i965/vs: add support for emitting gl_ClipVertex
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vs.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/compiler.h"
34 #include "brw_context.h"
35 #include "brw_vs.h"
36 #include "brw_util.h"
37 #include "brw_state.h"
38 #include "program/prog_print.h"
39 #include "program/prog_parameter.h"
40
41 #include "glsl/ralloc.h"
42
43 static inline void assign_vue_slot(struct brw_vue_map *vue_map,
44 int varying)
45 {
46 /* Make sure this varying hasn't been assigned a slot already */
47 assert (vue_map->varying_to_slot[varying] == -1);
48
49 vue_map->varying_to_slot[varying] = vue_map->num_slots;
50 vue_map->slot_to_varying[vue_map->num_slots++] = varying;
51 }
52
53 /**
54 * Compute the VUE map for vertex shader program.
55 *
56 * Note that consumers of this map using cache keys must include
57 * prog_data->userclip and prog_data->outputs_written in their key
58 * (generated by CACHE_NEW_VS_PROG).
59 */
60 void
61 brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
62 GLbitfield64 slots_valid, bool userclip_active)
63 {
64 const struct intel_context *intel = &brw->intel;
65
66 vue_map->slots_valid = slots_valid;
67 int i;
68
69 /* Make sure that the values we store in vue_map->varying_to_slot and
70 * vue_map->slot_to_varying won't overflow the signed chars that are used
71 * to store them. Note that since vue_map->slot_to_varying sometimes holds
72 * values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that
73 * BRW_VARYING_SLOT_COUNT is <= 127, not 128.
74 */
75 STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127);
76
77 vue_map->num_slots = 0;
78 for (i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) {
79 vue_map->varying_to_slot[i] = -1;
80 vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_COUNT;
81 }
82
83 /* VUE header: format depends on chip generation and whether clipping is
84 * enabled.
85 */
86 switch (intel->gen) {
87 case 4:
88 /* There are 8 dwords in VUE header pre-Ironlake:
89 * dword 0-3 is indices, point width, clip flags.
90 * dword 4-7 is ndc position
91 * dword 8-11 is the first vertex data.
92 */
93 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
94 assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC);
95 assign_vue_slot(vue_map, VARYING_SLOT_POS);
96 break;
97 case 5:
98 /* There are 20 DWs (D0-D19) in VUE header on Ironlake:
99 * dword 0-3 of the header is indices, point width, clip flags.
100 * dword 4-7 is the ndc position
101 * dword 8-11 of the vertex header is the 4D space position
102 * dword 12-19 of the vertex header is the user clip distance.
103 * dword 20-23 is a pad so that the vertex element data is aligned
104 * dword 24-27 is the first vertex data we fill.
105 *
106 * Note: future pipeline stages expect 4D space position to be
107 * contiguous with the other varyings, so we make dword 24-27 a
108 * duplicate copy of the 4D space position.
109 */
110 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
111 assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC);
112 assign_vue_slot(vue_map, BRW_VARYING_SLOT_POS_DUPLICATE);
113 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0);
114 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1);
115 assign_vue_slot(vue_map, BRW_VARYING_SLOT_PAD);
116 assign_vue_slot(vue_map, VARYING_SLOT_POS);
117 break;
118 case 6:
119 case 7:
120 /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
121 * dword 0-3 of the header is indices, point width, clip flags.
122 * dword 4-7 is the 4D space position
123 * dword 8-15 of the vertex header is the user clip distance if
124 * enabled.
125 * dword 8-11 or 16-19 is the first vertex element data we fill.
126 */
127 assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
128 assign_vue_slot(vue_map, VARYING_SLOT_POS);
129 if (userclip_active) {
130 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0);
131 assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1);
132 }
133 /* front and back colors need to be consecutive so that we can use
134 * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
135 * two-sided color.
136 */
137 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0))
138 assign_vue_slot(vue_map, VARYING_SLOT_COL0);
139 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0))
140 assign_vue_slot(vue_map, VARYING_SLOT_BFC0);
141 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1))
142 assign_vue_slot(vue_map, VARYING_SLOT_COL1);
143 if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1))
144 assign_vue_slot(vue_map, VARYING_SLOT_BFC1);
145 break;
146 default:
147 assert (!"VUE map not known for this chip generation");
148 break;
149 }
150
151 /* The hardware doesn't care about the rest of the vertex outputs, so just
152 * assign them contiguously. Don't reassign outputs that already have a
153 * slot.
154 *
155 * We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX,
156 * since it's encoded as the clip distances by emit_clip_distances().
157 * However, it may be output by transform feedback, and we'd rather not
158 * recompute state when TF changes, so we just always include it.
159 */
160 for (int i = 0; i < VARYING_SLOT_MAX; ++i) {
161 if ((slots_valid & BITFIELD64_BIT(i)) &&
162 vue_map->varying_to_slot[i] == -1) {
163 assign_vue_slot(vue_map, i);
164 }
165 }
166 }
167
168
169 /**
170 * Decide which set of clip planes should be used when clipping via
171 * gl_Position or gl_ClipVertex.
172 */
173 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
174 {
175 if (ctx->Shader.CurrentVertexProgram) {
176 /* There is currently a GLSL vertex shader, so clip according to GLSL
177 * rules, which means compare gl_ClipVertex (or gl_Position, if
178 * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
179 * that were stored in EyeUserPlane at the time the clip planes were
180 * specified.
181 */
182 return ctx->Transform.EyeUserPlane;
183 } else {
184 /* Either we are using fixed function or an ARB vertex program. In
185 * either case the clip planes are going to be compared against
186 * gl_Position (which is in clip coordinates) so we have to clip using
187 * _ClipUserPlane, which was transformed into clip coordinates by Mesa
188 * core.
189 */
190 return ctx->Transform._ClipUserPlane;
191 }
192 }
193
194
195 bool
196 brw_vec4_prog_data_compare(const struct brw_vec4_prog_data *a,
197 const struct brw_vec4_prog_data *b)
198 {
199 /* Compare all the struct up to the pointers. */
200 if (memcmp(a, b, offsetof(struct brw_vec4_prog_data, param)))
201 return false;
202
203 if (memcmp(a->param, b->param, a->nr_params * sizeof(void *)))
204 return false;
205
206 if (memcmp(a->pull_param, b->pull_param, a->nr_pull_params * sizeof(void *)))
207 return false;
208
209 return true;
210 }
211
212
213 bool
214 brw_vs_prog_data_compare(const void *in_a, const void *in_b,
215 int aux_size, const void *in_key)
216 {
217 const struct brw_vs_prog_data *a = in_a;
218 const struct brw_vs_prog_data *b = in_b;
219
220 /* Compare the base vec4 structure. */
221 if (!brw_vec4_prog_data_compare(&a->base, &b->base))
222 return false;
223
224 /* Compare the rest of the struct. */
225 const unsigned offset = sizeof(struct brw_vec4_prog_data);
226 if (memcmp(((char *) &a) + offset, ((char *) &b) + offset,
227 sizeof(struct brw_vs_prog_data) - offset)) {
228 return false;
229 }
230
231 return true;
232 }
233
234 static bool
235 do_vs_prog(struct brw_context *brw,
236 struct gl_shader_program *prog,
237 struct brw_vertex_program *vp,
238 struct brw_vs_prog_key *key)
239 {
240 struct intel_context *intel = &brw->intel;
241 GLuint program_size;
242 const GLuint *program;
243 struct brw_vs_compile c;
244 struct brw_vs_prog_data prog_data;
245 void *mem_ctx;
246 int i;
247 struct gl_shader *vs = NULL;
248
249 if (prog)
250 vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];
251
252 memset(&c, 0, sizeof(c));
253 memcpy(&c.key, key, sizeof(*key));
254 memset(&prog_data, 0, sizeof(prog_data));
255
256 mem_ctx = ralloc_context(NULL);
257
258 c.vp = vp;
259
260 /* Allocate the references to the uniforms that will end up in the
261 * prog_data associated with the compiled program, and which will be freed
262 * by the state cache.
263 */
264 int param_count;
265 if (vs) {
266 /* We add padding around uniform values below vec4 size, with the worst
267 * case being a float value that gets blown up to a vec4, so be
268 * conservative here.
269 */
270 param_count = vs->num_uniform_components * 4;
271
272 } else {
273 param_count = vp->program.Base.Parameters->NumParameters * 4;
274 }
275 /* We also upload clip plane data as uniforms */
276 param_count += MAX_CLIP_PLANES * 4;
277
278 prog_data.base.param = rzalloc_array(NULL, const float *, param_count);
279 prog_data.base.pull_param = rzalloc_array(NULL, const float *, param_count);
280
281 GLbitfield64 outputs_written = vp->program.Base.OutputsWritten;
282 prog_data.inputs_read = vp->program.Base.InputsRead;
283
284 if (c.key.copy_edgeflag) {
285 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_EDGE);
286 prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
287 }
288
289 if (intel->gen < 6) {
290 /* Put dummy slots into the VUE for the SF to put the replaced
291 * point sprite coords in. We shouldn't need these dummy slots,
292 * which take up precious URB space, but it would mean that the SF
293 * doesn't get nice aligned pairs of input coords into output
294 * coords, which would be a pain to handle.
295 */
296 for (i = 0; i < 8; i++) {
297 if (c.key.point_coord_replace & (1 << i))
298 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_TEX0 + i);
299 }
300 }
301
302 brw_compute_vue_map(brw, &prog_data.base.vue_map, outputs_written,
303 c.key.base.userclip_active);
304
305 if (0) {
306 _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
307 true);
308 }
309
310 /* Emit GEN4 code.
311 */
312 program = brw_vs_emit(brw, prog, &c, &prog_data, mem_ctx, &program_size);
313 if (program == NULL) {
314 ralloc_free(mem_ctx);
315 return false;
316 }
317
318 if (prog_data.base.nr_pull_params)
319 prog_data.base.num_surfaces = 1;
320 if (c.vp->program.Base.SamplersUsed)
321 prog_data.base.num_surfaces = SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT);
322 if (prog &&
323 prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks) {
324 prog_data.base.num_surfaces =
325 SURF_INDEX_VS_UBO(prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks);
326 }
327
328 /* Scratch space is used for register spilling */
329 if (c.base.last_scratch) {
330 perf_debug("Vertex shader triggered register spilling. "
331 "Try reducing the number of live vec4 values to "
332 "improve performance.\n");
333
334 prog_data.base.total_scratch
335 = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
336
337 brw_get_scratch_bo(intel, &brw->vs.scratch_bo,
338 prog_data.base.total_scratch * brw->max_vs_threads);
339 }
340
341 brw_upload_cache(&brw->cache, BRW_VS_PROG,
342 &c.key, sizeof(c.key),
343 program, program_size,
344 &prog_data, sizeof(prog_data),
345 &brw->vs.prog_offset, &brw->vs.prog_data);
346 ralloc_free(mem_ctx);
347
348 return true;
349 }
350
351 static bool
352 key_debug(struct intel_context *intel, const char *name, int a, int b)
353 {
354 if (a != b) {
355 perf_debug(" %s %d->%d\n", name, a, b);
356 return true;
357 }
358 return false;
359 }
360
361 void
362 brw_vs_debug_recompile(struct brw_context *brw,
363 struct gl_shader_program *prog,
364 const struct brw_vs_prog_key *key)
365 {
366 struct intel_context *intel = &brw->intel;
367 struct brw_cache_item *c = NULL;
368 const struct brw_vs_prog_key *old_key = NULL;
369 bool found = false;
370
371 perf_debug("Recompiling vertex shader for program %d\n", prog->Name);
372
373 for (unsigned int i = 0; i < brw->cache.size; i++) {
374 for (c = brw->cache.items[i]; c; c = c->next) {
375 if (c->cache_id == BRW_VS_PROG) {
376 old_key = c->key;
377
378 if (old_key->base.program_string_id == key->base.program_string_id)
379 break;
380 }
381 }
382 if (c)
383 break;
384 }
385
386 if (!c) {
387 perf_debug(" Didn't find previous compile in the shader cache for "
388 "debug\n");
389 return;
390 }
391
392 for (unsigned int i = 0; i < VERT_ATTRIB_MAX; i++) {
393 found |= key_debug(intel, "Vertex attrib w/a flags",
394 old_key->gl_attrib_wa_flags[i],
395 key->gl_attrib_wa_flags[i]);
396 }
397
398 found |= key_debug(intel, "user clip flags",
399 old_key->base.userclip_active, key->base.userclip_active);
400
401 found |= key_debug(intel, "user clipping planes as push constants",
402 old_key->base.nr_userclip_plane_consts,
403 key->base.nr_userclip_plane_consts);
404
405 found |= key_debug(intel, "clip distance enable",
406 old_key->base.uses_clip_distance, key->base.uses_clip_distance);
407 found |= key_debug(intel, "clip plane enable bitfield",
408 old_key->base.userclip_planes_enabled_gen_4_5,
409 key->base.userclip_planes_enabled_gen_4_5);
410 found |= key_debug(intel, "copy edgeflag",
411 old_key->copy_edgeflag, key->copy_edgeflag);
412 found |= key_debug(intel, "PointCoord replace",
413 old_key->point_coord_replace, key->point_coord_replace);
414 found |= key_debug(intel, "vertex color clamping",
415 old_key->base.clamp_vertex_color, key->base.clamp_vertex_color);
416
417 found |= brw_debug_recompile_sampler_key(intel, &old_key->base.tex,
418 &key->base.tex);
419
420 if (!found) {
421 perf_debug(" Something else\n");
422 }
423 }
424
425 static void brw_upload_vs_prog(struct brw_context *brw)
426 {
427 struct intel_context *intel = &brw->intel;
428 struct gl_context *ctx = &intel->ctx;
429 struct brw_vs_prog_key key;
430 /* BRW_NEW_VERTEX_PROGRAM */
431 struct brw_vertex_program *vp =
432 (struct brw_vertex_program *)brw->vertex_program;
433 struct gl_program *prog = (struct gl_program *) brw->vertex_program;
434 int i;
435
436 memset(&key, 0, sizeof(key));
437
438 /* Just upload the program verbatim for now. Always send it all
439 * the inputs it asks for, whether they are varying or not.
440 */
441 key.base.program_string_id = vp->id;
442 key.base.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
443 key.base.uses_clip_distance = vp->program.UsesClipDistance;
444 if (key.base.userclip_active && !key.base.uses_clip_distance) {
445 if (intel->gen < 6) {
446 key.base.nr_userclip_plane_consts
447 = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
448 key.base.userclip_planes_enabled_gen_4_5
449 = ctx->Transform.ClipPlanesEnabled;
450 } else {
451 key.base.nr_userclip_plane_consts
452 = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
453 }
454 }
455
456 /* _NEW_POLYGON */
457 if (intel->gen < 6) {
458 key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
459 ctx->Polygon.BackMode != GL_FILL);
460 }
461
462 /* _NEW_LIGHT | _NEW_BUFFERS */
463 key.base.clamp_vertex_color = ctx->Light._ClampVertexColor;
464
465 /* _NEW_POINT */
466 if (intel->gen < 6 && ctx->Point.PointSprite) {
467 for (i = 0; i < 8; i++) {
468 if (ctx->Point.CoordReplace[i])
469 key.point_coord_replace |= (1 << i);
470 }
471 }
472
473 /* _NEW_TEXTURE */
474 brw_populate_sampler_prog_key_data(ctx, prog, &key.base.tex);
475
476 /* BRW_NEW_VERTICES */
477 if (intel->gen < 8 && !intel->is_haswell) {
478 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
479 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
480 */
481 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
482 if (!(vp->program.Base.InputsRead & BITFIELD64_BIT(i)))
483 continue;
484
485 uint8_t wa_flags = 0;
486
487 switch (brw->vb.inputs[i].glarray->Type) {
488
489 case GL_FIXED:
490 wa_flags = brw->vb.inputs[i].glarray->Size;
491 break;
492
493 case GL_INT_2_10_10_10_REV:
494 wa_flags |= BRW_ATTRIB_WA_SIGN;
495 /* fallthough */
496
497 case GL_UNSIGNED_INT_2_10_10_10_REV:
498 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
499 wa_flags |= BRW_ATTRIB_WA_BGRA;
500
501 if (brw->vb.inputs[i].glarray->Normalized)
502 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
503 else if (!brw->vb.inputs[i].glarray->Integer)
504 wa_flags |= BRW_ATTRIB_WA_SCALE;
505
506 break;
507 }
508
509 key.gl_attrib_wa_flags[i] = wa_flags;
510 }
511 }
512
513 if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
514 &key, sizeof(key),
515 &brw->vs.prog_offset, &brw->vs.prog_data)) {
516 bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
517 vp, &key);
518
519 assert(success);
520 }
521 if (memcmp(&brw->vs.prog_data->base.vue_map, &brw->vue_map_geom_out,
522 sizeof(brw->vue_map_geom_out)) != 0) {
523 brw->vue_map_geom_out = brw->vs.prog_data->base.vue_map;
524 brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
525 }
526 }
527
528 /* See brw_vs.c:
529 */
530 const struct brw_tracked_state brw_vs_prog = {
531 .dirty = {
532 .mesa = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
533 _NEW_TEXTURE |
534 _NEW_BUFFERS),
535 .brw = (BRW_NEW_VERTEX_PROGRAM |
536 BRW_NEW_VERTICES),
537 .cache = 0
538 },
539 .emit = brw_upload_vs_prog
540 };
541
542 bool
543 brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
544 {
545 struct brw_context *brw = brw_context(ctx);
546 struct brw_vs_prog_key key;
547 uint32_t old_prog_offset = brw->vs.prog_offset;
548 struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
549 bool success;
550
551 if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
552 return true;
553
554 struct gl_vertex_program *vp = (struct gl_vertex_program *)
555 prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
556 struct brw_vertex_program *bvp = brw_vertex_program(vp);
557
558 memset(&key, 0, sizeof(key));
559
560 key.base.program_string_id = bvp->id;
561 key.base.clamp_vertex_color = ctx->API == API_OPENGL_COMPAT;
562
563 for (int i = 0; i < MAX_SAMPLERS; i++) {
564 if (vp->Base.ShadowSamplers & (1 << i)) {
565 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
566 key.base.tex.swizzles[i] =
567 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
568 } else {
569 /* Color sampler: assume no swizzling. */
570 key.base.tex.swizzles[i] = SWIZZLE_XYZW;
571 }
572 }
573
574 success = do_vs_prog(brw, prog, bvp, &key);
575
576 brw->vs.prog_offset = old_prog_offset;
577 brw->vs.prog_data = old_prog_data;
578
579 return success;
580 }
581
582
583 void
584 brw_vec4_prog_data_free(const struct brw_vec4_prog_data *prog_data)
585 {
586 ralloc_free((void *)prog_data->param);
587 ralloc_free((void *)prog_data->pull_param);
588 }
589
590
591 void
592 brw_vs_prog_data_free(const void *in_prog_data)
593 {
594 const struct brw_vs_prog_data *prog_data = in_prog_data;
595
596 brw_vec4_prog_data_free(&prog_data->base);
597 }