25cd3971023f00e3ca68e4d786d81501501cfc8f
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "glsl/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int varying)
45 {
46 /* Make sure this varying hasn't been assigned a slot already */
47 assert (vue_map->varying_to_slot[varying] == -1);
48
49 vue_map->varying_to_slot[varying] = vue_map->num_slots;
50 vue_map->slot_to_varying[vue_map->num_slots++] = varying;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 *
56 * Note that consumers of this map using cache keys must include
57 * prog_data->userclip and prog_data->outputs_written in their key
58 * (generated by CACHE_NEW_VS_PROG).
59 */
60 void
61 brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
62 GLbitfield64 slots_valid, bool userclip_active)
63 {
64 const struct intel_context *intel = &brw->intel;
65
66 /* Prior to Gen6, don't assign a slot for VARYING_SLOT_CLIP_VERTEX, since
67 * it is unsupported.
68 */
69 if (intel->gen < 6)
70 slots_valid &= ~VARYING_BIT_CLIP_VERTEX;
71
72 vue_map->slots_valid = slots_valid;
73 int i;
74
75 /* Make sure that the values we store in vue_map->varying_to_slot and
76 * vue_map->slot_to_varying won't overflow the signed chars that are used
77 * to store them. Note that since vue_map->slot_to_varying sometimes holds
78 * values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that
79 * BRW_VARYING_SLOT_COUNT is <= 127, not 128.
80 */
81 STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127);
82
83 vue_map->num_slots = 0;
84 for (i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) {
85 vue_map->varying_to_slot[i] = -1;
86 vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_COUNT;
87 }
88
89 /* VUE header: format depends on chip generation and whether clipping is
90 * enabled.
91 */
92 switch (intel->gen) {
93 case 4:
94 /* There are 8 dwords in VUE header pre-Ironlake:
95 * dword 0-3 is indices, point width, clip flags.
96 * dword 4-7 is ndc position
97 * dword 8-11 is the first vertex data.
98 */
99 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
100 assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC);
101 assign_vue_slot(vue_map, VARYING_SLOT_POS);
102 break;
103 case 5:
104 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
105 * dword 0-3 of the header is indices, point width, clip flags.
106 * dword 4-7 is the ndc position
107 * dword 8-11 of the vertex header is the 4D space position
108 * dword 12-19 of the vertex header is the user clip distance.
109 * dword 20-23 is a pad so that the vertex element data is aligned
110 * dword 24-27 is the first vertex data we fill.
111 *
112 * Note: future pipeline stages expect 4D space position to be
113 * contiguous with the other varyings, so we make dword 24-27 a
114 * duplicate copy of the 4D space position.
115 */
116 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
117 assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC);
118 assign_vue_slot(vue_map, BRW_VARYING_SLOT_POS_DUPLICATE);
119 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0);
120 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1);
121 assign_vue_slot(vue_map, BRW_VARYING_SLOT_PAD);
122 assign_vue_slot(vue_map, VARYING_SLOT_POS);
123 break;
124 case 6:
125 case 7:
126 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
127 * dword 0-3 of the header is indices, point width, clip flags.
128 * dword 4-7 is the 4D space position
129 * dword 8-15 of the vertex header is the user clip distance if
130 * enabled.
131 * dword 8-11 or 16-19 is the first vertex element data we fill.
132 */
133 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
134 assign_vue_slot(vue_map, VARYING_SLOT_POS);
135 if (userclip_active) {
136 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0);
137 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1);
138 }
139 /* front and back colors need to be consecutive so that we can use
140 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
141 * two-sided color.
142 */
143 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0))
144 assign_vue_slot(vue_map, VARYING_SLOT_COL0);
145 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0))
146 assign_vue_slot(vue_map, VARYING_SLOT_BFC0);
147 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1))
148 assign_vue_slot(vue_map, VARYING_SLOT_COL1);
149 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1))
150 assign_vue_slot(vue_map, VARYING_SLOT_BFC1);
151 break;
152 default:
153 assert (!"VUE map not known for this chip generation");
154 break;
155 }
156
157 /* The hardware doesn't care about the rest of the vertex outputs, so just
158 * assign them contiguously. Don't reassign outputs that already have a
159 * slot.
160 *
161 * We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX,
162 * since it's encoded as the clip distances by emit_clip_distances().
163 * However, it may be output by transform feedback, and we'd rather not
164 * recompute state when TF changes, so we just always include it.
165 */
166 for (int i = 0; i < VARYING_SLOT_MAX; ++i) {
167 if ((slots_valid & BITFIELD64_BIT(i)) &&
168 vue_map->varying_to_slot[i] == -1) {
169 assign_vue_slot(vue_map, i);
170 }
171 }
172 }
173
174
175 /**
176 * Decide which set of clip planes should be used when clipping via
177 * gl_Position or gl_ClipVertex.
178 */
179 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
180 {
181 if (ctx->Shader.CurrentVertexProgram) {
182 /* There is currently a GLSL vertex shader, so clip according to GLSL
183 * rules, which means compare gl_ClipVertex (or gl_Position, if
184 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
185 * that were stored in EyeUserPlane at the time the clip planes were
186 * specified.
187 */
188 return ctx->Transform.EyeUserPlane;
189 } else {
190 /* Either we are using fixed function or an ARB vertex program. In
191 * either case the clip planes are going to be compared against
192 * gl_Position (which is in clip coordinates) so we have to clip using
193 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
194 * core.
195 */
196 return ctx->Transform._ClipUserPlane;
197 }
198 }
199
200 bool
201 brw_vs_prog_data_compare(const void *in_a, const void *in_b,
202 int aux_size, const void *in_key)
203 {
204 const struct brw_vs_prog_data *a = in_a;
205 const struct brw_vs_prog_data *b = in_b;
206
207 /* Compare all the struct up to the pointers. */
208 if (memcmp(a, b, offsetof(struct brw_vs_prog_data, param)))
209 return false;
210
211 if (memcmp(a->param, b->param, a->nr_params * sizeof(void *)))
212 return false;
213
214 if (memcmp(a->pull_param, b->pull_param, a->nr_pull_params * sizeof(void *)))
215 return false;
216
217 return true;
218 }
219
220 static bool
221 do_vs_prog(struct brw_context *brw,
222 struct gl_shader_program *prog,
223 struct brw_vertex_program *vp,
224 struct brw_vs_prog_key *key)
225 {
226 struct intel_context *intel = &brw->intel;
227 GLuint program_size;
228 const GLuint *program;
229 struct brw_vs_compile c;
230 struct brw_vs_prog_data prog_data;
231 void *mem_ctx;
232 int i;
233 struct gl_shader *vs = NULL;
234
235 if (prog)
236 vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];
237
238 memset(&c, 0, sizeof(c));
239 memcpy(&c.key, key, sizeof(*key));
240 memset(&prog_data, 0, sizeof(prog_data));
241
242 mem_ctx = ralloc_context(NULL);
243
244 c.vp = vp;
245
246 /* Allocate the references to the uniforms that will end up in the
247 * prog_data associated with the compiled program, and which will be freed
248 * by the state cache.
249 */
250 int param_count;
251 if (vs) {
252 /* We add padding around uniform values below vec4 size, with the worst
253 * case being a float value that gets blown up to a vec4, so be
254 * conservative here.
255 */
256 param_count = vs->num_uniform_components * 4;
257
258 } else {
259 param_count = vp->program.Base.Parameters->NumParameters * 4;
260 }
261 /* We also upload clip plane data as uniforms */
262 param_count += MAX_CLIP_PLANES * 4;
263
264 prog_data.param = rzalloc_array(NULL, const float *, param_count);
265 prog_data.pull_param = rzalloc_array(NULL, const float *, param_count);
266
267 GLbitfield64 outputs_written = vp->program.Base.OutputsWritten;
268 prog_data.inputs_read = vp->program.Base.InputsRead;
269
270 if (c.key.copy_edgeflag) {
271 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_EDGE);
272 prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
273 }
274
275 if (intel->gen < 6) {
276 /* Put dummy slots into the VUE for the SF to put the replaced
277 * point sprite coords in. We shouldn't need these dummy slots,
278 * which take up precious URB space, but it would mean that the SF
279 * doesn't get nice aligned pairs of input coords into output
280 * coords, which would be a pain to handle.
281 */
282 for (i = 0; i < 8; i++) {
283 if (c.key.point_coord_replace & (1 << i))
284 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_TEX0 + i);
285 }
286 }
287
288 brw_compute_vue_map(brw, &prog_data.vue_map, outputs_written,
289 c.key.userclip_active);
290
291 if (0) {
292 _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
293 true);
294 }
295
296 /* Emit GEN4 code.
297 */
298 program = brw_vs_emit(brw, prog, &c, &prog_data, mem_ctx, &program_size);
299 if (program == NULL) {
300 ralloc_free(mem_ctx);
301 return false;
302 }
303
304 if (prog_data.nr_pull_params)
305 prog_data.num_surfaces = 1;
306 if (c.vp->program.Base.SamplersUsed)
307 prog_data.num_surfaces = SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT);
308 if (prog &&
309 prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks) {
310 prog_data.num_surfaces =
311 SURF_INDEX_VS_UBO(prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks);
312 }
313
314 /* Scratch space is used for register spilling */
315 if (c.last_scratch) {
316 perf_debug("Vertex shader triggered register spilling. "
317 "Try reducing the number of live vec4 values to "
318 "improve performance.\n");
319
320 prog_data.total_scratch = brw_get_scratch_size(c.last_scratch*REG_SIZE);
321
322 brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
323 prog_data.total_scratch * brw->max_vs_threads);
324 }
325
326 brw_upload_cache(&brw->cache, BRW_VS_PROG,
327 &c.key, sizeof(c.key),
328 program, program_size,
329 &prog_data, sizeof(prog_data),
330 &brw->vs.prog_offset, &brw->vs.prog_data);
331 ralloc_free(mem_ctx);
332
333 return true;
334 }
335
336 static bool
337 key_debug(struct intel_context *intel, const char *name, int a, int b)
338 {
339 if (a != b) {
340 perf_debug(" %s %d->%d\n", name, a, b);
341 return true;
342 }
343 return false;
344 }
345
346 void
347 brw_vs_debug_recompile(struct brw_context *brw,
348 struct gl_shader_program *prog,
349 const struct brw_vs_prog_key *key)
350 {
351 struct intel_context *intel = &brw->intel;
352 struct brw_cache_item *c = NULL;
353 const struct brw_vs_prog_key *old_key = NULL;
354 bool found = false;
355
356 perf_debug("Recompiling vertex shader for program %d\n", prog->Name);
357
358 for (unsigned int i = 0; i < brw->cache.size; i++) {
359 for (c = brw->cache.items[i]; c; c = c->next) {
360 if (c->cache_id == BRW_VS_PROG) {
361 old_key = c->key;
362
363 if (old_key->program_string_id == key->program_string_id)
364 break;
365 }
366 }
367 if (c)
368 break;
369 }
370
371 if (!c) {
372 perf_debug(" Didn't find previous compile in the shader cache for "
373 "debug\n");
374 return;
375 }
376
377 for (unsigned int i = 0; i < VERT_ATTRIB_MAX; i++) {
378 found |= key_debug(intel, "Vertex attrib w/a flags",
379 old_key->gl_attrib_wa_flags[i],
380 key->gl_attrib_wa_flags[i]);
381 }
382
383 found |= key_debug(intel, "user clip flags",
384 old_key->userclip_active, key->userclip_active);
385
386 found |= key_debug(intel, "user clipping planes as push constants",
387 old_key->nr_userclip_plane_consts,
388 key->nr_userclip_plane_consts);
389
390 found |= key_debug(intel, "clip distance enable",
391 old_key->uses_clip_distance, key->uses_clip_distance);
392 found |= key_debug(intel, "clip plane enable bitfield",
393 old_key->userclip_planes_enabled_gen_4_5,
394 key->userclip_planes_enabled_gen_4_5);
395 found |= key_debug(intel, "copy edgeflag",
396 old_key->copy_edgeflag, key->copy_edgeflag);
397 found |= key_debug(intel, "PointCoord replace",
398 old_key->point_coord_replace, key->point_coord_replace);
399 found |= key_debug(intel, "vertex color clamping",
400 old_key->clamp_vertex_color, key->clamp_vertex_color);
401
402 found |= brw_debug_recompile_sampler_key(intel, &old_key->tex, &key->tex);
403
404 if (!found) {
405 perf_debug(" Something else\n");
406 }
407 }
408
409 static void brw_upload_vs_prog(struct brw_context *brw)
410 {
411 struct intel_context *intel = &brw->intel;
412 struct gl_context *ctx = &intel->ctx;
413 struct brw_vs_prog_key key;
414 /* BRW_NEW_VERTEX_PROGRAM */
415 struct brw_vertex_program *vp =
416 (struct brw_vertex_program *)brw->vertex_program;
417 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
418 int i;
419
420 memset(&key, 0, sizeof(key));
421
422 /* Just upload the program verbatim for now. Always send it all
423 * the inputs it asks for, whether they are varying or not.
424 */
425 key.program_string_id = vp->id;
426 key.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
427 key.uses_clip_distance = vp->program.UsesClipDistance;
428 if (key.userclip_active && !key.uses_clip_distance) {
429 if (intel->gen < 6) {
430 key.nr_userclip_plane_consts
431 = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
432 key.userclip_planes_enabled_gen_4_5
433 = ctx->Transform.ClipPlanesEnabled;
434 } else {
435 key.nr_userclip_plane_consts
436 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
437 }
438 }
439
440 /* _NEW_POLYGON */
441 if (intel->gen < 6) {
442 key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
443 ctx->Polygon.BackMode != GL_FILL);
444 }
445
446 /* _NEW_LIGHT | _NEW_BUFFERS */
447 key.clamp_vertex_color = ctx->Light._ClampVertexColor;
448
449 /* _NEW_POINT */
450 if (intel->gen < 6 && ctx->Point.PointSprite) {
451 for (i = 0; i < 8; i++) {
452 if (ctx->Point.CoordReplace[i])
453 key.point_coord_replace |= (1 << i);
454 }
455 }
456
457 /* _NEW_TEXTURE */
458 brw_populate_sampler_prog_key_data(ctx, prog, &key.tex);
459
460 /* BRW_NEW_VERTICES */
461 if (intel->gen < 8 && !intel->is_haswell) {
462 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
463 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
464 */
465 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
466 if (!(vp->program.Base.InputsRead & BITFIELD64_BIT(i)))
467 continue;
468
469 uint8_t wa_flags = 0;
470
471 switch (brw->vb.inputs[i].glarray->Type) {
472
473 case GL_FIXED:
474 wa_flags = brw->vb.inputs[i].glarray->Size;
475 break;
476
477 case GL_INT_2_10_10_10_REV:
478 wa_flags |= BRW_ATTRIB_WA_SIGN;
479 /* fallthough */
480
481 case GL_UNSIGNED_INT_2_10_10_10_REV:
482 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
483 wa_flags |= BRW_ATTRIB_WA_BGRA;
484
485 if (brw->vb.inputs[i].glarray->Normalized)
486 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
487 else if (!brw->vb.inputs[i].glarray->Integer)
488 wa_flags |= BRW_ATTRIB_WA_SCALE;
489
490 break;
491 }
492
493 key.gl_attrib_wa_flags[i] = wa_flags;
494 }
495 }
496
497 if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
498 &key, sizeof(key),
499 &brw->vs.prog_offset, &brw->vs.prog_data)) {
500 bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
501 vp, &key);
502
503 assert(success);
504 }
505 if (memcmp(&brw->vs.prog_data->vue_map, &brw->vue_map_geom_out,
506 sizeof(brw->vue_map_geom_out)) != 0) {
507 brw->vue_map_geom_out = brw->vs.prog_data->vue_map;
508 brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
509 }
510 }
511
512 /* See brw_vs.c:
513 */
514 const struct brw_tracked_state brw_vs_prog = {
515 .dirty = {
516 .mesa = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
517 _NEW_TEXTURE |
518 _NEW_BUFFERS),
519 .brw = (BRW_NEW_VERTEX_PROGRAM |
520 BRW_NEW_VERTICES),
521 .cache = 0
522 },
523 .emit = brw_upload_vs_prog
524 };
525
526 bool
527 brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
528 {
529 struct brw_context *brw = brw_context(ctx);
530 struct brw_vs_prog_key key;
531 uint32_t old_prog_offset = brw->vs.prog_offset;
532 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
533 bool success;
534
535 if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
536 return true;
537
538 struct gl_vertex_program *vp = (struct gl_vertex_program *)
539 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
540 struct brw_vertex_program *bvp = brw_vertex_program(vp);
541
542 memset(&key, 0, sizeof(key));
543
544 key.program_string_id = bvp->id;
545 key.clamp_vertex_color = true;
546
547 for (int i = 0; i < MAX_SAMPLERS; i++) {
548 if (vp->Base.ShadowSamplers & (1 << i)) {
549 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
550 key.tex.swizzles[i] =
551 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
552 } else {
553 /* Color sampler: assume no swizzling. */
554 key.tex.swizzles[i] = SWIZZLE_XYZW;
555 }
556 }
557
558 success = do_vs_prog(brw, prog, bvp, &key);
559
560 brw->vs.prog_offset = old_prog_offset;
561 brw->vs.prog_data = old_prog_data;
562
563 return success;
564 }
565
566 void
567 brw_vs_prog_data_free(const void *in_prog_data)
568 {
569 const struct brw_vs_prog_data *prog_data = in_prog_data;
570
571 ralloc_free((void *)prog_data->param);
572 ralloc_free((void *)prog_data->pull_param);
573 }