be82177f40d5b3162192640ad0f44e5aceb412a0
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "glsl/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int vert_result)
45 {
46 /* Make sure this vert_result hasn't been assigned a slot already */
47 assert (vue_map->vert_result_to_slot[vert_result] == -1);
48
49 vue_map->vert_result_to_slot[vert_result] = vue_map->num_slots;
50 vue_map->slot_to_vert_result[vue_map->num_slots++] = vert_result;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 *
56 * Note that consumers of this map using cache keys must include
57 * prog_data->userclip and prog_data->outputs_written in their key
58 * (generated by CACHE_NEW_VS_PROG).
59 */
60 void
61 brw_compute_vue_map(struct brw_vue_map *vue_map,
62 const struct intel_context *intel,
63 const struct brw_vs_prog_data *prog_data)
64 {
65 bool userclip_active = prog_data->userclip;
66 GLbitfield64 outputs_written = prog_data->outputs_written;
67 int i;
68
69 vue_map->num_slots = 0;
70 for (i = 0; i < BRW_VERT_RESULT_MAX; ++i) {
71 vue_map->vert_result_to_slot[i] = -1;
72 vue_map->slot_to_vert_result[i] = BRW_VERT_RESULT_MAX;
73 }
74
75 /* VUE header: format depends on chip generation and whether clipping is
76 * enabled.
77 */
78 switch (intel->gen) {
79 case 4:
80 /* There are 8 dwords in VUE header pre-Ironlake:
81 * dword 0-3 is indices, point width, clip flags.
82 * dword 4-7 is ndc position
83 * dword 8-11 is the first vertex data.
84 */
85 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
86 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
87 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
88 break;
89 case 5:
90 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
91 * dword 0-3 of the header is indices, point width, clip flags.
92 * dword 4-7 is the ndc position
93 * dword 8-11 of the vertex header is the 4D space position
94 * dword 12-19 of the vertex header is the user clip distance.
95 * dword 20-23 is a pad so that the vertex element data is aligned
96 * dword 24-27 is the first vertex data we fill.
97 *
98 * Note: future pipeline stages expect 4D space position to be
99 * contiguous with the other vert_results, so we make dword 24-27 a
100 * duplicate copy of the 4D space position.
101 */
102 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
103 assign_vue_slot(vue_map, BRW_VERT_RESULT_NDC);
104 assign_vue_slot(vue_map, BRW_VERT_RESULT_HPOS_DUPLICATE);
105 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
106 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
107 assign_vue_slot(vue_map, BRW_VERT_RESULT_PAD);
108 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
109 break;
110 case 6:
111 case 7:
112 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
113 * dword 0-3 of the header is indices, point width, clip flags.
114 * dword 4-7 is the 4D space position
115 * dword 8-15 of the vertex header is the user clip distance if
116 * enabled.
117 * dword 8-11 or 16-19 is the first vertex element data we fill.
118 */
119 assign_vue_slot(vue_map, VERT_RESULT_PSIZ);
120 assign_vue_slot(vue_map, VERT_RESULT_HPOS);
121 if (userclip_active) {
122 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST0);
123 assign_vue_slot(vue_map, VERT_RESULT_CLIP_DIST1);
124 }
125 /* front and back colors need to be consecutive so that we can use
126 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
127 * two-sided color.
128 */
129 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL0))
130 assign_vue_slot(vue_map, VERT_RESULT_COL0);
131 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC0))
132 assign_vue_slot(vue_map, VERT_RESULT_BFC0);
133 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_COL1))
134 assign_vue_slot(vue_map, VERT_RESULT_COL1);
135 if (outputs_written & BITFIELD64_BIT(VERT_RESULT_BFC1))
136 assign_vue_slot(vue_map, VERT_RESULT_BFC1);
137 break;
138 default:
139 assert (!"VUE map not known for this chip generation");
140 break;
141 }
142
143 /* The hardware doesn't care about the rest of the vertex outputs, so just
144 * assign them contiguously. Don't reassign outputs that already have a
145 * slot.
146 *
147 * Also, prior to Gen6, don't assign a slot for VERT_RESULT_CLIP_VERTEX,
148 * since it is unsupported. In Gen6 and above, VERT_RESULT_CLIP_VERTEX may
149 * be needed for transform feedback; since we don't want to have to
150 * recompute the VUE map (and everything that depends on it) when transform
151 * feedback is enabled or disabled, just go ahead and assign a slot for it.
152 */
153 for (int i = 0; i < VERT_RESULT_MAX; ++i) {
154 if (intel->gen < 6 && i == VERT_RESULT_CLIP_VERTEX)
155 continue;
156 if ((outputs_written & BITFIELD64_BIT(i)) &&
157 vue_map->vert_result_to_slot[i] == -1) {
158 assign_vue_slot(vue_map, i);
159 }
160 }
161 }
162
163
164 /**
165 * Decide which set of clip planes should be used when clipping via
166 * gl_Position or gl_ClipVertex.
167 */
168 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
169 {
170 if (ctx->Shader.CurrentVertexProgram) {
171 /* There is currently a GLSL vertex shader, so clip according to GLSL
172 * rules, which means compare gl_ClipVertex (or gl_Position, if
173 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
174 * that were stored in EyeUserPlane at the time the clip planes were
175 * specified.
176 */
177 return ctx->Transform.EyeUserPlane;
178 } else {
179 /* Either we are using fixed function or an ARB vertex program. In
180 * either case the clip planes are going to be compared against
181 * gl_Position (which is in clip coordinates) so we have to clip using
182 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
183 * core.
184 */
185 return ctx->Transform._ClipUserPlane;
186 }
187 }
188
189
190 static bool
191 do_vs_prog(struct brw_context *brw,
192 struct gl_shader_program *prog,
193 struct brw_vertex_program *vp,
194 struct brw_vs_prog_key *key)
195 {
196 struct gl_context *ctx = &brw->intel.ctx;
197 struct intel_context *intel = &brw->intel;
198 GLuint program_size;
199 const GLuint *program;
200 struct brw_vs_compile c;
201 void *mem_ctx;
202 int aux_size;
203 int i;
204
205 memset(&c, 0, sizeof(c));
206 memcpy(&c.key, key, sizeof(*key));
207
208 mem_ctx = ralloc_context(NULL);
209
210 brw_init_compile(brw, &c.func, mem_ctx);
211 c.vp = vp;
212
213 c.prog_data.outputs_written = vp->program.Base.OutputsWritten;
214 c.prog_data.inputs_read = vp->program.Base.InputsRead;
215
216 if (c.key.copy_edgeflag) {
217 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_EDGE);
218 c.prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
219 }
220
221 /* Put dummy slots into the VUE for the SF to put the replaced
222 * point sprite coords in. We shouldn't need these dummy slots,
223 * which take up precious URB space, but it would mean that the SF
224 * doesn't get nice aligned pairs of input coords into output
225 * coords, which would be a pain to handle.
226 */
227 for (i = 0; i < 8; i++) {
228 if (c.key.point_coord_replace & (1 << i))
229 c.prog_data.outputs_written |= BITFIELD64_BIT(VERT_RESULT_TEX0 + i);
230 }
231
232 if (0) {
233 _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
234 true);
235 }
236
237 /* Emit GEN4 code.
238 */
239 if (prog) {
240 if (!brw_vs_emit(prog, &c)) {
241 ralloc_free(mem_ctx);
242 return false;
243 }
244 } else {
245 brw_old_vs_emit(&c);
246 }
247
248 /* Scratch space is used for register spilling */
249 if (c.last_scratch) {
250 c.prog_data.total_scratch = brw_get_scratch_size(c.last_scratch);
251
252 brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
253 c.prog_data.total_scratch * brw->max_vs_threads);
254 }
255
256 /* get the program
257 */
258 program = brw_get_program(&c.func, &program_size);
259
260 /* We upload from &c.prog_data including the constant_map assuming
261 * they're packed together. It would be nice to have a
262 * compile-time assert macro here.
263 */
264 assert(c.constant_map == (int8_t *)&c.prog_data +
265 sizeof(c.prog_data));
266 assert(ctx->Const.VertexProgram.MaxNativeParameters ==
267 ARRAY_SIZE(c.constant_map));
268 (void) ctx;
269
270 aux_size = sizeof(c.prog_data);
271 /* constant_map */
272 aux_size += c.vp->program.Base.Parameters->NumParameters;
273
274 brw_upload_cache(&brw->cache, BRW_VS_PROG,
275 &c.key, sizeof(c.key),
276 program, program_size,
277 &c.prog_data, aux_size,
278 &brw->vs.prog_offset, &brw->vs.prog_data);
279 ralloc_free(mem_ctx);
280
281 return true;
282 }
283
284
285 static void brw_upload_vs_prog(struct brw_context *brw)
286 {
287 struct intel_context *intel = &brw->intel;
288 struct gl_context *ctx = &intel->ctx;
289 struct brw_vs_prog_key key;
290 /* BRW_NEW_VERTEX_PROGRAM */
291 struct brw_vertex_program *vp =
292 (struct brw_vertex_program *)brw->vertex_program;
293 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
294 int i;
295
296 memset(&key, 0, sizeof(key));
297
298 /* Just upload the program verbatim for now. Always send it all
299 * the inputs it asks for, whether they are varying or not.
300 */
301 key.program_string_id = vp->id;
302 key.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
303 key.uses_clip_distance = vp->program.UsesClipDistance;
304 if (key.userclip_active && !key.uses_clip_distance) {
305 if (intel->gen < 6) {
306 key.nr_userclip_plane_consts
307 = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
308 key.userclip_planes_enabled_gen_4_5
309 = ctx->Transform.ClipPlanesEnabled;
310 } else {
311 key.nr_userclip_plane_consts
312 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
313 }
314 }
315 key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
316 ctx->Polygon.BackMode != GL_FILL);
317
318 /* _NEW_LIGHT | _NEW_BUFFERS */
319 key.clamp_vertex_color = ctx->Light._ClampVertexColor;
320
321 /* _NEW_POINT */
322 if (ctx->Point.PointSprite) {
323 for (i = 0; i < 8; i++) {
324 if (ctx->Point.CoordReplace[i])
325 key.point_coord_replace |= (1 << i);
326 }
327 }
328
329 /* _NEW_TEXTURE */
330 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
331 if (prog->TexturesUsed[i])
332 brw_populate_sampler_prog_key_data(ctx, &key.tex, i);
333 }
334
335 /* BRW_NEW_VERTICES */
336 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
337 if (vp->program.Base.InputsRead & BITFIELD64_BIT(i) &&
338 brw->vb.inputs[i].glarray->Type == GL_FIXED) {
339 key.gl_fixed_input_size[i] = brw->vb.inputs[i].glarray->Size;
340 }
341 }
342
343 if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
344 &key, sizeof(key),
345 &brw->vs.prog_offset, &brw->vs.prog_data)) {
346 bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
347 vp, &key);
348
349 assert(success);
350 }
351 brw->vs.constant_map = ((int8_t *)brw->vs.prog_data +
352 sizeof(*brw->vs.prog_data));
353 }
354
355 /* See brw_vs.c:
356 */
357 const struct brw_tracked_state brw_vs_prog = {
358 .dirty = {
359 .mesa = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
360 _NEW_TEXTURE |
361 _NEW_BUFFERS),
362 .brw = (BRW_NEW_VERTEX_PROGRAM |
363 BRW_NEW_VERTICES),
364 .cache = 0
365 },
366 .emit = brw_upload_vs_prog
367 };
368
369 bool
370 brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
371 {
372 struct brw_context *brw = brw_context(ctx);
373 struct brw_vs_prog_key key;
374 uint32_t old_prog_offset = brw->vs.prog_offset;
375 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
376 bool success;
377
378 if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
379 return true;
380
381 struct gl_vertex_program *vp = (struct gl_vertex_program *)
382 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
383 struct brw_vertex_program *bvp = brw_vertex_program(vp);
384
385 memset(&key, 0, sizeof(key));
386
387 key.program_string_id = bvp->id;
388 key.clamp_vertex_color = true;
389
390 success = do_vs_prog(brw, prog, bvp, &key);
391
392 brw->vs.prog_offset = old_prog_offset;
393 brw->vs.prog_data = old_prog_data;
394
395 return success;
396 }