emit(opcode, dst, fix_math_operand(src0), fix_math_operand(src1));
349
350 if (devinfo->gen == 6 && dst.writemask != WRITEMASK_XYZW) {
351 /* MATH on Gen6 must be align1, so we can't do writemasks. */
352 math->dst = dst_reg(this, glsl_type::vec4_type);
353 math->dst.type = dst.type;
354 math = emit(MOV(dst, src_reg(math->dst)));
355 } else if (devinfo->gen < 6) {
356 math->base_mrf = 1;
357 math->mlen = src1.file == BAD_FILE ? 1 : 2;
358 }
359
360 return math;
361 }
362
363 void
364 vec4_visitor::emit_pack_half_2x16(dst_reg dst, src_reg src0)
365 {
366 if (devinfo->gen < 7) {
367 unreachable("ir_unop_pack_half_2x16 should be lowered");
368 }
369
370 assert(dst.type == BRW_REGISTER_TYPE_UD);
371 assert(src0.type == BRW_REGISTER_TYPE_F);
372
373 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
374 *
375 * Because this instruction does not have a 16-bit floating-point type,
376 * the destination data type must be Word (W).
377 *
378 * The destination must be DWord-aligned and specify a horizontal stride
379 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
380 * each destination channel and the upper word is not modified.
381 *
382 * The above restriction implies that the f32to16 instruction must use
383 * align1 mode, because only in align1 mode is it possible to specify
384 * horizontal stride. We choose here to defy the hardware docs and emit
385 * align16 instructions.
386 *
387 * (I [chadv] did attempt to emit align1 instructions for VS f32to16
388 * instructions. I was partially successful in that the code passed all
389 * tests. However, the code was dubiously correct and fragile, and the
390 * tests were not harsh enough to probe that frailty. Not trusting the
391 * code, I chose instead to remain in align16 mode in defiance of the hw
392 * docs).
393 *
394 * I've [chadv] experimentally confirmed that, on gen7 hardware and the
395 * simulator, emitting a f32to16 in align16 mode with UD as destination
396 * data type is safe. The behavior differs from that specified in the PRM
397 * in that the upper word of each destination channel is cleared to 0.
398 */
399
400 dst_reg tmp_dst(this, glsl_type::uvec2_type);
401 src_reg tmp_src(tmp_dst);
402
403 #if 0
404 /* Verify the undocumented behavior on which the following instructions
405 * rely. If f32to16 fails to clear the upper word of the X and Y channels,
406 * then the result of the bit-or instruction below will be incorrect.
407 *
408 * You should inspect the disasm output in order to verify that the MOV is
409 * not optimized away.
410 */
411 emit(MOV(tmp_dst, src_reg(0x12345678u)));
412 #endif
413
414 /* Give tmp the form below, where "." means untouched.
415 *
416 * w z y x w z y x
417 * |.|.|0x0000hhhh|0x0000llll|.|.|0x0000hhhh|0x0000llll|
418 *
419 * That the upper word of each write-channel be 0 is required for the
420 * following bit-shift and bit-or instructions to work. Note that this
421 * relies on the undocumented hardware behavior mentioned above.
422 */
423 tmp_dst.writemask = WRITEMASK_XY;
424 emit(F32TO16(tmp_dst, src0));
425
426 /* Give the write-channels of dst the form:
427 * 0xhhhh0000
428 */
429 tmp_src.swizzle = BRW_SWIZZLE_YYYY;
430 emit(SHL(dst, tmp_src, src_reg(16u)));
431
432 /* Finally, give the write-channels of dst the form of packHalf2x16's
433 * output:
434 * 0xhhhhllll
435 */
436 tmp_src.swizzle = BRW_SWIZZLE_XXXX;
437 emit(OR(dst, src_reg(dst), tmp_src));
438 }
439
440 void
441 vec4_visitor::emit_unpack_half_2x16(dst_reg dst, src_reg src0)
442 {
443 if (devinfo->gen < 7) {
444 unreachable("ir_unop_unpack_half_2x16 should be lowered");
445 }
446
447 assert(dst.type == BRW_REGISTER_TYPE_F);
448 assert(src0.type == BRW_REGISTER_TYPE_UD);
449
450 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
451 *
452 * Because this instruction does not have a 16-bit floating-point type,
453 * the source data type must be Word (W). The destination type must be
454 * F (Float).
455 *
456 * To use W as the source data type, we must adjust horizontal strides,
457 * which is only possible in align1 mode. All my [chadv] attempts at
458 * emitting align1 instructions for unpackHalf2x16 failed to pass the
459 * Piglit tests, so I gave up.
460 *
461 * I've verified that, on gen7 hardware and the simulator, it is safe to
462 * emit f16to32 in align16 mode with UD as source data type.
463 */
464
465 dst_reg tmp_dst(this, glsl_type::uvec2_type);
466 src_reg tmp_src(tmp_dst);
467
468 tmp_dst.writemask = WRITEMASK_X;
469 emit(AND(tmp_dst, src0, src_reg(0xffffu)));
470
471 tmp_dst.writemask = WRITEMASK_Y;
472 emit(SHR(tmp_dst, src0, src_reg(16u)));
473
474 dst.writemask = WRITEMASK_XY;
475 emit(F16TO32(dst, tmp_src));
476 }
477
478 void
479 vec4_visitor::emit_unpack_unorm_4x8(const dst_reg &dst, src_reg src0)
480 {
481 /* Instead of splitting the 32-bit integer, shifting, and ORing it back
482 * together, we can shift it by <0, 8, 16, 24>. The packed integer immediate
483 * is not suitable to generate the shift values, but we can use the packed
484 * vector float and a type-converting MOV.
485 */
486 dst_reg shift(this, glsl_type::uvec4_type);
487 emit(MOV(shift, src_reg(0x00, 0x60, 0x70, 0x78)));
488
489 dst_reg shifted(this, glsl_type::uvec4_type);
490 src0.swizzle = BRW_SWIZZLE_XXXX;
491 emit(SHR(shifted, src0, src_reg(shift)));
492
493 shifted.type = BRW_REGISTER_TYPE_UB;
494 dst_reg f(this, glsl_type::vec4_type);
495 emit(VEC4_OPCODE_MOV_BYTES, f, src_reg(shifted));
496
497 emit(MUL(dst, src_reg(f), src_reg(1.0f / 255.0f)));
498 }
499
500 void
501 vec4_visitor::emit_unpack_snorm_4x8(const dst_reg &dst, src_reg src0)
502 {
503 /* Instead of splitting the 32-bit integer, shifting, and ORing it back
504 * together, we can shift it by <0, 8, 16, 24>. The packed integer immediate
505 * is not suitable to generate the shift values, but we can use the packed
506 * vector float and a type-converting MOV.
507 */
508 dst_reg shift(this, glsl_type::uvec4_type);
509 emit(MOV(shift, src_reg(0x00, 0x60, 0x70, 0x78)));
510
511 dst_reg shifted(this, glsl_type::uvec4_type);
512 src0.swizzle = BRW_SWIZZLE_XXXX;
513 emit(SHR(shifted, src0, src_reg(shift)));
514
515 shifted.type = BRW_REGISTER_TYPE_B;
516 dst_reg f(this, glsl_type::vec4_type);
517 emit(VEC4_OPCODE_MOV_BYTES, f, src_reg(shifted));
518
519 dst_reg scaled(this, glsl_type::vec4_type);
520 emit(MUL(scaled, src_reg(f), src_reg(1.0f / 127.0f)));
521
522 dst_reg max(this, glsl_type::vec4_type);
523 emit_minmax(BRW_CONDITIONAL_GE, max, src_reg(scaled), src_reg(-1.0f));
524 emit_minmax(BRW_CONDITIONAL_L, dst, src_reg(max), src_reg(1.0f));
525 }
526
527 void
528 vec4_visitor::emit_pack_unorm_4x8(const dst_reg &dst, const src_reg &src0)
529 {
530 dst_reg saturated(this, glsl_type::vec4_type);
531 vec4_instruction *inst = emit(MOV(saturated, src0));
532 inst->saturate = true;
533
534 dst_reg scaled(this, glsl_type::vec4_type);
535 emit(MUL(scaled, src_reg(saturated), src_reg(255.0f)));
536
537 dst_reg rounded(this, glsl_type::vec4_type);
538 emit(RNDE(rounded, src_reg(scaled)));
539
540 dst_reg u(this, glsl_type::uvec4_type);
541 emit(MOV(u, src_reg(rounded)));
542
543 src_reg bytes(u);
544 emit(VEC4_OPCODE_PACK_BYTES, dst, bytes);
545 }
546
547 void
548 vec4_visitor::emit_pack_snorm_4x8(const dst_reg &dst, const src_reg &src0)
549 {
550 dst_reg max(this, glsl_type::vec4_type);
551 emit_minmax(BRW_CONDITIONAL_GE, max, src0, src_reg(-1.0f));
552
553 dst_reg min(this, glsl_type::vec4_type);
554 emit_minmax(BRW_CONDITIONAL_L, min, src_reg(max), src_reg(1.0f));
555
556 dst_reg scaled(this, glsl_type::vec4_type);
557 emit(MUL(scaled, src_reg(min), src_reg(127.0f)));
558
559 dst_reg rounded(this, glsl_type::vec4_type);
560 emit(RNDE(rounded, src_reg(scaled)));
561
562 dst_reg i(this, glsl_type::ivec4_type);
563 emit(MOV(i, src_reg(rounded)));
564
565 src_reg bytes(i);
566 emit(VEC4_OPCODE_PACK_BYTES, dst, bytes);
567 }
568
569 /**
570 * Returns the minimum number of vec4 elements needed to pack a type.
571 *
572 * For simple types, it will return 1 (a single vec4); for matrices, the
573 * number of columns; for array and struct, the sum of the vec4_size of
574 * each of its elements; and for sampler and atomic, zero.
575 *
576 * This method is useful to calculate how much register space is needed to
577 * store a particular type.
578 */
579 extern "C" int
580 type_size_vec4(const struct glsl_type *type)
581 {
582 unsigned int i;
583 int size;
584
585 switch (type->base_type) {
586 case GLSL_TYPE_UINT:
587 case GLSL_TYPE_INT:
588 case GLSL_TYPE_FLOAT:
589 case GLSL_TYPE_BOOL:
590 if (type->is_matrix()) {
591 return type->matrix_columns;
592 } else {
593 /* Regardless of size of vector, it gets a vec4. This is bad
594 * packing for things like floats, but otherwise arrays become a
595 * mess. Hopefully a later pass over the code can pack scalars
596 * down if appropriate.
597 */
598 return 1;
599 }
600 case GLSL_TYPE_ARRAY:
601 assert(type->length > 0);
602 return type_size_vec4(type->fields.array) * type->length;
603 case GLSL_TYPE_STRUCT:
604 size = 0;
605 for (i = 0; i < type->length; i++) {
606 size += type_size_vec4(type->fields.structure[i].type);
607 }
608 return size;
609 case GLSL_TYPE_SUBROUTINE:
610 return 1;
611
612 case GLSL_TYPE_SAMPLER:
613 /* Samplers take up no register space, since they're baked in at
614 * link time.
615 */
616 return 0;
617 case GLSL_TYPE_ATOMIC_UINT:
618 return 0;
619 case GLSL_TYPE_IMAGE:
620 return DIV_ROUND_UP(BRW_IMAGE_PARAM_SIZE, 4);
621 case GLSL_TYPE_VOID:
622 case GLSL_TYPE_DOUBLE:
623 case GLSL_TYPE_ERROR:
624 case GLSL_TYPE_INTERFACE:
625 unreachable("not reached");
626 }
627
628 return 0;
629 }
630
631 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
632 {
633 init();
634
635 this->file = GRF;
636 this->reg = v->alloc.allocate(type_size_vec4(type));
637
638 if (type->is_array() || type->is_record()) {
639 this->swizzle = BRW_SWIZZLE_NOOP;
640 } else {
641 this->swizzle = brw_swizzle_for_size(type->vector_elements);
642 }
643
644 this->type = brw_type_for_base_type(type);
645 }
646
647 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type, int size)
648 {
649 assert(size > 0);
650
651 init();
652
653 this->file = GRF;
654 this->reg = v->alloc.allocate(type_size_vec4(type) * size);
655
656 this->swizzle = BRW_SWIZZLE_NOOP;
657
658 this->type = brw_type_for_base_type(type);
659 }
660
661 dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
662 {
663 init();
664
665 this->file = GRF;
666 this->reg = v->alloc.allocate(type_size_vec4(type));
667
668 if (type->is_array() || type->is_record()) {
669 this->writemask = WRITEMASK_XYZW;
670 } else {
671 this->writemask = (1 << type->vector_elements) - 1;
672 }
673
674 this->type = brw_type_for_base_type(type);
675 }
676
677 vec4_instruction *
678 vec4_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, dst_reg dst,
679 src_reg src0, src_reg src1)
680 {
681 vec4_instruction *inst;
682
683 if (devinfo->gen >= 6) {
684 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
685 inst->conditional_mod = conditionalmod;
686 } else {
687 emit(CMP(dst, src0, src1, conditionalmod));
688
689 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
690 inst->predicate = BRW_PREDICATE_NORMAL;
691 }
692
693 return inst;
694 }
695
696 vec4_instruction *
697 vec4_visitor::emit_lrp(const dst_reg &dst,
698 const src_reg &x, const src_reg &y, const src_reg &a)
699 {
700 if (devinfo->gen >= 6) {
701 /* Note that the instruction's argument order is reversed from GLSL
702 * and the IR.
703 */
704 return emit(LRP(dst, fix_3src_operand(a), fix_3src_operand(y),
705 fix_3src_operand(x)));
706 } else {
707 /* Earlier generations don't support three source operations, so we
708 * need to emit x*(1-a) + y*a.
709 */
710 dst_reg y_times_a = dst_reg(this, glsl_type::vec4_type);
711 dst_reg one_minus_a = dst_reg(this, glsl_type::vec4_type);
712 dst_reg x_times_one_minus_a = dst_reg(this, glsl_type::vec4_type);
713 y_times_a.writemask = dst.writemask;
714 one_minus_a.writemask = dst.writemask;
715 x_times_one_minus_a.writemask = dst.writemask;
716
717 emit(MUL(y_times_a, y, a));
718 emit(ADD(one_minus_a, negate(a), src_reg(1.0f)));
719 emit(MUL(x_times_one_minus_a, x, src_reg(one_minus_a)));
720 return emit(ADD(dst, src_reg(x_times_one_minus_a), src_reg(y_times_a)));
721 }
722 }
723
724 /**
725 * Emits the instructions needed to perform a pull constant load. before_block
726 * and before_inst can be NULL in which case the instruction will be appended
727 * to the end of the instruction list.
728 */
729 void
730 vec4_visitor::emit_pull_constant_load_reg(dst_reg dst,
731 src_reg surf_index,
732 src_reg offset_reg,
733 bblock_t *before_block,
734 vec4_instruction *before_inst)
735 {
736 assert((before_inst == NULL && before_block == NULL) ||
737 (before_inst && before_block));
738
739 vec4_instruction *pull;
740
741 if (devinfo->gen >= 9) {
742 /* Gen9+ needs a message header in order to use SIMD4x2 mode */
743 src_reg header(this, glsl_type::uvec4_type, 2);
744
745 pull = new(mem_ctx)
746 vec4_instruction(VS_OPCODE_SET_SIMD4X2_HEADER_GEN9,
747 dst_reg(header));
748
749 if (before_inst)
750 emit_before(before_block, before_inst, pull);
751 else
752 emit(pull);
753
754 dst_reg index_reg = retype(offset(dst_reg(header), 1),
755 offset_reg.type);
756 pull = MOV(writemask(index_reg, WRITEMASK_X), offset_reg);
757
758 if (before_inst)
759 emit_before(before_block, before_inst, pull);
760 else
761 emit(pull);
762
763 pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
764 dst,
765 surf_index,
766 header);
767 pull->mlen = 2;
768 pull->header_size = 1;
769 } else if (devinfo->gen >= 7) {
770 dst_reg grf_offset = dst_reg(this, glsl_type::int_type);
771
772 grf_offset.type = offset_reg.type;
773
774 pull = MOV(grf_offset, offset_reg);
775
776 if (before_inst)
777 emit_before(before_block, before_inst, pull);
778 else
779 emit(pull);
780
781 pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
782 dst,
783 surf_index,
784 src_reg(grf_offset));
785 pull->mlen = 1;
786 } else {
787 pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD,
788 dst,
789 surf_index,
790 offset_reg);
791 pull->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
792 pull->mlen = 1;
793 }
794
795 if (before_inst)
796 emit_before(before_block, before_inst, pull);
797 else
798 emit(pull);
799 }
800
801 src_reg
802 vec4_visitor::emit_uniformize(const src_reg &src)
803 {
804 const src_reg chan_index(this, glsl_type::uint_type);
805 const dst_reg dst = retype(dst_reg(this, glsl_type::uint_type),
806 src.type);
807
808 emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, dst_reg(chan_index))
809 ->force_writemask_all = true;
810 emit(SHADER_OPCODE_BROADCAST, dst, src, chan_index)
811 ->force_writemask_all = true;
812
813 return src_reg(dst);
814 }
815
816 src_reg
817 vec4_visitor::emit_mcs_fetch(const glsl_type *coordinate_type,
818 src_reg coordinate, src_reg sampler)
819 {
820 vec4_instruction *inst =
821 new(mem_ctx) vec4_instruction(SHADER_OPCODE_TXF_MCS,
822 dst_reg(this, glsl_type::uvec4_type));
823 inst->base_mrf = 2;
824 inst->src[1] = sampler;
825
826 int param_base;
827
828 if (devinfo->gen >= 9) {
829 /* Gen9+ needs a message header in order to use SIMD4x2 mode */
830 vec4_instruction *header_inst = new(mem_ctx)
831 vec4_instruction(VS_OPCODE_SET_SIMD4X2_HEADER_GEN9,
832 dst_reg(MRF, inst->base_mrf));
833
834 emit(header_inst);
835
836 inst->mlen = 2;
837 inst->header_size = 1;
838 param_base = inst->base_mrf + 1;
839 } else {
840 inst->mlen = 1;
841 param_base = inst->base_mrf;
842 }
843
844 /* parameters are: u, v, r, lod; lod will always be zero due to api restrictions */
845 int coord_mask = (1 << coordinate_type->vector_elements) - 1;
846 int zero_mask = 0xf & ~coord_mask;
847
848 emit(MOV(dst_reg(MRF, param_base, coordinate_type, coord_mask),
849 coordinate));
850
851 emit(MOV(dst_reg(MRF, param_base, coordinate_type, zero_mask),
852 src_reg(0)));
853
854 emit(inst);
855 return src_reg(inst->dst);
856 }
857
858 bool
859 vec4_visitor::is_high_sampler(src_reg sampler)
860 {
861 if (devinfo->gen < 8 && !devinfo->is_haswell)
862 return false;
863
864 return sampler.file != IMM || sampler.ud >= 16;
865 }
866
867 void
868 vec4_visitor::emit_texture(ir_texture_opcode op,
869 dst_reg dest,
870 const glsl_type *dest_type,
871 src_reg coordinate,
872 int coord_components,
873 src_reg shadow_comparitor,
874 src_reg lod, src_reg lod2,
875 src_reg sample_index,
876 uint32_t constant_offset,
877 src_reg offset_value,
878 src_reg mcs,
879 bool is_cube_array,
880 uint32_t sampler,
881 src_reg sampler_reg)
882 {
883 /* The sampler can only meaningfully compute LOD for fragment shader
884 * messages. For all other stages, we change the opcode to TXL and hardcode
885 * the LOD to 0.
886 *
887 * textureQueryLevels() is implemented in terms of TXS so we need to pass a
888 * valid LOD argument.
889 */
890 if (op == ir_tex || op == ir_query_levels) {
891 assert(lod.file == BAD_FILE);
892 lod = src_reg(0.0f);
893 }
894
895 enum opcode opcode;
896 switch (op) {
897 case ir_tex: opcode = SHADER_OPCODE_TXL; break;
898 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
899 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
900 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
901 case ir_txf_ms: opcode = (devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W :
902 SHADER_OPCODE_TXF_CMS); break;
903 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
904 case ir_tg4: opcode = offset_value.file != BAD_FILE
905 ? SHADER_OPCODE_TG4_OFFSET : SHADER_OPCODE_TG4; break;
906 case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
907 case ir_texture_samples: opcode = SHADER_OPCODE_SAMPLEINFO; break;
908 case ir_txb:
909 unreachable("TXB is not valid for vertex shaders.");
910 case ir_lod:
911 unreachable("LOD is not valid for vertex shaders.");
912 default:
913 unreachable("Unrecognized tex op");
914 }
915
916 vec4_instruction *inst = new(mem_ctx) vec4_instruction(
917 opcode, dst_reg(this, dest_type));
918
919 inst->offset = constant_offset;
920
921 /* The message header is necessary for:
922 * - Gen4 (always)
923 * - Gen9+ for selecting SIMD4x2
924 * - Texel offsets
925 * - Gather channel selection
926 * - Sampler indices too large to fit in a 4-bit value.
927 * - Sampleinfo message - takes no parameters, but mlen = 0 is illegal
928 */
929 inst->header_size =
930 (devinfo->gen < 5 || devinfo->gen >= 9 ||
931 inst->offset != 0 || op == ir_tg4 ||
932 op == ir_texture_samples ||
933 is_high_sampler(sampler_reg)) ? 1 : 0;
934 inst->base_mrf = 2;
935 inst->mlen = inst->header_size;
936 inst->dst.writemask = WRITEMASK_XYZW;
937 inst->shadow_compare = shadow_comparitor.file != BAD_FILE;
938
939 inst->src[1] = sampler_reg;
940
941 /* MRF for the first parameter */
942 int param_base = inst->base_mrf + inst->header_size;
943
944 if (op == ir_txs || op == ir_query_levels) {
945 int writemask = devinfo->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
946 emit(MOV(dst_reg(MRF, param_base, lod.type, writemask), lod));
947 inst->mlen++;
948 } else if (op == ir_texture_samples) {
949 inst->dst.writemask = WRITEMASK_X;
950 } else {
951 /* Load the coordinate */
952 /* FINISHME: gl_clamp_mask and saturate */
953 int coord_mask = (1 << coord_components) - 1;
954 int zero_mask = 0xf & ~coord_mask;
955
956 emit(MOV(dst_reg(MRF, param_base, coordinate.type, coord_mask),
957 coordinate));
958 inst->mlen++;
959
960 if (zero_mask != 0) {
961 emit(MOV(dst_reg(MRF, param_base, coordinate.type, zero_mask),
962 src_reg(0)));
963 }
964 /* Load the shadow comparitor */
965 if (shadow_comparitor.file != BAD_FILE && op != ir_txd && (op != ir_tg4 || offset_value.file == BAD_FILE)) {
966 emit(MOV(dst_reg(MRF, param_base + 1, shadow_comparitor.type,
967 WRITEMASK_X),
968 shadow_comparitor));
969 inst->mlen++;
970 }
971
972 /* Load the LOD info */
973 if (op == ir_tex || op == ir_txl) {
974 int mrf, writemask;
975 if (devinfo->gen >= 5) {
976 mrf = param_base + 1;
977 if (shadow_comparitor.file != BAD_FILE) {
978 writemask = WRITEMASK_Y;
979 /* mlen already incremented */
980 } else {
981 writemask = WRITEMASK_X;
982 inst->mlen++;
983 }
984 } else /* devinfo->gen == 4 */ {
985 mrf = param_base;
986 writemask = WRITEMASK_W;
987 }
988 emit(MOV(dst_reg(MRF, mrf, lod.type, writemask), lod));
989 } else if (op == ir_txf) {
990 emit(MOV(dst_reg(MRF, param_base, lod.type, WRITEMASK_W), lod));
991 } else if (op == ir_txf_ms) {
992 emit(MOV(dst_reg(MRF, param_base + 1, sample_index.type, WRITEMASK_X),
993 sample_index));
994 if (opcode == SHADER_OPCODE_TXF_CMS_W) {
995 /* MCS data is stored in the first two channels of ‘mcs’, but we
996 * need to get it into the .y and .z channels of the second vec4
997 * of params.
998 */
999 mcs.swizzle = BRW_SWIZZLE4(0, 0, 1, 1);
1000 emit(MOV(dst_reg(MRF, param_base + 1,
1001 glsl_type::uint_type, WRITEMASK_YZ),
1002 mcs));
1003 } else if (devinfo->gen >= 7) {
1004 /* MCS data is in the first channel of `mcs`, but we need to get it into
1005 * the .y channel of the second vec4 of params, so replicate .x across
1006 * the whole vec4 and then mask off everything except .y
1007 */
1008 mcs.swizzle = BRW_SWIZZLE_XXXX;
1009 emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::uint_type, WRITEMASK_Y),
1010 mcs));
1011 }
1012 inst->mlen++;
1013 } else if (op == ir_txd) {
1014 const brw_reg_type type = lod.type;
1015
1016 if (devinfo->gen >= 5) {
1017 lod.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1018 lod2.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1019 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), lod));
1020 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), lod2));
1021 inst->mlen++;
1022
1023 if (dest_type->vector_elements == 3 || shadow_comparitor.file != BAD_FILE) {
1024 lod.swizzle = BRW_SWIZZLE_ZZZZ;
1025 lod2.swizzle = BRW_SWIZZLE_ZZZZ;
1026 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), lod));
1027 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), lod2));
1028 inst->mlen++;
1029
1030 if (shadow_comparitor.file != BAD_FILE) {
1031 emit(MOV(dst_reg(MRF, param_base + 2,
1032 shadow_comparitor.type, WRITEMASK_Z),
1033 shadow_comparitor));
1034 }
1035 }
1036 } else /* devinfo->gen == 4 */ {
1037 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), lod));
1038 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), lod2));
1039 inst->mlen += 2;
1040 }
1041 } else if (op == ir_tg4 && offset_value.file != BAD_FILE) {
1042 if (shadow_comparitor.file != BAD_FILE) {
1043 emit(MOV(dst_reg(MRF, param_base, shadow_comparitor.type, WRITEMASK_W),
1044 shadow_comparitor));
1045 }
1046
1047 emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::ivec2_type, WRITEMASK_XY),
1048 offset_value));
1049 inst->mlen++;
1050 }
1051 }
1052
1053 emit(inst);
1054
1055 /* fixup num layers (z) for cube arrays: hardware returns faces * layers;
1056 * spec requires layers.
1057 */
1058 if (op == ir_txs && is_cube_array) {
1059 emit_math(SHADER_OPCODE_INT_QUOTIENT,
1060 writemask(inst->dst, WRITEMASK_Z),
1061 src_reg(inst->dst), src_reg(6));
1062 }
1063
1064 if (devinfo->gen == 6 && op == ir_tg4) {
1065 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], inst->dst);
1066 }
1067
1068 swizzle_result(op, dest,
1069 src_reg(inst->dst), sampler, dest_type);
1070 }
1071
1072 /**
1073 * Apply workarounds for Gen6 gather with UINT/SINT
1074 */
1075 void
1076 vec4_visitor::emit_gen6_gather_wa(uint8_t wa, dst_reg dst)
1077 {
1078 if (!wa)
1079 return;
1080
1081 int width = (wa & WA_8BIT) ? 8 : 16;
1082 dst_reg dst_f = dst;
1083 dst_f.type = BRW_REGISTER_TYPE_F;
1084
1085 /* Convert from UNORM to UINT */
1086 emit(MUL(dst_f, src_reg(dst_f), src_reg((float)((1 << width) - 1))));
1087 emit(MOV(dst, src_reg(dst_f)));
1088
1089 if (wa & WA_SIGN) {
1090 /* Reinterpret the UINT value as a signed INT value by
1091 * shifting the sign bit into place, then shifting back
1092 * preserving sign.
1093 */
1094 emit(SHL(dst, src_reg(dst), src_reg(32 - width)));
1095 emit(ASR(dst, src_reg(dst), src_reg(32 - width)));
1096 }
1097 }
1098
1099 /**
1100 * Set up the gather channel based on the swizzle, for gather4.
1101 */
1102 uint32_t
1103 vec4_visitor::gather_channel(unsigned gather_component, uint32_t sampler)
1104 {
1105 int swiz = GET_SWZ(key_tex->swizzles[sampler], gather_component);
1106 switch (swiz) {
1107 case SWIZZLE_X: return 0;
1108 case SWIZZLE_Y:
1109 /* gather4 sampler is broken for green channel on RG32F --
1110 * we must ask for blue instead.
1111 */
1112 if (key_tex->gather_channel_quirk_mask & (1 << sampler))
1113 return 2;
1114 return 1;
1115 case SWIZZLE_Z: return 2;
1116 case SWIZZLE_W: return 3;
1117 default:
1118 unreachable("Not reached"); /* zero, one swizzles handled already */
1119 }
1120 }
1121
1122 void
1123 vec4_visitor::swizzle_result(ir_texture_opcode op, dst_reg dest,
1124 src_reg orig_val, uint32_t sampler,
1125 const glsl_type *dest_type)
1126 {
1127 int s = key_tex->swizzles[sampler];
1128
1129 dst_reg swizzled_result = dest;
1130
1131 if (op == ir_query_levels) {
1132 /* # levels is in .w */
1133 orig_val.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
1134 emit(MOV(swizzled_result, orig_val));
1135 return;
1136 }
1137
1138 if (op == ir_txs || dest_type == glsl_type::float_type
1139 || s == SWIZZLE_NOOP || op == ir_tg4) {
1140 emit(MOV(swizzled_result, orig_val));
1141 return;
1142 }
1143
1144
1145 int zero_mask = 0, one_mask = 0, copy_mask = 0;
1146 int swizzle[4] = {0};
1147
1148 for (int i = 0; i < 4; i++) {
1149 switch (GET_SWZ(s, i)) {
1150 case SWIZZLE_ZERO:
1151 zero_mask |= (1 << i);
1152 break;
1153 case SWIZZLE_ONE:
1154 one_mask |= (1 << i);
1155 break;
1156 default:
1157 copy_mask |= (1 << i);
1158 swizzle[i] = GET_SWZ(s, i);
1159 break;
1160 }
1161 }
1162
1163 if (copy_mask) {
1164 orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1165 swizzled_result.writemask = copy_mask;
1166 emit(MOV(swizzled_result, orig_val));
1167 }
1168
1169 if (zero_mask) {
1170 swizzled_result.writemask = zero_mask;
1171 emit(MOV(swizzled_result, src_reg(0.0f)));
1172 }
1173
1174 if (one_mask) {
1175 swizzled_result.writemask = one_mask;
1176 emit(MOV(swizzled_result, src_reg(1.0f)));
1177 }
1178 }
1179
1180 void
1181 vec4_visitor::gs_emit_vertex(int stream_id)
1182 {
1183 unreachable("not reached");
1184 }
1185
1186 void
1187 vec4_visitor::gs_end_primitive()
1188 {
1189 unreachable("not reached");
1190 }
1191
1192 void
1193 vec4_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
1194 dst_reg dst, src_reg surf_offset,
1195 src_reg src0, src_reg src1)
1196 {
1197 unsigned mlen = 1 + (src0.file != BAD_FILE) + (src1.file != BAD_FILE);
1198 src_reg src_payload(this, glsl_type::uint_type, mlen);
1199 dst_reg payload(src_payload);
1200 payload.writemask = WRITEMASK_X;
1201
1202 /* Set the atomic operation offset. */
1203 emit(MOV(offset(payload, 0), surf_offset));
1204 unsigned i = 1;
1205
1206 /* Set the atomic operation arguments. */
1207 if (src0.file != BAD_FILE) {
1208 emit(MOV(offset(payload, i), src0));
1209 i++;
1210 }
1211
1212 if (src1.file != BAD_FILE) {
1213 emit(MOV(offset(payload, i), src1));
1214 i++;
1215 }
1216
1217 /* Emit the instruction. Note that this maps to the normal SIMD8
1218 * untyped atomic message on Ivy Bridge, but that's OK because
1219 * unused channels will be masked out.
1220 */
1221 vec4_instruction *inst = emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst,
1222 src_payload,
1223 src_reg(surf_index), src_reg(atomic_op));
1224 inst->mlen = mlen;
1225 }
1226
1227 void
1228 vec4_visitor::emit_untyped_surface_read(unsigned surf_index, dst_reg dst,
1229 src_reg surf_offset)
1230 {
1231 dst_reg offset(this, glsl_type::uint_type);
1232 offset.writemask = WRITEMASK_X;
1233
1234 /* Set the surface read offset. */
1235 emit(MOV(offset, surf_offset));
1236
1237 /* Emit the instruction. Note that this maps to the normal SIMD8
1238 * untyped surface read message, but that's OK because unused
1239 * channels will be masked out.
1240 */
1241 vec4_instruction *inst = emit(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst,
1242 src_reg(offset),
1243 src_reg(surf_index), src_reg(1));
1244 inst->mlen = 1;
1245 }
1246
1247 void
1248 vec4_visitor::emit_ndc_computation()
1249 {
1250 if (output_reg[VARYING_SLOT_POS].file == BAD_FILE)
1251 return;
1252
1253 /* Get the position */
1254 src_reg pos = src_reg(output_reg[VARYING_SLOT_POS]);
1255
1256 /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
1257 dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
1258 output_reg[BRW_VARYING_SLOT_NDC] = ndc;
1259
1260 current_annotation = "NDC";
1261 dst_reg ndc_w = ndc;
1262 ndc_w.writemask = WRITEMASK_W;
1263 src_reg pos_w = pos;
1264 pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
1265 emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
1266
1267 dst_reg ndc_xyz = ndc;
1268 ndc_xyz.writemask = WRITEMASK_XYZ;
1269
1270 emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
1271 }
1272
1273 void
1274 vec4_visitor::emit_psiz_and_flags(dst_reg reg)
1275 {
1276 if (devinfo->gen < 6 &&
1277 ((prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) ||
1278 output_reg[VARYING_SLOT_CLIP_DIST0].file != BAD_FILE ||
1279 devinfo->has_negative_rhw_bug)) {
1280 dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
1281 dst_reg header1_w = header1;
1282 header1_w.writemask = WRITEMASK_W;
1283
1284 emit(MOV(header1, 0u));
1285
1286 if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
1287 src_reg psiz = src_reg(output_reg[VARYING_SLOT_PSIZ]);
1288
1289 current_annotation = "Point size";
1290 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
1291 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
1292 }
1293
1294 if (output_reg[VARYING_SLOT_CLIP_DIST0].file != BAD_FILE) {
1295 current_annotation = "Clipping flags";
1296 dst_reg flags0 = dst_reg(this, glsl_type::uint_type);
1297 dst_reg flags1 = dst_reg(this, glsl_type::uint_type);
1298
1299 emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST0]), src_reg(0.0f), BRW_CONDITIONAL_L));
1300 emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags0, src_reg(0));
1301 emit(OR(header1_w, src_reg(header1_w), src_reg(flags0)));
1302
1303 emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST1]), src_reg(0.0f), BRW_CONDITIONAL_L));
1304 emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags1, src_reg(0));
1305 emit(SHL(flags1, src_reg(flags1), src_reg(4)));
1306 emit(OR(header1_w, src_reg(header1_w), src_reg(flags1)));
1307 }
1308
1309 /* i965 clipping workaround:
1310 * 1) Test for -ve rhw
1311 * 2) If set,
1312 * set ndc = (0,0,0,0)
1313 * set ucp[6] = 1
1314 *
1315 * Later, clipping will detect ucp[6] and ensure the primitive is
1316 * clipped against all fixed planes.
1317 */
1318 if (devinfo->has_negative_rhw_bug &&
1319 output_reg[BRW_VARYING_SLOT_NDC].file != BAD_FILE) {
1320 src_reg ndc_w = src_reg(output_reg[BRW_VARYING_SLOT_NDC]);
1321 ndc_w.swizzle = BRW_SWIZZLE_WWWW;
1322 emit(CMP(dst_null_f(), ndc_w, src_reg(0.0f), BRW_CONDITIONAL_L));
1323 vec4_instruction *inst;
1324 inst = emit(OR(header1_w, src_reg(header1_w), src_reg(1u << 6)));
1325 inst->predicate = BRW_PREDICATE_NORMAL;
1326 output_reg[BRW_VARYING_SLOT_NDC].type = BRW_REGISTER_TYPE_F;
1327 inst = emit(MOV(output_reg[BRW_VARYING_SLOT_NDC], src_reg(0.0f)));
1328 inst->predicate = BRW_PREDICATE_NORMAL;
1329 }
1330
1331 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
1332 } else if (devinfo->gen < 6) {
1333 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
1334 } else {
1335 emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
1336 if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
1337 dst_reg reg_w = reg;
1338 reg_w.writemask = WRITEMASK_W;
1339 src_reg reg_as_src = src_reg(output_reg[VARYING_SLOT_PSIZ]);
1340 reg_as_src.type = reg_w.type;
1341 reg_as_src.swizzle = brw_swizzle_for_size(1);
1342 emit(MOV(reg_w, reg_as_src));
1343 }
1344 if (prog_data->vue_map.slots_valid & VARYING_BIT_LAYER) {
1345 dst_reg reg_y = reg;
1346 reg_y.writemask = WRITEMASK_Y;
1347 reg_y.type = BRW_REGISTER_TYPE_D;
1348 output_reg[VARYING_SLOT_LAYER].type = reg_y.type;
1349 emit(MOV(reg_y, src_reg(output_reg[VARYING_SLOT_LAYER])));
1350 }
1351 if (prog_data->vue_map.slots_valid & VARYING_BIT_VIEWPORT) {
1352 dst_reg reg_z = reg;
1353 reg_z.writemask = WRITEMASK_Z;
1354 reg_z.type = BRW_REGISTER_TYPE_D;
1355 output_reg[VARYING_SLOT_VIEWPORT].type = reg_z.type;
1356 emit(MOV(reg_z, src_reg(output_reg[VARYING_SLOT_VIEWPORT])));
1357 }
1358 }
1359 }
1360
1361 vec4_instruction *
1362 vec4_visitor::emit_generic_urb_slot(dst_reg reg, int varying)
1363 {
1364 assert(varying < VARYING_SLOT_MAX);
1365 assert(output_reg[varying].type == reg.type);
1366 current_annotation = output_reg_annotation[varying];
1367 if (output_reg[varying].file != BAD_FILE)
1368 return emit(MOV(reg, src_reg(output_reg[varying])));
1369 else
1370 return NULL;
1371 }
1372
1373 void
1374 vec4_visitor::emit_urb_slot(dst_reg reg, int varying)
1375 {
1376 reg.type = BRW_REGISTER_TYPE_F;
1377 output_reg[varying].type = reg.type;
1378
1379 switch (varying) {
1380 case VARYING_SLOT_PSIZ:
1381 {
1382 /* PSIZ is always in slot 0, and is coupled with other flags. */
1383 current_annotation = "indices, point width, clip flags";
1384 emit_psiz_and_flags(reg);
1385 break;
1386 }
1387 case BRW_VARYING_SLOT_NDC:
1388 current_annotation = "NDC";
1389 if (output_reg[BRW_VARYING_SLOT_NDC].file != BAD_FILE)
1390 emit(MOV(reg, src_reg(output_reg[BRW_VARYING_SLOT_NDC])));
1391 break;
1392 case VARYING_SLOT_POS:
1393 current_annotation = "gl_Position";
1394 if (output_reg[VARYING_SLOT_POS].file != BAD_FILE)
1395 emit(MOV(reg, src_reg(output_reg[VARYING_SLOT_POS])));
1396 break;
1397 case VARYING_SLOT_EDGE:
1398 /* This is present when doing unfilled polygons. We're supposed to copy
1399 * the edge flag from the user-provided vertex array
1400 * (glEdgeFlagPointer), or otherwise we'll copy from the current value
1401 * of that attribute (starts as 1.0f). This is then used in clipping to
1402 * determine which edges should be drawn as wireframe.
1403 */
1404 current_annotation = "edge flag";
1405 emit(MOV(reg, src_reg(dst_reg(ATTR, VERT_ATTRIB_EDGEFLAG,
1406 glsl_type::float_type, WRITEMASK_XYZW))));
1407 break;
1408 case BRW_VARYING_SLOT_PAD:
1409 /* No need to write to this slot */
1410 break;
1411 default:
1412 emit_generic_urb_slot(reg, varying);
1413 break;
1414 }
1415 }
1416
1417 static int
1418 align_interleaved_urb_mlen(const struct brw_device_info *devinfo, int mlen)
1419 {
1420 if (devinfo->gen >= 6) {
1421 /* URB data written (does not include the message header reg) must
1422 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
1423 * section 5.4.3.2.2: URB_INTERLEAVED.
1424 *
1425 * URB entries are allocated on a multiple of 1024 bits, so an
1426 * extra 128 bits written here to make the end align to 256 is
1427 * no problem.
1428 */
1429 if ((mlen % 2) != 1)
1430 mlen++;
1431 }
1432
1433 return mlen;
1434 }
1435
1436
1437 /**
1438 * Generates the VUE payload plus the necessary URB write instructions to
1439 * output it.
1440 *
1441 * The VUE layout is documented in Volume 2a.
1442 */
1443 void
1444 vec4_visitor::emit_vertex()
1445 {
1446 /* MRF 0 is reserved for the debugger, so start with message header
1447 * in MRF 1.
1448 */
1449 int base_mrf = 1;
1450 int mrf = base_mrf;
1451 /* In the process of generating our URB write message contents, we
1452 * may need to unspill a register or load from an array. Those
1453 * reads would use MRFs 14-15.
1454 */
1455 int max_usable_mrf = FIRST_SPILL_MRF(devinfo->gen);
1456
1457 /* The following assertion verifies that max_usable_mrf causes an
1458 * even-numbered amount of URB write data, which will meet gen6's
1459 * requirements for length alignment.
1460 */
1461 assert ((max_usable_mrf - base_mrf) % 2 == 0);
1462
1463 /* First mrf is the g0-based message header containing URB handles and
1464 * such.
1465 */
1466 emit_urb_write_header(mrf++);
1467
1468 if (devinfo->gen < 6) {
1469 emit_ndc_computation();
1470 }
1471
1472 /* We may need to split this up into several URB writes, so do them in a
1473 * loop.
1474 */
1475 int slot = 0;
1476 bool complete = false;
1477 do {
1478 /* URB offset is in URB row increments, and each of our MRFs is half of
1479 * one of those, since we're doing interleaved writes.
1480 */
1481 int offset = slot / 2;
1482
1483 mrf = base_mrf + 1;
1484 for (; slot < prog_data->vue_map.num_slots; ++slot) {
1485 emit_urb_slot(dst_reg(MRF, mrf++),
1486 prog_data->vue_map.slot_to_varying[slot]);
1487
1488 /* If this was max_usable_mrf, we can't fit anything more into this
1489 * URB WRITE. Same thing if we reached the maximum length available.
1490 */
1491 if (mrf > max_usable_mrf ||
1492 align_interleaved_urb_mlen(devinfo, mrf - base_mrf + 1) > BRW_MAX_MSG_LENGTH) {
1493 slot++;
1494 break;
1495 }
1496 }
1497
1498 complete = slot >= prog_data->vue_map.num_slots;
1499 current_annotation = "URB write";
1500 vec4_instruction *inst = emit_urb_write_opcode(complete);
1501 inst->base_mrf = base_mrf;
1502 inst->mlen = align_interleaved_urb_mlen(devinfo, mrf - base_mrf);
1503 inst->offset += offset;
1504 } while(!complete);
1505 }
1506
1507
1508 src_reg
1509 vec4_visitor::get_scratch_offset(bblock_t *block, vec4_instruction *inst,
1510 src_reg *reladdr, int reg_offset)
1511 {
1512 /* Because we store the values to scratch interleaved like our
1513 * vertex data, we need to scale the vec4 index by 2.
1514 */
1515 int message_header_scale = 2;
1516
1517 /* Pre-gen6, the message header uses byte offsets instead of vec4
1518 * (16-byte) offset units.
1519 */
1520 if (devinfo->gen < 6)
1521 message_header_scale *= 16;
1522
1523 if (reladdr) {
1524 src_reg index = src_reg(this, glsl_type::int_type);
1525
1526 emit_before(block, inst, ADD(dst_reg(index), *reladdr,
1527 src_reg(reg_offset)));
1528 emit_before(block, inst, MUL(dst_reg(index), index,
1529 src_reg(message_header_scale)));
1530
1531 return index;
1532 } else {
1533 return src_reg(reg_offset * message_header_scale);
1534 }
1535 }
1536
1537 src_reg
1538 vec4_visitor::get_pull_constant_offset(bblock_t * block, vec4_instruction *inst,
1539 src_reg *reladdr, int reg_offset)
1540 {
1541 if (reladdr) {
1542 src_reg index = src_reg(this, glsl_type::int_type);
1543
1544 emit_before(block, inst, ADD(dst_reg(index), *reladdr,
1545 src_reg(reg_offset)));
1546
1547 /* Pre-gen6, the message header uses byte offsets instead of vec4
1548 * (16-byte) offset units.
1549 */
1550 if (devinfo->gen < 6) {
1551 emit_before(block, inst, MUL(dst_reg(index), index, src_reg(16)));
1552 }
1553
1554 return index;
1555 } else if (devinfo->gen >= 8) {
1556 /* Store the offset in a GRF so we can send-from-GRF. */
1557 src_reg offset = src_reg(this, glsl_type::int_type);
1558 emit_before(block, inst, MOV(dst_reg(offset), src_reg(reg_offset)));
1559 return offset;
1560 } else {
1561 int message_header_scale = devinfo->gen < 6 ? 16 : 1;
1562 return src_reg(reg_offset * message_header_scale);
1563 }
1564 }
1565
1566 /**
1567 * Emits an instruction before @inst to load the value named by @orig_src
1568 * from scratch space at @base_offset to @temp.
1569 *
1570 * @base_offset is measured in 32-byte units (the size of a register).
1571 */
1572 void
1573 vec4_visitor::emit_scratch_read(bblock_t *block, vec4_instruction *inst,
1574 dst_reg temp, src_reg orig_src,
1575 int base_offset)
1576 {
1577 int reg_offset = base_offset + orig_src.reg_offset;
1578 src_reg index = get_scratch_offset(block, inst, orig_src.reladdr,
1579 reg_offset);
1580
1581 emit_before(block, inst, SCRATCH_READ(temp, index));
1582 }
1583
1584 /**
1585 * Emits an instruction after @inst to store the value to be written
1586 * to @orig_dst to scratch space at @base_offset, from @temp.
1587 *
1588 * @base_offset is measured in 32-byte units (the size of a register).
1589 */
1590 void
1591 vec4_visitor::emit_scratch_write(bblock_t *block, vec4_instruction *inst,
1592 int base_offset)
1593 {
1594 int reg_offset = base_offset + inst->dst.reg_offset;
1595 src_reg index = get_scratch_offset(block, inst, inst->dst.reladdr,
1596 reg_offset);
1597
1598 /* Create a temporary register to store *inst's result in.
1599 *
1600 * We have to be careful in MOVing from our temporary result register in
1601 * the scratch write. If we swizzle from channels of the temporary that
1602 * weren't initialized, it will confuse live interval analysis, which will
1603 * make spilling fail to make progress.
1604 */
1605 const src_reg temp = swizzle(retype(src_reg(this, glsl_type::vec4_type),
1606 inst->dst.type),
1607 brw_swizzle_for_mask(inst->dst.writemask));
1608 dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
1609 inst->dst.writemask));
1610 vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
1611 if (inst->opcode != BRW_OPCODE_SEL)
1612 write->predicate = inst->predicate;
1613 write->ir = inst->ir;
1614 write->annotation = inst->annotation;
1615 inst->insert_after(block, write);
1616
1617 inst->dst.file = temp.file;
1618 inst->dst.reg = temp.reg;
1619 inst->dst.reg_offset = temp.reg_offset;
1620 inst->dst.reladdr = NULL;
1621 }
1622
1623 /**
1624 * Checks if \p src and/or \p src.reladdr require a scratch read, and if so,
1625 * adds the scratch read(s) before \p inst. The function also checks for
1626 * recursive reladdr scratch accesses, issuing the corresponding scratch
1627 * loads and rewriting reladdr references accordingly.
1628 *
1629 * \return \p src if it did not require a scratch load, otherwise, the
1630 * register holding the result of the scratch load that the caller should
1631 * use to rewrite src.
1632 */
1633 src_reg
1634 vec4_visitor::emit_resolve_reladdr(int scratch_loc[], bblock_t *block,
1635 vec4_instruction *inst, src_reg src)
1636 {
1637 /* Resolve recursive reladdr scratch access by calling ourselves
1638 * with src.reladdr
1639 */
1640 if (src.reladdr)
1641 *src.reladdr = emit_resolve_reladdr(scratch_loc, block, inst,
1642 *src.reladdr);
1643
1644 /* Now handle scratch access on src */
1645 if (src.file == GRF && scratch_loc[src.reg] != -1) {
1646 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
1647 emit_scratch_read(block, inst, temp, src, scratch_loc[src.reg]);
1648 src.reg = temp.reg;
1649 src.reg_offset = temp.reg_offset;
1650 src.reladdr = NULL;
1651 }
1652
1653 return src;
1654 }
1655
1656 /**
1657 * We can't generally support array access in GRF space, because a
1658 * single instruction's destination can only span 2 contiguous
1659 * registers. So, we send all GRF arrays that get variable index
1660 * access to scratch space.
1661 */
1662 void
1663 vec4_visitor::move_grf_array_access_to_scratch()
1664 {
1665 int scratch_loc[this->alloc.count];
1666 memset(scratch_loc, -1, sizeof(scratch_loc));
1667
1668 /* First, calculate the set of virtual GRFs that need to be punted
1669 * to scratch due to having any array access on them, and where in
1670 * scratch.
1671 */
1672 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1673 if (inst->dst.file == GRF && inst->dst.reladdr) {
1674 if (scratch_loc[inst->dst.reg] == -1) {
1675 scratch_loc[inst->dst.reg] = last_scratch;
1676 last_scratch += this->alloc.sizes[inst->dst.reg];
1677 }
1678
1679 for (src_reg *iter = inst->dst.reladdr;
1680 iter->reladdr;
1681 iter = iter->reladdr) {
1682 if (iter->file == GRF && scratch_loc[iter->reg] == -1) {
1683 scratch_loc[iter->reg] = last_scratch;
1684 last_scratch += this->alloc.sizes[iter->reg];
1685 }
1686 }
1687 }
1688
1689 for (int i = 0 ; i < 3; i++) {
1690 for (src_reg *iter = &inst->src[i];
1691 iter->reladdr;
1692 iter = iter->reladdr) {
1693 if (iter->file == GRF && scratch_loc[iter->reg] == -1) {
1694 scratch_loc[iter->reg] = last_scratch;
1695 last_scratch += this->alloc.sizes[iter->reg];
1696 }
1697 }
1698 }
1699 }
1700
1701 /* Now, for anything that will be accessed through scratch, rewrite
1702 * it to load/store. Note that this is a _safe list walk, because
1703 * we may generate a new scratch_write instruction after the one
1704 * we're processing.
1705 */
1706 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1707 /* Set up the annotation tracking for new generated instructions. */
1708 base_ir = inst->ir;
1709 current_annotation = inst->annotation;
1710
1711 /* First handle scratch access on the dst. Notice we have to handle
1712 * the case where the dst's reladdr also points to scratch space.
1713 */
1714 if (inst->dst.reladdr)
1715 *inst->dst.reladdr = emit_resolve_reladdr(scratch_loc, block, inst,
1716 *inst->dst.reladdr);
1717
1718 /* Now that we have handled any (possibly recursive) reladdr scratch
1719 * accesses for dst we can safely do the scratch write for dst itself
1720 */
1721 if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1)
1722 emit_scratch_write(block, inst, scratch_loc[inst->dst.reg]);
1723
1724 /* Now handle scratch access on any src. In this case, since inst->src[i]
1725 * already is a src_reg, we can just call emit_resolve_reladdr with
1726 * inst->src[i] and it will take care of handling scratch loads for
1727 * both src and src.reladdr (recursively).
1728 */
1729 for (int i = 0 ; i < 3; i++) {
1730 inst->src[i] = emit_resolve_reladdr(scratch_loc, block, inst,
1731 inst->src[i]);
1732 }
1733 }
1734 }
1735
1736 /**
1737 * Emits an instruction before @inst to load the value named by @orig_src
1738 * from the pull constant buffer (surface) at @base_offset to @temp.
1739 */
1740 void
1741 vec4_visitor::emit_pull_constant_load(bblock_t *block, vec4_instruction *inst,
1742 dst_reg temp, src_reg orig_src,
1743 int base_offset)
1744 {
1745 int reg_offset = base_offset + orig_src.reg_offset;
1746 const unsigned index = prog_data->base.binding_table.pull_constants_start;
1747 src_reg offset = get_pull_constant_offset(block, inst, orig_src.reladdr,
1748 reg_offset);
1749
1750 emit_pull_constant_load_reg(temp,
1751 src_reg(index),
1752 offset,
1753 block, inst);
1754
1755 brw_mark_surface_used(&prog_data->base, index);
1756 }
1757
1758 /**
1759 * Implements array access of uniforms by inserting a
1760 * PULL_CONSTANT_LOAD instruction.
1761 *
1762 * Unlike temporary GRF array access (where we don't support it due to
1763 * the difficulty of doing relative addressing on instruction
1764 * destinations), we could potentially do array access of uniforms
1765 * that were loaded in GRF space as push constants. In real-world
1766 * usage we've seen, though, the arrays being used are always larger
1767 * than we could load as push constants, so just always move all
1768 * uniform array access out to a pull constant buffer.
1769 */
1770 void
1771 vec4_visitor::move_uniform_array_access_to_pull_constants()
1772 {
1773 int pull_constant_loc[this->uniforms];
1774 memset(pull_constant_loc, -1, sizeof(pull_constant_loc));
1775 bool nested_reladdr;
1776
1777 /* Walk through and find array access of uniforms. Put a copy of that
1778 * uniform in the pull constant buffer.
1779 *
1780 * Note that we don't move constant-indexed accesses to arrays. No
1781 * testing has been done of the performance impact of this choice.
1782 */
1783 do {
1784 nested_reladdr = false;
1785
1786 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1787 for (int i = 0 ; i < 3; i++) {
1788 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
1789 continue;
1790
1791 int uniform = inst->src[i].reg;
1792
1793 if (inst->src[i].reladdr->reladdr)
1794 nested_reladdr = true; /* will need another pass */
1795
1796 /* If this array isn't already present in the pull constant buffer,
1797 * add it.
1798 */
1799 if (pull_constant_loc[uniform] == -1) {
1800 const gl_constant_value **values =
1801 &stage_prog_data->param[uniform * 4];
1802
1803 pull_constant_loc[uniform] = stage_prog_data->nr_pull_params / 4;
1804
1805 assert(uniform < uniform_array_size);
1806 for (int j = 0; j < uniform_size[uniform] * 4; j++) {
1807 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++]
1808 = values[j];
1809 }
1810 }
1811
1812 /* Set up the annotation tracking for new generated instructions. */
1813 base_ir = inst->ir;
1814 current_annotation = inst->annotation;
1815
1816 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
1817
1818 emit_pull_constant_load(block, inst, temp, inst->src[i],
1819 pull_constant_loc[uniform]);
1820
1821 inst->src[i].file = temp.file;
1822 inst->src[i].reg = temp.reg;
1823 inst->src[i].reg_offset = temp.reg_offset;
1824 inst->src[i].reladdr = NULL;
1825 }
1826 }
1827 } while (nested_reladdr);
1828
1829 /* Now there are no accesses of the UNIFORM file with a reladdr, so
1830 * no need to track them as larger-than-vec4 objects. This will be
1831 * relied on in cutting out unused uniform vectors from push
1832 * constants.
1833 */
1834 split_uniform_registers();
1835 }
1836
1837 void
1838 vec4_visitor::resolve_ud_negate(src_reg *reg)
1839 {
1840 if (reg->type != BRW_REGISTER_TYPE_UD ||
1841 !reg->negate)
1842 return;
1843
1844 src_reg temp = src_reg(this, glsl_type::uvec4_type);
1845 emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
1846 *reg = temp;
1847 }
1848
1849 vec4_visitor::vec4_visitor(const struct brw_compiler *compiler,
1850 void *log_data,
1851 const struct brw_sampler_prog_key_data *key_tex,
1852 struct brw_vue_prog_data *prog_data,
1853 const nir_shader *shader,
1854 void *mem_ctx,
1855 bool no_spills,
1856 int shader_time_index)
1857 : backend_shader(compiler, log_data, mem_ctx, shader, &prog_data->base),
1858 key_tex(key_tex),
1859 prog_data(prog_data),
1860 fail_msg(NULL),
1861 first_non_payload_grf(0),
1862 need_all_constants_in_pull_buffer(false),
1863 no_spills(no_spills),
1864 shader_time_index(shader_time_index),
1865 last_scratch(0)
1866 {
1867 this->failed = false;
1868
1869 this->base_ir = NULL;
1870 this->current_annotation = NULL;
1871 memset(this->output_reg_annotation, 0, sizeof(this->output_reg_annotation));
1872
1873 this->virtual_grf_start = NULL;
1874 this->virtual_grf_end = NULL;
1875 this->live_intervals = NULL;
1876
1877 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1878
1879 this->uniforms = 0;
1880
1881 /* Initialize uniform_array_size to at least 1 because pre-gen6 VS requires
1882 * at least one. See setup_uniforms() in brw_vec4.cpp.
1883 */
1884 this->uniform_array_size = 1;
1885 if (prog_data) {
1886 this->uniform_array_size =
1887 MAX2(DIV_ROUND_UP(stage_prog_data->nr_params, 4), 1);
1888 }
1889
1890 this->uniform_size = rzalloc_array(mem_ctx, int, this->uniform_array_size);
1891 }
1892
1893 vec4_visitor::~vec4_visitor()
1894 {
1895 }
1896
1897
1898 void
1899 vec4_visitor::fail(const char *format, ...)
1900 {
1901 va_list va;
1902 char *msg;
1903
1904 if (failed)
1905 return;
1906
1907 failed = true;
1908
1909 va_start(va, format);
1910 msg = ralloc_vasprintf(mem_ctx, format, va);
1911 va_end(va);
1912 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
1913
1914 this->fail_msg = msg;
1915
1916 if (debug_enabled) {
1917 fprintf(stderr, "%s", msg);
1918 }
1919 }
1920
1921 } /* namespace brw */