i965/vs: Add support for bit instructions.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_visitor.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "glsl/ir_uniform.h"
26 extern "C" {
27 #include "main/context.h"
28 #include "main/macros.h"
29 #include "program/prog_parameter.h"
30 #include "program/sampler.h"
31 }
32
33 namespace brw {
34
35 vec4_instruction::vec4_instruction(vec4_visitor *v,
36 enum opcode opcode, dst_reg dst,
37 src_reg src0, src_reg src1, src_reg src2)
38 {
39 this->opcode = opcode;
40 this->dst = dst;
41 this->src[0] = src0;
42 this->src[1] = src1;
43 this->src[2] = src2;
44 this->ir = v->base_ir;
45 this->annotation = v->current_annotation;
46 }
47
48 vec4_instruction *
49 vec4_visitor::emit(vec4_instruction *inst)
50 {
51 this->instructions.push_tail(inst);
52
53 return inst;
54 }
55
56 vec4_instruction *
57 vec4_visitor::emit_before(vec4_instruction *inst, vec4_instruction *new_inst)
58 {
59 new_inst->ir = inst->ir;
60 new_inst->annotation = inst->annotation;
61
62 inst->insert_before(new_inst);
63
64 return inst;
65 }
66
67 vec4_instruction *
68 vec4_visitor::emit(enum opcode opcode, dst_reg dst,
69 src_reg src0, src_reg src1, src_reg src2)
70 {
71 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst,
72 src0, src1, src2));
73 }
74
75
76 vec4_instruction *
77 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
78 {
79 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0, src1));
80 }
81
82 vec4_instruction *
83 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
84 {
85 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0));
86 }
87
88 vec4_instruction *
89 vec4_visitor::emit(enum opcode opcode)
90 {
91 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst_reg()));
92 }
93
94 #define ALU1(op) \
95 vec4_instruction * \
96 vec4_visitor::op(dst_reg dst, src_reg src0) \
97 { \
98 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
99 src0); \
100 }
101
102 #define ALU2(op) \
103 vec4_instruction * \
104 vec4_visitor::op(dst_reg dst, src_reg src0, src_reg src1) \
105 { \
106 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
107 src0, src1); \
108 }
109
110 #define ALU3(op) \
111 vec4_instruction * \
112 vec4_visitor::op(dst_reg dst, src_reg src0, src_reg src1, src_reg src2)\
113 { \
114 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
115 src0, src1, src2); \
116 }
117
118 ALU1(NOT)
119 ALU1(MOV)
120 ALU1(FRC)
121 ALU1(RNDD)
122 ALU1(RNDE)
123 ALU1(RNDZ)
124 ALU1(F32TO16)
125 ALU1(F16TO32)
126 ALU2(ADD)
127 ALU2(MUL)
128 ALU2(MACH)
129 ALU2(AND)
130 ALU2(OR)
131 ALU2(XOR)
132 ALU2(DP3)
133 ALU2(DP4)
134 ALU2(DPH)
135 ALU2(SHL)
136 ALU2(SHR)
137 ALU2(ASR)
138 ALU3(LRP)
139 ALU1(BFREV)
140 ALU3(BFE)
141 ALU2(BFI1)
142 ALU3(BFI2)
143 ALU1(FBH)
144 ALU1(FBL)
145 ALU1(CBIT)
146
147 /** Gen4 predicated IF. */
148 vec4_instruction *
149 vec4_visitor::IF(uint32_t predicate)
150 {
151 vec4_instruction *inst;
152
153 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF);
154 inst->predicate = predicate;
155
156 return inst;
157 }
158
159 /** Gen6+ IF with embedded comparison. */
160 vec4_instruction *
161 vec4_visitor::IF(src_reg src0, src_reg src1, uint32_t condition)
162 {
163 assert(intel->gen >= 6);
164
165 vec4_instruction *inst;
166
167 resolve_ud_negate(&src0);
168 resolve_ud_negate(&src1);
169
170 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF, dst_null_d(),
171 src0, src1);
172 inst->conditional_mod = condition;
173
174 return inst;
175 }
176
177 /**
178 * CMP: Sets the low bit of the destination channels with the result
179 * of the comparison, while the upper bits are undefined, and updates
180 * the flag register with the packed 16 bits of the result.
181 */
182 vec4_instruction *
183 vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1, uint32_t condition)
184 {
185 vec4_instruction *inst;
186
187 /* original gen4 does type conversion to the destination type
188 * before before comparison, producing garbage results for floating
189 * point comparisons.
190 */
191 if (intel->gen == 4) {
192 dst.type = src0.type;
193 if (dst.file == HW_REG)
194 dst.fixed_hw_reg.type = dst.type;
195 }
196
197 resolve_ud_negate(&src0);
198 resolve_ud_negate(&src1);
199
200 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_CMP, dst, src0, src1);
201 inst->conditional_mod = condition;
202
203 return inst;
204 }
205
206 vec4_instruction *
207 vec4_visitor::SCRATCH_READ(dst_reg dst, src_reg index)
208 {
209 vec4_instruction *inst;
210
211 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_READ,
212 dst, index);
213 inst->base_mrf = 14;
214 inst->mlen = 2;
215
216 return inst;
217 }
218
219 vec4_instruction *
220 vec4_visitor::SCRATCH_WRITE(dst_reg dst, src_reg src, src_reg index)
221 {
222 vec4_instruction *inst;
223
224 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_WRITE,
225 dst, src, index);
226 inst->base_mrf = 13;
227 inst->mlen = 3;
228
229 return inst;
230 }
231
232 void
233 vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
234 {
235 static enum opcode dot_opcodes[] = {
236 BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
237 };
238
239 emit(dot_opcodes[elements - 2], dst, src0, src1);
240 }
241
242 src_reg
243 vec4_visitor::fix_3src_operand(src_reg src)
244 {
245 /* Using vec4 uniforms in SIMD4x2 programs is difficult. You'd like to be
246 * able to use vertical stride of zero to replicate the vec4 uniform, like
247 *
248 * g3<0;4,1>:f - [0, 4][1, 5][2, 6][3, 7]
249 *
250 * But you can't, since vertical stride is always four in three-source
251 * instructions. Instead, insert a MOV instruction to do the replication so
252 * that the three-source instruction can consume it.
253 */
254
255 /* The MOV is only needed if the source is a uniform or immediate. */
256 if (src.file != UNIFORM && src.file != IMM)
257 return src;
258
259 dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
260 expanded.type = src.type;
261 emit(MOV(expanded, src));
262 return src_reg(expanded);
263 }
264
265 src_reg
266 vec4_visitor::fix_math_operand(src_reg src)
267 {
268 /* The gen6 math instruction ignores the source modifiers --
269 * swizzle, abs, negate, and at least some parts of the register
270 * region description.
271 *
272 * Rather than trying to enumerate all these cases, *always* expand the
273 * operand to a temp GRF for gen6.
274 *
275 * For gen7, keep the operand as-is, except if immediate, which gen7 still
276 * can't use.
277 */
278
279 if (intel->gen == 7 && src.file != IMM)
280 return src;
281
282 dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
283 expanded.type = src.type;
284 emit(MOV(expanded, src));
285 return src_reg(expanded);
286 }
287
288 void
289 vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
290 {
291 src = fix_math_operand(src);
292
293 if (dst.writemask != WRITEMASK_XYZW) {
294 /* The gen6 math instruction must be align1, so we can't do
295 * writemasks.
296 */
297 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
298
299 emit(opcode, temp_dst, src);
300
301 emit(MOV(dst, src_reg(temp_dst)));
302 } else {
303 emit(opcode, dst, src);
304 }
305 }
306
307 void
308 vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
309 {
310 vec4_instruction *inst = emit(opcode, dst, src);
311 inst->base_mrf = 1;
312 inst->mlen = 1;
313 }
314
315 void
316 vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
317 {
318 switch (opcode) {
319 case SHADER_OPCODE_RCP:
320 case SHADER_OPCODE_RSQ:
321 case SHADER_OPCODE_SQRT:
322 case SHADER_OPCODE_EXP2:
323 case SHADER_OPCODE_LOG2:
324 case SHADER_OPCODE_SIN:
325 case SHADER_OPCODE_COS:
326 break;
327 default:
328 assert(!"not reached: bad math opcode");
329 return;
330 }
331
332 if (intel->gen >= 6) {
333 return emit_math1_gen6(opcode, dst, src);
334 } else {
335 return emit_math1_gen4(opcode, dst, src);
336 }
337 }
338
339 void
340 vec4_visitor::emit_math2_gen6(enum opcode opcode,
341 dst_reg dst, src_reg src0, src_reg src1)
342 {
343 src0 = fix_math_operand(src0);
344 src1 = fix_math_operand(src1);
345
346 if (dst.writemask != WRITEMASK_XYZW) {
347 /* The gen6 math instruction must be align1, so we can't do
348 * writemasks.
349 */
350 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
351 temp_dst.type = dst.type;
352
353 emit(opcode, temp_dst, src0, src1);
354
355 emit(MOV(dst, src_reg(temp_dst)));
356 } else {
357 emit(opcode, dst, src0, src1);
358 }
359 }
360
361 void
362 vec4_visitor::emit_math2_gen4(enum opcode opcode,
363 dst_reg dst, src_reg src0, src_reg src1)
364 {
365 vec4_instruction *inst = emit(opcode, dst, src0, src1);
366 inst->base_mrf = 1;
367 inst->mlen = 2;
368 }
369
370 void
371 vec4_visitor::emit_math(enum opcode opcode,
372 dst_reg dst, src_reg src0, src_reg src1)
373 {
374 switch (opcode) {
375 case SHADER_OPCODE_POW:
376 case SHADER_OPCODE_INT_QUOTIENT:
377 case SHADER_OPCODE_INT_REMAINDER:
378 break;
379 default:
380 assert(!"not reached: unsupported binary math opcode");
381 return;
382 }
383
384 if (intel->gen >= 6) {
385 return emit_math2_gen6(opcode, dst, src0, src1);
386 } else {
387 return emit_math2_gen4(opcode, dst, src0, src1);
388 }
389 }
390
391 void
392 vec4_visitor::emit_pack_half_2x16(dst_reg dst, src_reg src0)
393 {
394 if (intel->gen < 7)
395 assert(!"ir_unop_pack_half_2x16 should be lowered");
396
397 assert(dst.type == BRW_REGISTER_TYPE_UD);
398 assert(src0.type == BRW_REGISTER_TYPE_F);
399
400 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
401 *
402 * Because this instruction does not have a 16-bit floating-point type,
403 * the destination data type must be Word (W).
404 *
405 * The destination must be DWord-aligned and specify a horizontal stride
406 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
407 * each destination channel and the upper word is not modified.
408 *
409 * The above restriction implies that the f32to16 instruction must use
410 * align1 mode, because only in align1 mode is it possible to specify
411 * horizontal stride. We choose here to defy the hardware docs and emit
412 * align16 instructions.
413 *
414 * (I [chadv] did attempt to emit align1 instructions for VS f32to16
415 * instructions. I was partially successful in that the code passed all
416 * tests. However, the code was dubiously correct and fragile, and the
417 * tests were not harsh enough to probe that frailty. Not trusting the
418 * code, I chose instead to remain in align16 mode in defiance of the hw
419 * docs).
420 *
421 * I've [chadv] experimentally confirmed that, on gen7 hardware and the
422 * simulator, emitting a f32to16 in align16 mode with UD as destination
423 * data type is safe. The behavior differs from that specified in the PRM
424 * in that the upper word of each destination channel is cleared to 0.
425 */
426
427 dst_reg tmp_dst(this, glsl_type::uvec2_type);
428 src_reg tmp_src(tmp_dst);
429
430 #if 0
431 /* Verify the undocumented behavior on which the following instructions
432 * rely. If f32to16 fails to clear the upper word of the X and Y channels,
433 * then the result of the bit-or instruction below will be incorrect.
434 *
435 * You should inspect the disasm output in order to verify that the MOV is
436 * not optimized away.
437 */
438 emit(MOV(tmp_dst, src_reg(0x12345678u)));
439 #endif
440
441 /* Give tmp the form below, where "." means untouched.
442 *
443 * w z y x w z y x
444 * |.|.|0x0000hhhh|0x0000llll|.|.|0x0000hhhh|0x0000llll|
445 *
446 * That the upper word of each write-channel be 0 is required for the
447 * following bit-shift and bit-or instructions to work. Note that this
448 * relies on the undocumented hardware behavior mentioned above.
449 */
450 tmp_dst.writemask = WRITEMASK_XY;
451 emit(F32TO16(tmp_dst, src0));
452
453 /* Give the write-channels of dst the form:
454 * 0xhhhh0000
455 */
456 tmp_src.swizzle = SWIZZLE_Y;
457 emit(SHL(dst, tmp_src, src_reg(16u)));
458
459 /* Finally, give the write-channels of dst the form of packHalf2x16's
460 * output:
461 * 0xhhhhllll
462 */
463 tmp_src.swizzle = SWIZZLE_X;
464 emit(OR(dst, src_reg(dst), tmp_src));
465 }
466
467 void
468 vec4_visitor::emit_unpack_half_2x16(dst_reg dst, src_reg src0)
469 {
470 if (intel->gen < 7)
471 assert(!"ir_unop_unpack_half_2x16 should be lowered");
472
473 assert(dst.type == BRW_REGISTER_TYPE_F);
474 assert(src0.type == BRW_REGISTER_TYPE_UD);
475
476 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
477 *
478 * Because this instruction does not have a 16-bit floating-point type,
479 * the source data type must be Word (W). The destination type must be
480 * F (Float).
481 *
482 * To use W as the source data type, we must adjust horizontal strides,
483 * which is only possible in align1 mode. All my [chadv] attempts at
484 * emitting align1 instructions for unpackHalf2x16 failed to pass the
485 * Piglit tests, so I gave up.
486 *
487 * I've verified that, on gen7 hardware and the simulator, it is safe to
488 * emit f16to32 in align16 mode with UD as source data type.
489 */
490
491 dst_reg tmp_dst(this, glsl_type::uvec2_type);
492 src_reg tmp_src(tmp_dst);
493
494 tmp_dst.writemask = WRITEMASK_X;
495 emit(AND(tmp_dst, src0, src_reg(0xffffu)));
496
497 tmp_dst.writemask = WRITEMASK_Y;
498 emit(SHR(tmp_dst, src0, src_reg(16u)));
499
500 dst.writemask = WRITEMASK_XY;
501 emit(F16TO32(dst, tmp_src));
502 }
503
504 void
505 vec4_visitor::visit_instructions(const exec_list *list)
506 {
507 foreach_list(node, list) {
508 ir_instruction *ir = (ir_instruction *)node;
509
510 base_ir = ir;
511 ir->accept(this);
512 }
513 }
514
515
516 static int
517 type_size(const struct glsl_type *type)
518 {
519 unsigned int i;
520 int size;
521
522 switch (type->base_type) {
523 case GLSL_TYPE_UINT:
524 case GLSL_TYPE_INT:
525 case GLSL_TYPE_FLOAT:
526 case GLSL_TYPE_BOOL:
527 if (type->is_matrix()) {
528 return type->matrix_columns;
529 } else {
530 /* Regardless of size of vector, it gets a vec4. This is bad
531 * packing for things like floats, but otherwise arrays become a
532 * mess. Hopefully a later pass over the code can pack scalars
533 * down if appropriate.
534 */
535 return 1;
536 }
537 case GLSL_TYPE_ARRAY:
538 assert(type->length > 0);
539 return type_size(type->fields.array) * type->length;
540 case GLSL_TYPE_STRUCT:
541 size = 0;
542 for (i = 0; i < type->length; i++) {
543 size += type_size(type->fields.structure[i].type);
544 }
545 return size;
546 case GLSL_TYPE_SAMPLER:
547 /* Samplers take up one slot in UNIFORMS[], but they're baked in
548 * at link time.
549 */
550 return 1;
551 case GLSL_TYPE_VOID:
552 case GLSL_TYPE_ERROR:
553 case GLSL_TYPE_INTERFACE:
554 assert(0);
555 break;
556 }
557
558 return 0;
559 }
560
561 int
562 vec4_visitor::virtual_grf_alloc(int size)
563 {
564 if (virtual_grf_array_size <= virtual_grf_count) {
565 if (virtual_grf_array_size == 0)
566 virtual_grf_array_size = 16;
567 else
568 virtual_grf_array_size *= 2;
569 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
570 virtual_grf_array_size);
571 virtual_grf_reg_map = reralloc(mem_ctx, virtual_grf_reg_map, int,
572 virtual_grf_array_size);
573 }
574 virtual_grf_reg_map[virtual_grf_count] = virtual_grf_reg_count;
575 virtual_grf_reg_count += size;
576 virtual_grf_sizes[virtual_grf_count] = size;
577 return virtual_grf_count++;
578 }
579
580 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
581 {
582 init();
583
584 this->file = GRF;
585 this->reg = v->virtual_grf_alloc(type_size(type));
586
587 if (type->is_array() || type->is_record()) {
588 this->swizzle = BRW_SWIZZLE_NOOP;
589 } else {
590 this->swizzle = swizzle_for_size(type->vector_elements);
591 }
592
593 this->type = brw_type_for_base_type(type);
594 }
595
596 dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
597 {
598 init();
599
600 this->file = GRF;
601 this->reg = v->virtual_grf_alloc(type_size(type));
602
603 if (type->is_array() || type->is_record()) {
604 this->writemask = WRITEMASK_XYZW;
605 } else {
606 this->writemask = (1 << type->vector_elements) - 1;
607 }
608
609 this->type = brw_type_for_base_type(type);
610 }
611
612 /* Our support for uniforms is piggy-backed on the struct
613 * gl_fragment_program, because that's where the values actually
614 * get stored, rather than in some global gl_shader_program uniform
615 * store.
616 */
617 void
618 vec4_visitor::setup_uniform_values(ir_variable *ir)
619 {
620 int namelen = strlen(ir->name);
621
622 /* The data for our (non-builtin) uniforms is stored in a series of
623 * gl_uniform_driver_storage structs for each subcomponent that
624 * glGetUniformLocation() could name. We know it's been set up in the same
625 * order we'd walk the type, so walk the list of storage and find anything
626 * with our name, or the prefix of a component that starts with our name.
627 */
628 for (unsigned u = 0; u < shader_prog->NumUserUniformStorage; u++) {
629 struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
630
631 if (strncmp(ir->name, storage->name, namelen) != 0 ||
632 (storage->name[namelen] != 0 &&
633 storage->name[namelen] != '.' &&
634 storage->name[namelen] != '[')) {
635 continue;
636 }
637
638 gl_constant_value *components = storage->storage;
639 unsigned vector_count = (MAX2(storage->array_elements, 1) *
640 storage->type->matrix_columns);
641
642 for (unsigned s = 0; s < vector_count; s++) {
643 uniform_vector_size[uniforms] = storage->type->vector_elements;
644
645 int i;
646 for (i = 0; i < uniform_vector_size[uniforms]; i++) {
647 prog_data->param[uniforms * 4 + i] = &components->f;
648 components++;
649 }
650 for (; i < 4; i++) {
651 static float zero = 0;
652 prog_data->param[uniforms * 4 + i] = &zero;
653 }
654
655 uniforms++;
656 }
657 }
658 }
659
660 void
661 vec4_visitor::setup_uniform_clipplane_values()
662 {
663 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
664
665 if (intel->gen < 6) {
666 /* Pre-Gen6, we compact clip planes. For example, if the user
667 * enables just clip planes 0, 1, and 3, we will enable clip planes
668 * 0, 1, and 2 in the hardware, and we'll move clip plane 3 to clip
669 * plane 2. This simplifies the implementation of the Gen6 clip
670 * thread.
671 */
672 int compacted_clipplane_index = 0;
673 for (int i = 0; i < MAX_CLIP_PLANES; ++i) {
674 if (!(key->userclip_planes_enabled_gen_4_5 & (1 << i)))
675 continue;
676
677 this->uniform_vector_size[this->uniforms] = 4;
678 this->userplane[compacted_clipplane_index] = dst_reg(UNIFORM, this->uniforms);
679 this->userplane[compacted_clipplane_index].type = BRW_REGISTER_TYPE_F;
680 for (int j = 0; j < 4; ++j) {
681 prog_data->param[this->uniforms * 4 + j] = &clip_planes[i][j];
682 }
683 ++compacted_clipplane_index;
684 ++this->uniforms;
685 }
686 } else {
687 /* In Gen6 and later, we don't compact clip planes, because this
688 * simplifies the implementation of gl_ClipDistance.
689 */
690 for (int i = 0; i < key->nr_userclip_plane_consts; ++i) {
691 this->uniform_vector_size[this->uniforms] = 4;
692 this->userplane[i] = dst_reg(UNIFORM, this->uniforms);
693 this->userplane[i].type = BRW_REGISTER_TYPE_F;
694 for (int j = 0; j < 4; ++j) {
695 prog_data->param[this->uniforms * 4 + j] = &clip_planes[i][j];
696 }
697 ++this->uniforms;
698 }
699 }
700 }
701
702 /* Our support for builtin uniforms is even scarier than non-builtin.
703 * It sits on top of the PROG_STATE_VAR parameters that are
704 * automatically updated from GL context state.
705 */
706 void
707 vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
708 {
709 const ir_state_slot *const slots = ir->state_slots;
710 assert(ir->state_slots != NULL);
711
712 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
713 /* This state reference has already been setup by ir_to_mesa,
714 * but we'll get the same index back here. We can reference
715 * ParameterValues directly, since unlike brw_fs.cpp, we never
716 * add new state references during compile.
717 */
718 int index = _mesa_add_state_reference(this->prog->Parameters,
719 (gl_state_index *)slots[i].tokens);
720 float *values = &this->prog->Parameters->ParameterValues[index][0].f;
721
722 this->uniform_vector_size[this->uniforms] = 0;
723 /* Add each of the unique swizzled channels of the element.
724 * This will end up matching the size of the glsl_type of this field.
725 */
726 int last_swiz = -1;
727 for (unsigned int j = 0; j < 4; j++) {
728 int swiz = GET_SWZ(slots[i].swizzle, j);
729 last_swiz = swiz;
730
731 prog_data->param[this->uniforms * 4 + j] = &values[swiz];
732 if (swiz <= last_swiz)
733 this->uniform_vector_size[this->uniforms]++;
734 }
735 this->uniforms++;
736 }
737 }
738
739 dst_reg *
740 vec4_visitor::variable_storage(ir_variable *var)
741 {
742 return (dst_reg *)hash_table_find(this->variable_ht, var);
743 }
744
745 void
746 vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir, uint32_t *predicate)
747 {
748 ir_expression *expr = ir->as_expression();
749
750 *predicate = BRW_PREDICATE_NORMAL;
751
752 if (expr) {
753 src_reg op[2];
754 vec4_instruction *inst;
755
756 assert(expr->get_num_operands() <= 2);
757 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
758 expr->operands[i]->accept(this);
759 op[i] = this->result;
760
761 resolve_ud_negate(&op[i]);
762 }
763
764 switch (expr->operation) {
765 case ir_unop_logic_not:
766 inst = emit(AND(dst_null_d(), op[0], src_reg(1)));
767 inst->conditional_mod = BRW_CONDITIONAL_Z;
768 break;
769
770 case ir_binop_logic_xor:
771 inst = emit(XOR(dst_null_d(), op[0], op[1]));
772 inst->conditional_mod = BRW_CONDITIONAL_NZ;
773 break;
774
775 case ir_binop_logic_or:
776 inst = emit(OR(dst_null_d(), op[0], op[1]));
777 inst->conditional_mod = BRW_CONDITIONAL_NZ;
778 break;
779
780 case ir_binop_logic_and:
781 inst = emit(AND(dst_null_d(), op[0], op[1]));
782 inst->conditional_mod = BRW_CONDITIONAL_NZ;
783 break;
784
785 case ir_unop_f2b:
786 if (intel->gen >= 6) {
787 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
788 } else {
789 inst = emit(MOV(dst_null_f(), op[0]));
790 inst->conditional_mod = BRW_CONDITIONAL_NZ;
791 }
792 break;
793
794 case ir_unop_i2b:
795 if (intel->gen >= 6) {
796 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
797 } else {
798 inst = emit(MOV(dst_null_d(), op[0]));
799 inst->conditional_mod = BRW_CONDITIONAL_NZ;
800 }
801 break;
802
803 case ir_binop_all_equal:
804 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
805 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
806 break;
807
808 case ir_binop_any_nequal:
809 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
810 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
811 break;
812
813 case ir_unop_any:
814 inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
815 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
816 break;
817
818 case ir_binop_greater:
819 case ir_binop_gequal:
820 case ir_binop_less:
821 case ir_binop_lequal:
822 case ir_binop_equal:
823 case ir_binop_nequal:
824 emit(CMP(dst_null_d(), op[0], op[1],
825 brw_conditional_for_comparison(expr->operation)));
826 break;
827
828 default:
829 assert(!"not reached");
830 break;
831 }
832 return;
833 }
834
835 ir->accept(this);
836
837 resolve_ud_negate(&this->result);
838
839 if (intel->gen >= 6) {
840 vec4_instruction *inst = emit(AND(dst_null_d(),
841 this->result, src_reg(1)));
842 inst->conditional_mod = BRW_CONDITIONAL_NZ;
843 } else {
844 vec4_instruction *inst = emit(MOV(dst_null_d(), this->result));
845 inst->conditional_mod = BRW_CONDITIONAL_NZ;
846 }
847 }
848
849 /**
850 * Emit a gen6 IF statement with the comparison folded into the IF
851 * instruction.
852 */
853 void
854 vec4_visitor::emit_if_gen6(ir_if *ir)
855 {
856 ir_expression *expr = ir->condition->as_expression();
857
858 if (expr) {
859 src_reg op[2];
860 dst_reg temp;
861
862 assert(expr->get_num_operands() <= 2);
863 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
864 expr->operands[i]->accept(this);
865 op[i] = this->result;
866 }
867
868 switch (expr->operation) {
869 case ir_unop_logic_not:
870 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z));
871 return;
872
873 case ir_binop_logic_xor:
874 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
875 return;
876
877 case ir_binop_logic_or:
878 temp = dst_reg(this, glsl_type::bool_type);
879 emit(OR(temp, op[0], op[1]));
880 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
881 return;
882
883 case ir_binop_logic_and:
884 temp = dst_reg(this, glsl_type::bool_type);
885 emit(AND(temp, op[0], op[1]));
886 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
887 return;
888
889 case ir_unop_f2b:
890 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
891 return;
892
893 case ir_unop_i2b:
894 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
895 return;
896
897 case ir_binop_greater:
898 case ir_binop_gequal:
899 case ir_binop_less:
900 case ir_binop_lequal:
901 case ir_binop_equal:
902 case ir_binop_nequal:
903 emit(IF(op[0], op[1],
904 brw_conditional_for_comparison(expr->operation)));
905 return;
906
907 case ir_binop_all_equal:
908 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
909 emit(IF(BRW_PREDICATE_ALIGN16_ALL4H));
910 return;
911
912 case ir_binop_any_nequal:
913 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
914 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
915 return;
916
917 case ir_unop_any:
918 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
919 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
920 return;
921
922 default:
923 assert(!"not reached");
924 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
925 return;
926 }
927 return;
928 }
929
930 ir->condition->accept(this);
931
932 emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ));
933 }
934
935 static dst_reg
936 with_writemask(dst_reg const & r, int mask)
937 {
938 dst_reg result = r;
939 result.writemask = mask;
940 return result;
941 }
942
943 void
944 vec4_vs_visitor::emit_prolog()
945 {
946 dst_reg sign_recovery_shift;
947 dst_reg normalize_factor;
948 dst_reg es3_normalize_factor;
949
950 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
951 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
952 uint8_t wa_flags = vs_compile->key.gl_attrib_wa_flags[i];
953 dst_reg reg(ATTR, i);
954 dst_reg reg_d = reg;
955 reg_d.type = BRW_REGISTER_TYPE_D;
956 dst_reg reg_ud = reg;
957 reg_ud.type = BRW_REGISTER_TYPE_UD;
958
959 /* Do GL_FIXED rescaling for GLES2.0. Our GL_FIXED attributes
960 * come in as floating point conversions of the integer values.
961 */
962 if (wa_flags & BRW_ATTRIB_WA_COMPONENT_MASK) {
963 dst_reg dst = reg;
964 dst.type = brw_type_for_base_type(glsl_type::vec4_type);
965 dst.writemask = (1 << (wa_flags & BRW_ATTRIB_WA_COMPONENT_MASK)) - 1;
966 emit(MUL(dst, src_reg(dst), src_reg(1.0f / 65536.0f)));
967 }
968
969 /* Do sign recovery for 2101010 formats if required. */
970 if (wa_flags & BRW_ATTRIB_WA_SIGN) {
971 if (sign_recovery_shift.file == BAD_FILE) {
972 /* shift constant: <22,22,22,30> */
973 sign_recovery_shift = dst_reg(this, glsl_type::uvec4_type);
974 emit(MOV(with_writemask(sign_recovery_shift, WRITEMASK_XYZ), src_reg(22u)));
975 emit(MOV(with_writemask(sign_recovery_shift, WRITEMASK_W), src_reg(30u)));
976 }
977
978 emit(SHL(reg_ud, src_reg(reg_ud), src_reg(sign_recovery_shift)));
979 emit(ASR(reg_d, src_reg(reg_d), src_reg(sign_recovery_shift)));
980 }
981
982 /* Apply BGRA swizzle if required. */
983 if (wa_flags & BRW_ATTRIB_WA_BGRA) {
984 src_reg temp = src_reg(reg);
985 temp.swizzle = BRW_SWIZZLE4(2,1,0,3);
986 emit(MOV(reg, temp));
987 }
988
989 if (wa_flags & BRW_ATTRIB_WA_NORMALIZE) {
990 /* ES 3.0 has different rules for converting signed normalized
991 * fixed-point numbers than desktop GL.
992 */
993 if (_mesa_is_gles3(ctx) && (wa_flags & BRW_ATTRIB_WA_SIGN)) {
994 /* According to equation 2.2 of the ES 3.0 specification,
995 * signed normalization conversion is done by:
996 *
997 * f = c / (2^(b-1)-1)
998 */
999 if (es3_normalize_factor.file == BAD_FILE) {
1000 /* mul constant: 1 / (2^(b-1) - 1) */
1001 es3_normalize_factor = dst_reg(this, glsl_type::vec4_type);
1002 emit(MOV(with_writemask(es3_normalize_factor, WRITEMASK_XYZ),
1003 src_reg(1.0f / ((1<<9) - 1))));
1004 emit(MOV(with_writemask(es3_normalize_factor, WRITEMASK_W),
1005 src_reg(1.0f / ((1<<1) - 1))));
1006 }
1007
1008 dst_reg dst = reg;
1009 dst.type = brw_type_for_base_type(glsl_type::vec4_type);
1010 emit(MOV(dst, src_reg(reg_d)));
1011 emit(MUL(dst, src_reg(dst), src_reg(es3_normalize_factor)));
1012 emit_minmax(BRW_CONDITIONAL_G, dst, src_reg(dst), src_reg(-1.0f));
1013 } else {
1014 /* The following equations are from the OpenGL 3.2 specification:
1015 *
1016 * 2.1 unsigned normalization
1017 * f = c/(2^n-1)
1018 *
1019 * 2.2 signed normalization
1020 * f = (2c+1)/(2^n-1)
1021 *
1022 * Both of these share a common divisor, which is represented by
1023 * "normalize_factor" in the code below.
1024 */
1025 if (normalize_factor.file == BAD_FILE) {
1026 /* 1 / (2^b - 1) for b=<10,10,10,2> */
1027 normalize_factor = dst_reg(this, glsl_type::vec4_type);
1028 emit(MOV(with_writemask(normalize_factor, WRITEMASK_XYZ),
1029 src_reg(1.0f / ((1<<10) - 1))));
1030 emit(MOV(with_writemask(normalize_factor, WRITEMASK_W),
1031 src_reg(1.0f / ((1<<2) - 1))));
1032 }
1033
1034 dst_reg dst = reg;
1035 dst.type = brw_type_for_base_type(glsl_type::vec4_type);
1036 emit(MOV(dst, src_reg((wa_flags & BRW_ATTRIB_WA_SIGN) ? reg_d : reg_ud)));
1037
1038 /* For signed normalization, we want the numerator to be 2c+1. */
1039 if (wa_flags & BRW_ATTRIB_WA_SIGN) {
1040 emit(MUL(dst, src_reg(dst), src_reg(2.0f)));
1041 emit(ADD(dst, src_reg(dst), src_reg(1.0f)));
1042 }
1043
1044 emit(MUL(dst, src_reg(dst), src_reg(normalize_factor)));
1045 }
1046 }
1047
1048 if (wa_flags & BRW_ATTRIB_WA_SCALE) {
1049 dst_reg dst = reg;
1050 dst.type = brw_type_for_base_type(glsl_type::vec4_type);
1051 emit(MOV(dst, src_reg((wa_flags & BRW_ATTRIB_WA_SIGN) ? reg_d : reg_ud)));
1052 }
1053 }
1054 }
1055 }
1056
1057
1058 dst_reg *
1059 vec4_vs_visitor::make_reg_for_system_value(ir_variable *ir)
1060 {
1061 /* VertexID is stored by the VF as the last vertex element, but
1062 * we don't represent it with a flag in inputs_read, so we call
1063 * it VERT_ATTRIB_MAX, which setup_attributes() picks up on.
1064 */
1065 dst_reg *reg = new(mem_ctx) dst_reg(ATTR, VERT_ATTRIB_MAX);
1066 vs_prog_data->uses_vertexid = true;
1067
1068 switch (ir->location) {
1069 case SYSTEM_VALUE_VERTEX_ID:
1070 reg->writemask = WRITEMASK_X;
1071 break;
1072 case SYSTEM_VALUE_INSTANCE_ID:
1073 reg->writemask = WRITEMASK_Y;
1074 break;
1075 default:
1076 assert(!"not reached");
1077 break;
1078 }
1079
1080 return reg;
1081 }
1082
1083
1084 void
1085 vec4_visitor::visit(ir_variable *ir)
1086 {
1087 dst_reg *reg = NULL;
1088
1089 if (variable_storage(ir))
1090 return;
1091
1092 switch (ir->mode) {
1093 case ir_var_shader_in:
1094 reg = new(mem_ctx) dst_reg(ATTR, ir->location);
1095 break;
1096
1097 case ir_var_shader_out:
1098 reg = new(mem_ctx) dst_reg(this, ir->type);
1099
1100 for (int i = 0; i < type_size(ir->type); i++) {
1101 output_reg[ir->location + i] = *reg;
1102 output_reg[ir->location + i].reg_offset = i;
1103 output_reg[ir->location + i].type =
1104 brw_type_for_base_type(ir->type->get_scalar_type());
1105 output_reg_annotation[ir->location + i] = ir->name;
1106 }
1107 break;
1108
1109 case ir_var_auto:
1110 case ir_var_temporary:
1111 reg = new(mem_ctx) dst_reg(this, ir->type);
1112 break;
1113
1114 case ir_var_uniform:
1115 reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
1116
1117 /* Thanks to the lower_ubo_reference pass, we will see only
1118 * ir_binop_ubo_load expressions and not ir_dereference_variable for UBO
1119 * variables, so no need for them to be in variable_ht.
1120 */
1121 if (ir->is_in_uniform_block())
1122 return;
1123
1124 /* Track how big the whole uniform variable is, in case we need to put a
1125 * copy of its data into pull constants for array access.
1126 */
1127 this->uniform_size[this->uniforms] = type_size(ir->type);
1128
1129 if (!strncmp(ir->name, "gl_", 3)) {
1130 setup_builtin_uniform_values(ir);
1131 } else {
1132 setup_uniform_values(ir);
1133 }
1134 break;
1135
1136 case ir_var_system_value:
1137 reg = make_reg_for_system_value(ir);
1138 break;
1139
1140 default:
1141 assert(!"not reached");
1142 }
1143
1144 reg->type = brw_type_for_base_type(ir->type);
1145 hash_table_insert(this->variable_ht, reg, ir);
1146 }
1147
1148 void
1149 vec4_visitor::visit(ir_loop *ir)
1150 {
1151 dst_reg counter;
1152
1153 /* We don't want debugging output to print the whole body of the
1154 * loop as the annotation.
1155 */
1156 this->base_ir = NULL;
1157
1158 if (ir->counter != NULL) {
1159 this->base_ir = ir->counter;
1160 ir->counter->accept(this);
1161 counter = *(variable_storage(ir->counter));
1162
1163 if (ir->from != NULL) {
1164 this->base_ir = ir->from;
1165 ir->from->accept(this);
1166
1167 emit(MOV(counter, this->result));
1168 }
1169 }
1170
1171 emit(BRW_OPCODE_DO);
1172
1173 if (ir->to) {
1174 this->base_ir = ir->to;
1175 ir->to->accept(this);
1176
1177 emit(CMP(dst_null_d(), src_reg(counter), this->result,
1178 brw_conditional_for_comparison(ir->cmp)));
1179
1180 vec4_instruction *inst = emit(BRW_OPCODE_BREAK);
1181 inst->predicate = BRW_PREDICATE_NORMAL;
1182 }
1183
1184 visit_instructions(&ir->body_instructions);
1185
1186
1187 if (ir->increment) {
1188 this->base_ir = ir->increment;
1189 ir->increment->accept(this);
1190 emit(ADD(counter, src_reg(counter), this->result));
1191 }
1192
1193 emit(BRW_OPCODE_WHILE);
1194 }
1195
1196 void
1197 vec4_visitor::visit(ir_loop_jump *ir)
1198 {
1199 switch (ir->mode) {
1200 case ir_loop_jump::jump_break:
1201 emit(BRW_OPCODE_BREAK);
1202 break;
1203 case ir_loop_jump::jump_continue:
1204 emit(BRW_OPCODE_CONTINUE);
1205 break;
1206 }
1207 }
1208
1209
1210 void
1211 vec4_visitor::visit(ir_function_signature *ir)
1212 {
1213 assert(0);
1214 (void)ir;
1215 }
1216
1217 void
1218 vec4_visitor::visit(ir_function *ir)
1219 {
1220 /* Ignore function bodies other than main() -- we shouldn't see calls to
1221 * them since they should all be inlined.
1222 */
1223 if (strcmp(ir->name, "main") == 0) {
1224 const ir_function_signature *sig;
1225 exec_list empty;
1226
1227 sig = ir->matching_signature(&empty);
1228
1229 assert(sig);
1230
1231 visit_instructions(&sig->body);
1232 }
1233 }
1234
1235 bool
1236 vec4_visitor::try_emit_sat(ir_expression *ir)
1237 {
1238 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1239 if (!sat_src)
1240 return false;
1241
1242 sat_src->accept(this);
1243 src_reg src = this->result;
1244
1245 this->result = src_reg(this, ir->type);
1246 vec4_instruction *inst;
1247 inst = emit(MOV(dst_reg(this->result), src));
1248 inst->saturate = true;
1249
1250 return true;
1251 }
1252
1253 void
1254 vec4_visitor::emit_bool_comparison(unsigned int op,
1255 dst_reg dst, src_reg src0, src_reg src1)
1256 {
1257 /* original gen4 does destination conversion before comparison. */
1258 if (intel->gen < 5)
1259 dst.type = src0.type;
1260
1261 emit(CMP(dst, src0, src1, brw_conditional_for_comparison(op)));
1262
1263 dst.type = BRW_REGISTER_TYPE_D;
1264 emit(AND(dst, src_reg(dst), src_reg(0x1)));
1265 }
1266
1267 void
1268 vec4_visitor::emit_minmax(uint32_t conditionalmod, dst_reg dst,
1269 src_reg src0, src_reg src1)
1270 {
1271 vec4_instruction *inst;
1272
1273 if (intel->gen >= 6) {
1274 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
1275 inst->conditional_mod = conditionalmod;
1276 } else {
1277 emit(CMP(dst, src0, src1, conditionalmod));
1278
1279 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
1280 inst->predicate = BRW_PREDICATE_NORMAL;
1281 }
1282 }
1283
1284 void
1285 vec4_visitor::visit(ir_expression *ir)
1286 {
1287 unsigned int operand;
1288 src_reg op[Elements(ir->operands)];
1289 src_reg result_src;
1290 dst_reg result_dst;
1291 vec4_instruction *inst;
1292
1293 if (try_emit_sat(ir))
1294 return;
1295
1296 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1297 this->result.file = BAD_FILE;
1298 ir->operands[operand]->accept(this);
1299 if (this->result.file == BAD_FILE) {
1300 printf("Failed to get tree for expression operand:\n");
1301 ir->operands[operand]->print();
1302 exit(1);
1303 }
1304 op[operand] = this->result;
1305
1306 /* Matrix expression operands should have been broken down to vector
1307 * operations already.
1308 */
1309 assert(!ir->operands[operand]->type->is_matrix());
1310 }
1311
1312 int vector_elements = ir->operands[0]->type->vector_elements;
1313 if (ir->operands[1]) {
1314 vector_elements = MAX2(vector_elements,
1315 ir->operands[1]->type->vector_elements);
1316 }
1317
1318 this->result.file = BAD_FILE;
1319
1320 /* Storage for our result. Ideally for an assignment we'd be using
1321 * the actual storage for the result here, instead.
1322 */
1323 result_src = src_reg(this, ir->type);
1324 /* convenience for the emit functions below. */
1325 result_dst = dst_reg(result_src);
1326 /* If nothing special happens, this is the result. */
1327 this->result = result_src;
1328 /* Limit writes to the channels that will be used by result_src later.
1329 * This does limit this temp's use as a temporary for multi-instruction
1330 * sequences.
1331 */
1332 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1333
1334 switch (ir->operation) {
1335 case ir_unop_logic_not:
1336 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
1337 * ones complement of the whole register, not just bit 0.
1338 */
1339 emit(XOR(result_dst, op[0], src_reg(1)));
1340 break;
1341 case ir_unop_neg:
1342 op[0].negate = !op[0].negate;
1343 this->result = op[0];
1344 break;
1345 case ir_unop_abs:
1346 op[0].abs = true;
1347 op[0].negate = false;
1348 this->result = op[0];
1349 break;
1350
1351 case ir_unop_sign:
1352 emit(MOV(result_dst, src_reg(0.0f)));
1353
1354 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_G));
1355 inst = emit(MOV(result_dst, src_reg(1.0f)));
1356 inst->predicate = BRW_PREDICATE_NORMAL;
1357
1358 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_L));
1359 inst = emit(MOV(result_dst, src_reg(-1.0f)));
1360 inst->predicate = BRW_PREDICATE_NORMAL;
1361
1362 break;
1363
1364 case ir_unop_rcp:
1365 emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
1366 break;
1367
1368 case ir_unop_exp2:
1369 emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
1370 break;
1371 case ir_unop_log2:
1372 emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
1373 break;
1374 case ir_unop_exp:
1375 case ir_unop_log:
1376 assert(!"not reached: should be handled by ir_explog_to_explog2");
1377 break;
1378 case ir_unop_sin:
1379 case ir_unop_sin_reduced:
1380 emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
1381 break;
1382 case ir_unop_cos:
1383 case ir_unop_cos_reduced:
1384 emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
1385 break;
1386
1387 case ir_unop_dFdx:
1388 case ir_unop_dFdy:
1389 assert(!"derivatives not valid in vertex shader");
1390 break;
1391
1392 case ir_unop_bitfield_reverse:
1393 emit(BFREV(result_dst, op[0]));
1394 break;
1395 case ir_unop_bit_count:
1396 emit(CBIT(result_dst, op[0]));
1397 break;
1398 case ir_unop_find_msb: {
1399 src_reg temp = src_reg(this, glsl_type::uint_type);
1400
1401 inst = emit(FBH(dst_reg(temp), op[0]));
1402 inst->dst.writemask = WRITEMASK_XYZW;
1403
1404 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1405 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1406 * subtract the result from 31 to convert the MSB count into an LSB count.
1407 */
1408
1409 /* FBH only supports UD type for dst, so use a MOV to convert UD to D. */
1410 temp.swizzle = BRW_SWIZZLE_NOOP;
1411 emit(MOV(result_dst, temp));
1412
1413 src_reg src_tmp = src_reg(result_dst);
1414 emit(CMP(dst_null_d(), src_tmp, src_reg(-1), BRW_CONDITIONAL_NZ));
1415
1416 src_tmp.negate = true;
1417 inst = emit(ADD(result_dst, src_tmp, src_reg(31)));
1418 inst->predicate = BRW_PREDICATE_NORMAL;
1419 break;
1420 }
1421 case ir_unop_find_lsb:
1422 emit(FBL(result_dst, op[0]));
1423 break;
1424
1425 case ir_unop_noise:
1426 assert(!"not reached: should be handled by lower_noise");
1427 break;
1428
1429 case ir_binop_add:
1430 emit(ADD(result_dst, op[0], op[1]));
1431 break;
1432 case ir_binop_sub:
1433 assert(!"not reached: should be handled by ir_sub_to_add_neg");
1434 break;
1435
1436 case ir_binop_mul:
1437 if (ir->type->is_integer()) {
1438 /* For integer multiplication, the MUL uses the low 16 bits
1439 * of one of the operands (src0 on gen6, src1 on gen7). The
1440 * MACH accumulates in the contribution of the upper 16 bits
1441 * of that operand.
1442 *
1443 * FINISHME: Emit just the MUL if we know an operand is small
1444 * enough.
1445 */
1446 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
1447
1448 emit(MUL(acc, op[0], op[1]));
1449 emit(MACH(dst_null_d(), op[0], op[1]));
1450 emit(MOV(result_dst, src_reg(acc)));
1451 } else {
1452 emit(MUL(result_dst, op[0], op[1]));
1453 }
1454 break;
1455 case ir_binop_div:
1456 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
1457 assert(ir->type->is_integer());
1458 emit_math(SHADER_OPCODE_INT_QUOTIENT, result_dst, op[0], op[1]);
1459 break;
1460 case ir_binop_mod:
1461 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1462 assert(ir->type->is_integer());
1463 emit_math(SHADER_OPCODE_INT_REMAINDER, result_dst, op[0], op[1]);
1464 break;
1465
1466 case ir_binop_less:
1467 case ir_binop_greater:
1468 case ir_binop_lequal:
1469 case ir_binop_gequal:
1470 case ir_binop_equal:
1471 case ir_binop_nequal: {
1472 emit(CMP(result_dst, op[0], op[1],
1473 brw_conditional_for_comparison(ir->operation)));
1474 emit(AND(result_dst, result_src, src_reg(0x1)));
1475 break;
1476 }
1477
1478 case ir_binop_all_equal:
1479 /* "==" operator producing a scalar boolean. */
1480 if (ir->operands[0]->type->is_vector() ||
1481 ir->operands[1]->type->is_vector()) {
1482 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
1483 emit(MOV(result_dst, src_reg(0)));
1484 inst = emit(MOV(result_dst, src_reg(1)));
1485 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1486 } else {
1487 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z));
1488 emit(AND(result_dst, result_src, src_reg(0x1)));
1489 }
1490 break;
1491 case ir_binop_any_nequal:
1492 /* "!=" operator producing a scalar boolean. */
1493 if (ir->operands[0]->type->is_vector() ||
1494 ir->operands[1]->type->is_vector()) {
1495 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
1496
1497 emit(MOV(result_dst, src_reg(0)));
1498 inst = emit(MOV(result_dst, src_reg(1)));
1499 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1500 } else {
1501 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ));
1502 emit(AND(result_dst, result_src, src_reg(0x1)));
1503 }
1504 break;
1505
1506 case ir_unop_any:
1507 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
1508 emit(MOV(result_dst, src_reg(0)));
1509
1510 inst = emit(MOV(result_dst, src_reg(1)));
1511 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1512 break;
1513
1514 case ir_binop_logic_xor:
1515 emit(XOR(result_dst, op[0], op[1]));
1516 break;
1517
1518 case ir_binop_logic_or:
1519 emit(OR(result_dst, op[0], op[1]));
1520 break;
1521
1522 case ir_binop_logic_and:
1523 emit(AND(result_dst, op[0], op[1]));
1524 break;
1525
1526 case ir_binop_dot:
1527 assert(ir->operands[0]->type->is_vector());
1528 assert(ir->operands[0]->type == ir->operands[1]->type);
1529 emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
1530 break;
1531
1532 case ir_unop_sqrt:
1533 emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
1534 break;
1535 case ir_unop_rsq:
1536 emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
1537 break;
1538
1539 case ir_unop_bitcast_i2f:
1540 case ir_unop_bitcast_u2f:
1541 this->result = op[0];
1542 this->result.type = BRW_REGISTER_TYPE_F;
1543 break;
1544
1545 case ir_unop_bitcast_f2i:
1546 this->result = op[0];
1547 this->result.type = BRW_REGISTER_TYPE_D;
1548 break;
1549
1550 case ir_unop_bitcast_f2u:
1551 this->result = op[0];
1552 this->result.type = BRW_REGISTER_TYPE_UD;
1553 break;
1554
1555 case ir_unop_i2f:
1556 case ir_unop_i2u:
1557 case ir_unop_u2i:
1558 case ir_unop_u2f:
1559 case ir_unop_b2f:
1560 case ir_unop_b2i:
1561 case ir_unop_f2i:
1562 case ir_unop_f2u:
1563 emit(MOV(result_dst, op[0]));
1564 break;
1565 case ir_unop_f2b:
1566 case ir_unop_i2b: {
1567 emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
1568 emit(AND(result_dst, result_src, src_reg(1)));
1569 break;
1570 }
1571
1572 case ir_unop_trunc:
1573 emit(RNDZ(result_dst, op[0]));
1574 break;
1575 case ir_unop_ceil:
1576 op[0].negate = !op[0].negate;
1577 inst = emit(RNDD(result_dst, op[0]));
1578 this->result.negate = true;
1579 break;
1580 case ir_unop_floor:
1581 inst = emit(RNDD(result_dst, op[0]));
1582 break;
1583 case ir_unop_fract:
1584 inst = emit(FRC(result_dst, op[0]));
1585 break;
1586 case ir_unop_round_even:
1587 emit(RNDE(result_dst, op[0]));
1588 break;
1589
1590 case ir_binop_min:
1591 emit_minmax(BRW_CONDITIONAL_L, result_dst, op[0], op[1]);
1592 break;
1593 case ir_binop_max:
1594 emit_minmax(BRW_CONDITIONAL_G, result_dst, op[0], op[1]);
1595 break;
1596
1597 case ir_binop_pow:
1598 emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
1599 break;
1600
1601 case ir_unop_bit_not:
1602 inst = emit(NOT(result_dst, op[0]));
1603 break;
1604 case ir_binop_bit_and:
1605 inst = emit(AND(result_dst, op[0], op[1]));
1606 break;
1607 case ir_binop_bit_xor:
1608 inst = emit(XOR(result_dst, op[0], op[1]));
1609 break;
1610 case ir_binop_bit_or:
1611 inst = emit(OR(result_dst, op[0], op[1]));
1612 break;
1613
1614 case ir_binop_lshift:
1615 inst = emit(SHL(result_dst, op[0], op[1]));
1616 break;
1617
1618 case ir_binop_rshift:
1619 if (ir->type->base_type == GLSL_TYPE_INT)
1620 inst = emit(ASR(result_dst, op[0], op[1]));
1621 else
1622 inst = emit(SHR(result_dst, op[0], op[1]));
1623 break;
1624
1625 case ir_binop_bfm:
1626 emit(BFI1(result_dst, op[0], op[1]));
1627 break;
1628
1629 case ir_binop_ubo_load: {
1630 ir_constant *uniform_block = ir->operands[0]->as_constant();
1631 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
1632 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
1633 src_reg offset = op[1];
1634
1635 /* Now, load the vector from that offset. */
1636 assert(ir->type->is_vector() || ir->type->is_scalar());
1637
1638 src_reg packed_consts = src_reg(this, glsl_type::vec4_type);
1639 packed_consts.type = result.type;
1640 src_reg surf_index =
1641 src_reg(SURF_INDEX_VS_UBO(uniform_block->value.u[0]));
1642 if (const_offset_ir) {
1643 offset = src_reg(const_offset / 16);
1644 } else {
1645 emit(SHR(dst_reg(offset), offset, src_reg(4)));
1646 }
1647
1648 vec4_instruction *pull =
1649 emit(new(mem_ctx) vec4_instruction(this,
1650 VS_OPCODE_PULL_CONSTANT_LOAD,
1651 dst_reg(packed_consts),
1652 surf_index,
1653 offset));
1654 pull->base_mrf = 14;
1655 pull->mlen = 1;
1656
1657 packed_consts.swizzle = swizzle_for_size(ir->type->vector_elements);
1658 packed_consts.swizzle += BRW_SWIZZLE4(const_offset % 16 / 4,
1659 const_offset % 16 / 4,
1660 const_offset % 16 / 4,
1661 const_offset % 16 / 4);
1662
1663 /* UBO bools are any nonzero int. We store bools as either 0 or 1. */
1664 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1665 emit(CMP(result_dst, packed_consts, src_reg(0u),
1666 BRW_CONDITIONAL_NZ));
1667 emit(AND(result_dst, result, src_reg(0x1)));
1668 } else {
1669 emit(MOV(result_dst, packed_consts));
1670 }
1671 break;
1672 }
1673
1674 case ir_triop_lrp:
1675 op[0] = fix_3src_operand(op[0]);
1676 op[1] = fix_3src_operand(op[1]);
1677 op[2] = fix_3src_operand(op[2]);
1678 /* Note that the instruction's argument order is reversed from GLSL
1679 * and the IR.
1680 */
1681 emit(LRP(result_dst, op[2], op[1], op[0]));
1682 break;
1683
1684 case ir_triop_bfi:
1685 op[0] = fix_3src_operand(op[0]);
1686 op[1] = fix_3src_operand(op[1]);
1687 op[2] = fix_3src_operand(op[2]);
1688 emit(BFI2(result_dst, op[0], op[1], op[2]));
1689 break;
1690
1691 case ir_triop_bitfield_extract:
1692 op[0] = fix_3src_operand(op[0]);
1693 op[1] = fix_3src_operand(op[1]);
1694 op[2] = fix_3src_operand(op[2]);
1695 /* Note that the instruction's argument order is reversed from GLSL
1696 * and the IR.
1697 */
1698 emit(BFE(result_dst, op[2], op[1], op[0]));
1699 break;
1700
1701 case ir_quadop_bitfield_insert:
1702 assert(!"not reached: should be handled by "
1703 "bitfield_insert_to_bfm_bfi\n");
1704 break;
1705
1706 case ir_quadop_vector:
1707 assert(!"not reached: should be handled by lower_quadop_vector");
1708 break;
1709
1710 case ir_unop_pack_half_2x16:
1711 emit_pack_half_2x16(result_dst, op[0]);
1712 break;
1713 case ir_unop_unpack_half_2x16:
1714 emit_unpack_half_2x16(result_dst, op[0]);
1715 break;
1716 case ir_unop_pack_snorm_2x16:
1717 case ir_unop_pack_snorm_4x8:
1718 case ir_unop_pack_unorm_2x16:
1719 case ir_unop_pack_unorm_4x8:
1720 case ir_unop_unpack_snorm_2x16:
1721 case ir_unop_unpack_snorm_4x8:
1722 case ir_unop_unpack_unorm_2x16:
1723 case ir_unop_unpack_unorm_4x8:
1724 assert(!"not reached: should be handled by lower_packing_builtins");
1725 break;
1726 case ir_unop_unpack_half_2x16_split_x:
1727 case ir_unop_unpack_half_2x16_split_y:
1728 case ir_binop_pack_half_2x16_split:
1729 assert(!"not reached: should not occur in vertex shader");
1730 break;
1731 }
1732 }
1733
1734
1735 void
1736 vec4_visitor::visit(ir_swizzle *ir)
1737 {
1738 src_reg src;
1739 int i = 0;
1740 int swizzle[4];
1741
1742 /* Note that this is only swizzles in expressions, not those on the left
1743 * hand side of an assignment, which do write masking. See ir_assignment
1744 * for that.
1745 */
1746
1747 ir->val->accept(this);
1748 src = this->result;
1749 assert(src.file != BAD_FILE);
1750
1751 for (i = 0; i < ir->type->vector_elements; i++) {
1752 switch (i) {
1753 case 0:
1754 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
1755 break;
1756 case 1:
1757 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
1758 break;
1759 case 2:
1760 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
1761 break;
1762 case 3:
1763 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
1764 break;
1765 }
1766 }
1767 for (; i < 4; i++) {
1768 /* Replicate the last channel out. */
1769 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1770 }
1771
1772 src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1773
1774 this->result = src;
1775 }
1776
1777 void
1778 vec4_visitor::visit(ir_dereference_variable *ir)
1779 {
1780 const struct glsl_type *type = ir->type;
1781 dst_reg *reg = variable_storage(ir->var);
1782
1783 if (!reg) {
1784 fail("Failed to find variable storage for %s\n", ir->var->name);
1785 this->result = src_reg(brw_null_reg());
1786 return;
1787 }
1788
1789 this->result = src_reg(*reg);
1790
1791 /* System values get their swizzle from the dst_reg writemask */
1792 if (ir->var->mode == ir_var_system_value)
1793 return;
1794
1795 if (type->is_scalar() || type->is_vector() || type->is_matrix())
1796 this->result.swizzle = swizzle_for_size(type->vector_elements);
1797 }
1798
1799
1800 int
1801 vec4_visitor::compute_array_stride(ir_dereference_array *ir)
1802 {
1803 /* Under normal circumstances array elements are stored consecutively, so
1804 * the stride is equal to the size of the array element.
1805 */
1806 return type_size(ir->type);
1807 }
1808
1809
1810 void
1811 vec4_visitor::visit(ir_dereference_array *ir)
1812 {
1813 ir_constant *constant_index;
1814 src_reg src;
1815 int array_stride = compute_array_stride(ir);
1816
1817 constant_index = ir->array_index->constant_expression_value();
1818
1819 ir->array->accept(this);
1820 src = this->result;
1821
1822 if (constant_index) {
1823 src.reg_offset += constant_index->value.i[0] * array_stride;
1824 } else {
1825 /* Variable index array dereference. It eats the "vec4" of the
1826 * base of the array and an index that offsets the Mesa register
1827 * index.
1828 */
1829 ir->array_index->accept(this);
1830
1831 src_reg index_reg;
1832
1833 if (array_stride == 1) {
1834 index_reg = this->result;
1835 } else {
1836 index_reg = src_reg(this, glsl_type::int_type);
1837
1838 emit(MUL(dst_reg(index_reg), this->result, src_reg(array_stride)));
1839 }
1840
1841 if (src.reladdr) {
1842 src_reg temp = src_reg(this, glsl_type::int_type);
1843
1844 emit(ADD(dst_reg(temp), *src.reladdr, index_reg));
1845
1846 index_reg = temp;
1847 }
1848
1849 src.reladdr = ralloc(mem_ctx, src_reg);
1850 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1851 }
1852
1853 /* If the type is smaller than a vec4, replicate the last channel out. */
1854 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
1855 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1856 else
1857 src.swizzle = BRW_SWIZZLE_NOOP;
1858 src.type = brw_type_for_base_type(ir->type);
1859
1860 this->result = src;
1861 }
1862
1863 void
1864 vec4_visitor::visit(ir_dereference_record *ir)
1865 {
1866 unsigned int i;
1867 const glsl_type *struct_type = ir->record->type;
1868 int offset = 0;
1869
1870 ir->record->accept(this);
1871
1872 for (i = 0; i < struct_type->length; i++) {
1873 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1874 break;
1875 offset += type_size(struct_type->fields.structure[i].type);
1876 }
1877
1878 /* If the type is smaller than a vec4, replicate the last channel out. */
1879 if (ir->type->is_scalar() || ir->type->is_vector() || ir->type->is_matrix())
1880 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1881 else
1882 this->result.swizzle = BRW_SWIZZLE_NOOP;
1883 this->result.type = brw_type_for_base_type(ir->type);
1884
1885 this->result.reg_offset += offset;
1886 }
1887
1888 /**
1889 * We want to be careful in assignment setup to hit the actual storage
1890 * instead of potentially using a temporary like we might with the
1891 * ir_dereference handler.
1892 */
1893 static dst_reg
1894 get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
1895 {
1896 /* The LHS must be a dereference. If the LHS is a variable indexed array
1897 * access of a vector, it must be separated into a series conditional moves
1898 * before reaching this point (see ir_vec_index_to_cond_assign).
1899 */
1900 assert(ir->as_dereference());
1901 ir_dereference_array *deref_array = ir->as_dereference_array();
1902 if (deref_array) {
1903 assert(!deref_array->array->type->is_vector());
1904 }
1905
1906 /* Use the rvalue deref handler for the most part. We'll ignore
1907 * swizzles in it and write swizzles using writemask, though.
1908 */
1909 ir->accept(v);
1910 return dst_reg(v->result);
1911 }
1912
1913 void
1914 vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src,
1915 const struct glsl_type *type, uint32_t predicate)
1916 {
1917 if (type->base_type == GLSL_TYPE_STRUCT) {
1918 for (unsigned int i = 0; i < type->length; i++) {
1919 emit_block_move(dst, src, type->fields.structure[i].type, predicate);
1920 }
1921 return;
1922 }
1923
1924 if (type->is_array()) {
1925 for (unsigned int i = 0; i < type->length; i++) {
1926 emit_block_move(dst, src, type->fields.array, predicate);
1927 }
1928 return;
1929 }
1930
1931 if (type->is_matrix()) {
1932 const struct glsl_type *vec_type;
1933
1934 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
1935 type->vector_elements, 1);
1936
1937 for (int i = 0; i < type->matrix_columns; i++) {
1938 emit_block_move(dst, src, vec_type, predicate);
1939 }
1940 return;
1941 }
1942
1943 assert(type->is_scalar() || type->is_vector());
1944
1945 dst->type = brw_type_for_base_type(type);
1946 src->type = dst->type;
1947
1948 dst->writemask = (1 << type->vector_elements) - 1;
1949
1950 src->swizzle = swizzle_for_size(type->vector_elements);
1951
1952 vec4_instruction *inst = emit(MOV(*dst, *src));
1953 inst->predicate = predicate;
1954
1955 dst->reg_offset++;
1956 src->reg_offset++;
1957 }
1958
1959
1960 /* If the RHS processing resulted in an instruction generating a
1961 * temporary value, and it would be easy to rewrite the instruction to
1962 * generate its result right into the LHS instead, do so. This ends
1963 * up reliably removing instructions where it can be tricky to do so
1964 * later without real UD chain information.
1965 */
1966 bool
1967 vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1968 dst_reg dst,
1969 src_reg src,
1970 vec4_instruction *pre_rhs_inst,
1971 vec4_instruction *last_rhs_inst)
1972 {
1973 /* This could be supported, but it would take more smarts. */
1974 if (ir->condition)
1975 return false;
1976
1977 if (pre_rhs_inst == last_rhs_inst)
1978 return false; /* No instructions generated to work with. */
1979
1980 /* Make sure the last instruction generated our source reg. */
1981 if (src.file != GRF ||
1982 src.file != last_rhs_inst->dst.file ||
1983 src.reg != last_rhs_inst->dst.reg ||
1984 src.reg_offset != last_rhs_inst->dst.reg_offset ||
1985 src.reladdr ||
1986 src.abs ||
1987 src.negate ||
1988 last_rhs_inst->predicate != BRW_PREDICATE_NONE)
1989 return false;
1990
1991 /* Check that that last instruction fully initialized the channels
1992 * we want to use, in the order we want to use them. We could
1993 * potentially reswizzle the operands of many instructions so that
1994 * we could handle out of order channels, but don't yet.
1995 */
1996
1997 for (unsigned i = 0; i < 4; i++) {
1998 if (dst.writemask & (1 << i)) {
1999 if (!(last_rhs_inst->dst.writemask & (1 << i)))
2000 return false;
2001
2002 if (BRW_GET_SWZ(src.swizzle, i) != i)
2003 return false;
2004 }
2005 }
2006
2007 /* Success! Rewrite the instruction. */
2008 last_rhs_inst->dst.file = dst.file;
2009 last_rhs_inst->dst.reg = dst.reg;
2010 last_rhs_inst->dst.reg_offset = dst.reg_offset;
2011 last_rhs_inst->dst.reladdr = dst.reladdr;
2012 last_rhs_inst->dst.writemask &= dst.writemask;
2013
2014 return true;
2015 }
2016
2017 void
2018 vec4_visitor::visit(ir_assignment *ir)
2019 {
2020 dst_reg dst = get_assignment_lhs(ir->lhs, this);
2021 uint32_t predicate = BRW_PREDICATE_NONE;
2022
2023 if (!ir->lhs->type->is_scalar() &&
2024 !ir->lhs->type->is_vector()) {
2025 ir->rhs->accept(this);
2026 src_reg src = this->result;
2027
2028 if (ir->condition) {
2029 emit_bool_to_cond_code(ir->condition, &predicate);
2030 }
2031
2032 /* emit_block_move doesn't account for swizzles in the source register.
2033 * This should be ok, since the source register is a structure or an
2034 * array, and those can't be swizzled. But double-check to be sure.
2035 */
2036 assert(src.swizzle ==
2037 (ir->rhs->type->is_matrix()
2038 ? swizzle_for_size(ir->rhs->type->vector_elements)
2039 : BRW_SWIZZLE_NOOP));
2040
2041 emit_block_move(&dst, &src, ir->rhs->type, predicate);
2042 return;
2043 }
2044
2045 /* Now we're down to just a scalar/vector with writemasks. */
2046 int i;
2047
2048 vec4_instruction *pre_rhs_inst, *last_rhs_inst;
2049 pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
2050
2051 ir->rhs->accept(this);
2052
2053 last_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
2054
2055 src_reg src = this->result;
2056
2057 int swizzles[4];
2058 int first_enabled_chan = 0;
2059 int src_chan = 0;
2060
2061 assert(ir->lhs->type->is_vector() ||
2062 ir->lhs->type->is_scalar());
2063 dst.writemask = ir->write_mask;
2064
2065 for (int i = 0; i < 4; i++) {
2066 if (dst.writemask & (1 << i)) {
2067 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
2068 break;
2069 }
2070 }
2071
2072 /* Swizzle a small RHS vector into the channels being written.
2073 *
2074 * glsl ir treats write_mask as dictating how many channels are
2075 * present on the RHS while in our instructions we need to make
2076 * those channels appear in the slots of the vec4 they're written to.
2077 */
2078 for (int i = 0; i < 4; i++) {
2079 if (dst.writemask & (1 << i))
2080 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
2081 else
2082 swizzles[i] = first_enabled_chan;
2083 }
2084 src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
2085 swizzles[2], swizzles[3]);
2086
2087 if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) {
2088 return;
2089 }
2090
2091 if (ir->condition) {
2092 emit_bool_to_cond_code(ir->condition, &predicate);
2093 }
2094
2095 for (i = 0; i < type_size(ir->lhs->type); i++) {
2096 vec4_instruction *inst = emit(MOV(dst, src));
2097 inst->predicate = predicate;
2098
2099 dst.reg_offset++;
2100 src.reg_offset++;
2101 }
2102 }
2103
2104 void
2105 vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir)
2106 {
2107 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2108 foreach_list(node, &ir->components) {
2109 ir_constant *field_value = (ir_constant *)node;
2110
2111 emit_constant_values(dst, field_value);
2112 }
2113 return;
2114 }
2115
2116 if (ir->type->is_array()) {
2117 for (unsigned int i = 0; i < ir->type->length; i++) {
2118 emit_constant_values(dst, ir->array_elements[i]);
2119 }
2120 return;
2121 }
2122
2123 if (ir->type->is_matrix()) {
2124 for (int i = 0; i < ir->type->matrix_columns; i++) {
2125 float *vec = &ir->value.f[i * ir->type->vector_elements];
2126
2127 for (int j = 0; j < ir->type->vector_elements; j++) {
2128 dst->writemask = 1 << j;
2129 dst->type = BRW_REGISTER_TYPE_F;
2130
2131 emit(MOV(*dst, src_reg(vec[j])));
2132 }
2133 dst->reg_offset++;
2134 }
2135 return;
2136 }
2137
2138 int remaining_writemask = (1 << ir->type->vector_elements) - 1;
2139
2140 for (int i = 0; i < ir->type->vector_elements; i++) {
2141 if (!(remaining_writemask & (1 << i)))
2142 continue;
2143
2144 dst->writemask = 1 << i;
2145 dst->type = brw_type_for_base_type(ir->type);
2146
2147 /* Find other components that match the one we're about to
2148 * write. Emits fewer instructions for things like vec4(0.5,
2149 * 1.5, 1.5, 1.5).
2150 */
2151 for (int j = i + 1; j < ir->type->vector_elements; j++) {
2152 if (ir->type->base_type == GLSL_TYPE_BOOL) {
2153 if (ir->value.b[i] == ir->value.b[j])
2154 dst->writemask |= (1 << j);
2155 } else {
2156 /* u, i, and f storage all line up, so no need for a
2157 * switch case for comparing each type.
2158 */
2159 if (ir->value.u[i] == ir->value.u[j])
2160 dst->writemask |= (1 << j);
2161 }
2162 }
2163
2164 switch (ir->type->base_type) {
2165 case GLSL_TYPE_FLOAT:
2166 emit(MOV(*dst, src_reg(ir->value.f[i])));
2167 break;
2168 case GLSL_TYPE_INT:
2169 emit(MOV(*dst, src_reg(ir->value.i[i])));
2170 break;
2171 case GLSL_TYPE_UINT:
2172 emit(MOV(*dst, src_reg(ir->value.u[i])));
2173 break;
2174 case GLSL_TYPE_BOOL:
2175 emit(MOV(*dst, src_reg(ir->value.b[i])));
2176 break;
2177 default:
2178 assert(!"Non-float/uint/int/bool constant");
2179 break;
2180 }
2181
2182 remaining_writemask &= ~dst->writemask;
2183 }
2184 dst->reg_offset++;
2185 }
2186
2187 void
2188 vec4_visitor::visit(ir_constant *ir)
2189 {
2190 dst_reg dst = dst_reg(this, ir->type);
2191 this->result = src_reg(dst);
2192
2193 emit_constant_values(&dst, ir);
2194 }
2195
2196 void
2197 vec4_visitor::visit(ir_call *ir)
2198 {
2199 assert(!"not reached");
2200 }
2201
2202 void
2203 vec4_visitor::visit(ir_texture *ir)
2204 {
2205 int sampler =
2206 _mesa_get_sampler_uniform_value(ir->sampler, shader_prog, prog);
2207
2208 /* Should be lowered by do_lower_texture_projection */
2209 assert(!ir->projector);
2210
2211 /* Generate code to compute all the subexpression trees. This has to be
2212 * done before loading any values into MRFs for the sampler message since
2213 * generating these values may involve SEND messages that need the MRFs.
2214 */
2215 src_reg coordinate;
2216 if (ir->coordinate) {
2217 ir->coordinate->accept(this);
2218 coordinate = this->result;
2219 }
2220
2221 src_reg shadow_comparitor;
2222 if (ir->shadow_comparitor) {
2223 ir->shadow_comparitor->accept(this);
2224 shadow_comparitor = this->result;
2225 }
2226
2227 const glsl_type *lod_type = NULL, *sample_index_type = NULL;
2228 src_reg lod, dPdx, dPdy, sample_index;
2229 switch (ir->op) {
2230 case ir_tex:
2231 lod = src_reg(0.0f);
2232 lod_type = glsl_type::float_type;
2233 break;
2234 case ir_txf:
2235 case ir_txl:
2236 case ir_txs:
2237 ir->lod_info.lod->accept(this);
2238 lod = this->result;
2239 lod_type = ir->lod_info.lod->type;
2240 break;
2241 case ir_txf_ms:
2242 ir->lod_info.sample_index->accept(this);
2243 sample_index = this->result;
2244 sample_index_type = ir->lod_info.sample_index->type;
2245 break;
2246 case ir_txd:
2247 ir->lod_info.grad.dPdx->accept(this);
2248 dPdx = this->result;
2249
2250 ir->lod_info.grad.dPdy->accept(this);
2251 dPdy = this->result;
2252
2253 lod_type = ir->lod_info.grad.dPdx->type;
2254 break;
2255 case ir_txb:
2256 case ir_lod:
2257 break;
2258 }
2259
2260 vec4_instruction *inst = NULL;
2261 switch (ir->op) {
2262 case ir_tex:
2263 case ir_txl:
2264 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXL);
2265 break;
2266 case ir_txd:
2267 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXD);
2268 break;
2269 case ir_txf:
2270 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXF);
2271 break;
2272 case ir_txf_ms:
2273 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXF_MS);
2274 break;
2275 case ir_txs:
2276 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXS);
2277 break;
2278 case ir_txb:
2279 assert(!"TXB is not valid for vertex shaders.");
2280 break;
2281 case ir_lod:
2282 assert(!"LOD is not valid for vertex shaders.");
2283 break;
2284 }
2285
2286 bool use_texture_offset = ir->offset != NULL && ir->op != ir_txf;
2287
2288 /* Texel offsets go in the message header; Gen4 also requires headers. */
2289 inst->header_present = use_texture_offset || intel->gen < 5;
2290 inst->base_mrf = 2;
2291 inst->mlen = inst->header_present + 1; /* always at least one */
2292 inst->sampler = sampler;
2293 inst->dst = dst_reg(this, ir->type);
2294 inst->dst.writemask = WRITEMASK_XYZW;
2295 inst->shadow_compare = ir->shadow_comparitor != NULL;
2296
2297 if (use_texture_offset)
2298 inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
2299
2300 /* MRF for the first parameter */
2301 int param_base = inst->base_mrf + inst->header_present;
2302
2303 if (ir->op == ir_txs) {
2304 int writemask = intel->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
2305 emit(MOV(dst_reg(MRF, param_base, lod_type, writemask), lod));
2306 } else {
2307 int i, coord_mask = 0, zero_mask = 0;
2308 /* Load the coordinate */
2309 /* FINISHME: gl_clamp_mask and saturate */
2310 for (i = 0; i < ir->coordinate->type->vector_elements; i++)
2311 coord_mask |= (1 << i);
2312 for (; i < 4; i++)
2313 zero_mask |= (1 << i);
2314
2315 if (ir->offset && ir->op == ir_txf) {
2316 /* It appears that the ld instruction used for txf does its
2317 * address bounds check before adding in the offset. To work
2318 * around this, just add the integer offset to the integer
2319 * texel coordinate, and don't put the offset in the header.
2320 */
2321 ir_constant *offset = ir->offset->as_constant();
2322 assert(offset);
2323
2324 for (int j = 0; j < ir->coordinate->type->vector_elements; j++) {
2325 src_reg src = coordinate;
2326 src.swizzle = BRW_SWIZZLE4(BRW_GET_SWZ(src.swizzle, j),
2327 BRW_GET_SWZ(src.swizzle, j),
2328 BRW_GET_SWZ(src.swizzle, j),
2329 BRW_GET_SWZ(src.swizzle, j));
2330 emit(ADD(dst_reg(MRF, param_base, ir->coordinate->type, 1 << j),
2331 src, offset->value.i[j]));
2332 }
2333 } else {
2334 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask),
2335 coordinate));
2336 }
2337 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask),
2338 src_reg(0)));
2339 /* Load the shadow comparitor */
2340 if (ir->shadow_comparitor && ir->op != ir_txd) {
2341 emit(MOV(dst_reg(MRF, param_base + 1, ir->shadow_comparitor->type,
2342 WRITEMASK_X),
2343 shadow_comparitor));
2344 inst->mlen++;
2345 }
2346
2347 /* Load the LOD info */
2348 if (ir->op == ir_tex || ir->op == ir_txl) {
2349 int mrf, writemask;
2350 if (intel->gen >= 5) {
2351 mrf = param_base + 1;
2352 if (ir->shadow_comparitor) {
2353 writemask = WRITEMASK_Y;
2354 /* mlen already incremented */
2355 } else {
2356 writemask = WRITEMASK_X;
2357 inst->mlen++;
2358 }
2359 } else /* intel->gen == 4 */ {
2360 mrf = param_base;
2361 writemask = WRITEMASK_Z;
2362 }
2363 emit(MOV(dst_reg(MRF, mrf, lod_type, writemask), lod));
2364 } else if (ir->op == ir_txf) {
2365 emit(MOV(dst_reg(MRF, param_base, lod_type, WRITEMASK_W), lod));
2366 } else if (ir->op == ir_txf_ms) {
2367 emit(MOV(dst_reg(MRF, param_base + 1, sample_index_type, WRITEMASK_X),
2368 sample_index));
2369 inst->mlen++;
2370
2371 /* on Gen7, there is an additional MCS parameter here after SI,
2372 * but we don't bother to emit it since it's always zero. If
2373 * we start supporting texturing from CMS surfaces, this will have
2374 * to change
2375 */
2376 } else if (ir->op == ir_txd) {
2377 const glsl_type *type = lod_type;
2378
2379 if (intel->gen >= 5) {
2380 dPdx.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
2381 dPdy.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
2382 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), dPdx));
2383 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), dPdy));
2384 inst->mlen++;
2385
2386 if (ir->type->vector_elements == 3 || ir->shadow_comparitor) {
2387 dPdx.swizzle = BRW_SWIZZLE_ZZZZ;
2388 dPdy.swizzle = BRW_SWIZZLE_ZZZZ;
2389 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), dPdx));
2390 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), dPdy));
2391 inst->mlen++;
2392
2393 if (ir->shadow_comparitor) {
2394 emit(MOV(dst_reg(MRF, param_base + 2,
2395 ir->shadow_comparitor->type, WRITEMASK_Z),
2396 shadow_comparitor));
2397 }
2398 }
2399 } else /* intel->gen == 4 */ {
2400 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), dPdx));
2401 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), dPdy));
2402 inst->mlen += 2;
2403 }
2404 }
2405 }
2406
2407 emit(inst);
2408
2409 /* fixup num layers (z) for cube arrays: hardware returns faces * layers;
2410 * spec requires layers.
2411 */
2412 if (ir->op == ir_txs) {
2413 glsl_type const *type = ir->sampler->type;
2414 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2415 type->sampler_array) {
2416 emit_math(SHADER_OPCODE_INT_QUOTIENT,
2417 with_writemask(inst->dst, WRITEMASK_Z),
2418 src_reg(inst->dst), src_reg(6));
2419 }
2420 }
2421
2422 swizzle_result(ir, src_reg(inst->dst), sampler);
2423 }
2424
2425 void
2426 vec4_visitor::swizzle_result(ir_texture *ir, src_reg orig_val, int sampler)
2427 {
2428 int s = key->tex.swizzles[sampler];
2429
2430 this->result = src_reg(this, ir->type);
2431 dst_reg swizzled_result(this->result);
2432
2433 if (ir->op == ir_txs || ir->type == glsl_type::float_type
2434 || s == SWIZZLE_NOOP) {
2435 emit(MOV(swizzled_result, orig_val));
2436 return;
2437 }
2438
2439 int zero_mask = 0, one_mask = 0, copy_mask = 0;
2440 int swizzle[4];
2441
2442 for (int i = 0; i < 4; i++) {
2443 switch (GET_SWZ(s, i)) {
2444 case SWIZZLE_ZERO:
2445 zero_mask |= (1 << i);
2446 break;
2447 case SWIZZLE_ONE:
2448 one_mask |= (1 << i);
2449 break;
2450 default:
2451 copy_mask |= (1 << i);
2452 swizzle[i] = GET_SWZ(s, i);
2453 break;
2454 }
2455 }
2456
2457 if (copy_mask) {
2458 orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2459 swizzled_result.writemask = copy_mask;
2460 emit(MOV(swizzled_result, orig_val));
2461 }
2462
2463 if (zero_mask) {
2464 swizzled_result.writemask = zero_mask;
2465 emit(MOV(swizzled_result, src_reg(0.0f)));
2466 }
2467
2468 if (one_mask) {
2469 swizzled_result.writemask = one_mask;
2470 emit(MOV(swizzled_result, src_reg(1.0f)));
2471 }
2472 }
2473
2474 void
2475 vec4_visitor::visit(ir_return *ir)
2476 {
2477 assert(!"not reached");
2478 }
2479
2480 void
2481 vec4_visitor::visit(ir_discard *ir)
2482 {
2483 assert(!"not reached");
2484 }
2485
2486 void
2487 vec4_visitor::visit(ir_if *ir)
2488 {
2489 /* Don't point the annotation at the if statement, because then it plus
2490 * the then and else blocks get printed.
2491 */
2492 this->base_ir = ir->condition;
2493
2494 if (intel->gen == 6) {
2495 emit_if_gen6(ir);
2496 } else {
2497 uint32_t predicate;
2498 emit_bool_to_cond_code(ir->condition, &predicate);
2499 emit(IF(predicate));
2500 }
2501
2502 visit_instructions(&ir->then_instructions);
2503
2504 if (!ir->else_instructions.is_empty()) {
2505 this->base_ir = ir->condition;
2506 emit(BRW_OPCODE_ELSE);
2507
2508 visit_instructions(&ir->else_instructions);
2509 }
2510
2511 this->base_ir = ir->condition;
2512 emit(BRW_OPCODE_ENDIF);
2513 }
2514
2515 void
2516 vec4_visitor::emit_ndc_computation()
2517 {
2518 /* Get the position */
2519 src_reg pos = src_reg(output_reg[VARYING_SLOT_POS]);
2520
2521 /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
2522 dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
2523 output_reg[BRW_VARYING_SLOT_NDC] = ndc;
2524
2525 current_annotation = "NDC";
2526 dst_reg ndc_w = ndc;
2527 ndc_w.writemask = WRITEMASK_W;
2528 src_reg pos_w = pos;
2529 pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
2530 emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
2531
2532 dst_reg ndc_xyz = ndc;
2533 ndc_xyz.writemask = WRITEMASK_XYZ;
2534
2535 emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
2536 }
2537
2538 void
2539 vec4_visitor::emit_psiz_and_flags(struct brw_reg reg)
2540 {
2541 if (intel->gen < 6 &&
2542 ((prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) ||
2543 key->userclip_active || brw->has_negative_rhw_bug)) {
2544 dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
2545 dst_reg header1_w = header1;
2546 header1_w.writemask = WRITEMASK_W;
2547 GLuint i;
2548
2549 emit(MOV(header1, 0u));
2550
2551 if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
2552 src_reg psiz = src_reg(output_reg[VARYING_SLOT_PSIZ]);
2553
2554 current_annotation = "Point size";
2555 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
2556 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
2557 }
2558
2559 current_annotation = "Clipping flags";
2560 for (i = 0; i < key->nr_userclip_plane_consts; i++) {
2561 vec4_instruction *inst;
2562
2563 inst = emit(DP4(dst_null_f(), src_reg(output_reg[VARYING_SLOT_POS]),
2564 src_reg(this->userplane[i])));
2565 inst->conditional_mod = BRW_CONDITIONAL_L;
2566
2567 inst = emit(OR(header1_w, src_reg(header1_w), 1u << i));
2568 inst->predicate = BRW_PREDICATE_NORMAL;
2569 }
2570
2571 /* i965 clipping workaround:
2572 * 1) Test for -ve rhw
2573 * 2) If set,
2574 * set ndc = (0,0,0,0)
2575 * set ucp[6] = 1
2576 *
2577 * Later, clipping will detect ucp[6] and ensure the primitive is
2578 * clipped against all fixed planes.
2579 */
2580 if (brw->has_negative_rhw_bug) {
2581 src_reg ndc_w = src_reg(output_reg[BRW_VARYING_SLOT_NDC]);
2582 ndc_w.swizzle = BRW_SWIZZLE_WWWW;
2583 emit(CMP(dst_null_f(), ndc_w, src_reg(0.0f), BRW_CONDITIONAL_L));
2584 vec4_instruction *inst;
2585 inst = emit(OR(header1_w, src_reg(header1_w), src_reg(1u << 6)));
2586 inst->predicate = BRW_PREDICATE_NORMAL;
2587 inst = emit(MOV(output_reg[BRW_VARYING_SLOT_NDC], src_reg(0.0f)));
2588 inst->predicate = BRW_PREDICATE_NORMAL;
2589 }
2590
2591 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
2592 } else if (intel->gen < 6) {
2593 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
2594 } else {
2595 emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
2596 if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
2597 emit(MOV(brw_writemask(reg, WRITEMASK_W),
2598 src_reg(output_reg[VARYING_SLOT_PSIZ])));
2599 }
2600 }
2601 }
2602
2603 void
2604 vec4_visitor::emit_clip_distances(struct brw_reg reg, int offset)
2605 {
2606 if (intel->gen < 6) {
2607 /* Clip distance slots are set aside in gen5, but they are not used. It
2608 * is not clear whether we actually need to set aside space for them,
2609 * but the performance cost is negligible.
2610 */
2611 return;
2612 }
2613
2614 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
2615 *
2616 * "If a linked set of shaders forming the vertex stage contains no
2617 * static write to gl_ClipVertex or gl_ClipDistance, but the
2618 * application has requested clipping against user clip planes through
2619 * the API, then the coordinate written to gl_Position is used for
2620 * comparison against the user clip planes."
2621 *
2622 * This function is only called if the shader didn't write to
2623 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
2624 * if the user wrote to it; otherwise we use gl_Position.
2625 */
2626 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
2627 if (!(prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX)) {
2628 clip_vertex = VARYING_SLOT_POS;
2629 }
2630
2631 for (int i = 0; i + offset < key->nr_userclip_plane_consts && i < 4;
2632 ++i) {
2633 emit(DP4(dst_reg(brw_writemask(reg, 1 << i)),
2634 src_reg(output_reg[clip_vertex]),
2635 src_reg(this->userplane[i + offset])));
2636 }
2637 }
2638
2639 void
2640 vec4_visitor::emit_generic_urb_slot(dst_reg reg, int varying)
2641 {
2642 assert (varying < VARYING_SLOT_MAX);
2643 reg.type = output_reg[varying].type;
2644 current_annotation = output_reg_annotation[varying];
2645 /* Copy the register, saturating if necessary */
2646 vec4_instruction *inst = emit(MOV(reg,
2647 src_reg(output_reg[varying])));
2648 if ((varying == VARYING_SLOT_COL0 ||
2649 varying == VARYING_SLOT_COL1 ||
2650 varying == VARYING_SLOT_BFC0 ||
2651 varying == VARYING_SLOT_BFC1) &&
2652 key->clamp_vertex_color) {
2653 inst->saturate = true;
2654 }
2655 }
2656
2657 void
2658 vec4_visitor::emit_urb_slot(int mrf, int varying)
2659 {
2660 struct brw_reg hw_reg = brw_message_reg(mrf);
2661 dst_reg reg = dst_reg(MRF, mrf);
2662 reg.type = BRW_REGISTER_TYPE_F;
2663
2664 switch (varying) {
2665 case VARYING_SLOT_PSIZ:
2666 /* PSIZ is always in slot 0, and is coupled with other flags. */
2667 current_annotation = "indices, point width, clip flags";
2668 emit_psiz_and_flags(hw_reg);
2669 break;
2670 case BRW_VARYING_SLOT_NDC:
2671 current_annotation = "NDC";
2672 emit(MOV(reg, src_reg(output_reg[BRW_VARYING_SLOT_NDC])));
2673 break;
2674 case BRW_VARYING_SLOT_POS_DUPLICATE:
2675 case VARYING_SLOT_POS:
2676 current_annotation = "gl_Position";
2677 emit(MOV(reg, src_reg(output_reg[VARYING_SLOT_POS])));
2678 break;
2679 case VARYING_SLOT_CLIP_DIST0:
2680 case VARYING_SLOT_CLIP_DIST1:
2681 if (this->key->uses_clip_distance) {
2682 emit_generic_urb_slot(reg, varying);
2683 } else {
2684 current_annotation = "user clip distances";
2685 emit_clip_distances(hw_reg, (varying - VARYING_SLOT_CLIP_DIST0) * 4);
2686 }
2687 break;
2688 case VARYING_SLOT_EDGE:
2689 /* This is present when doing unfilled polygons. We're supposed to copy
2690 * the edge flag from the user-provided vertex array
2691 * (glEdgeFlagPointer), or otherwise we'll copy from the current value
2692 * of that attribute (starts as 1.0f). This is then used in clipping to
2693 * determine which edges should be drawn as wireframe.
2694 */
2695 current_annotation = "edge flag";
2696 emit(MOV(reg, src_reg(dst_reg(ATTR, VERT_ATTRIB_EDGEFLAG,
2697 glsl_type::float_type, WRITEMASK_XYZW))));
2698 break;
2699 case BRW_VARYING_SLOT_PAD:
2700 /* No need to write to this slot */
2701 break;
2702 default:
2703 emit_generic_urb_slot(reg, varying);
2704 break;
2705 }
2706 }
2707
2708 static int
2709 align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
2710 {
2711 struct intel_context *intel = &brw->intel;
2712
2713 if (intel->gen >= 6) {
2714 /* URB data written (does not include the message header reg) must
2715 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
2716 * section 5.4.3.2.2: URB_INTERLEAVED.
2717 *
2718 * URB entries are allocated on a multiple of 1024 bits, so an
2719 * extra 128 bits written here to make the end align to 256 is
2720 * no problem.
2721 */
2722 if ((mlen % 2) != 1)
2723 mlen++;
2724 }
2725
2726 return mlen;
2727 }
2728
2729 void
2730 vec4_vs_visitor::emit_urb_write_header(int mrf)
2731 {
2732 /* No need to do anything for VS; an implied write to this MRF will be
2733 * performed by VS_OPCODE_URB_WRITE.
2734 */
2735 (void) mrf;
2736 }
2737
2738 vec4_instruction *
2739 vec4_vs_visitor::emit_urb_write_opcode(bool complete)
2740 {
2741 /* For VS, the URB writes end the thread. */
2742 if (complete) {
2743 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
2744 emit_shader_time_end();
2745 }
2746
2747 vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
2748 inst->eot = complete;
2749
2750 return inst;
2751 }
2752
2753 /**
2754 * Generates the VUE payload plus the necessary URB write instructions to
2755 * output it.
2756 *
2757 * The VUE layout is documented in Volume 2a.
2758 */
2759 void
2760 vec4_visitor::emit_vertex()
2761 {
2762 /* MRF 0 is reserved for the debugger, so start with message header
2763 * in MRF 1.
2764 */
2765 int base_mrf = 1;
2766 int mrf = base_mrf;
2767 /* In the process of generating our URB write message contents, we
2768 * may need to unspill a register or load from an array. Those
2769 * reads would use MRFs 14-15.
2770 */
2771 int max_usable_mrf = 13;
2772
2773 /* The following assertion verifies that max_usable_mrf causes an
2774 * even-numbered amount of URB write data, which will meet gen6's
2775 * requirements for length alignment.
2776 */
2777 assert ((max_usable_mrf - base_mrf) % 2 == 0);
2778
2779 /* First mrf is the g0-based message header containing URB handles and
2780 * such.
2781 */
2782 emit_urb_write_header(mrf++);
2783
2784 if (intel->gen < 6) {
2785 emit_ndc_computation();
2786 }
2787
2788 /* Set up the VUE data for the first URB write */
2789 int slot;
2790 for (slot = 0; slot < prog_data->vue_map.num_slots; ++slot) {
2791 emit_urb_slot(mrf++, prog_data->vue_map.slot_to_varying[slot]);
2792
2793 /* If this was max_usable_mrf, we can't fit anything more into this URB
2794 * WRITE.
2795 */
2796 if (mrf > max_usable_mrf) {
2797 slot++;
2798 break;
2799 }
2800 }
2801
2802 bool complete = slot >= prog_data->vue_map.num_slots;
2803 current_annotation = "URB write";
2804 vec4_instruction *inst = emit_urb_write_opcode(complete);
2805 inst->base_mrf = base_mrf;
2806 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2807
2808 /* Optional second URB write */
2809 if (!complete) {
2810 mrf = base_mrf + 1;
2811
2812 for (; slot < prog_data->vue_map.num_slots; ++slot) {
2813 assert(mrf < max_usable_mrf);
2814
2815 emit_urb_slot(mrf++, prog_data->vue_map.slot_to_varying[slot]);
2816 }
2817
2818 current_annotation = "URB write";
2819 inst = emit_urb_write_opcode(true /* complete */);
2820 inst->base_mrf = base_mrf;
2821 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2822 /* URB destination offset. In the previous write, we got MRFs
2823 * 2-13 minus the one header MRF, so 12 regs. URB offset is in
2824 * URB row increments, and each of our MRFs is half of one of
2825 * those, since we're doing interleaved writes.
2826 */
2827 inst->offset = (max_usable_mrf - base_mrf) / 2;
2828 }
2829 }
2830
2831 void
2832 vec4_vs_visitor::emit_thread_end()
2833 {
2834 /* For VS, we always end the thread by emitting a single vertex.
2835 * emit_urb_write_opcode() will take care of setting the eot flag on the
2836 * SEND instruction.
2837 */
2838 emit_vertex();
2839 }
2840
2841 src_reg
2842 vec4_visitor::get_scratch_offset(vec4_instruction *inst,
2843 src_reg *reladdr, int reg_offset)
2844 {
2845 /* Because we store the values to scratch interleaved like our
2846 * vertex data, we need to scale the vec4 index by 2.
2847 */
2848 int message_header_scale = 2;
2849
2850 /* Pre-gen6, the message header uses byte offsets instead of vec4
2851 * (16-byte) offset units.
2852 */
2853 if (intel->gen < 6)
2854 message_header_scale *= 16;
2855
2856 if (reladdr) {
2857 src_reg index = src_reg(this, glsl_type::int_type);
2858
2859 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2860 emit_before(inst, MUL(dst_reg(index),
2861 index, src_reg(message_header_scale)));
2862
2863 return index;
2864 } else {
2865 return src_reg(reg_offset * message_header_scale);
2866 }
2867 }
2868
2869 src_reg
2870 vec4_visitor::get_pull_constant_offset(vec4_instruction *inst,
2871 src_reg *reladdr, int reg_offset)
2872 {
2873 if (reladdr) {
2874 src_reg index = src_reg(this, glsl_type::int_type);
2875
2876 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2877
2878 /* Pre-gen6, the message header uses byte offsets instead of vec4
2879 * (16-byte) offset units.
2880 */
2881 if (intel->gen < 6) {
2882 emit_before(inst, MUL(dst_reg(index), index, src_reg(16)));
2883 }
2884
2885 return index;
2886 } else {
2887 int message_header_scale = intel->gen < 6 ? 16 : 1;
2888 return src_reg(reg_offset * message_header_scale);
2889 }
2890 }
2891
2892 /**
2893 * Emits an instruction before @inst to load the value named by @orig_src
2894 * from scratch space at @base_offset to @temp.
2895 *
2896 * @base_offset is measured in 32-byte units (the size of a register).
2897 */
2898 void
2899 vec4_visitor::emit_scratch_read(vec4_instruction *inst,
2900 dst_reg temp, src_reg orig_src,
2901 int base_offset)
2902 {
2903 int reg_offset = base_offset + orig_src.reg_offset;
2904 src_reg index = get_scratch_offset(inst, orig_src.reladdr, reg_offset);
2905
2906 emit_before(inst, SCRATCH_READ(temp, index));
2907 }
2908
2909 /**
2910 * Emits an instruction after @inst to store the value to be written
2911 * to @orig_dst to scratch space at @base_offset, from @temp.
2912 *
2913 * @base_offset is measured in 32-byte units (the size of a register).
2914 */
2915 void
2916 vec4_visitor::emit_scratch_write(vec4_instruction *inst, int base_offset)
2917 {
2918 int reg_offset = base_offset + inst->dst.reg_offset;
2919 src_reg index = get_scratch_offset(inst, inst->dst.reladdr, reg_offset);
2920
2921 /* Create a temporary register to store *inst's result in.
2922 *
2923 * We have to be careful in MOVing from our temporary result register in
2924 * the scratch write. If we swizzle from channels of the temporary that
2925 * weren't initialized, it will confuse live interval analysis, which will
2926 * make spilling fail to make progress.
2927 */
2928 src_reg temp = src_reg(this, glsl_type::vec4_type);
2929 temp.type = inst->dst.type;
2930 int first_writemask_chan = ffs(inst->dst.writemask) - 1;
2931 int swizzles[4];
2932 for (int i = 0; i < 4; i++)
2933 if (inst->dst.writemask & (1 << i))
2934 swizzles[i] = i;
2935 else
2936 swizzles[i] = first_writemask_chan;
2937 temp.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
2938 swizzles[2], swizzles[3]);
2939
2940 dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
2941 inst->dst.writemask));
2942 vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
2943 write->predicate = inst->predicate;
2944 write->ir = inst->ir;
2945 write->annotation = inst->annotation;
2946 inst->insert_after(write);
2947
2948 inst->dst.file = temp.file;
2949 inst->dst.reg = temp.reg;
2950 inst->dst.reg_offset = temp.reg_offset;
2951 inst->dst.reladdr = NULL;
2952 }
2953
2954 /**
2955 * We can't generally support array access in GRF space, because a
2956 * single instruction's destination can only span 2 contiguous
2957 * registers. So, we send all GRF arrays that get variable index
2958 * access to scratch space.
2959 */
2960 void
2961 vec4_visitor::move_grf_array_access_to_scratch()
2962 {
2963 int scratch_loc[this->virtual_grf_count];
2964
2965 for (int i = 0; i < this->virtual_grf_count; i++) {
2966 scratch_loc[i] = -1;
2967 }
2968
2969 /* First, calculate the set of virtual GRFs that need to be punted
2970 * to scratch due to having any array access on them, and where in
2971 * scratch.
2972 */
2973 foreach_list(node, &this->instructions) {
2974 vec4_instruction *inst = (vec4_instruction *)node;
2975
2976 if (inst->dst.file == GRF && inst->dst.reladdr &&
2977 scratch_loc[inst->dst.reg] == -1) {
2978 scratch_loc[inst->dst.reg] = c->last_scratch;
2979 c->last_scratch += this->virtual_grf_sizes[inst->dst.reg];
2980 }
2981
2982 for (int i = 0 ; i < 3; i++) {
2983 src_reg *src = &inst->src[i];
2984
2985 if (src->file == GRF && src->reladdr &&
2986 scratch_loc[src->reg] == -1) {
2987 scratch_loc[src->reg] = c->last_scratch;
2988 c->last_scratch += this->virtual_grf_sizes[src->reg];
2989 }
2990 }
2991 }
2992
2993 /* Now, for anything that will be accessed through scratch, rewrite
2994 * it to load/store. Note that this is a _safe list walk, because
2995 * we may generate a new scratch_write instruction after the one
2996 * we're processing.
2997 */
2998 foreach_list_safe(node, &this->instructions) {
2999 vec4_instruction *inst = (vec4_instruction *)node;
3000
3001 /* Set up the annotation tracking for new generated instructions. */
3002 base_ir = inst->ir;
3003 current_annotation = inst->annotation;
3004
3005 if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) {
3006 emit_scratch_write(inst, scratch_loc[inst->dst.reg]);
3007 }
3008
3009 for (int i = 0 ; i < 3; i++) {
3010 if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1)
3011 continue;
3012
3013 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
3014
3015 emit_scratch_read(inst, temp, inst->src[i],
3016 scratch_loc[inst->src[i].reg]);
3017
3018 inst->src[i].file = temp.file;
3019 inst->src[i].reg = temp.reg;
3020 inst->src[i].reg_offset = temp.reg_offset;
3021 inst->src[i].reladdr = NULL;
3022 }
3023 }
3024 }
3025
3026 /**
3027 * Emits an instruction before @inst to load the value named by @orig_src
3028 * from the pull constant buffer (surface) at @base_offset to @temp.
3029 */
3030 void
3031 vec4_visitor::emit_pull_constant_load(vec4_instruction *inst,
3032 dst_reg temp, src_reg orig_src,
3033 int base_offset)
3034 {
3035 int reg_offset = base_offset + orig_src.reg_offset;
3036 src_reg index = src_reg((unsigned)SURF_INDEX_VERT_CONST_BUFFER);
3037 src_reg offset = get_pull_constant_offset(inst, orig_src.reladdr, reg_offset);
3038 vec4_instruction *load;
3039
3040 if (intel->gen >= 7) {
3041 dst_reg grf_offset = dst_reg(this, glsl_type::int_type);
3042 grf_offset.type = offset.type;
3043 emit_before(inst, MOV(grf_offset, offset));
3044
3045 load = new(mem_ctx) vec4_instruction(this,
3046 VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
3047 temp, index, src_reg(grf_offset));
3048 } else {
3049 load = new(mem_ctx) vec4_instruction(this, VS_OPCODE_PULL_CONSTANT_LOAD,
3050 temp, index, offset);
3051 load->base_mrf = 14;
3052 load->mlen = 1;
3053 }
3054 emit_before(inst, load);
3055 }
3056
3057 /**
3058 * Implements array access of uniforms by inserting a
3059 * PULL_CONSTANT_LOAD instruction.
3060 *
3061 * Unlike temporary GRF array access (where we don't support it due to
3062 * the difficulty of doing relative addressing on instruction
3063 * destinations), we could potentially do array access of uniforms
3064 * that were loaded in GRF space as push constants. In real-world
3065 * usage we've seen, though, the arrays being used are always larger
3066 * than we could load as push constants, so just always move all
3067 * uniform array access out to a pull constant buffer.
3068 */
3069 void
3070 vec4_visitor::move_uniform_array_access_to_pull_constants()
3071 {
3072 int pull_constant_loc[this->uniforms];
3073
3074 for (int i = 0; i < this->uniforms; i++) {
3075 pull_constant_loc[i] = -1;
3076 }
3077
3078 /* Walk through and find array access of uniforms. Put a copy of that
3079 * uniform in the pull constant buffer.
3080 *
3081 * Note that we don't move constant-indexed accesses to arrays. No
3082 * testing has been done of the performance impact of this choice.
3083 */
3084 foreach_list_safe(node, &this->instructions) {
3085 vec4_instruction *inst = (vec4_instruction *)node;
3086
3087 for (int i = 0 ; i < 3; i++) {
3088 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
3089 continue;
3090
3091 int uniform = inst->src[i].reg;
3092
3093 /* If this array isn't already present in the pull constant buffer,
3094 * add it.
3095 */
3096 if (pull_constant_loc[uniform] == -1) {
3097 const float **values = &prog_data->param[uniform * 4];
3098
3099 pull_constant_loc[uniform] = prog_data->nr_pull_params / 4;
3100
3101 for (int j = 0; j < uniform_size[uniform] * 4; j++) {
3102 prog_data->pull_param[prog_data->nr_pull_params++]
3103 = values[j];
3104 }
3105 }
3106
3107 /* Set up the annotation tracking for new generated instructions. */
3108 base_ir = inst->ir;
3109 current_annotation = inst->annotation;
3110
3111 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
3112
3113 emit_pull_constant_load(inst, temp, inst->src[i],
3114 pull_constant_loc[uniform]);
3115
3116 inst->src[i].file = temp.file;
3117 inst->src[i].reg = temp.reg;
3118 inst->src[i].reg_offset = temp.reg_offset;
3119 inst->src[i].reladdr = NULL;
3120 }
3121 }
3122
3123 /* Now there are no accesses of the UNIFORM file with a reladdr, so
3124 * no need to track them as larger-than-vec4 objects. This will be
3125 * relied on in cutting out unused uniform vectors from push
3126 * constants.
3127 */
3128 split_uniform_registers();
3129 }
3130
3131 void
3132 vec4_visitor::resolve_ud_negate(src_reg *reg)
3133 {
3134 if (reg->type != BRW_REGISTER_TYPE_UD ||
3135 !reg->negate)
3136 return;
3137
3138 src_reg temp = src_reg(this, glsl_type::uvec4_type);
3139 emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
3140 *reg = temp;
3141 }
3142
3143 vec4_visitor::vec4_visitor(struct brw_context *brw,
3144 struct brw_vec4_compile *c,
3145 struct gl_program *prog,
3146 const struct brw_vec4_prog_key *key,
3147 struct brw_vec4_prog_data *prog_data,
3148 struct gl_shader_program *shader_prog,
3149 struct brw_shader *shader,
3150 void *mem_ctx,
3151 bool debug_flag)
3152 : debug_flag(debug_flag)
3153 {
3154 this->brw = brw;
3155 this->intel = &brw->intel;
3156 this->ctx = &intel->ctx;
3157 this->shader_prog = shader_prog;
3158 this->shader = shader;
3159
3160 this->mem_ctx = mem_ctx;
3161 this->failed = false;
3162
3163 this->base_ir = NULL;
3164 this->current_annotation = NULL;
3165 memset(this->output_reg_annotation, 0, sizeof(this->output_reg_annotation));
3166
3167 this->c = c;
3168 this->prog = prog;
3169 this->key = key;
3170 this->prog_data = prog_data;
3171
3172 this->variable_ht = hash_table_ctor(0,
3173 hash_table_pointer_hash,
3174 hash_table_pointer_compare);
3175
3176 this->virtual_grf_def = NULL;
3177 this->virtual_grf_use = NULL;
3178 this->virtual_grf_sizes = NULL;
3179 this->virtual_grf_count = 0;
3180 this->virtual_grf_reg_map = NULL;
3181 this->virtual_grf_reg_count = 0;
3182 this->virtual_grf_array_size = 0;
3183 this->live_intervals_valid = false;
3184
3185 this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
3186
3187 this->uniforms = 0;
3188 }
3189
3190 vec4_visitor::~vec4_visitor()
3191 {
3192 hash_table_dtor(this->variable_ht);
3193 }
3194
3195
3196 vec4_vs_visitor::vec4_vs_visitor(struct brw_context *brw,
3197 struct brw_vs_compile *vs_compile,
3198 struct brw_vs_prog_data *vs_prog_data,
3199 struct gl_shader_program *prog,
3200 struct brw_shader *shader,
3201 void *mem_ctx)
3202 : vec4_visitor(brw, &vs_compile->base, &vs_compile->vp->program.Base,
3203 &vs_compile->key.base, &vs_prog_data->base, prog, shader,
3204 mem_ctx, INTEL_DEBUG & DEBUG_VS),
3205 vs_compile(vs_compile),
3206 vs_prog_data(vs_prog_data)
3207 {
3208 }
3209
3210
3211 void
3212 vec4_visitor::fail(const char *format, ...)
3213 {
3214 va_list va;
3215 char *msg;
3216
3217 if (failed)
3218 return;
3219
3220 failed = true;
3221
3222 va_start(va, format);
3223 msg = ralloc_vasprintf(mem_ctx, format, va);
3224 va_end(va);
3225 msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg);
3226
3227 this->fail_msg = msg;
3228
3229 if (debug_flag) {
3230 fprintf(stderr, "%s", msg);
3231 }
3232 }
3233
3234 } /* namespace brw */