i965: Fix swizzles for system values such as gl_InstanceID.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_visitor.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 extern "C" {
26 #include "main/macros.h"
27 #include "program/prog_parameter.h"
28 #include "program/sampler.h"
29 }
30
31 namespace brw {
32
33 src_reg::src_reg(dst_reg reg)
34 {
35 init();
36
37 this->file = reg.file;
38 this->reg = reg.reg;
39 this->reg_offset = reg.reg_offset;
40 this->type = reg.type;
41 this->reladdr = reg.reladdr;
42 this->fixed_hw_reg = reg.fixed_hw_reg;
43
44 int swizzles[4];
45 int next_chan = 0;
46 int last = 0;
47
48 for (int i = 0; i < 4; i++) {
49 if (!(reg.writemask & (1 << i)))
50 continue;
51
52 swizzles[next_chan++] = last = i;
53 }
54
55 for (; next_chan < 4; next_chan++) {
56 swizzles[next_chan] = last;
57 }
58
59 this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
60 swizzles[2], swizzles[3]);
61 }
62
63 dst_reg::dst_reg(src_reg reg)
64 {
65 init();
66
67 this->file = reg.file;
68 this->reg = reg.reg;
69 this->reg_offset = reg.reg_offset;
70 this->type = reg.type;
71 this->writemask = WRITEMASK_XYZW;
72 this->reladdr = reg.reladdr;
73 this->fixed_hw_reg = reg.fixed_hw_reg;
74 }
75
76 vec4_instruction::vec4_instruction(vec4_visitor *v,
77 enum opcode opcode, dst_reg dst,
78 src_reg src0, src_reg src1, src_reg src2)
79 {
80 this->opcode = opcode;
81 this->dst = dst;
82 this->src[0] = src0;
83 this->src[1] = src1;
84 this->src[2] = src2;
85 this->ir = v->base_ir;
86 this->annotation = v->current_annotation;
87 }
88
89 vec4_instruction *
90 vec4_visitor::emit(vec4_instruction *inst)
91 {
92 this->instructions.push_tail(inst);
93
94 return inst;
95 }
96
97 vec4_instruction *
98 vec4_visitor::emit_before(vec4_instruction *inst, vec4_instruction *new_inst)
99 {
100 new_inst->ir = inst->ir;
101 new_inst->annotation = inst->annotation;
102
103 inst->insert_before(new_inst);
104
105 return inst;
106 }
107
108 vec4_instruction *
109 vec4_visitor::emit(enum opcode opcode, dst_reg dst,
110 src_reg src0, src_reg src1, src_reg src2)
111 {
112 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst,
113 src0, src1, src2));
114 }
115
116
117 vec4_instruction *
118 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0, src_reg src1)
119 {
120 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0, src1));
121 }
122
123 vec4_instruction *
124 vec4_visitor::emit(enum opcode opcode, dst_reg dst, src_reg src0)
125 {
126 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst, src0));
127 }
128
129 vec4_instruction *
130 vec4_visitor::emit(enum opcode opcode)
131 {
132 return emit(new(mem_ctx) vec4_instruction(this, opcode, dst_reg()));
133 }
134
135 #define ALU1(op) \
136 vec4_instruction * \
137 vec4_visitor::op(dst_reg dst, src_reg src0) \
138 { \
139 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
140 src0); \
141 }
142
143 #define ALU2(op) \
144 vec4_instruction * \
145 vec4_visitor::op(dst_reg dst, src_reg src0, src_reg src1) \
146 { \
147 return new(mem_ctx) vec4_instruction(this, BRW_OPCODE_##op, dst, \
148 src0, src1); \
149 }
150
151 ALU1(NOT)
152 ALU1(MOV)
153 ALU1(FRC)
154 ALU1(RNDD)
155 ALU1(RNDE)
156 ALU1(RNDZ)
157 ALU2(ADD)
158 ALU2(MUL)
159 ALU2(MACH)
160 ALU2(AND)
161 ALU2(OR)
162 ALU2(XOR)
163 ALU2(DP3)
164 ALU2(DP4)
165
166 /** Gen4 predicated IF. */
167 vec4_instruction *
168 vec4_visitor::IF(uint32_t predicate)
169 {
170 vec4_instruction *inst;
171
172 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF);
173 inst->predicate = predicate;
174
175 return inst;
176 }
177
178 /** Gen6+ IF with embedded comparison. */
179 vec4_instruction *
180 vec4_visitor::IF(src_reg src0, src_reg src1, uint32_t condition)
181 {
182 assert(intel->gen >= 6);
183
184 vec4_instruction *inst;
185
186 resolve_ud_negate(&src0);
187 resolve_ud_negate(&src1);
188
189 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_IF, dst_null_d(),
190 src0, src1);
191 inst->conditional_mod = condition;
192
193 return inst;
194 }
195
196 /**
197 * CMP: Sets the low bit of the destination channels with the result
198 * of the comparison, while the upper bits are undefined, and updates
199 * the flag register with the packed 16 bits of the result.
200 */
201 vec4_instruction *
202 vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1, uint32_t condition)
203 {
204 vec4_instruction *inst;
205
206 /* original gen4 does type conversion to the destination type
207 * before before comparison, producing garbage results for floating
208 * point comparisons.
209 */
210 if (intel->gen == 4) {
211 dst.type = src0.type;
212 if (dst.file == HW_REG)
213 dst.fixed_hw_reg.type = dst.type;
214 }
215
216 resolve_ud_negate(&src0);
217 resolve_ud_negate(&src1);
218
219 inst = new(mem_ctx) vec4_instruction(this, BRW_OPCODE_CMP, dst, src0, src1);
220 inst->conditional_mod = condition;
221
222 return inst;
223 }
224
225 vec4_instruction *
226 vec4_visitor::SCRATCH_READ(dst_reg dst, src_reg index)
227 {
228 vec4_instruction *inst;
229
230 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_READ,
231 dst, index);
232 inst->base_mrf = 14;
233 inst->mlen = 1;
234
235 return inst;
236 }
237
238 vec4_instruction *
239 vec4_visitor::SCRATCH_WRITE(dst_reg dst, src_reg src, src_reg index)
240 {
241 vec4_instruction *inst;
242
243 inst = new(mem_ctx) vec4_instruction(this, VS_OPCODE_SCRATCH_WRITE,
244 dst, src, index);
245 inst->base_mrf = 13;
246 inst->mlen = 2;
247
248 return inst;
249 }
250
251 void
252 vec4_visitor::emit_dp(dst_reg dst, src_reg src0, src_reg src1, unsigned elements)
253 {
254 static enum opcode dot_opcodes[] = {
255 BRW_OPCODE_DP2, BRW_OPCODE_DP3, BRW_OPCODE_DP4
256 };
257
258 emit(dot_opcodes[elements - 2], dst, src0, src1);
259 }
260
261 void
262 vec4_visitor::emit_math1_gen6(enum opcode opcode, dst_reg dst, src_reg src)
263 {
264 /* The gen6 math instruction ignores the source modifiers --
265 * swizzle, abs, negate, and at least some parts of the register
266 * region description.
267 *
268 * While it would seem that this MOV could be avoided at this point
269 * in the case that the swizzle is matched up with the destination
270 * writemask, note that uniform packing and register allocation
271 * could rearrange our swizzle, so let's leave this matter up to
272 * copy propagation later.
273 */
274 src_reg temp_src = src_reg(this, glsl_type::vec4_type);
275 emit(MOV(dst_reg(temp_src), src));
276
277 if (dst.writemask != WRITEMASK_XYZW) {
278 /* The gen6 math instruction must be align1, so we can't do
279 * writemasks.
280 */
281 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
282
283 emit(opcode, temp_dst, temp_src);
284
285 emit(MOV(dst, src_reg(temp_dst)));
286 } else {
287 emit(opcode, dst, temp_src);
288 }
289 }
290
291 void
292 vec4_visitor::emit_math1_gen4(enum opcode opcode, dst_reg dst, src_reg src)
293 {
294 vec4_instruction *inst = emit(opcode, dst, src);
295 inst->base_mrf = 1;
296 inst->mlen = 1;
297 }
298
299 void
300 vec4_visitor::emit_math(opcode opcode, dst_reg dst, src_reg src)
301 {
302 switch (opcode) {
303 case SHADER_OPCODE_RCP:
304 case SHADER_OPCODE_RSQ:
305 case SHADER_OPCODE_SQRT:
306 case SHADER_OPCODE_EXP2:
307 case SHADER_OPCODE_LOG2:
308 case SHADER_OPCODE_SIN:
309 case SHADER_OPCODE_COS:
310 break;
311 default:
312 assert(!"not reached: bad math opcode");
313 return;
314 }
315
316 if (intel->gen >= 7) {
317 emit(opcode, dst, src);
318 } else if (intel->gen == 6) {
319 return emit_math1_gen6(opcode, dst, src);
320 } else {
321 return emit_math1_gen4(opcode, dst, src);
322 }
323 }
324
325 void
326 vec4_visitor::emit_math2_gen6(enum opcode opcode,
327 dst_reg dst, src_reg src0, src_reg src1)
328 {
329 src_reg expanded;
330
331 /* The gen6 math instruction ignores the source modifiers --
332 * swizzle, abs, negate, and at least some parts of the register
333 * region description. Move the sources to temporaries to make it
334 * generally work.
335 */
336
337 expanded = src_reg(this, glsl_type::vec4_type);
338 expanded.type = src0.type;
339 emit(MOV(dst_reg(expanded), src0));
340 src0 = expanded;
341
342 expanded = src_reg(this, glsl_type::vec4_type);
343 expanded.type = src1.type;
344 emit(MOV(dst_reg(expanded), src1));
345 src1 = expanded;
346
347 if (dst.writemask != WRITEMASK_XYZW) {
348 /* The gen6 math instruction must be align1, so we can't do
349 * writemasks.
350 */
351 dst_reg temp_dst = dst_reg(this, glsl_type::vec4_type);
352 temp_dst.type = dst.type;
353
354 emit(opcode, temp_dst, src0, src1);
355
356 emit(MOV(dst, src_reg(temp_dst)));
357 } else {
358 emit(opcode, dst, src0, src1);
359 }
360 }
361
362 void
363 vec4_visitor::emit_math2_gen4(enum opcode opcode,
364 dst_reg dst, src_reg src0, src_reg src1)
365 {
366 vec4_instruction *inst = emit(opcode, dst, src0, src1);
367 inst->base_mrf = 1;
368 inst->mlen = 2;
369 }
370
371 void
372 vec4_visitor::emit_math(enum opcode opcode,
373 dst_reg dst, src_reg src0, src_reg src1)
374 {
375 switch (opcode) {
376 case SHADER_OPCODE_POW:
377 case SHADER_OPCODE_INT_QUOTIENT:
378 case SHADER_OPCODE_INT_REMAINDER:
379 break;
380 default:
381 assert(!"not reached: unsupported binary math opcode");
382 return;
383 }
384
385 if (intel->gen >= 7) {
386 emit(opcode, dst, src0, src1);
387 } else if (intel->gen == 6) {
388 return emit_math2_gen6(opcode, dst, src0, src1);
389 } else {
390 return emit_math2_gen4(opcode, dst, src0, src1);
391 }
392 }
393
394 void
395 vec4_visitor::visit_instructions(const exec_list *list)
396 {
397 foreach_list(node, list) {
398 ir_instruction *ir = (ir_instruction *)node;
399
400 base_ir = ir;
401 ir->accept(this);
402 }
403 }
404
405
406 static int
407 type_size(const struct glsl_type *type)
408 {
409 unsigned int i;
410 int size;
411
412 switch (type->base_type) {
413 case GLSL_TYPE_UINT:
414 case GLSL_TYPE_INT:
415 case GLSL_TYPE_FLOAT:
416 case GLSL_TYPE_BOOL:
417 if (type->is_matrix()) {
418 return type->matrix_columns;
419 } else {
420 /* Regardless of size of vector, it gets a vec4. This is bad
421 * packing for things like floats, but otherwise arrays become a
422 * mess. Hopefully a later pass over the code can pack scalars
423 * down if appropriate.
424 */
425 return 1;
426 }
427 case GLSL_TYPE_ARRAY:
428 assert(type->length > 0);
429 return type_size(type->fields.array) * type->length;
430 case GLSL_TYPE_STRUCT:
431 size = 0;
432 for (i = 0; i < type->length; i++) {
433 size += type_size(type->fields.structure[i].type);
434 }
435 return size;
436 case GLSL_TYPE_SAMPLER:
437 /* Samplers take up one slot in UNIFORMS[], but they're baked in
438 * at link time.
439 */
440 return 1;
441 default:
442 assert(0);
443 return 0;
444 }
445 }
446
447 int
448 vec4_visitor::virtual_grf_alloc(int size)
449 {
450 if (virtual_grf_array_size <= virtual_grf_count) {
451 if (virtual_grf_array_size == 0)
452 virtual_grf_array_size = 16;
453 else
454 virtual_grf_array_size *= 2;
455 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
456 virtual_grf_array_size);
457 virtual_grf_reg_map = reralloc(mem_ctx, virtual_grf_reg_map, int,
458 virtual_grf_array_size);
459 }
460 virtual_grf_reg_map[virtual_grf_count] = virtual_grf_reg_count;
461 virtual_grf_reg_count += size;
462 virtual_grf_sizes[virtual_grf_count] = size;
463 return virtual_grf_count++;
464 }
465
466 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
467 {
468 init();
469
470 this->file = GRF;
471 this->reg = v->virtual_grf_alloc(type_size(type));
472
473 if (type->is_array() || type->is_record()) {
474 this->swizzle = BRW_SWIZZLE_NOOP;
475 } else {
476 this->swizzle = swizzle_for_size(type->vector_elements);
477 }
478
479 this->type = brw_type_for_base_type(type);
480 }
481
482 dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
483 {
484 init();
485
486 this->file = GRF;
487 this->reg = v->virtual_grf_alloc(type_size(type));
488
489 if (type->is_array() || type->is_record()) {
490 this->writemask = WRITEMASK_XYZW;
491 } else {
492 this->writemask = (1 << type->vector_elements) - 1;
493 }
494
495 this->type = brw_type_for_base_type(type);
496 }
497
498 /* Our support for uniforms is piggy-backed on the struct
499 * gl_fragment_program, because that's where the values actually
500 * get stored, rather than in some global gl_shader_program uniform
501 * store.
502 */
503 int
504 vec4_visitor::setup_uniform_values(int loc, const glsl_type *type)
505 {
506 unsigned int offset = 0;
507 float *values = &this->vp->Base.Parameters->ParameterValues[loc][0].f;
508
509 if (type->is_matrix()) {
510 const glsl_type *column = type->column_type();
511
512 for (unsigned int i = 0; i < type->matrix_columns; i++) {
513 offset += setup_uniform_values(loc + offset, column);
514 }
515
516 return offset;
517 }
518
519 switch (type->base_type) {
520 case GLSL_TYPE_FLOAT:
521 case GLSL_TYPE_UINT:
522 case GLSL_TYPE_INT:
523 case GLSL_TYPE_BOOL:
524 for (unsigned int i = 0; i < type->vector_elements; i++) {
525 c->prog_data.param[this->uniforms * 4 + i] = &values[i];
526 }
527
528 /* Set up pad elements to get things aligned to a vec4 boundary. */
529 for (unsigned int i = type->vector_elements; i < 4; i++) {
530 static float zero = 0;
531
532 c->prog_data.param[this->uniforms * 4 + i] = &zero;
533 }
534
535 /* Track the size of this uniform vector, for future packing of
536 * uniforms.
537 */
538 this->uniform_vector_size[this->uniforms] = type->vector_elements;
539 this->uniforms++;
540
541 return 1;
542
543 case GLSL_TYPE_STRUCT:
544 for (unsigned int i = 0; i < type->length; i++) {
545 offset += setup_uniform_values(loc + offset,
546 type->fields.structure[i].type);
547 }
548 return offset;
549
550 case GLSL_TYPE_ARRAY:
551 for (unsigned int i = 0; i < type->length; i++) {
552 offset += setup_uniform_values(loc + offset, type->fields.array);
553 }
554 return offset;
555
556 case GLSL_TYPE_SAMPLER:
557 /* The sampler takes up a slot, but we don't use any values from it. */
558 return 1;
559
560 default:
561 assert(!"not reached");
562 return 0;
563 }
564 }
565
566 void
567 vec4_visitor::setup_uniform_clipplane_values()
568 {
569 gl_clip_plane *clip_planes = brw_select_clip_planes(ctx);
570
571 /* Pre-Gen6, we compact clip planes. For example, if the user
572 * enables just clip planes 0, 1, and 3, we will enable clip planes
573 * 0, 1, and 2 in the hardware, and we'll move clip plane 3 to clip
574 * plane 2. This simplifies the implementation of the Gen6 clip
575 * thread.
576 *
577 * In Gen6 and later, we don't compact clip planes, because this
578 * simplifies the implementation of gl_ClipDistance.
579 */
580 int compacted_clipplane_index = 0;
581 for (int i = 0; i < c->key.nr_userclip_plane_consts; ++i) {
582 if (intel->gen < 6 &&
583 !(c->key.userclip_planes_enabled_gen_4_5 & (1 << i))) {
584 continue;
585 }
586 this->uniform_vector_size[this->uniforms] = 4;
587 this->userplane[compacted_clipplane_index] = dst_reg(UNIFORM, this->uniforms);
588 this->userplane[compacted_clipplane_index].type = BRW_REGISTER_TYPE_F;
589 for (int j = 0; j < 4; ++j) {
590 c->prog_data.param[this->uniforms * 4 + j] = &clip_planes[i][j];
591 }
592 ++compacted_clipplane_index;
593 ++this->uniforms;
594 }
595 }
596
597 /* Our support for builtin uniforms is even scarier than non-builtin.
598 * It sits on top of the PROG_STATE_VAR parameters that are
599 * automatically updated from GL context state.
600 */
601 void
602 vec4_visitor::setup_builtin_uniform_values(ir_variable *ir)
603 {
604 const ir_state_slot *const slots = ir->state_slots;
605 assert(ir->state_slots != NULL);
606
607 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
608 /* This state reference has already been setup by ir_to_mesa,
609 * but we'll get the same index back here. We can reference
610 * ParameterValues directly, since unlike brw_fs.cpp, we never
611 * add new state references during compile.
612 */
613 int index = _mesa_add_state_reference(this->vp->Base.Parameters,
614 (gl_state_index *)slots[i].tokens);
615 float *values = &this->vp->Base.Parameters->ParameterValues[index][0].f;
616
617 this->uniform_vector_size[this->uniforms] = 0;
618 /* Add each of the unique swizzled channels of the element.
619 * This will end up matching the size of the glsl_type of this field.
620 */
621 int last_swiz = -1;
622 for (unsigned int j = 0; j < 4; j++) {
623 int swiz = GET_SWZ(slots[i].swizzle, j);
624 last_swiz = swiz;
625
626 c->prog_data.param[this->uniforms * 4 + j] = &values[swiz];
627 if (swiz <= last_swiz)
628 this->uniform_vector_size[this->uniforms]++;
629 }
630 this->uniforms++;
631 }
632 }
633
634 dst_reg *
635 vec4_visitor::variable_storage(ir_variable *var)
636 {
637 return (dst_reg *)hash_table_find(this->variable_ht, var);
638 }
639
640 void
641 vec4_visitor::emit_bool_to_cond_code(ir_rvalue *ir, uint32_t *predicate)
642 {
643 ir_expression *expr = ir->as_expression();
644
645 *predicate = BRW_PREDICATE_NORMAL;
646
647 if (expr) {
648 src_reg op[2];
649 vec4_instruction *inst;
650
651 assert(expr->get_num_operands() <= 2);
652 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
653 expr->operands[i]->accept(this);
654 op[i] = this->result;
655
656 resolve_ud_negate(&op[i]);
657 }
658
659 switch (expr->operation) {
660 case ir_unop_logic_not:
661 inst = emit(AND(dst_null_d(), op[0], src_reg(1)));
662 inst->conditional_mod = BRW_CONDITIONAL_Z;
663 break;
664
665 case ir_binop_logic_xor:
666 inst = emit(XOR(dst_null_d(), op[0], op[1]));
667 inst->conditional_mod = BRW_CONDITIONAL_NZ;
668 break;
669
670 case ir_binop_logic_or:
671 inst = emit(OR(dst_null_d(), op[0], op[1]));
672 inst->conditional_mod = BRW_CONDITIONAL_NZ;
673 break;
674
675 case ir_binop_logic_and:
676 inst = emit(AND(dst_null_d(), op[0], op[1]));
677 inst->conditional_mod = BRW_CONDITIONAL_NZ;
678 break;
679
680 case ir_unop_f2b:
681 if (intel->gen >= 6) {
682 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
683 } else {
684 inst = emit(MOV(dst_null_f(), op[0]));
685 inst->conditional_mod = BRW_CONDITIONAL_NZ;
686 }
687 break;
688
689 case ir_unop_i2b:
690 if (intel->gen >= 6) {
691 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
692 } else {
693 inst = emit(MOV(dst_null_d(), op[0]));
694 inst->conditional_mod = BRW_CONDITIONAL_NZ;
695 }
696 break;
697
698 case ir_binop_all_equal:
699 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
700 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
701 break;
702
703 case ir_binop_any_nequal:
704 inst = emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
705 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
706 break;
707
708 case ir_unop_any:
709 inst = emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
710 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
711 break;
712
713 case ir_binop_greater:
714 case ir_binop_gequal:
715 case ir_binop_less:
716 case ir_binop_lequal:
717 case ir_binop_equal:
718 case ir_binop_nequal:
719 emit(CMP(dst_null_d(), op[0], op[1],
720 brw_conditional_for_comparison(expr->operation)));
721 break;
722
723 default:
724 assert(!"not reached");
725 break;
726 }
727 return;
728 }
729
730 ir->accept(this);
731
732 resolve_ud_negate(&this->result);
733
734 if (intel->gen >= 6) {
735 vec4_instruction *inst = emit(AND(dst_null_d(),
736 this->result, src_reg(1)));
737 inst->conditional_mod = BRW_CONDITIONAL_NZ;
738 } else {
739 vec4_instruction *inst = emit(MOV(dst_null_d(), this->result));
740 inst->conditional_mod = BRW_CONDITIONAL_NZ;
741 }
742 }
743
744 /**
745 * Emit a gen6 IF statement with the comparison folded into the IF
746 * instruction.
747 */
748 void
749 vec4_visitor::emit_if_gen6(ir_if *ir)
750 {
751 ir_expression *expr = ir->condition->as_expression();
752
753 if (expr) {
754 src_reg op[2];
755 dst_reg temp;
756
757 assert(expr->get_num_operands() <= 2);
758 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
759 expr->operands[i]->accept(this);
760 op[i] = this->result;
761 }
762
763 switch (expr->operation) {
764 case ir_unop_logic_not:
765 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_Z));
766 return;
767
768 case ir_binop_logic_xor:
769 emit(IF(op[0], op[1], BRW_CONDITIONAL_NZ));
770 return;
771
772 case ir_binop_logic_or:
773 temp = dst_reg(this, glsl_type::bool_type);
774 emit(OR(temp, op[0], op[1]));
775 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
776 return;
777
778 case ir_binop_logic_and:
779 temp = dst_reg(this, glsl_type::bool_type);
780 emit(AND(temp, op[0], op[1]));
781 emit(IF(src_reg(temp), src_reg(0), BRW_CONDITIONAL_NZ));
782 return;
783
784 case ir_unop_f2b:
785 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
786 return;
787
788 case ir_unop_i2b:
789 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
790 return;
791
792 case ir_binop_greater:
793 case ir_binop_gequal:
794 case ir_binop_less:
795 case ir_binop_lequal:
796 case ir_binop_equal:
797 case ir_binop_nequal:
798 emit(IF(op[0], op[1],
799 brw_conditional_for_comparison(expr->operation)));
800 return;
801
802 case ir_binop_all_equal:
803 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
804 emit(IF(BRW_PREDICATE_ALIGN16_ALL4H));
805 return;
806
807 case ir_binop_any_nequal:
808 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
809 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
810 return;
811
812 case ir_unop_any:
813 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
814 emit(IF(BRW_PREDICATE_ALIGN16_ANY4H));
815 return;
816
817 default:
818 assert(!"not reached");
819 emit(IF(op[0], src_reg(0), BRW_CONDITIONAL_NZ));
820 return;
821 }
822 return;
823 }
824
825 ir->condition->accept(this);
826
827 emit(IF(this->result, src_reg(0), BRW_CONDITIONAL_NZ));
828 }
829
830 void
831 vec4_visitor::visit(ir_variable *ir)
832 {
833 dst_reg *reg = NULL;
834
835 if (variable_storage(ir))
836 return;
837
838 switch (ir->mode) {
839 case ir_var_in:
840 reg = new(mem_ctx) dst_reg(ATTR, ir->location);
841
842 /* Do GL_FIXED rescaling for GLES2.0. Our GL_FIXED attributes
843 * come in as floating point conversions of the integer values.
844 */
845 for (int i = ir->location; i < ir->location + type_size(ir->type); i++) {
846 if (!c->key.gl_fixed_input_size[i])
847 continue;
848
849 dst_reg dst = *reg;
850 dst.type = brw_type_for_base_type(ir->type);
851 dst.writemask = (1 << c->key.gl_fixed_input_size[i]) - 1;
852 emit(MUL(dst, src_reg(dst), src_reg(1.0f / 65536.0f)));
853 }
854 break;
855
856 case ir_var_out:
857 reg = new(mem_ctx) dst_reg(this, ir->type);
858
859 for (int i = 0; i < type_size(ir->type); i++) {
860 output_reg[ir->location + i] = *reg;
861 output_reg[ir->location + i].reg_offset = i;
862 output_reg[ir->location + i].type =
863 brw_type_for_base_type(ir->type->get_scalar_type());
864 output_reg_annotation[ir->location + i] = ir->name;
865 }
866 break;
867
868 case ir_var_auto:
869 case ir_var_temporary:
870 reg = new(mem_ctx) dst_reg(this, ir->type);
871 break;
872
873 case ir_var_uniform:
874 reg = new(this->mem_ctx) dst_reg(UNIFORM, this->uniforms);
875
876 /* Track how big the whole uniform variable is, in case we need to put a
877 * copy of its data into pull constants for array access.
878 */
879 this->uniform_size[this->uniforms] = type_size(ir->type);
880
881 if (!strncmp(ir->name, "gl_", 3)) {
882 setup_builtin_uniform_values(ir);
883 } else {
884 setup_uniform_values(ir->location, ir->type);
885 }
886 break;
887
888 case ir_var_system_value:
889 /* VertexID is stored by the VF as the last vertex element, but
890 * we don't represent it with a flag in inputs_read, so we call
891 * it VERT_ATTRIB_MAX, which setup_attributes() picks up on.
892 */
893 reg = new(mem_ctx) dst_reg(ATTR, VERT_ATTRIB_MAX);
894 prog_data->uses_vertexid = true;
895
896 switch (ir->location) {
897 case SYSTEM_VALUE_VERTEX_ID:
898 reg->writemask = WRITEMASK_X;
899 break;
900 case SYSTEM_VALUE_INSTANCE_ID:
901 reg->writemask = WRITEMASK_Y;
902 break;
903 default:
904 assert(!"not reached");
905 break;
906 }
907 break;
908
909 default:
910 assert(!"not reached");
911 }
912
913 reg->type = brw_type_for_base_type(ir->type);
914 hash_table_insert(this->variable_ht, reg, ir);
915 }
916
917 void
918 vec4_visitor::visit(ir_loop *ir)
919 {
920 dst_reg counter;
921
922 /* We don't want debugging output to print the whole body of the
923 * loop as the annotation.
924 */
925 this->base_ir = NULL;
926
927 if (ir->counter != NULL) {
928 this->base_ir = ir->counter;
929 ir->counter->accept(this);
930 counter = *(variable_storage(ir->counter));
931
932 if (ir->from != NULL) {
933 this->base_ir = ir->from;
934 ir->from->accept(this);
935
936 emit(MOV(counter, this->result));
937 }
938 }
939
940 emit(BRW_OPCODE_DO);
941
942 if (ir->to) {
943 this->base_ir = ir->to;
944 ir->to->accept(this);
945
946 emit(CMP(dst_null_d(), src_reg(counter), this->result,
947 brw_conditional_for_comparison(ir->cmp)));
948
949 vec4_instruction *inst = emit(BRW_OPCODE_BREAK);
950 inst->predicate = BRW_PREDICATE_NORMAL;
951 }
952
953 visit_instructions(&ir->body_instructions);
954
955
956 if (ir->increment) {
957 this->base_ir = ir->increment;
958 ir->increment->accept(this);
959 emit(ADD(counter, src_reg(counter), this->result));
960 }
961
962 emit(BRW_OPCODE_WHILE);
963 }
964
965 void
966 vec4_visitor::visit(ir_loop_jump *ir)
967 {
968 switch (ir->mode) {
969 case ir_loop_jump::jump_break:
970 emit(BRW_OPCODE_BREAK);
971 break;
972 case ir_loop_jump::jump_continue:
973 emit(BRW_OPCODE_CONTINUE);
974 break;
975 }
976 }
977
978
979 void
980 vec4_visitor::visit(ir_function_signature *ir)
981 {
982 assert(0);
983 (void)ir;
984 }
985
986 void
987 vec4_visitor::visit(ir_function *ir)
988 {
989 /* Ignore function bodies other than main() -- we shouldn't see calls to
990 * them since they should all be inlined.
991 */
992 if (strcmp(ir->name, "main") == 0) {
993 const ir_function_signature *sig;
994 exec_list empty;
995
996 sig = ir->matching_signature(&empty);
997
998 assert(sig);
999
1000 visit_instructions(&sig->body);
1001 }
1002 }
1003
1004 bool
1005 vec4_visitor::try_emit_sat(ir_expression *ir)
1006 {
1007 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1008 if (!sat_src)
1009 return false;
1010
1011 sat_src->accept(this);
1012 src_reg src = this->result;
1013
1014 this->result = src_reg(this, ir->type);
1015 vec4_instruction *inst;
1016 inst = emit(MOV(dst_reg(this->result), src));
1017 inst->saturate = true;
1018
1019 return true;
1020 }
1021
1022 void
1023 vec4_visitor::emit_bool_comparison(unsigned int op,
1024 dst_reg dst, src_reg src0, src_reg src1)
1025 {
1026 /* original gen4 does destination conversion before comparison. */
1027 if (intel->gen < 5)
1028 dst.type = src0.type;
1029
1030 emit(CMP(dst, src0, src1, brw_conditional_for_comparison(op)));
1031
1032 dst.type = BRW_REGISTER_TYPE_D;
1033 emit(AND(dst, src_reg(dst), src_reg(0x1)));
1034 }
1035
1036 void
1037 vec4_visitor::visit(ir_expression *ir)
1038 {
1039 unsigned int operand;
1040 src_reg op[Elements(ir->operands)];
1041 src_reg result_src;
1042 dst_reg result_dst;
1043 vec4_instruction *inst;
1044
1045 if (try_emit_sat(ir))
1046 return;
1047
1048 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1049 this->result.file = BAD_FILE;
1050 ir->operands[operand]->accept(this);
1051 if (this->result.file == BAD_FILE) {
1052 printf("Failed to get tree for expression operand:\n");
1053 ir->operands[operand]->print();
1054 exit(1);
1055 }
1056 op[operand] = this->result;
1057
1058 /* Matrix expression operands should have been broken down to vector
1059 * operations already.
1060 */
1061 assert(!ir->operands[operand]->type->is_matrix());
1062 }
1063
1064 int vector_elements = ir->operands[0]->type->vector_elements;
1065 if (ir->operands[1]) {
1066 vector_elements = MAX2(vector_elements,
1067 ir->operands[1]->type->vector_elements);
1068 }
1069
1070 this->result.file = BAD_FILE;
1071
1072 /* Storage for our result. Ideally for an assignment we'd be using
1073 * the actual storage for the result here, instead.
1074 */
1075 result_src = src_reg(this, ir->type);
1076 /* convenience for the emit functions below. */
1077 result_dst = dst_reg(result_src);
1078 /* If nothing special happens, this is the result. */
1079 this->result = result_src;
1080 /* Limit writes to the channels that will be used by result_src later.
1081 * This does limit this temp's use as a temporary for multi-instruction
1082 * sequences.
1083 */
1084 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1085
1086 switch (ir->operation) {
1087 case ir_unop_logic_not:
1088 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
1089 * ones complement of the whole register, not just bit 0.
1090 */
1091 emit(XOR(result_dst, op[0], src_reg(1)));
1092 break;
1093 case ir_unop_neg:
1094 op[0].negate = !op[0].negate;
1095 this->result = op[0];
1096 break;
1097 case ir_unop_abs:
1098 op[0].abs = true;
1099 op[0].negate = false;
1100 this->result = op[0];
1101 break;
1102
1103 case ir_unop_sign:
1104 emit(MOV(result_dst, src_reg(0.0f)));
1105
1106 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_G));
1107 inst = emit(MOV(result_dst, src_reg(1.0f)));
1108 inst->predicate = BRW_PREDICATE_NORMAL;
1109
1110 emit(CMP(dst_null_d(), op[0], src_reg(0.0f), BRW_CONDITIONAL_L));
1111 inst = emit(MOV(result_dst, src_reg(-1.0f)));
1112 inst->predicate = BRW_PREDICATE_NORMAL;
1113
1114 break;
1115
1116 case ir_unop_rcp:
1117 emit_math(SHADER_OPCODE_RCP, result_dst, op[0]);
1118 break;
1119
1120 case ir_unop_exp2:
1121 emit_math(SHADER_OPCODE_EXP2, result_dst, op[0]);
1122 break;
1123 case ir_unop_log2:
1124 emit_math(SHADER_OPCODE_LOG2, result_dst, op[0]);
1125 break;
1126 case ir_unop_exp:
1127 case ir_unop_log:
1128 assert(!"not reached: should be handled by ir_explog_to_explog2");
1129 break;
1130 case ir_unop_sin:
1131 case ir_unop_sin_reduced:
1132 emit_math(SHADER_OPCODE_SIN, result_dst, op[0]);
1133 break;
1134 case ir_unop_cos:
1135 case ir_unop_cos_reduced:
1136 emit_math(SHADER_OPCODE_COS, result_dst, op[0]);
1137 break;
1138
1139 case ir_unop_dFdx:
1140 case ir_unop_dFdy:
1141 assert(!"derivatives not valid in vertex shader");
1142 break;
1143
1144 case ir_unop_noise:
1145 assert(!"not reached: should be handled by lower_noise");
1146 break;
1147
1148 case ir_binop_add:
1149 emit(ADD(result_dst, op[0], op[1]));
1150 break;
1151 case ir_binop_sub:
1152 assert(!"not reached: should be handled by ir_sub_to_add_neg");
1153 break;
1154
1155 case ir_binop_mul:
1156 if (ir->type->is_integer()) {
1157 /* For integer multiplication, the MUL uses the low 16 bits
1158 * of one of the operands (src0 on gen6, src1 on gen7). The
1159 * MACH accumulates in the contribution of the upper 16 bits
1160 * of that operand.
1161 *
1162 * FINISHME: Emit just the MUL if we know an operand is small
1163 * enough.
1164 */
1165 struct brw_reg acc = retype(brw_acc_reg(), BRW_REGISTER_TYPE_D);
1166
1167 emit(MUL(acc, op[0], op[1]));
1168 emit(MACH(dst_null_d(), op[0], op[1]));
1169 emit(MOV(result_dst, src_reg(acc)));
1170 } else {
1171 emit(MUL(result_dst, op[0], op[1]));
1172 }
1173 break;
1174 case ir_binop_div:
1175 /* Floating point should be lowered by DIV_TO_MUL_RCP in the compiler. */
1176 assert(ir->type->is_integer());
1177 emit_math(SHADER_OPCODE_INT_QUOTIENT, result_dst, op[0], op[1]);
1178 break;
1179 case ir_binop_mod:
1180 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1181 assert(ir->type->is_integer());
1182 emit_math(SHADER_OPCODE_INT_REMAINDER, result_dst, op[0], op[1]);
1183 break;
1184
1185 case ir_binop_less:
1186 case ir_binop_greater:
1187 case ir_binop_lequal:
1188 case ir_binop_gequal:
1189 case ir_binop_equal:
1190 case ir_binop_nequal: {
1191 emit(CMP(result_dst, op[0], op[1],
1192 brw_conditional_for_comparison(ir->operation)));
1193 emit(AND(result_dst, result_src, src_reg(0x1)));
1194 break;
1195 }
1196
1197 case ir_binop_all_equal:
1198 /* "==" operator producing a scalar boolean. */
1199 if (ir->operands[0]->type->is_vector() ||
1200 ir->operands[1]->type->is_vector()) {
1201 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_Z));
1202 emit(MOV(result_dst, src_reg(0)));
1203 inst = emit(MOV(result_dst, src_reg(1)));
1204 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1205 } else {
1206 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_Z));
1207 emit(AND(result_dst, result_src, src_reg(0x1)));
1208 }
1209 break;
1210 case ir_binop_any_nequal:
1211 /* "!=" operator producing a scalar boolean. */
1212 if (ir->operands[0]->type->is_vector() ||
1213 ir->operands[1]->type->is_vector()) {
1214 emit(CMP(dst_null_d(), op[0], op[1], BRW_CONDITIONAL_NZ));
1215
1216 emit(MOV(result_dst, src_reg(0)));
1217 inst = emit(MOV(result_dst, src_reg(1)));
1218 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1219 } else {
1220 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_NZ));
1221 emit(AND(result_dst, result_src, src_reg(0x1)));
1222 }
1223 break;
1224
1225 case ir_unop_any:
1226 emit(CMP(dst_null_d(), op[0], src_reg(0), BRW_CONDITIONAL_NZ));
1227 emit(MOV(result_dst, src_reg(0)));
1228
1229 inst = emit(MOV(result_dst, src_reg(1)));
1230 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1231 break;
1232
1233 case ir_binop_logic_xor:
1234 emit(XOR(result_dst, op[0], op[1]));
1235 break;
1236
1237 case ir_binop_logic_or:
1238 emit(OR(result_dst, op[0], op[1]));
1239 break;
1240
1241 case ir_binop_logic_and:
1242 emit(AND(result_dst, op[0], op[1]));
1243 break;
1244
1245 case ir_binop_dot:
1246 assert(ir->operands[0]->type->is_vector());
1247 assert(ir->operands[0]->type == ir->operands[1]->type);
1248 emit_dp(result_dst, op[0], op[1], ir->operands[0]->type->vector_elements);
1249 break;
1250
1251 case ir_unop_sqrt:
1252 emit_math(SHADER_OPCODE_SQRT, result_dst, op[0]);
1253 break;
1254 case ir_unop_rsq:
1255 emit_math(SHADER_OPCODE_RSQ, result_dst, op[0]);
1256 break;
1257 case ir_unop_i2f:
1258 case ir_unop_i2u:
1259 case ir_unop_u2i:
1260 case ir_unop_u2f:
1261 case ir_unop_b2f:
1262 case ir_unop_b2i:
1263 case ir_unop_f2i:
1264 emit(MOV(result_dst, op[0]));
1265 break;
1266 case ir_unop_f2b:
1267 case ir_unop_i2b: {
1268 emit(CMP(result_dst, op[0], src_reg(0.0f), BRW_CONDITIONAL_NZ));
1269 emit(AND(result_dst, result_src, src_reg(1)));
1270 break;
1271 }
1272
1273 case ir_unop_trunc:
1274 emit(RNDZ(result_dst, op[0]));
1275 break;
1276 case ir_unop_ceil:
1277 op[0].negate = !op[0].negate;
1278 inst = emit(RNDD(result_dst, op[0]));
1279 this->result.negate = true;
1280 break;
1281 case ir_unop_floor:
1282 inst = emit(RNDD(result_dst, op[0]));
1283 break;
1284 case ir_unop_fract:
1285 inst = emit(FRC(result_dst, op[0]));
1286 break;
1287 case ir_unop_round_even:
1288 emit(RNDE(result_dst, op[0]));
1289 break;
1290
1291 case ir_binop_min:
1292 if (intel->gen >= 6) {
1293 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1294 inst->conditional_mod = BRW_CONDITIONAL_L;
1295 } else {
1296 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_L));
1297
1298 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1299 inst->predicate = BRW_PREDICATE_NORMAL;
1300 }
1301 break;
1302 case ir_binop_max:
1303 if (intel->gen >= 6) {
1304 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1305 inst->conditional_mod = BRW_CONDITIONAL_G;
1306 } else {
1307 emit(CMP(result_dst, op[0], op[1], BRW_CONDITIONAL_G));
1308
1309 inst = emit(BRW_OPCODE_SEL, result_dst, op[0], op[1]);
1310 inst->predicate = BRW_PREDICATE_NORMAL;
1311 }
1312 break;
1313
1314 case ir_binop_pow:
1315 emit_math(SHADER_OPCODE_POW, result_dst, op[0], op[1]);
1316 break;
1317
1318 case ir_unop_bit_not:
1319 inst = emit(NOT(result_dst, op[0]));
1320 break;
1321 case ir_binop_bit_and:
1322 inst = emit(AND(result_dst, op[0], op[1]));
1323 break;
1324 case ir_binop_bit_xor:
1325 inst = emit(XOR(result_dst, op[0], op[1]));
1326 break;
1327 case ir_binop_bit_or:
1328 inst = emit(OR(result_dst, op[0], op[1]));
1329 break;
1330
1331 case ir_binop_lshift:
1332 inst = emit(BRW_OPCODE_SHL, result_dst, op[0], op[1]);
1333 break;
1334
1335 case ir_binop_rshift:
1336 if (ir->type->base_type == GLSL_TYPE_INT)
1337 inst = emit(BRW_OPCODE_ASR, result_dst, op[0], op[1]);
1338 else
1339 inst = emit(BRW_OPCODE_SHR, result_dst, op[0], op[1]);
1340 break;
1341
1342 case ir_quadop_vector:
1343 assert(!"not reached: should be handled by lower_quadop_vector");
1344 break;
1345 }
1346 }
1347
1348
1349 void
1350 vec4_visitor::visit(ir_swizzle *ir)
1351 {
1352 src_reg src;
1353 int i = 0;
1354 int swizzle[4];
1355
1356 /* Note that this is only swizzles in expressions, not those on the left
1357 * hand side of an assignment, which do write masking. See ir_assignment
1358 * for that.
1359 */
1360
1361 ir->val->accept(this);
1362 src = this->result;
1363 assert(src.file != BAD_FILE);
1364
1365 for (i = 0; i < ir->type->vector_elements; i++) {
1366 switch (i) {
1367 case 0:
1368 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.x);
1369 break;
1370 case 1:
1371 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.y);
1372 break;
1373 case 2:
1374 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.z);
1375 break;
1376 case 3:
1377 swizzle[i] = BRW_GET_SWZ(src.swizzle, ir->mask.w);
1378 break;
1379 }
1380 }
1381 for (; i < 4; i++) {
1382 /* Replicate the last channel out. */
1383 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1384 }
1385
1386 src.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1387
1388 this->result = src;
1389 }
1390
1391 void
1392 vec4_visitor::visit(ir_dereference_variable *ir)
1393 {
1394 const struct glsl_type *type = ir->type;
1395 dst_reg *reg = variable_storage(ir->var);
1396
1397 if (!reg) {
1398 fail("Failed to find variable storage for %s\n", ir->var->name);
1399 this->result = src_reg(brw_null_reg());
1400 return;
1401 }
1402
1403 this->result = src_reg(*reg);
1404
1405 /* System values get their swizzle from the dst_reg writemask */
1406 if (ir->var->mode == ir_var_system_value)
1407 return;
1408
1409 if (type->is_scalar() || type->is_vector() || type->is_matrix())
1410 this->result.swizzle = swizzle_for_size(type->vector_elements);
1411 }
1412
1413 void
1414 vec4_visitor::visit(ir_dereference_array *ir)
1415 {
1416 ir_constant *constant_index;
1417 src_reg src;
1418 int element_size = type_size(ir->type);
1419
1420 constant_index = ir->array_index->constant_expression_value();
1421
1422 ir->array->accept(this);
1423 src = this->result;
1424
1425 if (constant_index) {
1426 src.reg_offset += constant_index->value.i[0] * element_size;
1427 } else {
1428 /* Variable index array dereference. It eats the "vec4" of the
1429 * base of the array and an index that offsets the Mesa register
1430 * index.
1431 */
1432 ir->array_index->accept(this);
1433
1434 src_reg index_reg;
1435
1436 if (element_size == 1) {
1437 index_reg = this->result;
1438 } else {
1439 index_reg = src_reg(this, glsl_type::int_type);
1440
1441 emit(MUL(dst_reg(index_reg), this->result, src_reg(element_size)));
1442 }
1443
1444 if (src.reladdr) {
1445 src_reg temp = src_reg(this, glsl_type::int_type);
1446
1447 emit(ADD(dst_reg(temp), *src.reladdr, index_reg));
1448
1449 index_reg = temp;
1450 }
1451
1452 src.reladdr = ralloc(mem_ctx, src_reg);
1453 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1454 }
1455
1456 /* If the type is smaller than a vec4, replicate the last channel out. */
1457 if (ir->type->is_scalar() || ir->type->is_vector())
1458 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1459 else
1460 src.swizzle = BRW_SWIZZLE_NOOP;
1461 src.type = brw_type_for_base_type(ir->type);
1462
1463 this->result = src;
1464 }
1465
1466 void
1467 vec4_visitor::visit(ir_dereference_record *ir)
1468 {
1469 unsigned int i;
1470 const glsl_type *struct_type = ir->record->type;
1471 int offset = 0;
1472
1473 ir->record->accept(this);
1474
1475 for (i = 0; i < struct_type->length; i++) {
1476 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1477 break;
1478 offset += type_size(struct_type->fields.structure[i].type);
1479 }
1480
1481 /* If the type is smaller than a vec4, replicate the last channel out. */
1482 if (ir->type->is_scalar() || ir->type->is_vector())
1483 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1484 else
1485 this->result.swizzle = BRW_SWIZZLE_NOOP;
1486 this->result.type = brw_type_for_base_type(ir->type);
1487
1488 this->result.reg_offset += offset;
1489 }
1490
1491 /**
1492 * We want to be careful in assignment setup to hit the actual storage
1493 * instead of potentially using a temporary like we might with the
1494 * ir_dereference handler.
1495 */
1496 static dst_reg
1497 get_assignment_lhs(ir_dereference *ir, vec4_visitor *v)
1498 {
1499 /* The LHS must be a dereference. If the LHS is a variable indexed array
1500 * access of a vector, it must be separated into a series conditional moves
1501 * before reaching this point (see ir_vec_index_to_cond_assign).
1502 */
1503 assert(ir->as_dereference());
1504 ir_dereference_array *deref_array = ir->as_dereference_array();
1505 if (deref_array) {
1506 assert(!deref_array->array->type->is_vector());
1507 }
1508
1509 /* Use the rvalue deref handler for the most part. We'll ignore
1510 * swizzles in it and write swizzles using writemask, though.
1511 */
1512 ir->accept(v);
1513 return dst_reg(v->result);
1514 }
1515
1516 void
1517 vec4_visitor::emit_block_move(dst_reg *dst, src_reg *src,
1518 const struct glsl_type *type, uint32_t predicate)
1519 {
1520 if (type->base_type == GLSL_TYPE_STRUCT) {
1521 for (unsigned int i = 0; i < type->length; i++) {
1522 emit_block_move(dst, src, type->fields.structure[i].type, predicate);
1523 }
1524 return;
1525 }
1526
1527 if (type->is_array()) {
1528 for (unsigned int i = 0; i < type->length; i++) {
1529 emit_block_move(dst, src, type->fields.array, predicate);
1530 }
1531 return;
1532 }
1533
1534 if (type->is_matrix()) {
1535 const struct glsl_type *vec_type;
1536
1537 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
1538 type->vector_elements, 1);
1539
1540 for (int i = 0; i < type->matrix_columns; i++) {
1541 emit_block_move(dst, src, vec_type, predicate);
1542 }
1543 return;
1544 }
1545
1546 assert(type->is_scalar() || type->is_vector());
1547
1548 dst->type = brw_type_for_base_type(type);
1549 src->type = dst->type;
1550
1551 dst->writemask = (1 << type->vector_elements) - 1;
1552
1553 src->swizzle = swizzle_for_size(type->vector_elements);
1554
1555 vec4_instruction *inst = emit(MOV(*dst, *src));
1556 inst->predicate = predicate;
1557
1558 dst->reg_offset++;
1559 src->reg_offset++;
1560 }
1561
1562
1563 /* If the RHS processing resulted in an instruction generating a
1564 * temporary value, and it would be easy to rewrite the instruction to
1565 * generate its result right into the LHS instead, do so. This ends
1566 * up reliably removing instructions where it can be tricky to do so
1567 * later without real UD chain information.
1568 */
1569 bool
1570 vec4_visitor::try_rewrite_rhs_to_dst(ir_assignment *ir,
1571 dst_reg dst,
1572 src_reg src,
1573 vec4_instruction *pre_rhs_inst,
1574 vec4_instruction *last_rhs_inst)
1575 {
1576 /* This could be supported, but it would take more smarts. */
1577 if (ir->condition)
1578 return false;
1579
1580 if (pre_rhs_inst == last_rhs_inst)
1581 return false; /* No instructions generated to work with. */
1582
1583 /* Make sure the last instruction generated our source reg. */
1584 if (src.file != GRF ||
1585 src.file != last_rhs_inst->dst.file ||
1586 src.reg != last_rhs_inst->dst.reg ||
1587 src.reg_offset != last_rhs_inst->dst.reg_offset ||
1588 src.reladdr ||
1589 src.abs ||
1590 src.negate ||
1591 last_rhs_inst->predicate != BRW_PREDICATE_NONE)
1592 return false;
1593
1594 /* Check that that last instruction fully initialized the channels
1595 * we want to use, in the order we want to use them. We could
1596 * potentially reswizzle the operands of many instructions so that
1597 * we could handle out of order channels, but don't yet.
1598 */
1599
1600 for (unsigned i = 0; i < 4; i++) {
1601 if (dst.writemask & (1 << i)) {
1602 if (!(last_rhs_inst->dst.writemask & (1 << i)))
1603 return false;
1604
1605 if (BRW_GET_SWZ(src.swizzle, i) != i)
1606 return false;
1607 }
1608 }
1609
1610 /* Success! Rewrite the instruction. */
1611 last_rhs_inst->dst.file = dst.file;
1612 last_rhs_inst->dst.reg = dst.reg;
1613 last_rhs_inst->dst.reg_offset = dst.reg_offset;
1614 last_rhs_inst->dst.reladdr = dst.reladdr;
1615 last_rhs_inst->dst.writemask &= dst.writemask;
1616
1617 return true;
1618 }
1619
1620 void
1621 vec4_visitor::visit(ir_assignment *ir)
1622 {
1623 dst_reg dst = get_assignment_lhs(ir->lhs, this);
1624 uint32_t predicate = BRW_PREDICATE_NONE;
1625
1626 if (!ir->lhs->type->is_scalar() &&
1627 !ir->lhs->type->is_vector()) {
1628 ir->rhs->accept(this);
1629 src_reg src = this->result;
1630
1631 if (ir->condition) {
1632 emit_bool_to_cond_code(ir->condition, &predicate);
1633 }
1634
1635 /* emit_block_move doesn't account for swizzles in the source register.
1636 * This should be ok, since the source register is a structure or an
1637 * array, and those can't be swizzled. But double-check to be sure.
1638 */
1639 assert(src.swizzle ==
1640 (ir->rhs->type->is_matrix()
1641 ? swizzle_for_size(ir->rhs->type->vector_elements)
1642 : BRW_SWIZZLE_NOOP));
1643
1644 emit_block_move(&dst, &src, ir->rhs->type, predicate);
1645 return;
1646 }
1647
1648 /* Now we're down to just a scalar/vector with writemasks. */
1649 int i;
1650
1651 vec4_instruction *pre_rhs_inst, *last_rhs_inst;
1652 pre_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1653
1654 ir->rhs->accept(this);
1655
1656 last_rhs_inst = (vec4_instruction *)this->instructions.get_tail();
1657
1658 src_reg src = this->result;
1659
1660 int swizzles[4];
1661 int first_enabled_chan = 0;
1662 int src_chan = 0;
1663
1664 assert(ir->lhs->type->is_vector() ||
1665 ir->lhs->type->is_scalar());
1666 dst.writemask = ir->write_mask;
1667
1668 for (int i = 0; i < 4; i++) {
1669 if (dst.writemask & (1 << i)) {
1670 first_enabled_chan = BRW_GET_SWZ(src.swizzle, i);
1671 break;
1672 }
1673 }
1674
1675 /* Swizzle a small RHS vector into the channels being written.
1676 *
1677 * glsl ir treats write_mask as dictating how many channels are
1678 * present on the RHS while in our instructions we need to make
1679 * those channels appear in the slots of the vec4 they're written to.
1680 */
1681 for (int i = 0; i < 4; i++) {
1682 if (dst.writemask & (1 << i))
1683 swizzles[i] = BRW_GET_SWZ(src.swizzle, src_chan++);
1684 else
1685 swizzles[i] = first_enabled_chan;
1686 }
1687 src.swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
1688 swizzles[2], swizzles[3]);
1689
1690 if (try_rewrite_rhs_to_dst(ir, dst, src, pre_rhs_inst, last_rhs_inst)) {
1691 return;
1692 }
1693
1694 if (ir->condition) {
1695 emit_bool_to_cond_code(ir->condition, &predicate);
1696 }
1697
1698 for (i = 0; i < type_size(ir->lhs->type); i++) {
1699 vec4_instruction *inst = emit(MOV(dst, src));
1700 inst->predicate = predicate;
1701
1702 dst.reg_offset++;
1703 src.reg_offset++;
1704 }
1705 }
1706
1707 void
1708 vec4_visitor::emit_constant_values(dst_reg *dst, ir_constant *ir)
1709 {
1710 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1711 foreach_list(node, &ir->components) {
1712 ir_constant *field_value = (ir_constant *)node;
1713
1714 emit_constant_values(dst, field_value);
1715 }
1716 return;
1717 }
1718
1719 if (ir->type->is_array()) {
1720 for (unsigned int i = 0; i < ir->type->length; i++) {
1721 emit_constant_values(dst, ir->array_elements[i]);
1722 }
1723 return;
1724 }
1725
1726 if (ir->type->is_matrix()) {
1727 for (int i = 0; i < ir->type->matrix_columns; i++) {
1728 float *vec = &ir->value.f[i * ir->type->vector_elements];
1729
1730 for (int j = 0; j < ir->type->vector_elements; j++) {
1731 dst->writemask = 1 << j;
1732 dst->type = BRW_REGISTER_TYPE_F;
1733
1734 emit(MOV(*dst, src_reg(vec[j])));
1735 }
1736 dst->reg_offset++;
1737 }
1738 return;
1739 }
1740
1741 int remaining_writemask = (1 << ir->type->vector_elements) - 1;
1742
1743 for (int i = 0; i < ir->type->vector_elements; i++) {
1744 if (!(remaining_writemask & (1 << i)))
1745 continue;
1746
1747 dst->writemask = 1 << i;
1748 dst->type = brw_type_for_base_type(ir->type);
1749
1750 /* Find other components that match the one we're about to
1751 * write. Emits fewer instructions for things like vec4(0.5,
1752 * 1.5, 1.5, 1.5).
1753 */
1754 for (int j = i + 1; j < ir->type->vector_elements; j++) {
1755 if (ir->type->base_type == GLSL_TYPE_BOOL) {
1756 if (ir->value.b[i] == ir->value.b[j])
1757 dst->writemask |= (1 << j);
1758 } else {
1759 /* u, i, and f storage all line up, so no need for a
1760 * switch case for comparing each type.
1761 */
1762 if (ir->value.u[i] == ir->value.u[j])
1763 dst->writemask |= (1 << j);
1764 }
1765 }
1766
1767 switch (ir->type->base_type) {
1768 case GLSL_TYPE_FLOAT:
1769 emit(MOV(*dst, src_reg(ir->value.f[i])));
1770 break;
1771 case GLSL_TYPE_INT:
1772 emit(MOV(*dst, src_reg(ir->value.i[i])));
1773 break;
1774 case GLSL_TYPE_UINT:
1775 emit(MOV(*dst, src_reg(ir->value.u[i])));
1776 break;
1777 case GLSL_TYPE_BOOL:
1778 emit(MOV(*dst, src_reg(ir->value.b[i])));
1779 break;
1780 default:
1781 assert(!"Non-float/uint/int/bool constant");
1782 break;
1783 }
1784
1785 remaining_writemask &= ~dst->writemask;
1786 }
1787 dst->reg_offset++;
1788 }
1789
1790 void
1791 vec4_visitor::visit(ir_constant *ir)
1792 {
1793 dst_reg dst = dst_reg(this, ir->type);
1794 this->result = src_reg(dst);
1795
1796 emit_constant_values(&dst, ir);
1797 }
1798
1799 void
1800 vec4_visitor::visit(ir_call *ir)
1801 {
1802 assert(!"not reached");
1803 }
1804
1805 void
1806 vec4_visitor::visit(ir_texture *ir)
1807 {
1808 int sampler = _mesa_get_sampler_uniform_value(ir->sampler, prog, &vp->Base);
1809 sampler = vp->Base.SamplerUnits[sampler];
1810
1811 /* Should be lowered by do_lower_texture_projection */
1812 assert(!ir->projector);
1813
1814 vec4_instruction *inst = NULL;
1815 switch (ir->op) {
1816 case ir_tex:
1817 case ir_txl:
1818 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXL);
1819 break;
1820 case ir_txd:
1821 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXD);
1822 break;
1823 case ir_txf:
1824 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXF);
1825 break;
1826 case ir_txs:
1827 inst = new(mem_ctx) vec4_instruction(this, SHADER_OPCODE_TXS);
1828 break;
1829 case ir_txb:
1830 assert(!"TXB is not valid for vertex shaders.");
1831 }
1832
1833 /* Texel offsets go in the message header; Gen4 also requires headers. */
1834 inst->header_present = ir->offset || intel->gen < 5;
1835 inst->base_mrf = 2;
1836 inst->mlen = inst->header_present + 1; /* always at least one */
1837 inst->sampler = sampler;
1838 inst->dst = dst_reg(this, ir->type);
1839 inst->shadow_compare = ir->shadow_comparitor != NULL;
1840
1841 if (ir->offset != NULL)
1842 inst->texture_offset = brw_texture_offset(ir->offset->as_constant());
1843
1844 /* MRF for the first parameter */
1845 int param_base = inst->base_mrf + inst->header_present;
1846
1847 if (ir->op == ir_txs) {
1848 ir->lod_info.lod->accept(this);
1849 int writemask = intel->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
1850 emit(MOV(dst_reg(MRF, param_base, ir->lod_info.lod->type, writemask),
1851 this->result));
1852 } else {
1853 int i, coord_mask = 0, zero_mask = 0;
1854 /* Load the coordinate */
1855 /* FINISHME: gl_clamp_mask and saturate */
1856 for (i = 0; i < ir->coordinate->type->vector_elements; i++)
1857 coord_mask |= (1 << i);
1858 for (; i < 4; i++)
1859 zero_mask |= (1 << i);
1860
1861 ir->coordinate->accept(this);
1862 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, coord_mask),
1863 this->result));
1864 emit(MOV(dst_reg(MRF, param_base, ir->coordinate->type, zero_mask),
1865 src_reg(0)));
1866 /* Load the shadow comparitor */
1867 if (ir->shadow_comparitor) {
1868 ir->shadow_comparitor->accept(this);
1869 emit(MOV(dst_reg(MRF, param_base + 1, ir->shadow_comparitor->type,
1870 WRITEMASK_X),
1871 this->result));
1872 inst->mlen++;
1873 }
1874
1875 /* Load the LOD info */
1876 if (ir->op == ir_txl) {
1877 int mrf, writemask;
1878 if (intel->gen >= 5) {
1879 mrf = param_base + 1;
1880 if (ir->shadow_comparitor) {
1881 writemask = WRITEMASK_Y;
1882 /* mlen already incremented */
1883 } else {
1884 writemask = WRITEMASK_X;
1885 inst->mlen++;
1886 }
1887 } else /* intel->gen == 4 */ {
1888 mrf = param_base;
1889 writemask = WRITEMASK_Z;
1890 }
1891 ir->lod_info.lod->accept(this);
1892 emit(MOV(dst_reg(MRF, mrf, ir->lod_info.lod->type, writemask),
1893 this->result));
1894 } else if (ir->op == ir_txf) {
1895 ir->lod_info.lod->accept(this);
1896 emit(MOV(dst_reg(MRF, param_base, ir->lod_info.lod->type, WRITEMASK_W),
1897 this->result));
1898 } else if (ir->op == ir_txd) {
1899 const glsl_type *type = ir->lod_info.grad.dPdx->type;
1900
1901 ir->lod_info.grad.dPdx->accept(this);
1902 src_reg dPdx = this->result;
1903 ir->lod_info.grad.dPdy->accept(this);
1904 src_reg dPdy = this->result;
1905
1906 if (intel->gen >= 5) {
1907 dPdx.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1908 dPdy.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1909 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), dPdx));
1910 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), dPdy));
1911 inst->mlen++;
1912
1913 if (ir->type->vector_elements == 3) {
1914 dPdx.swizzle = BRW_SWIZZLE_ZZZZ;
1915 dPdy.swizzle = BRW_SWIZZLE_ZZZZ;
1916 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), dPdx));
1917 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), dPdy));
1918 inst->mlen++;
1919 }
1920 } else /* intel->gen == 4 */ {
1921 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), dPdx));
1922 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), dPdy));
1923 inst->mlen += 2;
1924 }
1925 }
1926 }
1927
1928 emit(inst);
1929
1930 swizzle_result(ir, src_reg(inst->dst), sampler);
1931 }
1932
1933 void
1934 vec4_visitor::swizzle_result(ir_texture *ir, src_reg orig_val, int sampler)
1935 {
1936 this->result = orig_val;
1937
1938 int s = c->key.tex.swizzles[sampler];
1939
1940 if (ir->op == ir_txs || ir->type == glsl_type::float_type
1941 || s == SWIZZLE_NOOP)
1942 return;
1943
1944 int zero_mask = 0, one_mask = 0, copy_mask = 0;
1945 int swizzle[4];
1946
1947 for (int i = 0; i < 4; i++) {
1948 switch (GET_SWZ(s, i)) {
1949 case SWIZZLE_ZERO:
1950 zero_mask |= (1 << i);
1951 break;
1952 case SWIZZLE_ONE:
1953 one_mask |= (1 << i);
1954 break;
1955 default:
1956 copy_mask |= (1 << i);
1957 swizzle[i] = GET_SWZ(s, i);
1958 break;
1959 }
1960 }
1961
1962 this->result = src_reg(this, ir->type);
1963 dst_reg swizzled_result(this->result);
1964
1965 if (copy_mask) {
1966 orig_val.swizzle = BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1967 swizzled_result.writemask = copy_mask;
1968 emit(MOV(swizzled_result, orig_val));
1969 }
1970
1971 if (zero_mask) {
1972 swizzled_result.writemask = zero_mask;
1973 emit(MOV(swizzled_result, src_reg(0.0f)));
1974 }
1975
1976 if (one_mask) {
1977 swizzled_result.writemask = one_mask;
1978 emit(MOV(swizzled_result, src_reg(1.0f)));
1979 }
1980 }
1981
1982 void
1983 vec4_visitor::visit(ir_return *ir)
1984 {
1985 assert(!"not reached");
1986 }
1987
1988 void
1989 vec4_visitor::visit(ir_discard *ir)
1990 {
1991 assert(!"not reached");
1992 }
1993
1994 void
1995 vec4_visitor::visit(ir_if *ir)
1996 {
1997 /* Don't point the annotation at the if statement, because then it plus
1998 * the then and else blocks get printed.
1999 */
2000 this->base_ir = ir->condition;
2001
2002 if (intel->gen == 6) {
2003 emit_if_gen6(ir);
2004 } else {
2005 uint32_t predicate;
2006 emit_bool_to_cond_code(ir->condition, &predicate);
2007 emit(IF(predicate));
2008 }
2009
2010 visit_instructions(&ir->then_instructions);
2011
2012 if (!ir->else_instructions.is_empty()) {
2013 this->base_ir = ir->condition;
2014 emit(BRW_OPCODE_ELSE);
2015
2016 visit_instructions(&ir->else_instructions);
2017 }
2018
2019 this->base_ir = ir->condition;
2020 emit(BRW_OPCODE_ENDIF);
2021 }
2022
2023 void
2024 vec4_visitor::emit_ndc_computation()
2025 {
2026 /* Get the position */
2027 src_reg pos = src_reg(output_reg[VERT_RESULT_HPOS]);
2028
2029 /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
2030 dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
2031 output_reg[BRW_VERT_RESULT_NDC] = ndc;
2032
2033 current_annotation = "NDC";
2034 dst_reg ndc_w = ndc;
2035 ndc_w.writemask = WRITEMASK_W;
2036 src_reg pos_w = pos;
2037 pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
2038 emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
2039
2040 dst_reg ndc_xyz = ndc;
2041 ndc_xyz.writemask = WRITEMASK_XYZ;
2042
2043 emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
2044 }
2045
2046 void
2047 vec4_visitor::emit_psiz_and_flags(struct brw_reg reg)
2048 {
2049 if (intel->gen < 6 &&
2050 ((c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) ||
2051 c->key.userclip_active || brw->has_negative_rhw_bug)) {
2052 dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
2053 dst_reg header1_w = header1;
2054 header1_w.writemask = WRITEMASK_W;
2055 GLuint i;
2056
2057 emit(MOV(header1, 0u));
2058
2059 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2060 src_reg psiz = src_reg(output_reg[VERT_RESULT_PSIZ]);
2061
2062 current_annotation = "Point size";
2063 emit(MUL(header1_w, psiz, src_reg((float)(1 << 11))));
2064 emit(AND(header1_w, src_reg(header1_w), 0x7ff << 8));
2065 }
2066
2067 current_annotation = "Clipping flags";
2068 for (i = 0; i < c->key.nr_userclip_plane_consts; i++) {
2069 vec4_instruction *inst;
2070
2071 inst = emit(DP4(dst_null_f(), src_reg(output_reg[VERT_RESULT_HPOS]),
2072 src_reg(this->userplane[i])));
2073 inst->conditional_mod = BRW_CONDITIONAL_L;
2074
2075 inst = emit(OR(header1_w, src_reg(header1_w), 1u << i));
2076 inst->predicate = BRW_PREDICATE_NORMAL;
2077 }
2078
2079 /* i965 clipping workaround:
2080 * 1) Test for -ve rhw
2081 * 2) If set,
2082 * set ndc = (0,0,0,0)
2083 * set ucp[6] = 1
2084 *
2085 * Later, clipping will detect ucp[6] and ensure the primitive is
2086 * clipped against all fixed planes.
2087 */
2088 if (brw->has_negative_rhw_bug) {
2089 #if 0
2090 /* FINISHME */
2091 brw_CMP(p,
2092 vec8(brw_null_reg()),
2093 BRW_CONDITIONAL_L,
2094 brw_swizzle1(output_reg[BRW_VERT_RESULT_NDC], 3),
2095 brw_imm_f(0));
2096
2097 brw_OR(p, brw_writemask(header1, WRITEMASK_W), header1, brw_imm_ud(1<<6));
2098 brw_MOV(p, output_reg[BRW_VERT_RESULT_NDC], brw_imm_f(0));
2099 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2100 #endif
2101 }
2102
2103 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
2104 } else if (intel->gen < 6) {
2105 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), 0u));
2106 } else {
2107 emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), src_reg(0)));
2108 if (c->prog_data.outputs_written & BITFIELD64_BIT(VERT_RESULT_PSIZ)) {
2109 emit(MOV(brw_writemask(reg, WRITEMASK_W),
2110 src_reg(output_reg[VERT_RESULT_PSIZ])));
2111 }
2112 }
2113 }
2114
2115 void
2116 vec4_visitor::emit_clip_distances(struct brw_reg reg, int offset)
2117 {
2118 if (intel->gen < 6) {
2119 /* Clip distance slots are set aside in gen5, but they are not used. It
2120 * is not clear whether we actually need to set aside space for them,
2121 * but the performance cost is negligible.
2122 */
2123 return;
2124 }
2125
2126 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
2127 *
2128 * "If a linked set of shaders forming the vertex stage contains no
2129 * static write to gl_ClipVertex or gl_ClipDistance, but the
2130 * application has requested clipping against user clip planes through
2131 * the API, then the coordinate written to gl_Position is used for
2132 * comparison against the user clip planes."
2133 *
2134 * This function is only called if the shader didn't write to
2135 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
2136 * if the user wrote to it; otherwise we use gl_Position.
2137 */
2138 gl_vert_result clip_vertex = VERT_RESULT_CLIP_VERTEX;
2139 if (!(c->prog_data.outputs_written
2140 & BITFIELD64_BIT(VERT_RESULT_CLIP_VERTEX))) {
2141 clip_vertex = VERT_RESULT_HPOS;
2142 }
2143
2144 for (int i = 0; i + offset < c->key.nr_userclip_plane_consts && i < 4;
2145 ++i) {
2146 emit(DP4(dst_reg(brw_writemask(reg, 1 << i)),
2147 src_reg(output_reg[clip_vertex]),
2148 src_reg(this->userplane[i + offset])));
2149 }
2150 }
2151
2152 void
2153 vec4_visitor::emit_generic_urb_slot(dst_reg reg, int vert_result)
2154 {
2155 assert (vert_result < VERT_RESULT_MAX);
2156 reg.type = output_reg[vert_result].type;
2157 current_annotation = output_reg_annotation[vert_result];
2158 /* Copy the register, saturating if necessary */
2159 vec4_instruction *inst = emit(MOV(reg,
2160 src_reg(output_reg[vert_result])));
2161 if ((vert_result == VERT_RESULT_COL0 ||
2162 vert_result == VERT_RESULT_COL1 ||
2163 vert_result == VERT_RESULT_BFC0 ||
2164 vert_result == VERT_RESULT_BFC1) &&
2165 c->key.clamp_vertex_color) {
2166 inst->saturate = true;
2167 }
2168 }
2169
2170 void
2171 vec4_visitor::emit_urb_slot(int mrf, int vert_result)
2172 {
2173 struct brw_reg hw_reg = brw_message_reg(mrf);
2174 dst_reg reg = dst_reg(MRF, mrf);
2175 reg.type = BRW_REGISTER_TYPE_F;
2176
2177 switch (vert_result) {
2178 case VERT_RESULT_PSIZ:
2179 /* PSIZ is always in slot 0, and is coupled with other flags. */
2180 current_annotation = "indices, point width, clip flags";
2181 emit_psiz_and_flags(hw_reg);
2182 break;
2183 case BRW_VERT_RESULT_NDC:
2184 current_annotation = "NDC";
2185 emit(MOV(reg, src_reg(output_reg[BRW_VERT_RESULT_NDC])));
2186 break;
2187 case BRW_VERT_RESULT_HPOS_DUPLICATE:
2188 case VERT_RESULT_HPOS:
2189 current_annotation = "gl_Position";
2190 emit(MOV(reg, src_reg(output_reg[VERT_RESULT_HPOS])));
2191 break;
2192 case VERT_RESULT_CLIP_DIST0:
2193 case VERT_RESULT_CLIP_DIST1:
2194 if (this->c->key.uses_clip_distance) {
2195 emit_generic_urb_slot(reg, vert_result);
2196 } else {
2197 current_annotation = "user clip distances";
2198 emit_clip_distances(hw_reg, (vert_result - VERT_RESULT_CLIP_DIST0) * 4);
2199 }
2200 break;
2201 case BRW_VERT_RESULT_PAD:
2202 /* No need to write to this slot */
2203 break;
2204 default:
2205 emit_generic_urb_slot(reg, vert_result);
2206 break;
2207 }
2208 }
2209
2210 static int
2211 align_interleaved_urb_mlen(struct brw_context *brw, int mlen)
2212 {
2213 struct intel_context *intel = &brw->intel;
2214
2215 if (intel->gen >= 6) {
2216 /* URB data written (does not include the message header reg) must
2217 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
2218 * section 5.4.3.2.2: URB_INTERLEAVED.
2219 *
2220 * URB entries are allocated on a multiple of 1024 bits, so an
2221 * extra 128 bits written here to make the end align to 256 is
2222 * no problem.
2223 */
2224 if ((mlen % 2) != 1)
2225 mlen++;
2226 }
2227
2228 return mlen;
2229 }
2230
2231 /**
2232 * Generates the VUE payload plus the 1 or 2 URB write instructions to
2233 * complete the VS thread.
2234 *
2235 * The VUE layout is documented in Volume 2a.
2236 */
2237 void
2238 vec4_visitor::emit_urb_writes()
2239 {
2240 /* MRF 0 is reserved for the debugger, so start with message header
2241 * in MRF 1.
2242 */
2243 int base_mrf = 1;
2244 int mrf = base_mrf;
2245 /* In the process of generating our URB write message contents, we
2246 * may need to unspill a register or load from an array. Those
2247 * reads would use MRFs 14-15.
2248 */
2249 int max_usable_mrf = 13;
2250
2251 /* The following assertion verifies that max_usable_mrf causes an
2252 * even-numbered amount of URB write data, which will meet gen6's
2253 * requirements for length alignment.
2254 */
2255 assert ((max_usable_mrf - base_mrf) % 2 == 0);
2256
2257 /* FINISHME: edgeflag */
2258
2259 /* First mrf is the g0-based message header containing URB handles and such,
2260 * which is implied in VS_OPCODE_URB_WRITE.
2261 */
2262 mrf++;
2263
2264 if (intel->gen < 6) {
2265 emit_ndc_computation();
2266 }
2267
2268 /* Set up the VUE data for the first URB write */
2269 int slot;
2270 for (slot = 0; slot < c->prog_data.vue_map.num_slots; ++slot) {
2271 emit_urb_slot(mrf++, c->prog_data.vue_map.slot_to_vert_result[slot]);
2272
2273 /* If this was max_usable_mrf, we can't fit anything more into this URB
2274 * WRITE.
2275 */
2276 if (mrf > max_usable_mrf) {
2277 slot++;
2278 break;
2279 }
2280 }
2281
2282 current_annotation = "URB write";
2283 vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
2284 inst->base_mrf = base_mrf;
2285 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2286 inst->eot = (slot >= c->prog_data.vue_map.num_slots);
2287
2288 /* Optional second URB write */
2289 if (!inst->eot) {
2290 mrf = base_mrf + 1;
2291
2292 for (; slot < c->prog_data.vue_map.num_slots; ++slot) {
2293 assert(mrf < max_usable_mrf);
2294
2295 emit_urb_slot(mrf++, c->prog_data.vue_map.slot_to_vert_result[slot]);
2296 }
2297
2298 current_annotation = "URB write";
2299 inst = emit(VS_OPCODE_URB_WRITE);
2300 inst->base_mrf = base_mrf;
2301 inst->mlen = align_interleaved_urb_mlen(brw, mrf - base_mrf);
2302 inst->eot = true;
2303 /* URB destination offset. In the previous write, we got MRFs
2304 * 2-13 minus the one header MRF, so 12 regs. URB offset is in
2305 * URB row increments, and each of our MRFs is half of one of
2306 * those, since we're doing interleaved writes.
2307 */
2308 inst->offset = (max_usable_mrf - base_mrf) / 2;
2309 }
2310 }
2311
2312 src_reg
2313 vec4_visitor::get_scratch_offset(vec4_instruction *inst,
2314 src_reg *reladdr, int reg_offset)
2315 {
2316 /* Because we store the values to scratch interleaved like our
2317 * vertex data, we need to scale the vec4 index by 2.
2318 */
2319 int message_header_scale = 2;
2320
2321 /* Pre-gen6, the message header uses byte offsets instead of vec4
2322 * (16-byte) offset units.
2323 */
2324 if (intel->gen < 6)
2325 message_header_scale *= 16;
2326
2327 if (reladdr) {
2328 src_reg index = src_reg(this, glsl_type::int_type);
2329
2330 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2331 emit_before(inst, MUL(dst_reg(index),
2332 index, src_reg(message_header_scale)));
2333
2334 return index;
2335 } else {
2336 return src_reg(reg_offset * message_header_scale);
2337 }
2338 }
2339
2340 src_reg
2341 vec4_visitor::get_pull_constant_offset(vec4_instruction *inst,
2342 src_reg *reladdr, int reg_offset)
2343 {
2344 if (reladdr) {
2345 src_reg index = src_reg(this, glsl_type::int_type);
2346
2347 emit_before(inst, ADD(dst_reg(index), *reladdr, src_reg(reg_offset)));
2348
2349 /* Pre-gen6, the message header uses byte offsets instead of vec4
2350 * (16-byte) offset units.
2351 */
2352 if (intel->gen < 6) {
2353 emit_before(inst, MUL(dst_reg(index), index, src_reg(16)));
2354 }
2355
2356 return index;
2357 } else {
2358 int message_header_scale = intel->gen < 6 ? 16 : 1;
2359 return src_reg(reg_offset * message_header_scale);
2360 }
2361 }
2362
2363 /**
2364 * Emits an instruction before @inst to load the value named by @orig_src
2365 * from scratch space at @base_offset to @temp.
2366 */
2367 void
2368 vec4_visitor::emit_scratch_read(vec4_instruction *inst,
2369 dst_reg temp, src_reg orig_src,
2370 int base_offset)
2371 {
2372 int reg_offset = base_offset + orig_src.reg_offset;
2373 src_reg index = get_scratch_offset(inst, orig_src.reladdr, reg_offset);
2374
2375 emit_before(inst, SCRATCH_READ(temp, index));
2376 }
2377
2378 /**
2379 * Emits an instruction after @inst to store the value to be written
2380 * to @orig_dst to scratch space at @base_offset, from @temp.
2381 */
2382 void
2383 vec4_visitor::emit_scratch_write(vec4_instruction *inst,
2384 src_reg temp, dst_reg orig_dst,
2385 int base_offset)
2386 {
2387 int reg_offset = base_offset + orig_dst.reg_offset;
2388 src_reg index = get_scratch_offset(inst, orig_dst.reladdr, reg_offset);
2389
2390 dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
2391 orig_dst.writemask));
2392 vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
2393 write->predicate = inst->predicate;
2394 write->ir = inst->ir;
2395 write->annotation = inst->annotation;
2396 inst->insert_after(write);
2397 }
2398
2399 /**
2400 * We can't generally support array access in GRF space, because a
2401 * single instruction's destination can only span 2 contiguous
2402 * registers. So, we send all GRF arrays that get variable index
2403 * access to scratch space.
2404 */
2405 void
2406 vec4_visitor::move_grf_array_access_to_scratch()
2407 {
2408 int scratch_loc[this->virtual_grf_count];
2409
2410 for (int i = 0; i < this->virtual_grf_count; i++) {
2411 scratch_loc[i] = -1;
2412 }
2413
2414 /* First, calculate the set of virtual GRFs that need to be punted
2415 * to scratch due to having any array access on them, and where in
2416 * scratch.
2417 */
2418 foreach_list(node, &this->instructions) {
2419 vec4_instruction *inst = (vec4_instruction *)node;
2420
2421 if (inst->dst.file == GRF && inst->dst.reladdr &&
2422 scratch_loc[inst->dst.reg] == -1) {
2423 scratch_loc[inst->dst.reg] = c->last_scratch;
2424 c->last_scratch += this->virtual_grf_sizes[inst->dst.reg] * 8 * 4;
2425 }
2426
2427 for (int i = 0 ; i < 3; i++) {
2428 src_reg *src = &inst->src[i];
2429
2430 if (src->file == GRF && src->reladdr &&
2431 scratch_loc[src->reg] == -1) {
2432 scratch_loc[src->reg] = c->last_scratch;
2433 c->last_scratch += this->virtual_grf_sizes[src->reg] * 8 * 4;
2434 }
2435 }
2436 }
2437
2438 /* Now, for anything that will be accessed through scratch, rewrite
2439 * it to load/store. Note that this is a _safe list walk, because
2440 * we may generate a new scratch_write instruction after the one
2441 * we're processing.
2442 */
2443 foreach_list_safe(node, &this->instructions) {
2444 vec4_instruction *inst = (vec4_instruction *)node;
2445
2446 /* Set up the annotation tracking for new generated instructions. */
2447 base_ir = inst->ir;
2448 current_annotation = inst->annotation;
2449
2450 if (inst->dst.file == GRF && scratch_loc[inst->dst.reg] != -1) {
2451 src_reg temp = src_reg(this, glsl_type::vec4_type);
2452
2453 emit_scratch_write(inst, temp, inst->dst, scratch_loc[inst->dst.reg]);
2454
2455 inst->dst.file = temp.file;
2456 inst->dst.reg = temp.reg;
2457 inst->dst.reg_offset = temp.reg_offset;
2458 inst->dst.reladdr = NULL;
2459 }
2460
2461 for (int i = 0 ; i < 3; i++) {
2462 if (inst->src[i].file != GRF || scratch_loc[inst->src[i].reg] == -1)
2463 continue;
2464
2465 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2466
2467 emit_scratch_read(inst, temp, inst->src[i],
2468 scratch_loc[inst->src[i].reg]);
2469
2470 inst->src[i].file = temp.file;
2471 inst->src[i].reg = temp.reg;
2472 inst->src[i].reg_offset = temp.reg_offset;
2473 inst->src[i].reladdr = NULL;
2474 }
2475 }
2476 }
2477
2478 /**
2479 * Emits an instruction before @inst to load the value named by @orig_src
2480 * from the pull constant buffer (surface) at @base_offset to @temp.
2481 */
2482 void
2483 vec4_visitor::emit_pull_constant_load(vec4_instruction *inst,
2484 dst_reg temp, src_reg orig_src,
2485 int base_offset)
2486 {
2487 int reg_offset = base_offset + orig_src.reg_offset;
2488 src_reg index = get_pull_constant_offset(inst, orig_src.reladdr, reg_offset);
2489 vec4_instruction *load;
2490
2491 load = new(mem_ctx) vec4_instruction(this, VS_OPCODE_PULL_CONSTANT_LOAD,
2492 temp, index);
2493 load->base_mrf = 14;
2494 load->mlen = 1;
2495 emit_before(inst, load);
2496 }
2497
2498 /**
2499 * Implements array access of uniforms by inserting a
2500 * PULL_CONSTANT_LOAD instruction.
2501 *
2502 * Unlike temporary GRF array access (where we don't support it due to
2503 * the difficulty of doing relative addressing on instruction
2504 * destinations), we could potentially do array access of uniforms
2505 * that were loaded in GRF space as push constants. In real-world
2506 * usage we've seen, though, the arrays being used are always larger
2507 * than we could load as push constants, so just always move all
2508 * uniform array access out to a pull constant buffer.
2509 */
2510 void
2511 vec4_visitor::move_uniform_array_access_to_pull_constants()
2512 {
2513 int pull_constant_loc[this->uniforms];
2514
2515 for (int i = 0; i < this->uniforms; i++) {
2516 pull_constant_loc[i] = -1;
2517 }
2518
2519 /* Walk through and find array access of uniforms. Put a copy of that
2520 * uniform in the pull constant buffer.
2521 *
2522 * Note that we don't move constant-indexed accesses to arrays. No
2523 * testing has been done of the performance impact of this choice.
2524 */
2525 foreach_list_safe(node, &this->instructions) {
2526 vec4_instruction *inst = (vec4_instruction *)node;
2527
2528 for (int i = 0 ; i < 3; i++) {
2529 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
2530 continue;
2531
2532 int uniform = inst->src[i].reg;
2533
2534 /* If this array isn't already present in the pull constant buffer,
2535 * add it.
2536 */
2537 if (pull_constant_loc[uniform] == -1) {
2538 const float **values = &prog_data->param[uniform * 4];
2539
2540 pull_constant_loc[uniform] = prog_data->nr_pull_params / 4;
2541
2542 for (int j = 0; j < uniform_size[uniform] * 4; j++) {
2543 prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
2544 }
2545 }
2546
2547 /* Set up the annotation tracking for new generated instructions. */
2548 base_ir = inst->ir;
2549 current_annotation = inst->annotation;
2550
2551 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
2552
2553 emit_pull_constant_load(inst, temp, inst->src[i],
2554 pull_constant_loc[uniform]);
2555
2556 inst->src[i].file = temp.file;
2557 inst->src[i].reg = temp.reg;
2558 inst->src[i].reg_offset = temp.reg_offset;
2559 inst->src[i].reladdr = NULL;
2560 }
2561 }
2562
2563 /* Now there are no accesses of the UNIFORM file with a reladdr, so
2564 * no need to track them as larger-than-vec4 objects. This will be
2565 * relied on in cutting out unused uniform vectors from push
2566 * constants.
2567 */
2568 split_uniform_registers();
2569 }
2570
2571 void
2572 vec4_visitor::resolve_ud_negate(src_reg *reg)
2573 {
2574 if (reg->type != BRW_REGISTER_TYPE_UD ||
2575 !reg->negate)
2576 return;
2577
2578 src_reg temp = src_reg(this, glsl_type::uvec4_type);
2579 emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
2580 *reg = temp;
2581 }
2582
2583 vec4_visitor::vec4_visitor(struct brw_vs_compile *c,
2584 struct gl_shader_program *prog,
2585 struct brw_shader *shader)
2586 {
2587 this->c = c;
2588 this->p = &c->func;
2589 this->brw = p->brw;
2590 this->intel = &brw->intel;
2591 this->ctx = &intel->ctx;
2592 this->prog = prog;
2593 this->shader = shader;
2594
2595 this->mem_ctx = ralloc_context(NULL);
2596 this->failed = false;
2597
2598 this->base_ir = NULL;
2599 this->current_annotation = NULL;
2600
2601 this->c = c;
2602 this->vp = (struct gl_vertex_program *)
2603 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
2604 this->prog_data = &c->prog_data;
2605
2606 this->variable_ht = hash_table_ctor(0,
2607 hash_table_pointer_hash,
2608 hash_table_pointer_compare);
2609
2610 this->virtual_grf_def = NULL;
2611 this->virtual_grf_use = NULL;
2612 this->virtual_grf_sizes = NULL;
2613 this->virtual_grf_count = 0;
2614 this->virtual_grf_reg_map = NULL;
2615 this->virtual_grf_reg_count = 0;
2616 this->virtual_grf_array_size = 0;
2617 this->live_intervals_valid = false;
2618
2619 this->max_grf = intel->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
2620
2621 this->uniforms = 0;
2622 }
2623
2624 vec4_visitor::~vec4_visitor()
2625 {
2626 ralloc_free(this->mem_ctx);
2627 hash_table_dtor(this->variable_ht);
2628 }
2629
2630
2631 void
2632 vec4_visitor::fail(const char *format, ...)
2633 {
2634 va_list va;
2635 char *msg;
2636
2637 if (failed)
2638 return;
2639
2640 failed = true;
2641
2642 va_start(va, format);
2643 msg = ralloc_vasprintf(mem_ctx, format, va);
2644 va_end(va);
2645 msg = ralloc_asprintf(mem_ctx, "VS compile failed: %s\n", msg);
2646
2647 this->fail_msg = msg;
2648
2649 if (INTEL_DEBUG & DEBUG_VS) {
2650 fprintf(stderr, "%s", msg);
2651 }
2652 }
2653
2654 } /* namespace brw */