i965/vec4: Make a function for setting up vec4 program key clip info.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "glsl/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int varying)
45 {
46 /* Make sure this varying hasn't been assigned a slot already */
47 assert (vue_map->varying_to_slot[varying] == -1);
48
49 vue_map->varying_to_slot[varying] = vue_map->num_slots;
50 vue_map->slot_to_varying[vue_map->num_slots++] = varying;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 *
56 * Note that consumers of this map using cache keys must include
57 * prog_data->userclip and prog_data->outputs_written in their key
58 * (generated by CACHE_NEW_VS_PROG).
59 */
60 void
61 brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
62 GLbitfield64 slots_valid, bool userclip_active)
63 {
64 vue_map->slots_valid = slots_valid;
65 int i;
66
67 /* Make sure that the values we store in vue_map->varying_to_slot and
68 * vue_map->slot_to_varying won't overflow the signed chars that are used
69 * to store them. Note that since vue_map->slot_to_varying sometimes holds
70 * values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that
71 * BRW_VARYING_SLOT_COUNT is <= 127, not 128.
72 */
73 STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127);
74
75 vue_map->num_slots = 0;
76 for (i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) {
77 vue_map->varying_to_slot[i] = -1;
78 vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_COUNT;
79 }
80
81 /* VUE header: format depends on chip generation and whether clipping is
82 * enabled.
83 */
84 switch (brw->gen) {
85 case 4:
86 case 5:
87 /* There are 8 dwords in VUE header pre-Ironlake:
88 * dword 0-3 is indices, point width, clip flags.
89 * dword 4-7 is ndc position
90 * dword 8-11 is the first vertex data.
91 *
92 * On Ironlake the VUE header is nominally 20 dwords, but the hardware
93 * will accept the same header layout as Gen4 [and should be a bit faster]
94 */
95 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
96 assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC);
97 assign_vue_slot(vue_map, VARYING_SLOT_POS);
98 break;
99 case 6:
100 case 7:
101 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
102 * dword 0-3 of the header is indices, point width, clip flags.
103 * dword 4-7 is the 4D space position
104 * dword 8-15 of the vertex header is the user clip distance if
105 * enabled.
106 * dword 8-11 or 16-19 is the first vertex element data we fill.
107 */
108 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
109 assign_vue_slot(vue_map, VARYING_SLOT_POS);
110 if (userclip_active) {
111 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0);
112 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1);
113 }
114 /* front and back colors need to be consecutive so that we can use
115 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
116 * two-sided color.
117 */
118 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0))
119 assign_vue_slot(vue_map, VARYING_SLOT_COL0);
120 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0))
121 assign_vue_slot(vue_map, VARYING_SLOT_BFC0);
122 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1))
123 assign_vue_slot(vue_map, VARYING_SLOT_COL1);
124 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1))
125 assign_vue_slot(vue_map, VARYING_SLOT_BFC1);
126 break;
127 default:
128 assert (!"VUE map not known for this chip generation");
129 break;
130 }
131
132 /* The hardware doesn't care about the rest of the vertex outputs, so just
133 * assign them contiguously. Don't reassign outputs that already have a
134 * slot.
135 *
136 * We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX,
137 * since it's encoded as the clip distances by emit_clip_distances().
138 * However, it may be output by transform feedback, and we'd rather not
139 * recompute state when TF changes, so we just always include it.
140 */
141 for (int i = 0; i < VARYING_SLOT_MAX; ++i) {
142 if ((slots_valid & BITFIELD64_BIT(i)) &&
143 vue_map->varying_to_slot[i] == -1) {
144 assign_vue_slot(vue_map, i);
145 }
146 }
147 }
148
149
150 /**
151 * Decide which set of clip planes should be used when clipping via
152 * gl_Position or gl_ClipVertex.
153 */
154 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
155 {
156 if (ctx->Shader.CurrentVertexProgram) {
157 /* There is currently a GLSL vertex shader, so clip according to GLSL
158 * rules, which means compare gl_ClipVertex (or gl_Position, if
159 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
160 * that were stored in EyeUserPlane at the time the clip planes were
161 * specified.
162 */
163 return ctx->Transform.EyeUserPlane;
164 } else {
165 /* Either we are using fixed function or an ARB vertex program. In
166 * either case the clip planes are going to be compared against
167 * gl_Position (which is in clip coordinates) so we have to clip using
168 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
169 * core.
170 */
171 return ctx->Transform._ClipUserPlane;
172 }
173 }
174
175
176 bool
177 brw_vs_prog_data_compare(const void *in_a, const void *in_b,
178 int aux_size, const void *in_key)
179 {
180 const struct brw_vs_prog_data *a = in_a;
181 const struct brw_vs_prog_data *b = in_b;
182
183 /* Compare the base vec4 structure. */
184 if (!brw_vec4_prog_data_compare(&a->base, &b->base))
185 return false;
186
187 /* Compare the rest of the struct. */
188 const unsigned offset = sizeof(struct brw_vec4_prog_data);
189 if (memcmp(((char *) &a) + offset, ((char *) &b) + offset,
190 sizeof(struct brw_vs_prog_data) - offset)) {
191 return false;
192 }
193
194 return true;
195 }
196
197 static bool
198 do_vs_prog(struct brw_context *brw,
199 struct gl_shader_program *prog,
200 struct brw_vertex_program *vp,
201 struct brw_vs_prog_key *key)
202 {
203 GLuint program_size;
204 const GLuint *program;
205 struct brw_vs_compile c;
206 struct brw_vs_prog_data prog_data;
207 void *mem_ctx;
208 int i;
209 struct gl_shader *vs = NULL;
210
211 if (prog)
212 vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];
213
214 memset(&c, 0, sizeof(c));
215 memcpy(&c.key, key, sizeof(*key));
216 memset(&prog_data, 0, sizeof(prog_data));
217
218 mem_ctx = ralloc_context(NULL);
219
220 c.vp = vp;
221
222 /* Allocate the references to the uniforms that will end up in the
223 * prog_data associated with the compiled program, and which will be freed
224 * by the state cache.
225 */
226 int param_count;
227 if (vs) {
228 /* We add padding around uniform values below vec4 size, with the worst
229 * case being a float value that gets blown up to a vec4, so be
230 * conservative here.
231 */
232 param_count = vs->num_uniform_components * 4;
233
234 } else {
235 param_count = vp->program.Base.Parameters->NumParameters * 4;
236 }
237 /* We also upload clip plane data as uniforms */
238 param_count += MAX_CLIP_PLANES * 4;
239
240 prog_data.base.param = rzalloc_array(NULL, const float *, param_count);
241 prog_data.base.pull_param = rzalloc_array(NULL, const float *, param_count);
242
243 GLbitfield64 outputs_written = vp->program.Base.OutputsWritten;
244 prog_data.inputs_read = vp->program.Base.InputsRead;
245
246 if (c.key.copy_edgeflag) {
247 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_EDGE);
248 prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
249 }
250
251 if (brw->gen < 6) {
252 /* Put dummy slots into the VUE for the SF to put the replaced
253 * point sprite coords in. We shouldn't need these dummy slots,
254 * which take up precious URB space, but it would mean that the SF
255 * doesn't get nice aligned pairs of input coords into output
256 * coords, which would be a pain to handle.
257 */
258 for (i = 0; i < 8; i++) {
259 if (c.key.point_coord_replace & (1 << i))
260 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_TEX0 + i);
261 }
262
263 /* if back colors are written, allocate slots for front colors too */
264 if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC0))
265 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL0);
266 if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC1))
267 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL1);
268
269 if (c.key.base.userclip_active) {
270 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
271 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
272 }
273 }
274
275 brw_compute_vue_map(brw, &prog_data.base.vue_map, outputs_written,
276 c.key.base.userclip_active);
277
278 if (0) {
279 _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
280 true);
281 }
282
283 /* Emit GEN4 code.
284 */
285 program = brw_vs_emit(brw, prog, &c, &prog_data, mem_ctx, &program_size);
286 if (program == NULL) {
287 ralloc_free(mem_ctx);
288 return false;
289 }
290
291 /* Scratch space is used for register spilling */
292 if (c.base.last_scratch) {
293 perf_debug("Vertex shader triggered register spilling. "
294 "Try reducing the number of live vec4 values to "
295 "improve performance.\n");
296
297 prog_data.base.total_scratch
298 = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
299
300 brw_get_scratch_bo(brw, &brw->vs.scratch_bo,
301 prog_data.base.total_scratch * brw->max_vs_threads);
302 }
303
304 brw_upload_cache(&brw->cache, BRW_VS_PROG,
305 &c.key, sizeof(c.key),
306 program, program_size,
307 &prog_data, sizeof(prog_data),
308 &brw->vs.prog_offset, &brw->vs.prog_data);
309 ralloc_free(mem_ctx);
310
311 return true;
312 }
313
314 static bool
315 key_debug(struct brw_context *brw, const char *name, int a, int b)
316 {
317 if (a != b) {
318 perf_debug(" %s %d->%d\n", name, a, b);
319 return true;
320 }
321 return false;
322 }
323
324 void
325 brw_vs_debug_recompile(struct brw_context *brw,
326 struct gl_shader_program *prog,
327 const struct brw_vs_prog_key *key)
328 {
329 struct brw_cache_item *c = NULL;
330 const struct brw_vs_prog_key *old_key = NULL;
331 bool found = false;
332
333 perf_debug("Recompiling vertex shader for program %d\n", prog->Name);
334
335 for (unsigned int i = 0; i < brw->cache.size; i++) {
336 for (c = brw->cache.items[i]; c; c = c->next) {
337 if (c->cache_id == BRW_VS_PROG) {
338 old_key = c->key;
339
340 if (old_key->base.program_string_id == key->base.program_string_id)
341 break;
342 }
343 }
344 if (c)
345 break;
346 }
347
348 if (!c) {
349 perf_debug(" Didn't find previous compile in the shader cache for "
350 "debug\n");
351 return;
352 }
353
354 for (unsigned int i = 0; i < VERT_ATTRIB_MAX; i++) {
355 found |= key_debug(brw, "Vertex attrib w/a flags",
356 old_key->gl_attrib_wa_flags[i],
357 key->gl_attrib_wa_flags[i]);
358 }
359
360 found |= key_debug(brw, "user clip flags",
361 old_key->base.userclip_active, key->base.userclip_active);
362
363 found |= key_debug(brw, "user clipping planes as push constants",
364 old_key->base.nr_userclip_plane_consts,
365 key->base.nr_userclip_plane_consts);
366
367 found |= key_debug(brw, "clip distance enable",
368 old_key->base.uses_clip_distance, key->base.uses_clip_distance);
369 found |= key_debug(brw, "copy edgeflag",
370 old_key->copy_edgeflag, key->copy_edgeflag);
371 found |= key_debug(brw, "PointCoord replace",
372 old_key->point_coord_replace, key->point_coord_replace);
373 found |= key_debug(brw, "vertex color clamping",
374 old_key->base.clamp_vertex_color, key->base.clamp_vertex_color);
375
376 found |= brw_debug_recompile_sampler_key(brw, &old_key->base.tex,
377 &key->base.tex);
378
379 if (!found) {
380 perf_debug(" Something else\n");
381 }
382 }
383
384
385 void
386 brw_setup_vec4_key_clip_info(struct brw_context *brw,
387 struct brw_vec4_prog_key *key,
388 bool program_uses_clip_distance)
389 {
390 struct gl_context *ctx = &brw->ctx;
391
392 key->userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
393 key->uses_clip_distance = program_uses_clip_distance;
394 if (key->userclip_active && !key->uses_clip_distance) {
395 key->nr_userclip_plane_consts
396 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
397 }
398 }
399
400
401 static void brw_upload_vs_prog(struct brw_context *brw)
402 {
403 struct gl_context *ctx = &brw->ctx;
404 struct brw_vs_prog_key key;
405 /* BRW_NEW_VERTEX_PROGRAM */
406 struct brw_vertex_program *vp =
407 (struct brw_vertex_program *)brw->vertex_program;
408 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
409 int i;
410
411 memset(&key, 0, sizeof(key));
412
413 /* Just upload the program verbatim for now. Always send it all
414 * the inputs it asks for, whether they are varying or not.
415 */
416 key.base.program_string_id = vp->id;
417 brw_setup_vec4_key_clip_info(brw, &key.base, vp->program.UsesClipDistance);
418
419 /* _NEW_POLYGON */
420 if (brw->gen < 6) {
421 key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
422 ctx->Polygon.BackMode != GL_FILL);
423 }
424
425 /* _NEW_LIGHT | _NEW_BUFFERS */
426 key.base.clamp_vertex_color = ctx->Light._ClampVertexColor;
427
428 /* _NEW_POINT */
429 if (brw->gen < 6 && ctx->Point.PointSprite) {
430 for (i = 0; i < 8; i++) {
431 if (ctx->Point.CoordReplace[i])
432 key.point_coord_replace |= (1 << i);
433 }
434 }
435
436 /* _NEW_TEXTURE */
437 brw_populate_sampler_prog_key_data(ctx, prog, brw->vs.sampler_count,
438 &key.base.tex);
439
440 /* BRW_NEW_VERTICES */
441 if (brw->gen < 8 && !brw->is_haswell) {
442 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
443 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
444 */
445 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
446 if (!(vp->program.Base.InputsRead & BITFIELD64_BIT(i)))
447 continue;
448
449 uint8_t wa_flags = 0;
450
451 switch (brw->vb.inputs[i].glarray->Type) {
452
453 case GL_FIXED:
454 wa_flags = brw->vb.inputs[i].glarray->Size;
455 break;
456
457 case GL_INT_2_10_10_10_REV:
458 wa_flags |= BRW_ATTRIB_WA_SIGN;
459 /* fallthough */
460
461 case GL_UNSIGNED_INT_2_10_10_10_REV:
462 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
463 wa_flags |= BRW_ATTRIB_WA_BGRA;
464
465 if (brw->vb.inputs[i].glarray->Normalized)
466 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
467 else if (!brw->vb.inputs[i].glarray->Integer)
468 wa_flags |= BRW_ATTRIB_WA_SCALE;
469
470 break;
471 }
472
473 key.gl_attrib_wa_flags[i] = wa_flags;
474 }
475 }
476
477 if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
478 &key, sizeof(key),
479 &brw->vs.prog_offset, &brw->vs.prog_data)) {
480 bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
481 vp, &key);
482
483 assert(success);
484 }
485 if (memcmp(&brw->vs.prog_data->base.vue_map, &brw->vue_map_geom_out,
486 sizeof(brw->vue_map_geom_out)) != 0) {
487 brw->vue_map_geom_out = brw->vs.prog_data->base.vue_map;
488 brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
489 }
490 }
491
492 /* See brw_vs.c:
493 */
494 const struct brw_tracked_state brw_vs_prog = {
495 .dirty = {
496 .mesa = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
497 _NEW_TEXTURE |
498 _NEW_BUFFERS),
499 .brw = (BRW_NEW_VERTEX_PROGRAM |
500 BRW_NEW_VERTICES),
501 .cache = 0
502 },
503 .emit = brw_upload_vs_prog
504 };
505
506 bool
507 brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
508 {
509 struct brw_context *brw = brw_context(ctx);
510 struct brw_vs_prog_key key;
511 uint32_t old_prog_offset = brw->vs.prog_offset;
512 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
513 bool success;
514
515 if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
516 return true;
517
518 struct gl_vertex_program *vp = (struct gl_vertex_program *)
519 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
520 struct brw_vertex_program *bvp = brw_vertex_program(vp);
521
522 memset(&key, 0, sizeof(key));
523
524 key.base.program_string_id = bvp->id;
525 key.base.clamp_vertex_color = ctx->API == API_OPENGL_COMPAT;
526
527 unsigned sampler_count = _mesa_fls(vp->Base.SamplersUsed);
528 for (unsigned i = 0; i < sampler_count; i++) {
529 if (vp->Base.ShadowSamplers & (1 << i)) {
530 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
531 key.base.tex.swizzles[i] =
532 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
533 } else {
534 /* Color sampler: assume no swizzling. */
535 key.base.tex.swizzles[i] = SWIZZLE_XYZW;
536 }
537 }
538
539 success = do_vs_prog(brw, prog, bvp, &key);
540
541 brw->vs.prog_offset = old_prog_offset;
542 brw->vs.prog_data = old_prog_data;
543
544 return success;
545 }
546
547
548 void
549 brw_vs_prog_data_free(const void *in_prog_data)
550 {
551 const struct brw_vs_prog_data *prog_data = in_prog_data;
552
553 brw_vec4_prog_data_free(&prog_data->base);
554 }