i965: Make the userclip flag for the VUE map come from VS prog data.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_visitor.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 extern "C" {
26 #include "main/macros.h"
27 #include "program/prog_parameter.h"
28 #include "program/sampler.h"
29 }
30
31 namespace brw {
32
33 src_reg::src_reg(dst_reg reg)
34 {
35 init();
36
37 this->file = reg.file;
38 this->reg = reg.reg;
39 this->reg_offset = reg.reg_offset;
40 this->type = reg.type;
41 this->reladdr = reg.reladdr;
42 this->fixed_hw_reg = reg.fixed_hw_reg;
43
44 int swizzles[4];
45 int next_chan = 0;
46 int last = 0;
47
48 for (int i = 0; i < 4; i++) {
49 if (!(reg.writemask & (1 << i)))
50 continue;
51
52 swizzles[next_chan++] = last = i;
53 }
54
55 for (; next_chan < 4; next_chan++) {
56 swizzles[next_chan] = last;
57 }
58
59 this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
60 swizzles[2], swizzles[3]);
61 }
62
63 dst_reg::dst_reg(src_reg reg)
64 {
65 init();
66
67 this->file = reg.file;
68 this->reg = reg.reg;
69 this->reg_offset = reg.reg_offset;
70 this->type = reg.type;
71 this->writemask = WRITEMASK_XYZW;
72 this->reladdr = reg.reladdr;
73 this->fixed_hw_reg = reg.fixed_hw_reg;
74 }
75
76 vec4_instruction::vec4_instruction(vec4_visitor *v,
77 enum opcode opcode, dst_reg dst,
78 src_reg src0, src_reg src1, src_reg src2)
79 {
80 this->opcode = opcode;
81 this->dst = dst;
82 this->src[0] = src0;
83 this->src[1] = src1;
84 this->src[2] = src2;
85 this->ir = v->base_ir;
86 this->annotation = v->current_annotation;
87 }
88
89 vec4_instruction *
90 vec4_visitor::emit(vec4_instruction *inst)
91 {
92 this->instructions.push_tail(inst);
93
94 return inst;
95 }
96
97 vec4_instruction *
98 vec4_visitor::emit_before(vec4_instruction *inst, vec4_instruction *new_inst)
99 {
100 new_inst->ir = inst->ir;
101 new_inst->annotation = inst->annotation;
102
103 inst->insert_before(new_inst);
104
105 return inst;
106 }
107
108 vec4_instruction *
109 vec4_visitor::emit(enum opcode opcode, dst_reg dst,
110 src_reg src0, src_reg src1, src_reg src2)
111 {
112 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst,
113 src0, src1, src2));
114 }
115
116
117 vec4_instruction *
118 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
119 {
120 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0, src1));
121 }
122
123 vec4_instruction *
124 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
125 {
126 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0));
127 }
128
129 vec4_instruction *
130 vec4_visitor::emit(enum opcode opcode)
131 {
132 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst_reg()));
133 }
134
135 #define ALU1(op) \
136 vec4_instruction * \
137 vec4_visitor::op(dst_reg dst, src_reg src0) \
138 { \
139 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
140 src0); \
141 }
142
143 #define ALU2(op) \
144 vec4_instruction * \
145 vec4_visitor::op(dst_reg dst, src_reg src0, src_reg src1) \
146 { \
147 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
148 src0, src1); \
149 }
150
151 ALU1(NOT)
152 ALU1(MOV)
153 ALU1(FRC)
154 ALU1(RNDD)
155 ALU1(RNDE)
156 ALU1(RNDZ)
157 ALU2(ADD)
158 ALU2(MUL)
159 ALU2(MACH)
160 ALU2(AND)
161 ALU2(OR)
162 ALU2(XOR)
163 ALU2(DP3)
164 ALU2(DP4)
165
166 /** Gen4 predicated IF. */
167 vec4_instruction *
168 vec4_visitor::IF(uint32_t predicate)
169 {
170 vec4_instruction *inst;
171
172 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF);
173 inst->predicate = predicate;
174
175 return inst;
176 }
177
178 /** Gen6+ IF with embedded comparison. */
179 vec4_instruction *
180 vec4_visitor::IF(src_reg src0, src_reg src1, uint32_t condition)
181 {
182 assert(intel->gen >= 6);
183
184 vec4_instruction *inst;
185
186 resolve_ud_negate(&src0);
187 resolve_ud_negate(&src1);
188
189 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF, dst_null_d(),
190 src0, src1);
191 inst->conditional_mod = condition;
192
193 return inst;
194 }
195
196 /**
197 * CMP: Sets the low bit of the destination channels with the result
198 * of the comparison, while the upper bits are undefined, and updates
199 * the flag register with the packed 16 bits of the result.
200 */
201 vec4_instruction *
202 vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1, uint32_t condition)
203 {
204 vec4_instruction *inst;
205
206 /* original gen4 does type conversion to the destination type
207 * before before comparison, producing garbage results for floating
208 * point comparisons.
209 */
210 if (intel->gen == 4) {
211 dst.type = src0.type;
212 if (dst.file == HW_REG)
213 dst.fixed_hw_reg.type = dst.type;
214 }
215
216 resolve_ud_negate(&src0);
217 resolve_ud_negate(&src1);
218
219 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_CMP, dst, src0, src1);
220 inst->conditional_mod = condition;
221
222 return inst;
223 }
224
225 vec4_instruction *
226 vec4_visitor::SCRATCH_READ(dst_reg dst, src_reg index)
227 {
228 vec4_instruction *inst;
229
230 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_READ,
231 dst, index);
232 inst->base_mrf = 14;
233 inst->mlen = 1;
234
235 return inst;
236 }
237
238 vec4_instruction *
239 vec4_visitor::SCRATCH_WRITE(dst_reg dst, src_reg src, src_reg index)
240 {
241 vec4_instruction *inst;
242
243 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_WRITE,
244 dst, src, index);
245 inst->base_mrf = 13;
246 inst->mlen = 2;
247
248 return inst;
249 }
250
251 void
252 vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
253 {
254 static enum opcode dot_opcodes[] = {
255 BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
256 };
257
258 emit(dot_opcodes[elements - 2], dst, src0, src1);
259 }
260
261 void
262 vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
263 {
264 /* The gen6 math instruction ignores the source modifiers --
265 * swizzle, abs, negate, and at least some parts of the register
266 * region description.
267 *
268 * While it would seem that this MOV could be avoided at this point
269 * in the case that the swizzle is matched up with the destination
270 * writemask, note that uniform packing and register allocation
271 * could rearrange our swizzle, so let's leave this matter up to
272 * copy propagation later.
273 */
274 src_reg temp_src = src_reg(this, glsl_type::vec4_type);
275 emit(MOV(dst_reg(temp_src), src));
276
277 if (dst.writemask != WRITEMASK_XYZW) {
278 /* The gen6 math instruction must be align1, so we can't do
279 * writemasks.
280 */
281 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
282
283 emit(opcode, temp_dst, temp_src);
284
285 emit(MOV(dst, src_reg(temp_dst)));
286 } else {
287 emit(opcode, dst, temp_src);
288 }
289 }
290
291 void
292 vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
293 {
294 vec4_instruction *inst = emit(opcode, dst, src);
295 inst->base_mrf = 1;
296 inst->mlen = 1;
297 }
298
299 void
300 vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
301 {
302 switch (opcode) {
303 case SHADER_OPCODE_RCP:
304 case SHADER_OPCODE_RSQ:
305 case SHADER_OPCODE_SQRT:
306 case SHADER_OPCODE_EXP2:
307 case SHADER_OPCODE_LOG2:
308 case SHADER_OPCODE_SIN:
309 case SHADER_OPCODE_COS:
310 break;
311 default:
312 assert(!"not reached: bad math opcode");
313 return;
314 }
315
316 if (intel->gen >= 7) {
317 emit(opcode, dst, src);
318 } else if (intel->gen == 6) {
319 return emit_math1_gen6(opcode, dst, src);
320 } else {
321 return emit_math1_gen4(opcode, dst, src);
322 }
323 }
324
325 void
326 vec4_visitor::emit_math2_gen6(enum opcode opcode,
327 dst_reg dst, src_reg src0, src_reg src1)
328 {
329 src_reg expanded;
330
331 /* The gen6 math instruction ignores the source modifiers --
332 * swizzle, abs, negate, and at least some parts of the register
333 * region description. Move the sources to temporaries to make it
334 * generally work.
335 */
336
337 expanded = src_reg(this, glsl_type::vec4_type);
338 expanded.type = src0.type;
339 emit(MOV(dst_reg(expanded), src0));
340 src0 = expanded;
341
342 expanded = src_reg(this, glsl_type::vec4_type);
343 expanded.type = src1.type;
344 emit(MOV(dst_reg(expanded), src1));
345 src1 = expanded;
346
347 if (dst.writemask != WRITEMASK_XYZW) {
348 /* The gen6 math instruction must be align1, so we can't do
349 * writemasks.
350 */
351 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
352 temp_dst.type = dst.type;
353
354 emit(opcode, temp_dst, src0, src1);
355
356 emit(MOV(dst, src_reg(temp_dst)));
357 } else {
358 emit(opcode, dst, src0, src1);
359 }
360 }
361
362 void
363 vec4_visitor::emit_math2_gen4(enum opcode opcode,
364 dst_reg dst, src_reg src0, src_reg src1)
365 {
366 vec4_instruction *inst = emit(opcode, dst, src0, src1);
367 inst->base_mrf = 1;
368 inst->mlen = 2;
369 }
370
371 void
372 vec4_visitor::emit_math(enum opcode opcode,
373 dst_reg dst, src_reg src0, src_reg src1)
374 {
375 switch (opcode) {
376 case SHADER_OPCODE_POW:
377 case SHADER_OPCODE_INT_QUOTIENT:
378 case SHADER_OPCODE_INT_REMAINDER:
379 break;
380 default:
381 assert(!"not reached: unsupported binary math opcode");
382 return;
383 }
384
385 if (intel->gen >= 7) {
386 emit(opcode, dst, src0, src1);
387 } else if (intel->gen == 6) {
388 return emit_math2_gen6(opcode, dst, src0, src1);
389 } else {
390 return emit_math2_gen4(opcode, dst, src0, src1);
391 }
392 }
393
394 void
395 vec4_visitor::visit_instructions(const exec_list *list)
396 {
397 foreach_list(node, list) {
398 ir_instruction *ir = (ir_instruction *)node;
399
400 base_ir = ir;
401 ir->accept(this);
402 }
403 }
404
405
406 static int
407 type_size(const struct glsl_type *type)
408 {
409 unsigned int i;
410 int size;
411
412 switch (type->base_type) {
413 case GLSL_TYPE_UINT:
414 case GLSL_TYPE_INT:
415 case GLSL_TYPE_FLOAT:
416 case GLSL_TYPE_BOOL:
417 if (type->is_matrix()) {
418 return type->matrix_columns;
419 } else {
420 /* Regardless of size of vector, it gets a vec4. This is bad
421 * packing for things like floats, but otherwise arrays become a
422 * mess. Hopefully a later pass over the code can pack scalars
423 * down if appropriate.
424 */
425 return 1;
426 }
427 case GLSL_TYPE_ARRAY:
428 assert(type->length > 0);
429 return type_size(type->fields.array) * type->length;
430 case GLSL_TYPE_STRUCT:
431 size = 0;
432 for (i = 0; i < type->length; i++) {
433 size += type_size(type->fields.structure[i].type);
434 }
435 return size;
436 case GLSL_TYPE_SAMPLER:
437 /* Samplers take up one slot in UNIFORMS[], but they're baked in
438 * at link time.
439 */
440 return 1;
441 default:
442 assert(0);
443 return 0;
444 }
445 }
446
447 int
448 vec4_visitor::virtual_grf_alloc(int size)
449 {
450 if (virtual_grf_array_size <= virtual_grf_count) {
451 if (virtual_grf_array_size == 0)
452 virtual_grf_array_size = 16;
453 else
454 virtual_grf_array_size *= 2;
455 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
456 virtual_grf_array_size);
457 virtual_grf_reg_map = reralloc(mem_ctx, virtual_grf_reg_map, int,
458 virtual_grf_array_size);
459 }
460 virtual_grf_reg_map[virtual_grf_count] = virtual_grf_reg_count;
461 virtual_grf_reg_count += size;
462 virtual_grf_sizes[virtual_grf_count] = size;
463 return virtual_grf_count++;
464 }
465
466 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
467 {
468 init();
469
470 this->file = GRF;
471 this->reg = v->virtual_grf_alloc(type_size(type));
472
473 if (type->is_array() || type->is_record()) {
474 this->swizzle = BRW_SWIZZLE_NOOP;
475 } else {
476 this->swizzle = swizzle_for_size(type->vector_elements);
477 }
478
479 this->type = brw_type_for_base_type(type);
480 }
481
482 dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
483 {
484 init();
485
486 this->file = GRF;
487 this->reg = v->virtual_grf_alloc(type_size(type));
488
489 if (type->is_array() || type->is_record()) {
490 this->writemask = WRITEMASK_XYZW;
491 } else {
492 this->writemask = (1 << type->vector_elements) - 1;
493 }
494
495 this->type = brw_type_for_base_type(type);
496 }
497
498 /* Our support for uniforms is piggy-backed on the struct
499 * gl_fragment_program, because that's where the values actually
500 * get stored, rather than in some global gl_shader_program uniform
501 * store.
502 */
503 int
504 vec4_visitor::setup_uniform_values(int loc, const glsl_type *type)
505 {
506 unsigned int offset = 0;
507 float *values = &this->vp->Base.Parameters->ParameterValues[loc][0].f;
508
509 if (type->is_matrix()) {
510 const glsl_type *column = type->column_type();
511
512 for (unsigned int i = 0; i < type->matrix_columns; i++) {
513 offset += setup_uniform_values(loc + offset, column);
514 }
515
516 return offset;
517 }
518
519 switch (type->base_type) {
520 case GLSL_TYPE_FLOAT:
521 case GLSL_TYPE_UINT:
522 case GLSL_TYPE_INT:
523 case GLSL_TYPE_BOOL:
524 for (unsigned int i = 0; i < type->vector_elements; i++) {
525 c->prog_data.param[this->uniforms * 4 + i] = &values[i];
526 }
527
528 /* Set up pad elements to get things aligned to a vec4 boundary. */
529 for (unsigned int i = type->vector_elements; i < 4; i++) {
530 static float zero = 0;
531
532 c->prog_data.param[this->uniforms * 4 + i] = &zero;
533 }
534
535 /* Track the size of this uniform vector, for future packing of
536 * uniforms.
537 */
538 this->uniform_vector_size[this->uniforms] = type->vector_elements;
539 this->uniforms++;
540
541 return 1;
542
543 case GLSL_TYPE_STRUCT:
544 for (unsigned int i = 0; i < type->length; i++) {
545 offset += setup_uniform_values(loc + offset,
546 type->fields.structure[i].type);
547 }
548 return offset;
549
550 case GLSL_TYPE_ARRAY:
551 for (unsigned int i = 0; i < type->length; i++) {
552 offset += setup_uniform_values(loc + offset, type->fields.array);
553 }
554 return offset;
555
556 case GLSL_TYPE_SAMPLER:
557 /* The sampler takes up a slot, but we don't use any values from it. */
558 return 1;
559
560 default:
561 assert(!"not reached");
562 return 0;
563 }
564 }
565
566 void
567 vec4_visitor::setup_uniform_clipplane_values()
568 {
569 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
570
571 /* Pre-Gen6, we compact clip planes. For example, if the user
572 * enables just clip planes 0, 1, and 3, we will enable clip planes
573 * 0, 1, and 2 in the hardware, and we'll move clip plane 3 to clip
574 * plane 2. This simplifies the implementation of the Gen6 clip
575 * thread.
576 *
577 * In Gen6 and later, we don't compact clip planes, because this
578 * simplifies the implementation of gl_ClipDistance.
579 */
580 int compacted_clipplane_index = 0;
581 for (int i = 0; i < c->key.nr_userclip_plane_consts; ++i) {
582 if (intel->gen < 6 &&
583 !(c->key.userclip_planes_enabled_gen_4_5 & (1 << i))) {
584 continue;
585 }
586 this->uniform_vector_size[this->uniforms] = 4;
587 this->userplane[compacted_clipplane_index] = dst_reg(UNIFORM, this->uniforms);
588 this->userplane[compacted_clipplane_index].type = BRW_REGISTER_TYPE_F;
589 for (int j = 0; j < 4; ++j) {
590 c->prog_data.param[this->uniforms * 4 + j] = &clip_planes[i][j];
591 }
592 ++compacted_clipplane_index;
593 ++this->uniforms;
594 }
595 }
596
597 /* Our support for builtin uniforms is even scarier than non-builtin.
598 * It sits on top of the PROG_STATE_VAR parameters that are
599 * automatically updated from GL context state.
600 */
601 void
602 vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
603 {
604 const ir_state_slot *const slots = ir->state_slots;
605 assert(ir->state_slots != NULL);
606
607 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
608 /* This state reference has already been setup by ir_to_mesa,
609 * but we'll get the same index back here. We can reference
610 * ParameterValues directly, since unlike brw_fs.cpp, we never
611 * add new state references during compile.
612 */
613 int index = _mesa_add_state_reference(this->vp->Base.Parameters,
614 (gl_state_index *)slots[i].tokens);
615 float *values = &this->vp->Base.Parameters->ParameterValues[index][0].f;
616
617 this->uniform_vector_size[this->uniforms] = 0;
618 /* Add each of the unique swizzled channels of the element.
619 * This will end up matching the size of the glsl_type of this field.
620 */
621 int last_swiz = -1;
622 for (unsigned int j = 0; j < 4; j++) {
623 int swiz = GET_SWZ(slots[i].swizzle, j);
624 last_swiz = swiz;
625
626 c->prog_data.param[this->uniforms * 4 + j] = &values[swiz];
627 if (swiz <= last_swiz)
628 this->uniform_vector_size[this->uniforms]++;
629 }
630 this->uniforms++;
631 }
632 }
633
634 dst_reg *
635 vec4_visitor::variable_storage(ir_variable *var)
636 {
637 return (dst_reg *)hash_table_find(this->variable_ht, var);
638 }
639
640 void
641 vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir, uint32_t *predicate)
642 {
643 ir_expression *expr = ir->as_expression();
644
645 *predicate = BRW_PREDICATE_NORMAL;
646
647 if (expr) {
648 src_reg op[2];
649 vec4_instruction *inst;
650
651 assert(expr->get_num_operands() <= 2);
652 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
653 expr->operands[i]->accept(this);
654 op[i] = this->result;
655
656 resolve_ud_negate(&op[i]);
657 }
658
659 switch (expr->operation) {
660 case ir_unop_logic_not:
661 inst = emit(AND(dst_null_d(), op[0], src_reg(1)));
662 inst->conditional_mod = BRW_CONDITIONAL_Z;
663 break;
664
665 case ir_binop_logic_xor:
666 inst = emit(XOR(dst_null_d(), op[0], op[1]));
667 inst->conditional_mod = BRW_CONDITIONAL_NZ;
668 break;
669
670 case ir_binop_logic_or:
671 inst = emit(OR(dst_null_d(), op[0], op[1]));
672 inst->conditional_mod = BRW_CONDITIONAL_NZ;
673 break;
674
675 case ir_binop_logic_and:
676 inst = emit(AND(dst_null_d(), op[0], op[1]));
677 inst->conditional_mod = BRW_CONDITIONAL_NZ;
678 break;
679
680 case ir_unop_f2b:
681 if (intel->gen >= 6) {
682 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
683 } else {
684 inst = emit(MOV(dst_null_f(), op[0]));
685 inst->conditional_mod = BRW_CONDITIONAL_NZ;
686 }
687 break;
688
689 case ir_unop_i2b:
690 if (intel->gen >= 6) {
691 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
692 } else {
693 inst = emit(MOV(dst_null_d(), op[0]));
694 inst->conditional_mod = BRW_CONDITIONAL_NZ;
695 }
696 break;
697
698 case ir_binop_all_equal:
699 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
700 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
701 break;
702
703 case ir_binop_any_nequal:
704 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
705 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
706 break;
707
708 case ir_unop_any:
709 inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
710 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
711 break;
712
713 case ir_binop_greater:
714 case ir_binop_gequal:
715 case ir_binop_less:
716 case ir_binop_lequal:
717 case ir_binop_equal:
718 case ir_binop_nequal:
719 emit(CMP(dst_null_d(), op[0], op[1],
720 brw_conditional_for_comparison(expr->operation)));
721 break;
722
723 default:
724 assert(!"not reached");
725 break;
726 }
727 return;
728 }
729
730 ir->accept(this);
731
732 resolve_ud_negate(&this->result);
733
734 if (intel->gen >= 6) {
735 vec4_instruction *inst = emit(AND(dst_null_d(),
736 this->result, src_reg(1)));
737 inst->conditional_mod = BRW_CONDITIONAL_NZ;
738 } else {
739 vec4_instruction *inst = emit(MOV(dst_null_d(), this->result));
740 inst->conditional_mod = BRW_CONDITIONAL_NZ;
741 }
742 }
743
744 /**
745 * Emit a gen6 IF statement with the comparison folded into the IF
746 * instruction.
747 */
748 void
749 vec4_visitor::emit_if_gen6(ir_if *ir)
750 {
751 ir_expression *expr = ir->condition->as_expression();
752
753 if (expr) {
754 src_reg op[2];
755 dst_reg temp;
756
757 assert(expr->get_num_operands() <= 2);
758 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
759 expr->operands[i]->accept(this);
760 op[i] = this->result;
761 }
762
763 switch (expr->operation) {
764 case ir_unop_logic_not:
765 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z));
766 return;
767
768 case ir_binop_logic_xor:
769 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
770 return;
771
772 case ir_binop_logic_or:
773 temp = dst_reg(this, glsl_type::bool_type);
774 emit(OR(temp, op[0], op[1]));
775 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
776 return;
777
778 case ir_binop_logic_and:
779 temp = dst_reg(this, glsl_type::bool_type);
780 emit(AND(temp, op[0], op[1]));
781 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
782 return;
783
784 case ir_unop_f2b:
785 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
786 return;
787
788 case ir_unop_i2b:
789 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
790 return;
791
792 case ir_binop_greater:
793 case ir_binop_gequal:
794 case ir_binop_less:
795 case ir_binop_lequal:
796 case ir_binop_equal:
797 case ir_binop_nequal:
798 emit(IF(op[0], op[1],
799 brw_conditional_for_comparison(expr->operation)));
800 return;
801
802 case ir_binop_all_equal:
803 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
804 emit(IF(BRW_PREDICATE_ALIGN16_ALL4H));
805 return;
806
807 case ir_binop_any_nequal:
808 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
809 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
810 return;
811
812 case ir_unop_any:
813 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
814 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
815 return;
816
817 default:
818 assert(!"not reached");
819 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
820 return;
821 }
822 return;
823 }
824
825 ir->condition->accept(this);
826
827 emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ));
828 }
829
830 void
831 vec4_visitor::visit(ir_variable *ir)
832 {
833 dst_reg *reg = NULL;
834
835 if (variable_storage(ir))
836 return;
837
838 switch (ir->mode) {
839 case ir_var_in:
840 reg = new(mem_ctx) dst_reg(ATTR, ir->location);
841
842 /* Do GL_FIXED rescaling for GLES2.0. Our GL_FIXED attributes
843 * come in as floating point conversions of the integer values.
844 */
845 for (int i = ir->location; i < ir->location + type_size(ir->type); i++) {
846 if (!c->key.gl_fixed_input_size[i])
847 continue;
848
849 dst_reg dst = *reg;
850 dst.type = brw_type_for_base_type(ir->type);
851 dst.writemask = (1 << c->key.gl_fixed_input_size[i]) - 1;
852 emit(MUL(dst, src_reg(dst), src_reg(1.0f / 65536.0f)));
853 }
854 break;
855
856 case ir_var_out:
857 reg = new(mem_ctx) dst_reg(this, ir->type);
858
859 for (int i = 0; i < type_size(ir->type); i++) {
860 output_reg[ir->location + i] = *reg;
861 output_reg[ir->location + i].reg_offset = i;
862 output_reg[ir->location + i].type =
863 brw_type_for_base_type(ir->type->get_scalar_type());
864 output_reg_annotation[ir->location + i] = ir->name;
865 }
866 break;
867
868 case ir_var_auto:
869 case ir_var_temporary:
870 reg = new(mem_ctx) dst_reg(this, ir->type);
871 break;
872
873 case ir_var_uniform:
874 reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
875
876 /* Track how big the whole uniform variable is, in case we need to put a
877 * copy of its data into pull constants for array access.
878 */
879 this->uniform_size[this->uniforms] = type_size(ir->type);
880
881 if (!strncmp(ir->name, "gl_", 3)) {
882 setup_builtin_uniform_values(ir);
883 } else {
884 setup_uniform_values(ir->location, ir->type);
885 }
886 break;
887
888 case ir_var_system_value:
889 /* VertexID is stored by the VF as the last vertex element, but
890 * we don't represent it with a flag in inputs_read, so we call
891 * it VERT_ATTRIB_MAX, which setup_attributes() picks up on.
892 */
893 reg = new(mem_ctx) dst_reg(ATTR, VERT_ATTRIB_MAX);
894 prog_data->uses_vertexid = true;
895
896 switch (ir->location) {
897 case SYSTEM_VALUE_VERTEX_ID:
898 reg->writemask = WRITEMASK_X;
899 break;
900 case SYSTEM_VALUE_INSTANCE_ID:
901 reg->writemask = WRITEMASK_Y;
902 break;
903 default:
904 assert(!"not reached");
905 break;
906 }
907 break;
908
909 default:
910 assert(!"not reached");
911 }
912
913 reg->type = brw_type_for_base_type(ir->type);
914 hash_table_insert(this->variable_ht, reg, ir);
915 }
916
917 void
918 vec4_visitor::visit(ir_loop *ir)
919 {
920 dst_reg counter;
921
922 /* We don't want debugging output to print the whole body of the
923 * loop as the annotation.
924 */
925 this->base_ir = NULL;
926
927 if (ir->counter != NULL) {
928 this->base_ir = ir->counter;
929 ir->counter->accept(this);
930 counter = *(variable_storage(ir->counter));
931
932 if (ir->from != NULL) {
933 this->base_ir = ir->from;
934 ir->from->accept(this);
935
936 emit(MOV(counter, this->result));
937 }
938 }
939
940 emit(BRW_OPCODE_DO);
941
942 if (ir->to) {
943 this->base_ir = ir->to;
944 ir->to->accept(this);
945
946 emit(CMP(dst_null_d(), src_reg(counter), this->result,
947 brw_conditional_for_comparison(ir->cmp)));
948
949 vec4_instruction *inst = emit(BRW_OPCODE_BREAK);
950 inst->predicate = BRW_PREDICATE_NORMAL;
951 }
952
953 visit_instructions(&ir->body_instructions);
954
955
956 if (ir->increment) {
957 this->base_ir = ir->increment;
958 ir->increment->accept(this);
959 emit(ADD(counter, src_reg(counter), this->result));
960 }
961
962 emit(BRW_OPCODE_WHILE);
963 }
964
965 void
966 vec4_visitor::visit(ir_loop_jump *ir)
967 {
968 switch (ir->mode) {
969 case ir_loop_jump::jump_break:
970 emit(BRW_OPCODE_BREAK);
971 break;
972 case ir_loop_jump::jump_continue:
973 emit(BRW_OPCODE_CONTINUE);
974 break;
975 }
976 }
977
978
979 void
980 vec4_visitor::visit(ir_function_signature *ir)
981 {
982 assert(0);
983 (void)ir;
984 }
985
986 void
987 vec4_visitor::visit(ir_function *ir)
988 {
989 /* Ignore function bodies other than main() -- we shouldn't see calls to
990 * them since they should all be inlined.
991 */
992 if (strcmp(ir->name, "main") == 0) {
993 const ir_function_signature *sig;
994 exec_list empty;
995
996 sig = ir->matching_signature(&empty);
997
998 assert(sig);
999
1000 visit_instructions(&sig->body);
1001 }
1002 }
1003
1004 bool
1005 vec4_visitor::try_emit_sat(ir_expression *ir)
1006 {
1007 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1008 if (!sat_src)
1009 return false;
1010
1011 sat_src->accept(this);
1012 src_reg src = this->result;
1013
1014 this->result = src_reg(this, ir->type);
1015 vec4_instruction *inst;
1016 inst = emit(MOV(dst_reg(this->result), src));
1017 inst->saturate = true;
1018
1019 return true;
1020 }
1021
1022 void
1023 vec4_visitor::emit_bool_comparison(unsigned int op,
1024 dst_reg dst, src_reg src0, src_reg src1)
1025 {
1026 /* original gen4 does destination conversion before comparison. */
1027 if (intel->gen < 5)
1028 dst.type = src0.type;
1029
1030 emit(CMP(dst, src0, src1, brw_conditional_for_comparison(op)));
1031
1032 dst.type = BRW_REGISTER_TYPE_D;
1033 emit(AND(dst, src_reg(dst), src_reg(0x1)));
1034 }
1035
1036 void
1037 vec4_visitor::visit(ir_expression *ir)
1038 {
1039 unsigned int operand;
1040 src_reg op[Elements(ir->operands)];
1041 src_reg result_src;
1042 dst_reg result_dst;
1043 vec4_instruction *inst;
1044
1045 if (try_emit_sat(ir))
1046 return;
1047
1048 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1049 this->result.file = BAD_FILE;
1050 ir->operands[operand]->accept(this);
1051 if (this->result.file == BAD_FILE) {
1052 printf("Failed to get tree for expression operand:\n");
1053 ir->operands[operand]->print();
1054 exit(1);
1055 }
1056 op[operand] = this->result;
1057
1058 /* Matrix expression operands should have been broken down to vector
1059 * operations already.
1060 */
1061 assert(!ir->operands[operand]->type->is_matrix());
1062 }
1063
1064 int vector_elements = ir->operands[0]->type->vector_elements;
1065 if (ir->operands[1]) {
1066 vector_elements = MAX2(vector_elements,
1067 ir->operands[1]->type->vector_elements);
1068 }
1069
1070 this->result.file = BAD_FILE;
1071
1072 /* Storage for our result. Ideally for an assignment we'd be using
1073 * the actual storage for the result here, instead.
1074 */
1075 result_src = src_reg(this, ir->type);
1076 /* convenience for the emit functions below. */
1077 result_dst = dst_reg(result_src);
1078 /* If nothing special happens, this is the result. */
1079 this->result = result_src;
1080 /* Limit writes to the channels that will be used by result_src later.
1081 * This does limit this temp's use as a temporary for multi-instruction
1082 * sequences.
1083 */
1084 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1085
1086 switch (ir->operation) {
1087 case ir_unop_logic_not:
1088 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
1089 * ones complement of the whole register, not just bit 0.
1090 */
1091 emit(XOR(result_dst, op[0], src_reg(1)));
1092 break;
1093 case ir_unop_neg:
1094 op[0].negate = !op[0].negate;
1095 this->result = op[0];
1096 break;
1097 case ir_unop_abs:
1098 op[0].abs = true;
1099 op[0].negate = false;
1100 this->result = op[0];
1101 break;
1102
1103 case ir_unop_sign:
1104 emit(MOV(result_dst, src_reg(0.0f)));
1105
1106 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_G));
1107 inst = emit(MOV(result_dst, src_reg(1.0f)));
1108 inst->predicate = BRW_PREDICATE_NORMAL;
1109
1110 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_L));
1111 inst = emit(MOV(result_dst, src_reg(-1.0f)));
1112 inst->predicate = BRW_PREDICATE_NORMAL;
1113
1114 break;
1115
1116 case ir_unop_rcp:
1117 emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
1118 break;
1119
1120 case ir_unop_exp2:
1121 emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
1122 break;
1123 case ir_unop_log2:
1124 emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
1125 break;
1126 case ir_unop_exp:
1127 case ir_unop_log:
1128 assert(!"not reached: should be handled by ir_explog_to_explog2");
1129 break;
1130 case ir_unop_sin:
1131 case ir_unop_sin_reduced:
1132 emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
1133 break;
1134 case ir_unop_cos:
1135 case ir_unop_cos_reduced:
1136 emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
1137 break;
1138
1139 case ir_unop_dFdx:
1140 case ir_unop_dFdy:
1141 assert(!"derivatives not valid in vertex shader");
1142 break;
1143
1144 case ir_unop_noise:
1145 assert(!"not reached: should be handled by lower_noise");
1146 break;
1147
1148 case ir_binop_add:
1149 emit(ADD(result_dst, op[0], op[1]));
1150 break;
1151 case ir_binop_sub:
1152 assert(!"not reached: should be handled by ir_sub_to_add_neg");
1153 break;
1154
1155 case ir_binop_mul:
1156 if (ir->type->is_integer()) {
1157 /* For integer multiplication, the MUL uses the low 16 bits
1158 * of one of the operands (src0 on gen6, src1 on gen7). The
1159 * MACH accumulates in the contribution of the upper 16 bits
1160 * of that operand.
1161 *
1162 * FINISHME: Emit just the MUL if we know an operand is small
1163 * enough.
1164 */
1165 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
1166
1167 emit(MUL(acc, op[0], op[1]));
1168 emit(MACH(dst_null_d(), op[0], op[1]));
1169 emit(MOV(result_dst, src_reg(acc)));
1170 } else {
1171 emit(MUL(result_dst, op[0], op[1]));
1172 }
1173 break;
1174 case ir_binop_div:
1175 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
1176 assert(ir->type->is_integer());
1177 emit_math(SHADER_OPCODE_INT_QUOTIENT, result_dst, op[0], op[1]);
1178 break;
1179 case ir_binop_mod:
1180 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1181 assert(ir->type->is_integer());
1182 emit_math(SHADER_OPCODE_INT_REMAINDER, result_dst, op[0], op[1]);
1183 break;
1184
1185 case ir_binop_less:
1186 case ir_binop_greater:
1187 case ir_binop_lequal:
1188 case ir_binop_gequal:
1189 case ir_binop_equal:
1190 case ir_binop_nequal: {
1191 emit(CMP(result_dst, op[0], op[1],
1192 brw_conditional_for_comparison(ir->operation)));
1193 emit(AND(result_dst, result_src, src_reg(0x1)));
1194 break;
1195 }
1196
1197 case ir_binop_all_equal:
1198 /* "==" operator producing a scalar boolean. */
1199 if (ir->operands[0]->type->is_vector() ||
1200 ir->operands[1]->type->is_vector()) {
1201 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
1202 emit(MOV(result_dst, src_reg(0)));
1203 inst = emit(MOV(result_dst, src_reg(1)));
1204 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1205 } else {
1206 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z));
1207 emit(AND(result_dst, result_src, src_reg(0x1)));
1208 }
1209 break;
1210 case ir_binop_any_nequal:
1211 /* "!=" operator producing a scalar boolean. */
1212 if (ir->operands[0]->type->is_vector() ||
1213 ir->operands[1]->type->is_vector()) {
1214 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
1215
1216 emit(MOV(result_dst, src_reg(0)));
1217 inst = emit(MOV(result_dst, src_reg(1)));
1218 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1219 } else {
1220 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ));
1221 emit(AND(result_dst, result_src, src_reg(0x1)));
1222 }
1223 break;
1224
1225 case ir_unop_any:
1226 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
1227 emit(MOV(result_dst, src_reg(0)));
1228
1229 inst = emit(MOV(result_dst, src_reg(1)));
1230 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1231 break;
1232
1233 case ir_binop_logic_xor:
1234 emit(XOR(result_dst, op[0], op[1]));
1235 break;
1236
1237 case ir_binop_logic_or:
1238 emit(OR(result_dst, op[0], op[1]));
1239 break;
1240
1241 case ir_binop_logic_and:
1242 emit(AND(result_dst, op[0], op[1]));
1243 break;
1244
1245 case ir_binop_dot:
1246 assert(ir->operands[0]->type->is_vector());
1247 assert(ir->operands[0]->type == ir->operands[1]->type);
1248 emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
1249 break;
1250
1251 case ir_unop_sqrt:
1252 emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
1253 break;
1254 case ir_unop_rsq:
1255 emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
1256 break;
1257 case ir_unop_i2f:
1258 case ir_unop_i2u:
1259 case ir_unop_u2i:
1260 case ir_unop_u2f:
1261 case ir_unop_b2f:
1262 case ir_unop_b2i:
1263 case ir_unop_f2i:
1264 emit(MOV(result_dst, op[0]));
1265 break;
1266 case ir_unop_f2b:
1267 case ir_unop_i2b: {
1268 emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
1269 emit(AND(result_dst, result_src, src_reg(1)));
1270 break;
1271 }
1272
1273 case ir_unop_trunc:
1274 emit(RNDZ(result_dst, op[0]));
1275 break;
1276 case ir_unop_ceil:
1277 op[0].negate = !op[0].negate;
1278 inst = emit(RNDD(result_dst, op[0]));
1279 this->result.negate = true;
1280 break;
1281 case ir_unop_floor:
1282 inst = emit(RNDD(result_dst, op[0]));
1283 break;
1284 case ir_unop_fract:
1285 inst = emit(FRC(result_dst, op[0]));
1286 break;
1287 case ir_unop_round_even:
1288 emit(RNDE(result_dst, op[0]));
1289 break;
1290
1291 case ir_binop_min:
1292 if (intel->gen >= 6) {
1293 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1294 inst->conditional_mod = BRW_CONDITIONAL_L;
1295 } else {
1296 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_L));
1297
1298 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1299 inst->predicate = BRW_PREDICATE_NORMAL;
1300 }
1301 break;
1302 case ir_binop_max:
1303 if (intel->gen >= 6) {
1304 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1305 inst->conditional_mod = BRW_CONDITIONAL_G;
1306 } else {
1307 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_G));
1308
1309 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1310 inst->predicate = BRW_PREDICATE_NORMAL;
1311 }
1312 break;
1313
1314 case ir_binop_pow:
1315 emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
1316 break;
1317
1318 case ir_unop_bit_not:
1319 inst = emit(NOT(result_dst, op[0]));
1320 break;
1321 case ir_binop_bit_and:
1322 inst = emit(AND(result_dst, op[0], op[1]));
1323 break;
1324 case ir_binop_bit_xor:
1325 inst = emit(XOR(result_dst, op[0], op[1]));
1326 break;
1327 case ir_binop_bit_or:
1328 inst = emit(OR(result_dst, op[0], op[1]));
1329 break;
1330
1331 case ir_binop_lshift:
1332 inst = emit(BRW_OPCODE_SHL, result_dst, op[0], op[1]);
1333 break;
1334
1335 case ir_binop_rshift:
1336 if (ir->type->base_type == GLSL_TYPE_INT)
1337 inst = emit(BRW_OPCODE_ASR, result_dst, op[0], op[1]);
1338 else
1339 inst = emit(BRW_OPCODE_SHR, result_dst, op[0], op[1]);
1340 break;
1341
1342 case ir_quadop_vector:
1343 assert(!"not reached: should be handled by lower_quadop_vector");
1344 break;
1345 }
1346 }
1347
1348
1349 void
1350 vec4_visitor::visit(ir_swizzle *ir)
1351 {
1352 src_reg src;
1353 int i = 0;
1354 int swizzle[4];
1355
1356 /* Note that this is only swizzles in expressions, not those on the left
1357 * hand side of an assignment, which do write masking. See ir_assignment
1358 * for that.
1359 */
1360
1361 ir->val->accept(this);
1362 src = this->result;
1363 assert(src.file != BAD_FILE);
1364
1365 for (i = 0; i < ir->type->vector_elements; i++) {
1366 switch (i) {
1367 case 0:
1368 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
1369 break;
1370 case 1:
1371 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
1372 break;
1373 case 2:
1374 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
1375 break;
1376 case 3:
1377 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
1378 break;
1379 }
1380 }
1381 for (; i < 4; i++) {
1382 /* Replicate the last channel out. */
1383 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1384 }
1385
1386 src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1387
1388 this->result = src;
1389 }
1390
1391 void
1392 vec4_visitor::visit(ir_dereference_variable *ir)
1393 {
1394 const struct glsl_type *type = ir->type;
1395 dst_reg *reg = variable_storage(ir->var);
1396
1397 if (!reg) {
1398 fail("Failed to find variable storage for %s\n", ir->var->name);
1399 this->result = src_reg(brw_null_reg());
1400 return;
1401 }
1402
1403 this->result = src_reg(*reg);
1404
1405 if (type->is_scalar() || type->is_vector() || type->is_matrix())
1406 this->result.swizzle = swizzle_for_size(type->vector_elements);
1407 }
1408
1409 void
1410 vec4_visitor::visit(ir_dereference_array *ir)
1411 {
1412 ir_constant *constant_index;
1413 src_reg src;
1414 int element_size = type_size(ir->type);
1415
1416 constant_index = ir->array_index->constant_expression_value();
1417
1418 ir->array->accept(this);
1419 src = this->result;
1420
1421 if (constant_index) {
1422 src.reg_offset += constant_index->value.i[0] * element_size;
1423 } else {
1424 /* Variable index array dereference. It eats the "vec4" of the
1425 * base of the array and an index that offsets the Mesa register
1426 * index.
1427 */
1428 ir->array_index->accept(this);
1429
1430 src_reg index_reg;
1431
1432 if (element_size == 1) {
1433 index_reg = this->result;
1434 } else {
1435 index_reg = src_reg(this, glsl_type::int_type);
1436
1437 emit(MUL(dst_reg(index_reg), this->result, src_reg(element_size)));
1438 }
1439
1440 if (src.reladdr) {
1441 src_reg temp = src_reg(this, glsl_type::int_type);
1442
1443 emit(ADD(dst_reg(temp), *src.reladdr, index_reg));
1444
1445 index_reg = temp;
1446 }
1447
1448 src.reladdr = ralloc(mem_ctx, src_reg);
1449 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1450 }
1451
1452 /* If the type is smaller than a vec4, replicate the last channel out. */
1453 if (ir->type->is_scalar() || ir->type->is_vector())
1454 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1455 else
1456 src.swizzle = BRW_SWIZZLE_NOOP;
1457 src.type = brw_type_for_base_type(ir->type);
1458
1459 this->result = src;
1460 }
1461
1462 void
1463 vec4_visitor::visit(ir_dereference_record *ir)
1464 {
1465 unsigned int i;
1466 const glsl_type *struct_type = ir->record->type;
1467 int offset = 0;
1468
1469 ir->record->accept(this);
1470
1471 for (i = 0; i < struct_type->length; i++) {
1472 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1473 break;
1474 offset += type_size(struct_type->fields.structure[i].type);
1475 }
1476
1477 /* If the type is smaller than a vec4, replicate the last channel out. */
1478 if (ir->type->is_scalar() || ir->type->is_vector())
1479 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1480 else
1481 this->result.swizzle = BRW_SWIZZLE_NOOP;
1482 this->result.type = brw_type_for_base_type(ir->type);
1483
1484 this->result.reg_offset += offset;
1485 }
1486
1487 /**
1488 * We want to be careful in assignment setup to hit the actual storage
1489 * instead of potentially using a temporary like we might with the
1490 * ir_dereference handler.
1491 */
1492 static dst_reg
1493 get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
1494 {
1495 /* The LHS must be a dereference. If the LHS is a variable indexed array
1496 * access of a vector, it must be separated into a series conditional moves
1497 * before reaching this point (see ir_vec_index_to_cond_assign).
1498 */
1499 assert(ir->as_dereference());
1500 ir_dereference_array *deref_array = ir->as_dereference_array();
1501 if (deref_array) {
1502 assert(!deref_array->array->type->is_vector());
1503 }
1504
1505 /* Use the rvalue deref handler for the most part. We'll ignore
1506 * swizzles in it and write swizzles using writemask, though.
1507 */
1508 ir->accept(v);
1509 return dst_reg(v->result);
1510 }
1511
1512 void
1513 vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src,
1514 const struct glsl_type *type, uint32_t predicate)
1515 {
1516 if (type->base_type == GLSL_TYPE_STRUCT) {
1517 for (unsigned int i = 0; i < type->length; i++) {
1518 emit_block_move(dst, src, type->fields.structure[i].type, predicate);
1519 }
1520 return;
1521 }
1522
1523 if (type->is_array()) {
1524 for (unsigned int i = 0; i < type->length; i++) {
1525 emit_block_move(dst, src, type->fields.array, predicate);
1526 }
1527 return;
1528 }
1529
1530 if (type->is_matrix()) {
1531 const struct glsl_type *vec_type;
1532
1533 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
1534 type->vector_elements, 1);
1535
1536 for (int i = 0; i < type->matrix_columns; i++) {
1537 emit_block_move(dst, src, vec_type, predicate);
1538 }
1539 return;
1540 }
1541
1542 assert(type->is_scalar() || type->is_vector());
1543
1544 dst->type = brw_type_for_base_type(type);
1545 src->type = dst->type;
1546
1547 dst->writemask = (1 << type->vector_elements) - 1;
1548
1549 src->swizzle = swizzle_for_size(type->vector_elements);
1550
1551 vec4_instruction *inst = emit(MOV(*dst, *src));
1552 inst->predicate = predicate;
1553
1554 dst->reg_offset++;
1555 src->reg_offset++;
1556 }
1557
1558
1559 /* If the RHS processing resulted in an instruction generating a
1560 * temporary value, and it would be easy to rewrite the instruction to
1561 * generate its result right into the LHS instead, do so. This ends
1562 * up reliably removing instructions where it can be tricky to do so
1563 * later without real UD chain information.
1564 */
1565 bool
1566 vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1567 dst_reg dst,
1568 src_reg src,
1569 vec4_instruction *pre_rhs_inst,
1570 vec4_instruction *last_rhs_inst)
1571 {
1572 /* This could be supported, but it would take more smarts. */
1573 if (ir->condition)
1574 return false;
1575
1576 if (pre_rhs_inst == last_rhs_inst)
1577 return false; /* No instructions generated to work with. */
1578
1579 /* Make sure the last instruction generated our source reg. */
1580 if (src.file != GRF ||
1581 src.file != last_rhs_inst->dst.file ||
1582 src.reg != last_rhs_inst->dst.reg ||
1583 src.reg_offset != last_rhs_inst->dst.reg_offset ||
1584 src.reladdr ||
1585 src.abs ||
1586 src.negate ||
1587 last_rhs_inst->predicate != BRW_PREDICATE_NONE)
1588 return false;
1589
1590 /* Check that that last instruction fully initialized the channels
1591 * we want to use, in the order we want to use them. We could
1592 * potentially reswizzle the operands of many instructions so that
1593 * we could handle out of order channels, but don't yet.
1594 */
1595
1596 for (unsigned i = 0; i < 4; i++) {
1597 if (dst.writemask & (1 << i)) {
1598 if (!(last_rhs_inst->dst.writemask & (1 << i)))
1599 return false;
1600
1601 if (BRW_GET_SWZ(src.swizzle, i) != i)
1602 return false;
1603 }
1604 }
1605
1606 /* Success! Rewrite the instruction. */
1607 last_rhs_inst->dst.file = dst.file;
1608 last_rhs_inst->dst.reg = dst.reg;
1609 last_rhs_inst->dst.reg_offset = dst.reg_offset;
1610 last_rhs_inst->dst.reladdr = dst.reladdr;
1611 last_rhs_inst->dst.writemask &= dst.writemask;
1612
1613 return true;
1614 }
1615
1616 void
1617 vec4_visitor::visit(ir_assignment *ir)
1618 {
1619 dst_reg dst = get_assignment_lhs(ir->lhs, this);
1620 uint32_t predicate = BRW_PREDICATE_NONE;
1621
1622 if (!ir->lhs->type->is_scalar() &&
1623 !ir->lhs->type->is_vector()) {
1624 ir->rhs->accept(this);
1625 src_reg src = this->result;
1626
1627 if (ir->condition) {
1628 emit_bool_to_cond_code(ir->condition, &predicate);
1629 }
1630
1631 /* emit_block_move doesn't account for swizzles in the source register.
1632 * This should be ok, since the source register is a structure or an
1633 * array, and those can't be swizzled. But double-check to be sure.
1634 */
1635 assert(src.swizzle ==
1636 (ir->rhs->type->is_matrix()
1637 ? swizzle_for_size(ir->rhs->type->vector_elements)
1638 : BRW_SWIZZLE_NOOP));
1639
1640 emit_block_move(&dst, &src, ir->rhs->type, predicate);
1641 return;
1642 }
1643
1644 /* Now we're down to just a scalar/vector with writemasks. */
1645 int i;
1646
1647 vec4_instruction *pre_rhs_inst, *last_rhs_inst;
1648 pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1649
1650 ir->rhs->accept(this);
1651
1652 last_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1653
1654 src_reg src = this->result;
1655
1656 int swizzles[4];
1657 int first_enabled_chan = 0;
1658 int src_chan = 0;
1659
1660 assert(ir->lhs->type->is_vector() ||
1661 ir->lhs->type->is_scalar());
1662 dst.writemask = ir->write_mask;
1663
1664 for (int i = 0; i < 4; i++) {
1665 if (dst.writemask & (1 << i)) {
1666 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
1667 break;
1668 }
1669 }
1670
1671 /* Swizzle a small RHS vector into the channels being written.
1672 *
1673 * glsl ir treats write_mask as dictating how many channels are
1674 * present on the RHS while in our instructions we need to make
1675 * those channels appear in the slots of the vec4 they're written to.
1676 */
1677 for (int i = 0; i < 4; i++) {
1678 if (dst.writemask & (1 << i))
1679 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
1680 else
1681 swizzles[i] = first_enabled_chan;
1682 }
1683 src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
1684 swizzles[2], swizzles[3]);
1685
1686 if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) {
1687 return;
1688 }
1689
1690 if (ir->condition) {
1691 emit_bool_to_cond_code(ir->condition, &predicate);
1692 }
1693
1694 for (i = 0; i < type_size(ir->lhs->type); i++) {
1695 vec4_instruction *inst = emit(MOV(dst, src));
1696 inst->predicate = predicate;
1697
1698 dst.reg_offset++;
1699 src.reg_offset++;
1700 }
1701 }
1702
1703 void
1704 vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir)
1705 {
1706 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1707 foreach_list(node, &ir->components) {
1708 ir_constant *field_value = (ir_constant *)node;
1709
1710 emit_constant_values(dst, field_value);
1711 }
1712 return;
1713 }
1714
1715 if (ir->type->is_array()) {
1716 for (unsigned int i = 0; i < ir->type->length; i++) {
1717 emit_constant_values(dst, ir->array_elements[i]);
1718 }
1719 return;
1720 }
1721
1722 if (ir->type->is_matrix()) {
1723 for (int i = 0; i < ir->type->matrix_columns; i++) {
1724 float *vec = &ir->value.f[i * ir->type->vector_elements];
1725
1726 for (int j = 0; j < ir->type->vector_elements; j++) {
1727 dst->writemask = 1 << j;
1728 dst->type = BRW_REGISTER_TYPE_F;
1729
1730 emit(MOV(*dst, src_reg(vec[j])));
1731 }
1732 dst->reg_offset++;
1733 }
1734 return;
1735 }
1736
1737 int remaining_writemask = (1 << ir->type->vector_elements) - 1;
1738
1739 for (int i = 0; i < ir->type->vector_elements; i++) {
1740 if (!(remaining_writemask & (1 << i)))
1741 continue;
1742
1743 dst->writemask = 1 << i;
1744 dst->type = brw_type_for_base_type(ir->type);
1745
1746 /* Find other components that match the one we're about to
1747 * write. Emits fewer instructions for things like vec4(0.5,
1748 * 1.5, 1.5, 1.5).
1749 */
1750 for (int j = i + 1; j < ir->type->vector_elements; j++) {
1751 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1752 if (ir->value.b[i] == ir->value.b[j])
1753 dst->writemask |= (1 << j);
1754 } else {
1755 /* u, i, and f storage all line up, so no need for a
1756 * switch case for comparing each type.
1757 */
1758 if (ir->value.u[i] == ir->value.u[j])
1759 dst->writemask |= (1 << j);
1760 }
1761 }
1762
1763 switch (ir->type->base_type) {
1764 case GLSL_TYPE_FLOAT:
1765 emit(MOV(*dst, src_reg(ir->value.f[i])));
1766 break;
1767 case GLSL_TYPE_INT:
1768 emit(MOV(*dst, src_reg(ir->value.i[i])));
1769 break;
1770 case GLSL_TYPE_UINT:
1771 emit(MOV(*dst, src_reg(ir->value.u[i])));
1772 break;
1773 case GLSL_TYPE_BOOL:
1774 emit(MOV(*dst, src_reg(ir->value.b[i])));
1775 break;
1776 default:
1777 assert(!"Non-float/uint/int/bool constant");
1778 break;
1779 }
1780
1781 remaining_writemask &= ~dst->writemask;
1782 }
1783 dst->reg_offset++;
1784 }
1785
1786 void
1787 vec4_visitor::visit(ir_constant *ir)
1788 {
1789 dst_reg dst = dst_reg(this, ir->type);
1790 this->result = src_reg(dst);
1791
1792 emit_constant_values(&dst, ir);
1793 }
1794
1795 void
1796 vec4_visitor::visit(ir_call *ir)
1797 {
1798 assert(!"not reached");
1799 }
1800
1801 void
1802 vec4_visitor::visit(ir_texture *ir)
1803 {
1804 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &vp->Base);
1805 sampler = vp->Base.SamplerUnits[sampler];
1806
1807 /* Should be lowered by do_lower_texture_projection */
1808 assert(!ir->projector);
1809
1810 vec4_instruction *inst = NULL;
1811 switch (ir->op) {
1812 case ir_tex:
1813 case ir_txl:
1814 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXL);
1815 break;
1816 case ir_txd:
1817 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXD);
1818 break;
1819 case ir_txf:
1820 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXF);
1821 break;
1822 case ir_txs:
1823 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXS);
1824 break;
1825 case ir_txb:
1826 assert(!"TXB is not valid for vertex shaders.");
1827 }
1828
1829 /* Texel offsets go in the message header; Gen4 also requires headers. */
1830 inst->header_present = ir->offset || intel->gen < 5;
1831 inst->base_mrf = 2;
1832 inst->mlen = inst->header_present + 1; /* always at least one */
1833 inst->sampler = sampler;
1834 inst->dst = dst_reg(this, ir->type);
1835 inst->shadow_compare = ir->shadow_comparitor != NULL;
1836
1837 if (ir->offset != NULL)
1838 inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1839
1840 /* MRF for the first parameter */
1841 int param_base = inst->base_mrf + inst->header_present;
1842
1843 if (ir->op == ir_txs) {
1844 ir->lod_info.lod->accept(this);
1845 int writemask = intel->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
1846 emit(MOV(dst_reg(MRF, param_base, ir->lod_info.lod->type, writemask),
1847 this->result));
1848 } else {
1849 int i, coord_mask = 0, zero_mask = 0;
1850 /* Load the coordinate */
1851 /* FINISHME: gl_clamp_mask and saturate */
1852 for (i = 0; i < ir->coordinate->type->vector_elements; i++)
1853 coord_mask |= (1 << i);
1854 for (; i < 4; i++)
1855 zero_mask |= (1 << i);
1856
1857 ir->coordinate->accept(this);
1858 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask),
1859 this->result));
1860 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask),
1861 src_reg(0)));
1862 /* Load the shadow comparitor */
1863 if (ir->shadow_comparitor) {
1864 ir->shadow_comparitor->accept(this);
1865 emit(MOV(dst_reg(MRF, param_base + 1, ir->shadow_comparitor->type,
1866 WRITEMASK_X),
1867 this->result));
1868 inst->mlen++;
1869 }
1870
1871 /* Load the LOD info */
1872 if (ir->op == ir_txl) {
1873 int mrf, writemask;
1874 if (intel->gen >= 5) {
1875 mrf = param_base + 1;
1876 if (ir->shadow_comparitor) {
1877 writemask = WRITEMASK_Y;
1878 /* mlen already incremented */
1879 } else {
1880 writemask = WRITEMASK_X;
1881 inst->mlen++;
1882 }
1883 } else /* intel->gen == 4 */ {
1884 mrf = param_base;
1885 writemask = WRITEMASK_Z;
1886 }
1887 ir->lod_info.lod->accept(this);
1888 emit(MOV(dst_reg(MRF, mrf, ir->lod_info.lod->type, writemask),
1889 this->result));
1890 } else if (ir->op == ir_txf) {
1891 ir->lod_info.lod->accept(this);
1892 emit(MOV(dst_reg(MRF, param_base, ir->lod_info.lod->type, WRITEMASK_W),
1893 this->result));
1894 } else if (ir->op == ir_txd) {
1895 const glsl_type *type = ir->lod_info.grad.dPdx->type;
1896
1897 ir->lod_info.grad.dPdx->accept(this);
1898 src_reg dPdx = this->result;
1899 ir->lod_info.grad.dPdy->accept(this);
1900 src_reg dPdy = this->result;
1901
1902 if (intel->gen >= 5) {
1903 dPdx.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1904 dPdy.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1905 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), dPdx));
1906 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), dPdy));
1907 inst->mlen++;
1908
1909 if (ir->type->vector_elements == 3) {
1910 dPdx.swizzle = BRW_SWIZZLE_ZZZZ;
1911 dPdy.swizzle = BRW_SWIZZLE_ZZZZ;
1912 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), dPdx));
1913 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), dPdy));
1914 inst->mlen++;
1915 }
1916 } else /* intel->gen == 4 */ {
1917 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), dPdx));
1918 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), dPdy));
1919 inst->mlen += 2;
1920 }
1921 }
1922 }
1923
1924 emit(inst);
1925
1926 swizzle_result(ir, src_reg(inst->dst), sampler);
1927 }
1928
1929 void
1930 vec4_visitor::swizzle_result(ir_texture *ir, src_reg orig_val, int sampler)
1931 {
1932 this->result = orig_val;
1933
1934 int s = c->key.tex.swizzles[sampler];
1935
1936 if (ir->op == ir_txs || ir->type == glsl_type::float_type
1937 || s == SWIZZLE_NOOP)
1938 return;
1939
1940 int zero_mask = 0, one_mask = 0, copy_mask = 0;
1941 int swizzle[4];
1942
1943 for (int i = 0; i < 4; i++) {
1944 switch (GET_SWZ(s, i)) {
1945 case SWIZZLE_ZERO:
1946 zero_mask |= (1 << i);
1947 break;
1948 case SWIZZLE_ONE:
1949 one_mask |= (1 << i);
1950 break;
1951 default:
1952 copy_mask |= (1 << i);
1953 swizzle[i] = GET_SWZ(s, i);
1954 break;
1955 }
1956 }
1957
1958 this->result = src_reg(this, ir->type);
1959 dst_reg swizzled_result(this->result);
1960
1961 if (copy_mask) {
1962 orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1963 swizzled_result.writemask = copy_mask;
1964 emit(MOV(swizzled_result, orig_val));
1965 }
1966
1967 if (zero_mask) {
1968 swizzled_result.writemask = zero_mask;
1969 emit(MOV(swizzled_result, src_reg(0.0f)));
1970 }
1971
1972 if (one_mask) {
1973 swizzled_result.writemask = one_mask;
1974 emit(MOV(swizzled_result, src_reg(1.0f)));
1975 }
1976 }
1977
1978 void
1979 vec4_visitor::visit(ir_return *ir)
1980 {
1981 assert(!"not reached");
1982 }
1983
1984 void
1985 vec4_visitor::visit(ir_discard *ir)
1986 {
1987 assert(!"not reached");
1988 }
1989
1990 void
1991 vec4_visitor::visit(ir_if *ir)
1992 {
1993 /* Don't point the annotation at the if statement, because then it plus
1994 * the then and else blocks get printed.
1995 */
1996 this->base_ir = ir->condition;
1997
1998 if (intel->gen == 6) {
1999 emit_if_gen6(ir);
2000 } else {
2001 uint32_t predicate;
2002 emit_bool_to_cond_code(ir->condition, &predicate);
2003 emit(IF(predicate));
2004 }
2005
2006 visit_instructions(&ir->then_instructions);
2007
2008 if (!ir->else_instructions.is_empty()) {
2009 this->base_ir = ir->condition;
2010 emit(BRW_OPCODE_ELSE);
2011
2012 visit_instructions(&ir->else_instructions);
2013 }
2014
2015 this->base_ir = ir->condition;
2016 emit(BRW_OPCODE_ENDIF);
2017 }
2018
2019 void
2020 vec4_visitor::emit_ndc_computation()
2021 {
2022 /* Get the position */
2023 src_reg pos = src_reg(output_reg[VERT_RESULT_HPOS]);
2024
2025 /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
2026 dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
2027 output_reg[BRW_VERT_RESULT_NDC] = ndc;
2028
2029 current_annotation = "NDC";
2030 dst_reg ndc_w = ndc;
2031 ndc_w.writemask = WRITEMASK_W;
2032 src_reg pos_w = pos;
2033 pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
2034 emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
2035
2036 dst_reg ndc_xyz = ndc;
2037 ndc_xyz.writemask = WRITEMASK_XYZ;
2038
2039 emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
2040 }
2041
2042 void
2043 vec4_visitor::emit_psiz_and_flags(struct brw_reg reg)
2044 {
2045 if (intel->gen < 6 &&
2046 ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
2047 c->key.userclip_active || brw->has_negative_rhw_bug)) {
2048 dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
2049 dst_reg header1_w = header1;
2050 header1_w.writemask = WRITEMASK_W;
2051 GLuint i;
2052
2053 emit(MOV(header1, 0u));
2054
2055 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2056 src_reg psiz = src_reg(output_reg[VERT_RESULT_PSIZ]);
2057
2058 current_annotation = "Point size";
2059 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
2060 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
2061 }
2062
2063 current_annotation = "Clipping flags";
2064 for (i = 0; i < c->key.nr_userclip_plane_consts; i++) {
2065 vec4_instruction *inst;
2066
2067 inst = emit(DP4(dst_null_f(), src_reg(output_reg[VERT_RESULT_HPOS]),
2068 src_reg(this->userplane[i])));
2069 inst->conditional_mod = BRW_CONDITIONAL_L;
2070
2071 inst = emit(OR(header1_w, src_reg(header1_w), 1u << i));
2072 inst->predicate = BRW_PREDICATE_NORMAL;
2073 }
2074
2075 /* i965 clipping workaround:
2076 * 1) Test for -ve rhw
2077 * 2) If set,
2078 * set ndc = (0,0,0,0)
2079 * set ucp[6] = 1
2080 *
2081 * Later, clipping will detect ucp[6] and ensure the primitive is
2082 * clipped against all fixed planes.
2083 */
2084 if (brw->has_negative_rhw_bug) {
2085 #if 0
2086 /* FINISHME */
2087 brw_CMP(p,
2088 vec8(brw_null_reg()),
2089 BRW_CONDITIONAL_L,
2090 brw_swizzle1(output_reg[BRW_VERT_RESULT_NDC], 3),
2091 brw_imm_f(0));
2092
2093 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
2094 brw_MOV(p, output_reg[BRW_VERT_RESULT_NDC], brw_imm_f(0));
2095 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2096 #endif
2097 }
2098
2099 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
2100 } else if (intel->gen < 6) {
2101 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
2102 } else {
2103 emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
2104 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2105 emit(MOV(brw_writemask(reg, WRITEMASK_W),
2106 src_reg(output_reg[VERT_RESULT_PSIZ])));
2107 }
2108 }
2109 }
2110
2111 void
2112 vec4_visitor::emit_clip_distances(struct brw_reg reg, int offset)
2113 {
2114 if (intel->gen < 6) {
2115 /* Clip distance slots are set aside in gen5, but they are not used. It
2116 * is not clear whether we actually need to set aside space for them,
2117 * but the performance cost is negligible.
2118 */
2119 return;
2120 }
2121
2122 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
2123 *
2124 * "If a linked set of shaders forming the vertex stage contains no
2125 * static write to gl_ClipVertex or gl_ClipDistance, but the
2126 * application has requested clipping against user clip planes through
2127 * the API, then the coordinate written to gl_Position is used for
2128 * comparison against the user clip planes."
2129 *
2130 * This function is only called if the shader didn't write to
2131 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
2132 * if the user wrote to it; otherwise we use gl_Position.
2133 */
2134 gl_vert_result clip_vertex = VERT_RESULT_CLIP_VERTEX;
2135 if (!(c->prog_data.outputs_written
2136 & BITFIELD64_BIT(VERT_RESULT_CLIP_VERTEX))) {
2137 clip_vertex = VERT_RESULT_HPOS;
2138 }
2139
2140 for (int i = 0; i + offset < c->key.nr_userclip_plane_consts && i < 4;
2141 ++i) {
2142 emit(DP4(dst_reg(brw_writemask(reg, 1 << i)),
2143 src_reg(output_reg[clip_vertex]),
2144 src_reg(this->userplane[i + offset])));
2145 }
2146 }
2147
2148 void
2149 vec4_visitor::emit_generic_urb_slot(dst_reg reg, int vert_result)
2150 {
2151 assert (vert_result < VERT_RESULT_MAX);
2152 reg.type = output_reg[vert_result].type;
2153 current_annotation = output_reg_annotation[vert_result];
2154 /* Copy the register, saturating if necessary */
2155 vec4_instruction *inst = emit(MOV(reg,
2156 src_reg(output_reg[vert_result])));
2157 if ((vert_result == VERT_RESULT_COL0 ||
2158 vert_result == VERT_RESULT_COL1 ||
2159 vert_result == VERT_RESULT_BFC0 ||
2160 vert_result == VERT_RESULT_BFC1) &&
2161 c->key.clamp_vertex_color) {
2162 inst->saturate = true;
2163 }
2164 }
2165
2166 void
2167 vec4_visitor::emit_urb_slot(int mrf, int vert_result)
2168 {
2169 struct brw_reg hw_reg = brw_message_reg(mrf);
2170 dst_reg reg = dst_reg(MRF, mrf);
2171 reg.type = BRW_REGISTER_TYPE_F;
2172
2173 switch (vert_result) {
2174 case VERT_RESULT_PSIZ:
2175 /* PSIZ is always in slot 0, and is coupled with other flags. */
2176 current_annotation = "indices, point width, clip flags";
2177 emit_psiz_and_flags(hw_reg);
2178 break;
2179 case BRW_VERT_RESULT_NDC:
2180 current_annotation = "NDC";
2181 emit(MOV(reg, src_reg(output_reg[BRW_VERT_RESULT_NDC])));
2182 break;
2183 case BRW_VERT_RESULT_HPOS_DUPLICATE:
2184 case VERT_RESULT_HPOS:
2185 current_annotation = "gl_Position";
2186 emit(MOV(reg, src_reg(output_reg[VERT_RESULT_HPOS])));
2187 break;
2188 case VERT_RESULT_CLIP_DIST0:
2189 case VERT_RESULT_CLIP_DIST1:
2190 if (this->c->key.uses_clip_distance) {
2191 emit_generic_urb_slot(reg, vert_result);
2192 } else {
2193 current_annotation = "user clip distances";
2194 emit_clip_distances(hw_reg, (vert_result - VERT_RESULT_CLIP_DIST0) * 4);
2195 }
2196 break;
2197 case BRW_VERT_RESULT_PAD:
2198 /* No need to write to this slot */
2199 break;
2200 default:
2201 emit_generic_urb_slot(reg, vert_result);
2202 break;
2203 }
2204 }
2205
2206 static int
2207 align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
2208 {
2209 struct intel_context *intel = &brw->intel;
2210
2211 if (intel->gen >= 6) {
2212 /* URB data written (does not include the message header reg) must
2213 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
2214 * section 5.4.3.2.2: URB_INTERLEAVED.
2215 *
2216 * URB entries are allocated on a multiple of 1024 bits, so an
2217 * extra 128 bits written here to make the end align to 256 is
2218 * no problem.
2219 */
2220 if ((mlen % 2) != 1)
2221 mlen++;
2222 }
2223
2224 return mlen;
2225 }
2226
2227 /**
2228 * Generates the VUE payload plus the 1 or 2 URB write instructions to
2229 * complete the VS thread.
2230 *
2231 * The VUE layout is documented in Volume 2a.
2232 */
2233 void
2234 vec4_visitor::emit_urb_writes()
2235 {
2236 /* MRF 0 is reserved for the debugger, so start with message header
2237 * in MRF 1.
2238 */
2239 int base_mrf = 1;
2240 int mrf = base_mrf;
2241 /* In the process of generating our URB write message contents, we
2242 * may need to unspill a register or load from an array. Those
2243 * reads would use MRFs 14-15.
2244 */
2245 int max_usable_mrf = 13;
2246
2247 /* The following assertion verifies that max_usable_mrf causes an
2248 * even-numbered amount of URB write data, which will meet gen6's
2249 * requirements for length alignment.
2250 */
2251 assert ((max_usable_mrf - base_mrf) % 2 == 0);
2252
2253 /* FINISHME: edgeflag */
2254
2255 brw_compute_vue_map(&c->vue_map, intel, &c->prog_data);
2256
2257 /* First mrf is the g0-based message header containing URB handles and such,
2258 * which is implied in VS_OPCODE_URB_WRITE.
2259 */
2260 mrf++;
2261
2262 if (intel->gen < 6) {
2263 emit_ndc_computation();
2264 }
2265
2266 /* Set up the VUE data for the first URB write */
2267 int slot;
2268 for (slot = 0; slot < c->vue_map.num_slots; ++slot) {
2269 emit_urb_slot(mrf++, c->vue_map.slot_to_vert_result[slot]);
2270
2271 /* If this was max_usable_mrf, we can't fit anything more into this URB
2272 * WRITE.
2273 */
2274 if (mrf > max_usable_mrf) {
2275 slot++;
2276 break;
2277 }
2278 }
2279
2280 current_annotation = "URB write";
2281 vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
2282 inst->base_mrf = base_mrf;
2283 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2284 inst->eot = (slot >= c->vue_map.num_slots);
2285
2286 /* Optional second URB write */
2287 if (!inst->eot) {
2288 mrf = base_mrf + 1;
2289
2290 for (; slot < c->vue_map.num_slots; ++slot) {
2291 assert(mrf < max_usable_mrf);
2292
2293 emit_urb_slot(mrf++, c->vue_map.slot_to_vert_result[slot]);
2294 }
2295
2296 current_annotation = "URB write";
2297 inst = emit(VS_OPCODE_URB_WRITE);
2298 inst->base_mrf = base_mrf;
2299 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2300 inst->eot = true;
2301 /* URB destination offset. In the previous write, we got MRFs
2302 * 2-13 minus the one header MRF, so 12 regs. URB offset is in
2303 * URB row increments, and each of our MRFs is half of one of
2304 * those, since we're doing interleaved writes.
2305 */
2306 inst->offset = (max_usable_mrf - base_mrf) / 2;
2307 }
2308 }
2309
2310 src_reg
2311 vec4_visitor::get_scratch_offset(vec4_instruction *inst,
2312 src_reg *reladdr, int reg_offset)
2313 {
2314 /* Because we store the values to scratch interleaved like our
2315 * vertex data, we need to scale the vec4 index by 2.
2316 */
2317 int message_header_scale = 2;
2318
2319 /* Pre-gen6, the message header uses byte offsets instead of vec4
2320 * (16-byte) offset units.
2321 */
2322 if (intel->gen < 6)
2323 message_header_scale *= 16;
2324
2325 if (reladdr) {
2326 src_reg index = src_reg(this, glsl_type::int_type);
2327
2328 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2329 emit_before(inst, MUL(dst_reg(index),
2330 index, src_reg(message_header_scale)));
2331
2332 return index;
2333 } else {
2334 return src_reg(reg_offset * message_header_scale);
2335 }
2336 }
2337
2338 src_reg
2339 vec4_visitor::get_pull_constant_offset(vec4_instruction *inst,
2340 src_reg *reladdr, int reg_offset)
2341 {
2342 if (reladdr) {
2343 src_reg index = src_reg(this, glsl_type::int_type);
2344
2345 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2346
2347 /* Pre-gen6, the message header uses byte offsets instead of vec4
2348 * (16-byte) offset units.
2349 */
2350 if (intel->gen < 6) {
2351 emit_before(inst, MUL(dst_reg(index), index, src_reg(16)));
2352 }
2353
2354 return index;
2355 } else {
2356 int message_header_scale = intel->gen < 6 ? 16 : 1;
2357 return src_reg(reg_offset * message_header_scale);
2358 }
2359 }
2360
2361 /**
2362 * Emits an instruction before @inst to load the value named by @orig_src
2363 * from scratch space at @base_offset to @temp.
2364 */
2365 void
2366 vec4_visitor::emit_scratch_read(vec4_instruction *inst,
2367 dst_reg temp, src_reg orig_src,
2368 int base_offset)
2369 {
2370 int reg_offset = base_offset + orig_src.reg_offset;
2371 src_reg index = get_scratch_offset(inst, orig_src.reladdr, reg_offset);
2372
2373 emit_before(inst, SCRATCH_READ(temp, index));
2374 }
2375
2376 /**
2377 * Emits an instruction after @inst to store the value to be written
2378 * to @orig_dst to scratch space at @base_offset, from @temp.
2379 */
2380 void
2381 vec4_visitor::emit_scratch_write(vec4_instruction *inst,
2382 src_reg temp, dst_reg orig_dst,
2383 int base_offset)
2384 {
2385 int reg_offset = base_offset + orig_dst.reg_offset;
2386 src_reg index = get_scratch_offset(inst, orig_dst.reladdr, reg_offset);
2387
2388 dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
2389 orig_dst.writemask));
2390 vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
2391 write->predicate = inst->predicate;
2392 write->ir = inst->ir;
2393 write->annotation = inst->annotation;
2394 inst->insert_after(write);
2395 }
2396
2397 /**
2398 * We can't generally support array access in GRF space, because a
2399 * single instruction's destination can only span 2 contiguous
2400 * registers. So, we send all GRF arrays that get variable index
2401 * access to scratch space.
2402 */
2403 void
2404 vec4_visitor::move_grf_array_access_to_scratch()
2405 {
2406 int scratch_loc[this->virtual_grf_count];
2407
2408 for (int i = 0; i < this->virtual_grf_count; i++) {
2409 scratch_loc[i] = -1;
2410 }
2411
2412 /* First, calculate the set of virtual GRFs that need to be punted
2413 * to scratch due to having any array access on them, and where in
2414 * scratch.
2415 */
2416 foreach_list(node, &this->instructions) {
2417 vec4_instruction *inst = (vec4_instruction *)node;
2418
2419 if (inst->dst.file == GRF && inst->dst.reladdr &&
2420 scratch_loc[inst->dst.reg] == -1) {
2421 scratch_loc[inst->dst.reg] = c->last_scratch;
2422 c->last_scratch += this->virtual_grf_sizes[inst->dst.reg] * 8 * 4;
2423 }
2424
2425 for (int i = 0 ; i < 3; i++) {
2426 src_reg *src = &inst->src[i];
2427
2428 if (src->file == GRF && src->reladdr &&
2429 scratch_loc[src->reg] == -1) {
2430 scratch_loc[src->reg] = c->last_scratch;
2431 c->last_scratch += this->virtual_grf_sizes[src->reg] * 8 * 4;
2432 }
2433 }
2434 }
2435
2436 /* Now, for anything that will be accessed through scratch, rewrite
2437 * it to load/store. Note that this is a _safe list walk, because
2438 * we may generate a new scratch_write instruction after the one
2439 * we're processing.
2440 */
2441 foreach_list_safe(node, &this->instructions) {
2442 vec4_instruction *inst = (vec4_instruction *)node;
2443
2444 /* Set up the annotation tracking for new generated instructions. */
2445 base_ir = inst->ir;
2446 current_annotation = inst->annotation;
2447
2448 if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) {
2449 src_reg temp = src_reg(this, glsl_type::vec4_type);
2450
2451 emit_scratch_write(inst, temp, inst->dst, scratch_loc[inst->dst.reg]);
2452
2453 inst->dst.file = temp.file;
2454 inst->dst.reg = temp.reg;
2455 inst->dst.reg_offset = temp.reg_offset;
2456 inst->dst.reladdr = NULL;
2457 }
2458
2459 for (int i = 0 ; i < 3; i++) {
2460 if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1)
2461 continue;
2462
2463 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2464
2465 emit_scratch_read(inst, temp, inst->src[i],
2466 scratch_loc[inst->src[i].reg]);
2467
2468 inst->src[i].file = temp.file;
2469 inst->src[i].reg = temp.reg;
2470 inst->src[i].reg_offset = temp.reg_offset;
2471 inst->src[i].reladdr = NULL;
2472 }
2473 }
2474 }
2475
2476 /**
2477 * Emits an instruction before @inst to load the value named by @orig_src
2478 * from the pull constant buffer (surface) at @base_offset to @temp.
2479 */
2480 void
2481 vec4_visitor::emit_pull_constant_load(vec4_instruction *inst,
2482 dst_reg temp, src_reg orig_src,
2483 int base_offset)
2484 {
2485 int reg_offset = base_offset + orig_src.reg_offset;
2486 src_reg index = get_pull_constant_offset(inst, orig_src.reladdr, reg_offset);
2487 vec4_instruction *load;
2488
2489 load = new(mem_ctx) vec4_instruction(this, VS_OPCODE_PULL_CONSTANT_LOAD,
2490 temp, index);
2491 load->base_mrf = 14;
2492 load->mlen = 1;
2493 emit_before(inst, load);
2494 }
2495
2496 /**
2497 * Implements array access of uniforms by inserting a
2498 * PULL_CONSTANT_LOAD instruction.
2499 *
2500 * Unlike temporary GRF array access (where we don't support it due to
2501 * the difficulty of doing relative addressing on instruction
2502 * destinations), we could potentially do array access of uniforms
2503 * that were loaded in GRF space as push constants. In real-world
2504 * usage we've seen, though, the arrays being used are always larger
2505 * than we could load as push constants, so just always move all
2506 * uniform array access out to a pull constant buffer.
2507 */
2508 void
2509 vec4_visitor::move_uniform_array_access_to_pull_constants()
2510 {
2511 int pull_constant_loc[this->uniforms];
2512
2513 for (int i = 0; i < this->uniforms; i++) {
2514 pull_constant_loc[i] = -1;
2515 }
2516
2517 /* Walk through and find array access of uniforms. Put a copy of that
2518 * uniform in the pull constant buffer.
2519 *
2520 * Note that we don't move constant-indexed accesses to arrays. No
2521 * testing has been done of the performance impact of this choice.
2522 */
2523 foreach_list_safe(node, &this->instructions) {
2524 vec4_instruction *inst = (vec4_instruction *)node;
2525
2526 for (int i = 0 ; i < 3; i++) {
2527 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
2528 continue;
2529
2530 int uniform = inst->src[i].reg;
2531
2532 /* If this array isn't already present in the pull constant buffer,
2533 * add it.
2534 */
2535 if (pull_constant_loc[uniform] == -1) {
2536 const float **values = &prog_data->param[uniform * 4];
2537
2538 pull_constant_loc[uniform] = prog_data->nr_pull_params / 4;
2539
2540 for (int j = 0; j < uniform_size[uniform] * 4; j++) {
2541 prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
2542 }
2543 }
2544
2545 /* Set up the annotation tracking for new generated instructions. */
2546 base_ir = inst->ir;
2547 current_annotation = inst->annotation;
2548
2549 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2550
2551 emit_pull_constant_load(inst, temp, inst->src[i],
2552 pull_constant_loc[uniform]);
2553
2554 inst->src[i].file = temp.file;
2555 inst->src[i].reg = temp.reg;
2556 inst->src[i].reg_offset = temp.reg_offset;
2557 inst->src[i].reladdr = NULL;
2558 }
2559 }
2560
2561 /* Now there are no accesses of the UNIFORM file with a reladdr, so
2562 * no need to track them as larger-than-vec4 objects. This will be
2563 * relied on in cutting out unused uniform vectors from push
2564 * constants.
2565 */
2566 split_uniform_registers();
2567 }
2568
2569 void
2570 vec4_visitor::resolve_ud_negate(src_reg *reg)
2571 {
2572 if (reg->type != BRW_REGISTER_TYPE_UD ||
2573 !reg->negate)
2574 return;
2575
2576 src_reg temp = src_reg(this, glsl_type::uvec4_type);
2577 emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
2578 *reg = temp;
2579 }
2580
2581 vec4_visitor::vec4_visitor(struct brw_vs_compile *c,
2582 struct gl_shader_program *prog,
2583 struct brw_shader *shader)
2584 {
2585 this->c = c;
2586 this->p = &c->func;
2587 this->brw = p->brw;
2588 this->intel = &brw->intel;
2589 this->ctx = &intel->ctx;
2590 this->prog = prog;
2591 this->shader = shader;
2592
2593 this->mem_ctx = ralloc_context(NULL);
2594 this->failed = false;
2595
2596 this->base_ir = NULL;
2597 this->current_annotation = NULL;
2598
2599 this->c = c;
2600 this->vp = (struct gl_vertex_program *)
2601 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
2602 this->prog_data = &c->prog_data;
2603
2604 this->variable_ht = hash_table_ctor(0,
2605 hash_table_pointer_hash,
2606 hash_table_pointer_compare);
2607
2608 this->virtual_grf_def = NULL;
2609 this->virtual_grf_use = NULL;
2610 this->virtual_grf_sizes = NULL;
2611 this->virtual_grf_count = 0;
2612 this->virtual_grf_reg_map = NULL;
2613 this->virtual_grf_reg_count = 0;
2614 this->virtual_grf_array_size = 0;
2615 this->live_intervals_valid = false;
2616
2617 this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2618
2619 this->uniforms = 0;
2620 }
2621
2622 vec4_visitor::~vec4_visitor()
2623 {
2624 ralloc_free(this->mem_ctx);
2625 hash_table_dtor(this->variable_ht);
2626 }
2627
2628
2629 void
2630 vec4_visitor::fail(const char *format, ...)
2631 {
2632 va_list va;
2633 char *msg;
2634
2635 if (failed)
2636 return;
2637
2638 failed = true;
2639
2640 va_start(va, format);
2641 msg = ralloc_vasprintf(mem_ctx, format, va);
2642 va_end(va);
2643 msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg);
2644
2645 this->fail_msg = msg;
2646
2647 if (INTEL_DEBUG & DEBUG_VS) {
2648 fprintf(stderr, "%s", msg);
2649 }
2650 }
2651
2652 } /* namespace brw */