i965: Shrink brw_vue_map struct.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "glsl/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int varying)
45 {
46 /* Make sure this varying hasn't been assigned a slot already */
47 assert (vue_map->varying_to_slot[varying] == -1);
48
49 vue_map->varying_to_slot[varying] = vue_map->num_slots;
50 vue_map->slot_to_varying[vue_map->num_slots++] = varying;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 *
56 * Note that consumers of this map using cache keys must include
57 * prog_data->userclip and prog_data->outputs_written in their key
58 * (generated by CACHE_NEW_VS_PROG).
59 */
60 static void
61 brw_compute_vue_map(struct brw_context *brw, struct brw_vs_compile *c,
62 GLbitfield64 slots_valid)
63 {
64 const struct intel_context *intel = &brw->intel;
65 struct brw_vue_map *vue_map = &c->prog_data.vue_map;
66 vue_map->slots_valid = slots_valid;
67 int i;
68
69 /* Make sure that the values we store in vue_map->varying_to_slot and
70 * vue_map->slot_to_varying won't overflow the signed chars that are used
71 * to store them. Note that since vue_map->slot_to_varying sometimes holds
72 * values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that
73 * BRW_VARYING_SLOT_COUNT is <= 127, not 128.
74 */
75 STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127);
76
77 vue_map->num_slots = 0;
78 for (i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) {
79 vue_map->varying_to_slot[i] = -1;
80 vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_COUNT;
81 }
82
83 /* VUE header: format depends on chip generation and whether clipping is
84 * enabled.
85 */
86 switch (intel->gen) {
87 case 4:
88 /* There are 8 dwords in VUE header pre-Ironlake:
89 * dword 0-3 is indices, point width, clip flags.
90 * dword 4-7 is ndc position
91 * dword 8-11 is the first vertex data.
92 */
93 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
94 assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC);
95 assign_vue_slot(vue_map, VARYING_SLOT_POS);
96 break;
97 case 5:
98 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
99 * dword 0-3 of the header is indices, point width, clip flags.
100 * dword 4-7 is the ndc position
101 * dword 8-11 of the vertex header is the 4D space position
102 * dword 12-19 of the vertex header is the user clip distance.
103 * dword 20-23 is a pad so that the vertex element data is aligned
104 * dword 24-27 is the first vertex data we fill.
105 *
106 * Note: future pipeline stages expect 4D space position to be
107 * contiguous with the other varyings, so we make dword 24-27 a
108 * duplicate copy of the 4D space position.
109 */
110 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
111 assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC);
112 assign_vue_slot(vue_map, BRW_VARYING_SLOT_POS_DUPLICATE);
113 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0);
114 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1);
115 assign_vue_slot(vue_map, BRW_VARYING_SLOT_PAD);
116 assign_vue_slot(vue_map, VARYING_SLOT_POS);
117 break;
118 case 6:
119 case 7:
120 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
121 * dword 0-3 of the header is indices, point width, clip flags.
122 * dword 4-7 is the 4D space position
123 * dword 8-15 of the vertex header is the user clip distance if
124 * enabled.
125 * dword 8-11 or 16-19 is the first vertex element data we fill.
126 */
127 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
128 assign_vue_slot(vue_map, VARYING_SLOT_POS);
129 if (c->key.userclip_active) {
130 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0);
131 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1);
132 }
133 /* front and back colors need to be consecutive so that we can use
134 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
135 * two-sided color.
136 */
137 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0))
138 assign_vue_slot(vue_map, VARYING_SLOT_COL0);
139 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0))
140 assign_vue_slot(vue_map, VARYING_SLOT_BFC0);
141 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1))
142 assign_vue_slot(vue_map, VARYING_SLOT_COL1);
143 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1))
144 assign_vue_slot(vue_map, VARYING_SLOT_BFC1);
145 break;
146 default:
147 assert (!"VUE map not known for this chip generation");
148 break;
149 }
150
151 /* The hardware doesn't care about the rest of the vertex outputs, so just
152 * assign them contiguously. Don't reassign outputs that already have a
153 * slot.
154 *
155 * Also, prior to Gen6, don't assign a slot for VARYING_SLOT_CLIP_VERTEX,
156 * since it is unsupported. In Gen6 and above, VARYING_SLOT_CLIP_VERTEX may
157 * be needed for transform feedback; since we don't want to have to
158 * recompute the VUE map (and everything that depends on it) when transform
159 * feedback is enabled or disabled, just go ahead and assign a slot for it.
160 */
161 for (int i = 0; i < VARYING_SLOT_MAX; ++i) {
162 if (intel->gen < 6 && i == VARYING_SLOT_CLIP_VERTEX)
163 continue;
164 if ((slots_valid & BITFIELD64_BIT(i)) &&
165 vue_map->varying_to_slot[i] == -1) {
166 assign_vue_slot(vue_map, i);
167 }
168 }
169 }
170
171
172 /**
173 * Decide which set of clip planes should be used when clipping via
174 * gl_Position or gl_ClipVertex.
175 */
176 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
177 {
178 if (ctx->Shader.CurrentVertexProgram) {
179 /* There is currently a GLSL vertex shader, so clip according to GLSL
180 * rules, which means compare gl_ClipVertex (or gl_Position, if
181 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
182 * that were stored in EyeUserPlane at the time the clip planes were
183 * specified.
184 */
185 return ctx->Transform.EyeUserPlane;
186 } else {
187 /* Either we are using fixed function or an ARB vertex program. In
188 * either case the clip planes are going to be compared against
189 * gl_Position (which is in clip coordinates) so we have to clip using
190 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
191 * core.
192 */
193 return ctx->Transform._ClipUserPlane;
194 }
195 }
196
197 bool
198 brw_vs_prog_data_compare(const void *in_a, const void *in_b,
199 int aux_size, const void *in_key)
200 {
201 const struct brw_vs_prog_data *a = in_a;
202 const struct brw_vs_prog_data *b = in_b;
203
204 /* Compare all the struct up to the pointers. */
205 if (memcmp(a, b, offsetof(struct brw_vs_prog_data, param)))
206 return false;
207
208 if (memcmp(a->param, b->param, a->nr_params * sizeof(void *)))
209 return false;
210
211 if (memcmp(a->pull_param, b->pull_param, a->nr_pull_params * sizeof(void *)))
212 return false;
213
214 return true;
215 }
216
217 static bool
218 do_vs_prog(struct brw_context *brw,
219 struct gl_shader_program *prog,
220 struct brw_vertex_program *vp,
221 struct brw_vs_prog_key *key)
222 {
223 struct intel_context *intel = &brw->intel;
224 GLuint program_size;
225 const GLuint *program;
226 struct brw_vs_compile c;
227 void *mem_ctx;
228 int i;
229 struct gl_shader *vs = NULL;
230
231 if (prog)
232 vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];
233
234 memset(&c, 0, sizeof(c));
235 memcpy(&c.key, key, sizeof(*key));
236
237 mem_ctx = ralloc_context(NULL);
238
239 c.vp = vp;
240
241 /* Allocate the references to the uniforms that will end up in the
242 * prog_data associated with the compiled program, and which will be freed
243 * by the state cache.
244 */
245 int param_count;
246 if (vs) {
247 /* We add padding around uniform values below vec4 size, with the worst
248 * case being a float value that gets blown up to a vec4, so be
249 * conservative here.
250 */
251 param_count = vs->num_uniform_components * 4;
252
253 } else {
254 param_count = vp->program.Base.Parameters->NumParameters * 4;
255 }
256 /* We also upload clip plane data as uniforms */
257 param_count += MAX_CLIP_PLANES * 4;
258
259 c.prog_data.param = rzalloc_array(NULL, const float *, param_count);
260 c.prog_data.pull_param = rzalloc_array(NULL, const float *, param_count);
261
262 GLbitfield64 outputs_written = vp->program.Base.OutputsWritten;
263 c.prog_data.inputs_read = vp->program.Base.InputsRead;
264
265 if (c.key.copy_edgeflag) {
266 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_EDGE);
267 c.prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
268 }
269
270 if (intel->gen < 6) {
271 /* Put dummy slots into the VUE for the SF to put the replaced
272 * point sprite coords in. We shouldn't need these dummy slots,
273 * which take up precious URB space, but it would mean that the SF
274 * doesn't get nice aligned pairs of input coords into output
275 * coords, which would be a pain to handle.
276 */
277 for (i = 0; i < 8; i++) {
278 if (c.key.point_coord_replace & (1 << i))
279 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_TEX0 + i);
280 }
281 }
282
283 brw_compute_vue_map(brw, &c, outputs_written);
284
285 if (0) {
286 _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
287 true);
288 }
289
290 /* Emit GEN4 code.
291 */
292 program = brw_vs_emit(brw, prog, &c, mem_ctx, &program_size);
293 if (program == NULL) {
294 ralloc_free(mem_ctx);
295 return false;
296 }
297
298 if (c.prog_data.nr_pull_params)
299 c.prog_data.num_surfaces = 1;
300 if (c.vp->program.Base.SamplersUsed)
301 c.prog_data.num_surfaces = SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT);
302 if (prog &&
303 prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks) {
304 c.prog_data.num_surfaces =
305 SURF_INDEX_VS_UBO(prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks);
306 }
307
308 /* Scratch space is used for register spilling */
309 if (c.last_scratch) {
310 perf_debug("Vertex shader triggered register spilling. "
311 "Try reducing the number of live vec4 values to "
312 "improve performance.\n");
313
314 c.prog_data.total_scratch = brw_get_scratch_size(c.last_scratch*REG_SIZE);
315
316 brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
317 c.prog_data.total_scratch * brw->max_vs_threads);
318 }
319
320 brw_upload_cache(&brw->cache, BRW_VS_PROG,
321 &c.key, sizeof(c.key),
322 program, program_size,
323 &c.prog_data, sizeof(c.prog_data),
324 &brw->vs.prog_offset, &brw->vs.prog_data);
325 ralloc_free(mem_ctx);
326
327 return true;
328 }
329
330 static bool
331 key_debug(struct intel_context *intel, const char *name, int a, int b)
332 {
333 if (a != b) {
334 perf_debug(" %s %d->%d\n", name, a, b);
335 return true;
336 }
337 return false;
338 }
339
340 void
341 brw_vs_debug_recompile(struct brw_context *brw,
342 struct gl_shader_program *prog,
343 const struct brw_vs_prog_key *key)
344 {
345 struct intel_context *intel = &brw->intel;
346 struct brw_cache_item *c = NULL;
347 const struct brw_vs_prog_key *old_key = NULL;
348 bool found = false;
349
350 perf_debug("Recompiling vertex shader for program %d\n", prog->Name);
351
352 for (unsigned int i = 0; i < brw->cache.size; i++) {
353 for (c = brw->cache.items[i]; c; c = c->next) {
354 if (c->cache_id == BRW_VS_PROG) {
355 old_key = c->key;
356
357 if (old_key->program_string_id == key->program_string_id)
358 break;
359 }
360 }
361 if (c)
362 break;
363 }
364
365 if (!c) {
366 perf_debug(" Didn't find previous compile in the shader cache for "
367 "debug\n");
368 return;
369 }
370
371 for (unsigned int i = 0; i < VERT_ATTRIB_MAX; i++) {
372 found |= key_debug(intel, "Vertex attrib w/a flags",
373 old_key->gl_attrib_wa_flags[i],
374 key->gl_attrib_wa_flags[i]);
375 }
376
377 found |= key_debug(intel, "user clip flags",
378 old_key->userclip_active, key->userclip_active);
379
380 found |= key_debug(intel, "user clipping planes as push constants",
381 old_key->nr_userclip_plane_consts,
382 key->nr_userclip_plane_consts);
383
384 found |= key_debug(intel, "clip distance enable",
385 old_key->uses_clip_distance, key->uses_clip_distance);
386 found |= key_debug(intel, "clip plane enable bitfield",
387 old_key->userclip_planes_enabled_gen_4_5,
388 key->userclip_planes_enabled_gen_4_5);
389 found |= key_debug(intel, "copy edgeflag",
390 old_key->copy_edgeflag, key->copy_edgeflag);
391 found |= key_debug(intel, "PointCoord replace",
392 old_key->point_coord_replace, key->point_coord_replace);
393 found |= key_debug(intel, "vertex color clamping",
394 old_key->clamp_vertex_color, key->clamp_vertex_color);
395
396 found |= brw_debug_recompile_sampler_key(intel, &old_key->tex, &key->tex);
397
398 if (!found) {
399 perf_debug(" Something else\n");
400 }
401 }
402
403 static void brw_upload_vs_prog(struct brw_context *brw)
404 {
405 struct intel_context *intel = &brw->intel;
406 struct gl_context *ctx = &intel->ctx;
407 struct brw_vs_prog_key key;
408 /* BRW_NEW_VERTEX_PROGRAM */
409 struct brw_vertex_program *vp =
410 (struct brw_vertex_program *)brw->vertex_program;
411 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
412 int i;
413
414 memset(&key, 0, sizeof(key));
415
416 /* Just upload the program verbatim for now. Always send it all
417 * the inputs it asks for, whether they are varying or not.
418 */
419 key.program_string_id = vp->id;
420 key.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
421 key.uses_clip_distance = vp->program.UsesClipDistance;
422 if (key.userclip_active && !key.uses_clip_distance) {
423 if (intel->gen < 6) {
424 key.nr_userclip_plane_consts
425 = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
426 key.userclip_planes_enabled_gen_4_5
427 = ctx->Transform.ClipPlanesEnabled;
428 } else {
429 key.nr_userclip_plane_consts
430 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
431 }
432 }
433
434 /* _NEW_POLYGON */
435 if (intel->gen < 6) {
436 key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
437 ctx->Polygon.BackMode != GL_FILL);
438 }
439
440 /* _NEW_LIGHT | _NEW_BUFFERS */
441 key.clamp_vertex_color = ctx->Light._ClampVertexColor;
442
443 /* _NEW_POINT */
444 if (intel->gen < 6 && ctx->Point.PointSprite) {
445 for (i = 0; i < 8; i++) {
446 if (ctx->Point.CoordReplace[i])
447 key.point_coord_replace |= (1 << i);
448 }
449 }
450
451 /* _NEW_TEXTURE */
452 brw_populate_sampler_prog_key_data(ctx, prog, &key.tex);
453
454 /* BRW_NEW_VERTICES */
455 if (intel->gen < 8 && !intel->is_haswell) {
456 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
457 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
458 */
459 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
460 if (!(vp->program.Base.InputsRead & BITFIELD64_BIT(i)))
461 continue;
462
463 uint8_t wa_flags = 0;
464
465 switch (brw->vb.inputs[i].glarray->Type) {
466
467 case GL_FIXED:
468 wa_flags = brw->vb.inputs[i].glarray->Size;
469 break;
470
471 case GL_INT_2_10_10_10_REV:
472 wa_flags |= BRW_ATTRIB_WA_SIGN;
473 /* fallthough */
474
475 case GL_UNSIGNED_INT_2_10_10_10_REV:
476 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
477 wa_flags |= BRW_ATTRIB_WA_BGRA;
478
479 if (brw->vb.inputs[i].glarray->Normalized)
480 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
481 else if (!brw->vb.inputs[i].glarray->Integer)
482 wa_flags |= BRW_ATTRIB_WA_SCALE;
483
484 break;
485 }
486
487 key.gl_attrib_wa_flags[i] = wa_flags;
488 }
489 }
490
491 if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
492 &key, sizeof(key),
493 &brw->vs.prog_offset, &brw->vs.prog_data)) {
494 bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
495 vp, &key);
496
497 assert(success);
498 }
499 if (memcmp(&brw->vs.prog_data->vue_map, &brw->vue_map_geom_out,
500 sizeof(brw->vue_map_geom_out)) != 0) {
501 brw->vue_map_geom_out = brw->vs.prog_data->vue_map;
502 brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
503 }
504 }
505
506 /* See brw_vs.c:
507 */
508 const struct brw_tracked_state brw_vs_prog = {
509 .dirty = {
510 .mesa = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
511 _NEW_TEXTURE |
512 _NEW_BUFFERS),
513 .brw = (BRW_NEW_VERTEX_PROGRAM |
514 BRW_NEW_VERTICES),
515 .cache = 0
516 },
517 .emit = brw_upload_vs_prog
518 };
519
520 bool
521 brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
522 {
523 struct brw_context *brw = brw_context(ctx);
524 struct brw_vs_prog_key key;
525 uint32_t old_prog_offset = brw->vs.prog_offset;
526 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
527 bool success;
528
529 if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
530 return true;
531
532 struct gl_vertex_program *vp = (struct gl_vertex_program *)
533 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
534 struct brw_vertex_program *bvp = brw_vertex_program(vp);
535
536 memset(&key, 0, sizeof(key));
537
538 key.program_string_id = bvp->id;
539 key.clamp_vertex_color = true;
540
541 for (int i = 0; i < MAX_SAMPLERS; i++) {
542 if (vp->Base.ShadowSamplers & (1 << i)) {
543 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
544 key.tex.swizzles[i] =
545 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
546 } else {
547 /* Color sampler: assume no swizzling. */
548 key.tex.swizzles[i] = SWIZZLE_XYZW;
549 }
550 }
551
552 success = do_vs_prog(brw, prog, bvp, &key);
553
554 brw->vs.prog_offset = old_prog_offset;
555 brw->vs.prog_data = old_prog_data;
556
557 return success;
558 }
559
560 void
561 brw_vs_prog_data_free(const void *in_prog_data)
562 {
563 const struct brw_vs_prog_data *prog_data = in_prog_data;
564
565 ralloc_free((void *)prog_data->param);
566 ralloc_free((void *)prog_data->pull_param);
567 }