b1b7a4f35a58453cec1adb69f28e56bb74218ddc
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "glsl/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int vert_result)
45 {
46 /* Make sure this vert_result hasn't been assigned a slot already */
47 assert (vue_map->vert_result_to_slot[vert_result] == -1);
48
49 vue_map->vert_result_to_slot[vert_result] = vue_map->num_slots;
50 vue_map->slot_to_vert_result[vue_map->num_slots++] = vert_result;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 *
56 * Note that consumers of this map using cache keys must include
57 * prog_data->userclip and prog_data->outputs_written in their key
58 * (generated by CACHE_NEW_VS_PROG).
59 */
60 static void
61 brw_compute_vue_map(struct brw_context *brw, struct brw_vs_compile *c)
62 {
63 const struct intel_context *intel = &brw->intel;
64 struct brw_vue_map *vue_map = &c->prog_data.vue_map;
65 GLbitfield64 outputs_written = c->prog_data.outputs_written;
66 int i;
67
68 vue_map->num_slots = 0;
69 for (i = 0; i < BRW_VERT_RESULT_MAX; ++i) {
70 vue_map->vert_result_to_slot[i] = -1;
71 vue_map->slot_to_vert_result[i] = BRW_VERT_RESULT_MAX;
72 }
73
74 /* VUE header: format depends on chip generation and whether clipping is
75 * enabled.
76 */
77 switch (intel->gen) {
78 case 4:
79 /* There are 8 dwords in VUE header pre-Ironlake:
80 * dword 0-3 is indices, point width, clip flags.
81 * dword 4-7 is ndc position
82 * dword 8-11 is the first vertex data.
83 */
84 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
85 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
86 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
87 break;
88 case 5:
89 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
90 * dword 0-3 of the header is indices, point width, clip flags.
91 * dword 4-7 is the ndc position
92 * dword 8-11 of the vertex header is the 4D space position
93 * dword 12-19 of the vertex header is the user clip distance.
94 * dword 20-23 is a pad so that the vertex element data is aligned
95 * dword 24-27 is the first vertex data we fill.
96 *
97 * Note: future pipeline stages expect 4D space position to be
98 * contiguous with the other vert_results, so we make dword 24-27 a
99 * duplicate copy of the 4D space position.
100 */
101 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
102 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
103 assign_vue_slot(vue_map, BRW_VERT_RESULT_HPOS_DUPLICATE);
104 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
105 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
106 assign_vue_slot(vue_map, BRW_VERT_RESULT_PAD);
107 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
108 break;
109 case 6:
110 case 7:
111 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
112 * dword 0-3 of the header is indices, point width, clip flags.
113 * dword 4-7 is the 4D space position
114 * dword 8-15 of the vertex header is the user clip distance if
115 * enabled.
116 * dword 8-11 or 16-19 is the first vertex element data we fill.
117 */
118 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
119 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
120 if (c->key.userclip_active) {
121 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
122 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
123 }
124 /* front and back colors need to be consecutive so that we can use
125 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
126 * two-sided color.
127 */
128 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0))
129 assign_vue_slot(vue_map, VERT_RESULT_COL0);
130 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0))
131 assign_vue_slot(vue_map, VERT_RESULT_BFC0);
132 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL1))
133 assign_vue_slot(vue_map, VERT_RESULT_COL1);
134 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC1))
135 assign_vue_slot(vue_map, VERT_RESULT_BFC1);
136 break;
137 default:
138 assert (!"VUE map not known for this chip generation");
139 break;
140 }
141
142 /* The hardware doesn't care about the rest of the vertex outputs, so just
143 * assign them contiguously. Don't reassign outputs that already have a
144 * slot.
145 *
146 * Also, prior to Gen6, don't assign a slot for VERT_RESULT_CLIP_VERTEX,
147 * since it is unsupported. In Gen6 and above, VERT_RESULT_CLIP_VERTEX may
148 * be needed for transform feedback; since we don't want to have to
149 * recompute the VUE map (and everything that depends on it) when transform
150 * feedback is enabled or disabled, just go ahead and assign a slot for it.
151 */
152 for (int i = 0; i < VERT_RESULT_MAX; ++i) {
153 if (intel->gen < 6 && i == VERT_RESULT_CLIP_VERTEX)
154 continue;
155 if ((outputs_written & BITFIELD64_BIT(i)) &&
156 vue_map->vert_result_to_slot[i] == -1) {
157 assign_vue_slot(vue_map, i);
158 }
159 }
160 }
161
162
163 /**
164 * Decide which set of clip planes should be used when clipping via
165 * gl_Position or gl_ClipVertex.
166 */
167 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
168 {
169 if (ctx->Shader.CurrentVertexProgram) {
170 /* There is currently a GLSL vertex shader, so clip according to GLSL
171 * rules, which means compare gl_ClipVertex (or gl_Position, if
172 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
173 * that were stored in EyeUserPlane at the time the clip planes were
174 * specified.
175 */
176 return ctx->Transform.EyeUserPlane;
177 } else {
178 /* Either we are using fixed function or an ARB vertex program. In
179 * either case the clip planes are going to be compared against
180 * gl_Position (which is in clip coordinates) so we have to clip using
181 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
182 * core.
183 */
184 return ctx->Transform._ClipUserPlane;
185 }
186 }
187
188 bool
189 brw_vs_prog_data_compare(const void *in_a, const void *in_b,
190 int aux_size, const void *in_key)
191 {
192 const struct brw_vs_prog_data *a = in_a;
193 const struct brw_vs_prog_data *b = in_b;
194
195 /* Compare all the struct up to the pointers. */
196 if (memcmp(a, b, offsetof(struct brw_vs_prog_data, param)))
197 return false;
198
199 if (memcmp(a->param, b->param, a->nr_params * sizeof(void *)))
200 return false;
201
202 if (memcmp(a->pull_param, b->pull_param, a->nr_pull_params * sizeof(void *)))
203 return false;
204
205 return true;
206 }
207
208 static bool
209 do_vs_prog(struct brw_context *brw,
210 struct gl_shader_program *prog,
211 struct brw_vertex_program *vp,
212 struct brw_vs_prog_key *key)
213 {
214 struct intel_context *intel = &brw->intel;
215 GLuint program_size;
216 const GLuint *program;
217 struct brw_vs_compile c;
218 void *mem_ctx;
219 int i;
220 struct gl_shader *vs = NULL;
221
222 if (prog)
223 vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];
224
225 memset(&c, 0, sizeof(c));
226 memcpy(&c.key, key, sizeof(*key));
227
228 mem_ctx = ralloc_context(NULL);
229
230 brw_init_compile(brw, &c.func, mem_ctx);
231 c.vp = vp;
232
233 /* Allocate the references to the uniforms that will end up in the
234 * prog_data associated with the compiled program, and which will be freed
235 * by the state cache.
236 */
237 int param_count;
238 if (vs) {
239 /* We add padding around uniform values below vec4 size, with the worst
240 * case being a float value that gets blown up to a vec4, so be
241 * conservative here.
242 */
243 param_count = vs->num_uniform_components * 4;
244
245 } else {
246 param_count = vp->program.Base.Parameters->NumParameters * 4;
247 }
248 /* We also upload clip plane data as uniforms */
249 param_count += MAX_CLIP_PLANES * 4;
250
251 c.prog_data.param = rzalloc_array(NULL, const float *, param_count);
252 c.prog_data.pull_param = rzalloc_array(NULL, const float *, param_count);
253
254 c.prog_data.outputs_written = vp->program.Base.OutputsWritten;
255 c.prog_data.inputs_read = vp->program.Base.InputsRead;
256
257 if (c.key.copy_edgeflag) {
258 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_EDGE);
259 c.prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
260 }
261
262 /* Put dummy slots into the VUE for the SF to put the replaced
263 * point sprite coords in. We shouldn't need these dummy slots,
264 * which take up precious URB space, but it would mean that the SF
265 * doesn't get nice aligned pairs of input coords into output
266 * coords, which would be a pain to handle.
267 */
268 for (i = 0; i < 8; i++) {
269 if (c.key.point_coord_replace & (1 << i))
270 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_TEX0 + i);
271 }
272
273 brw_compute_vue_map(brw, &c);
274
275 if (0) {
276 _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
277 true);
278 }
279
280 /* Emit GEN4 code.
281 */
282 if (!brw_vs_emit(brw, prog, &c, mem_ctx)) {
283 ralloc_free(mem_ctx);
284 return false;
285 }
286
287 if (c.prog_data.nr_pull_params)
288 c.prog_data.num_surfaces = 1;
289 if (c.vp->program.Base.SamplersUsed)
290 c.prog_data.num_surfaces = SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT);
291 if (prog &&
292 prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks) {
293 c.prog_data.num_surfaces =
294 SURF_INDEX_VS_UBO(prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks);
295 }
296
297 /* Scratch space is used for register spilling */
298 if (c.last_scratch) {
299 perf_debug("Vertex shader triggered register spilling. "
300 "Try reducing the number of live vec4 values to "
301 "improve performance.\n");
302
303 c.prog_data.total_scratch = brw_get_scratch_size(c.last_scratch*REG_SIZE);
304
305 brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
306 c.prog_data.total_scratch * brw->max_vs_threads);
307 }
308
309 /* get the program
310 */
311 program = brw_get_program(&c.func, &program_size);
312
313 brw_upload_cache(&brw->cache, BRW_VS_PROG,
314 &c.key, sizeof(c.key),
315 program, program_size,
316 &c.prog_data, sizeof(c.prog_data),
317 &brw->vs.prog_offset, &brw->vs.prog_data);
318 ralloc_free(mem_ctx);
319
320 return true;
321 }
322
323 static bool
324 key_debug(const char *name, int a, int b)
325 {
326 if (a != b) {
327 perf_debug(" %s %d->%d\n", name, a, b);
328 return true;
329 }
330 return false;
331 }
332
333 void
334 brw_vs_debug_recompile(struct brw_context *brw,
335 struct gl_shader_program *prog,
336 const struct brw_vs_prog_key *key)
337 {
338 struct brw_cache_item *c = NULL;
339 const struct brw_vs_prog_key *old_key = NULL;
340 bool found = false;
341
342 perf_debug("Recompiling vertex shader for program %d\n", prog->Name);
343
344 for (unsigned int i = 0; i < brw->cache.size; i++) {
345 for (c = brw->cache.items[i]; c; c = c->next) {
346 if (c->cache_id == BRW_VS_PROG) {
347 old_key = c->key;
348
349 if (old_key->program_string_id == key->program_string_id)
350 break;
351 }
352 }
353 if (c)
354 break;
355 }
356
357 if (!c) {
358 perf_debug(" Didn't find previous compile in the shader cache for "
359 "debug\n");
360 return;
361 }
362
363 for (unsigned int i = 0; i < VERT_ATTRIB_MAX; i++) {
364 found |= key_debug("Vertex attrib w/a flags",
365 old_key->gl_attrib_wa_flags[i],
366 key->gl_attrib_wa_flags[i]);
367 }
368
369 found |= key_debug("user clip flags",
370 old_key->userclip_active, key->userclip_active);
371
372 found |= key_debug("user clipping planes as push constants",
373 old_key->nr_userclip_plane_consts,
374 key->nr_userclip_plane_consts);
375
376 found |= key_debug("clip distance enable",
377 old_key->uses_clip_distance, key->uses_clip_distance);
378 found |= key_debug("clip plane enable bitfield",
379 old_key->userclip_planes_enabled_gen_4_5,
380 key->userclip_planes_enabled_gen_4_5);
381 found |= key_debug("copy edgeflag",
382 old_key->copy_edgeflag, key->copy_edgeflag);
383 found |= key_debug("PointCoord replace",
384 old_key->point_coord_replace, key->point_coord_replace);
385 found |= key_debug("vertex color clamping",
386 old_key->clamp_vertex_color, key->clamp_vertex_color);
387
388 found |= brw_debug_recompile_sampler_key(&old_key->tex, &key->tex);
389
390 if (!found) {
391 perf_debug(" Something else\n");
392 }
393 }
394
395 static void brw_upload_vs_prog(struct brw_context *brw)
396 {
397 struct intel_context *intel = &brw->intel;
398 struct gl_context *ctx = &intel->ctx;
399 struct brw_vs_prog_key key;
400 /* BRW_NEW_VERTEX_PROGRAM */
401 struct brw_vertex_program *vp =
402 (struct brw_vertex_program *)brw->vertex_program;
403 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
404 int i;
405
406 memset(&key, 0, sizeof(key));
407
408 /* Just upload the program verbatim for now. Always send it all
409 * the inputs it asks for, whether they are varying or not.
410 */
411 key.program_string_id = vp->id;
412 key.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
413 key.uses_clip_distance = vp->program.UsesClipDistance;
414 if (key.userclip_active && !key.uses_clip_distance) {
415 if (intel->gen < 6) {
416 key.nr_userclip_plane_consts
417 = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
418 key.userclip_planes_enabled_gen_4_5
419 = ctx->Transform.ClipPlanesEnabled;
420 } else {
421 key.nr_userclip_plane_consts
422 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
423 }
424 }
425
426 /* _NEW_POLYGON */
427 if (intel->gen < 6) {
428 key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
429 ctx->Polygon.BackMode != GL_FILL);
430 }
431
432 /* _NEW_LIGHT | _NEW_BUFFERS */
433 key.clamp_vertex_color = ctx->Light._ClampVertexColor;
434
435 /* _NEW_POINT */
436 if (ctx->Point.PointSprite) {
437 for (i = 0; i < 8; i++) {
438 if (ctx->Point.CoordReplace[i])
439 key.point_coord_replace |= (1 << i);
440 }
441 }
442
443 /* _NEW_TEXTURE */
444 brw_populate_sampler_prog_key_data(ctx, prog, &key.tex);
445
446 /* BRW_NEW_VERTICES */
447 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
448 if (vp->program.Base.InputsRead & BITFIELD64_BIT(i)) {
449 uint8_t wa_flags = 0;
450
451 switch (brw->vb.inputs[i].glarray->Type) {
452
453 case GL_FIXED:
454 wa_flags = brw->vb.inputs[i].glarray->Size;
455 break;
456
457 case GL_INT_2_10_10_10_REV:
458 wa_flags |= BRW_ATTRIB_WA_SIGN;
459 /* fallthough */
460
461 case GL_UNSIGNED_INT_2_10_10_10_REV:
462 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
463 wa_flags |= BRW_ATTRIB_WA_BGRA;
464
465 if (brw->vb.inputs[i].glarray->Normalized)
466 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
467 else if (!brw->vb.inputs[i].glarray->Integer)
468 wa_flags |= BRW_ATTRIB_WA_SCALE;
469
470 break;
471 }
472
473 key.gl_attrib_wa_flags[i] = wa_flags;
474 }
475 }
476
477 if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
478 &key, sizeof(key),
479 &brw->vs.prog_offset, &brw->vs.prog_data)) {
480 bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
481 vp, &key);
482
483 assert(success);
484 }
485 }
486
487 /* See brw_vs.c:
488 */
489 const struct brw_tracked_state brw_vs_prog = {
490 .dirty = {
491 .mesa = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
492 _NEW_TEXTURE |
493 _NEW_BUFFERS),
494 .brw = (BRW_NEW_VERTEX_PROGRAM |
495 BRW_NEW_VERTICES),
496 .cache = 0
497 },
498 .emit = brw_upload_vs_prog
499 };
500
501 bool
502 brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
503 {
504 struct brw_context *brw = brw_context(ctx);
505 struct brw_vs_prog_key key;
506 uint32_t old_prog_offset = brw->vs.prog_offset;
507 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
508 bool success;
509
510 if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
511 return true;
512
513 struct gl_vertex_program *vp = (struct gl_vertex_program *)
514 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
515 struct brw_vertex_program *bvp = brw_vertex_program(vp);
516
517 memset(&key, 0, sizeof(key));
518
519 key.program_string_id = bvp->id;
520 key.clamp_vertex_color = true;
521
522 for (int i = 0; i < MAX_SAMPLERS; i++) {
523 if (vp->Base.ShadowSamplers & (1 << i)) {
524 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
525 key.tex.swizzles[i] =
526 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
527 } else {
528 /* Color sampler: assume no swizzling. */
529 key.tex.swizzles[i] = SWIZZLE_XYZW;
530 }
531 }
532
533 success = do_vs_prog(brw, prog, bvp, &key);
534
535 brw->vs.prog_offset = old_prog_offset;
536 brw->vs.prog_data = old_prog_data;
537
538 return success;
539 }
540
541 void
542 brw_vs_prog_data_free(const void *in_prog_data)
543 {
544 const struct brw_vs_prog_data *prog_data = in_prog_data;
545
546 ralloc_free((void *)prog_data->param);
547 ralloc_free((void *)prog_data->pull_param);
548 }